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Abstract

In this paper, we develop a robust non-parametric realized integrated beta estima-
tor using high-frequency financial data contaminated by microstructure noise, which is
robust to the stylized features, such as the time-varying beta and the price-dependent
and autocorrelated microstructure noise. With this robust realized integrated beta es-
timator, we investigate dynamic structures of integrated betas and find a persistent au-
toregressive structure. To model this dynamic structure, we utilize the autoregressive-
moving-average (ARMA) model for daily integrated market betas. We call this the
dynamic realized beta (DR Beta). Then, we propose a quasi-likelihood procedure for
estimating the parameters of the ARMA model with the robust realized integrated
beta estimator as the proxy. We establish asymptotic theorems for the proposed es-
timator and conduct a simulation study to check the performance of finite samples of
the estimator. The proposed DR Beta model with the robust realized beta estimator
is also illustrated by using data from the E-mini S&P 500 index futures and the top
50 large trading volume stocks from the S&P 500 and an application to constructing

market-neutral portfolios.



Key words and phrases: high-frequency financial data, pre-averaging estimation, quasi-

maximum likelihood estimation, time-varying beta.

1 Introduction

Market beta is a statistical measure of assets’ sensitivity to the overall market. This measure
plays a central role as the systemic risk measurement in financial applications such as asset
pricing, risk management, and portfolio allocation (Fama and French| [2004; |Perold} 2004]).
Thus, the characteristic of the market beta is a primary concern in empirical finance. Espe-
cially, several empirical studies reported that market betas vary over time (Bos and Newbold),
1984} Breen et al., [1989; [Hansen and Richard, 1987; |Keim and Stambaugh) [1986). To ac-
count for the time-varying property, low- and high-frequency finance modeling approaches
have been independently adopted. In the low-frequency financial modeling approach, we
often employ discrete-time series regression models in either a non-parametric or parametric
framework based on low-frequency data such as daily, weekly, and monthly return data. For
example, Fama and MacBeth (1973) used a rolling window regression approach with the or-
dinary least square (OLS) method, and Black et al.| (1992) employed the state-space model
by using the Kalman filter method. In addition, to account for market beta dynamics, several
studies proposed autoregressive time series models, such as generalized autoregressive con-
ditional heteroskedasticity (GARCH) model-type structures (Engle, [2016; Gonzalez-Riveral,
1996; |Koutmos et al., [1994; Ng, [1991). In contrast, Bollerslev et al.|(2016]) showed that incor-
porating high-frequency financial data offers more benefits while capturing beta dynamics.
Specifically, intraday data provide accurate estimations with sufficient data even within a
short time period. To exploit this property, several non-parametric market beta estimators
based on high-frequency data under continuous-time series regression models have been de-
veloped. For example, Barndorff-Nielsen and Shephard| (2004) employed the OLS method
by calculating a ratio of the integrated covariance between assets and systematic factors
to the integrated variation of systematic factors. See also |Andersen et al. (2006); |Li et al.

(2017a)); Mykland and Zhang| (2006); Reif et al. (2015)). Mykland and Zhang| (2009) further



computed the market beta as the aggregation of market betas estimated over local blocks.
ATt-Sahalia et al.| (2020) proposed an integrated beta approach, using spot market betas in
the absence of market microstructure noise, and |/Andersen et al.| (2021)) investigated intraday
variation of spot market betas. |[Jacod and Rosenbaum| (2013)) introduced the non-parametric
inference for nonlinear volatility functionals of general multivariate It6 semimartingales in
a high-frequency, but without the presence of noise. Recently, |Chen| (2018) extended this
non-parametric inference to contexts with the presence of microstructure noise. They do not
allow for any dependent structure of the microstructure noise on the true latent price, nor do
they account for its autocorrelation. However, several studies indicated that the microstruc-
ture noise is not only dependent on the true latent price but also exhibits autocorrelation
(Hautsch and Podolskij, 2013; |Jacod et al., [2019; [Li et al., 2020; |Li and Linton, 2022, [2023).
Thus, to measure the market beta accurately, we need to develop a robust realized beta
estimation procedure.

In this paper, to accommodate the stylized features, such as the time-varying beta and
the price-dependent and autocorrelated microstructure noise, we develop a robust realized
integrated beta (RI B) estimator for integrated betas with high-frequency data contaminated
by price-dependent and autocorrelated microstructure noise. For example, to handle the
time-varying spot beta process and the price-dependent and autocorrelated microstructure
noise, we estimate spot volatilities using the robust pre-averaging method (Jacod et al.
2019). Then, we can calculate the spot betas using spot volatility estimators. However, due
to the microstructure noise, they have asymptotically diverged bias with a convergence rate of

—1/4 which is known as the optimal with the presence of microstructure noise. To overcome

m
this problem, we introduce a bias adjustment scheme and integrate the bias-adjusted spot
beta estimators to obtain the realized integrated beta estimator. We show its asymptotic

/4 To the best of our knowledge, the proposed

properties and obtain the convergence rate m™
RIB is the first integrated beta estimator, which is robust to the financial features, such
as the time-varying beta and the price-dependent and autocorrelated microstructure noise.
Since the proposed RIB estimation procedure provides an accurate and robust market beta

estimator, it may help us study the dynamic structures of integrated market betas.



With the RIB estimator, we find that the realized betas have persistent autoregressive
(AR) structures (see Figure [I] in Section [3)). This result coincides with the previous liter-
ature. The literature on beta dynamics predominantly employs two approaches; modeling
conditional covariance (Englel |2016; |Gonzalez-Rivera, 1996; Hansen et al.l [2014; |Koutmos
et al, 11994; |[Ng, [1991) and directly modeling conditional beta. Adrian and Franzoni (2009));
Ang and Chen| (2007)); Blume (1971)) employed AR(1) structure to analyze beta dynamics
based on low-frequency data, such as monthly or quarterly stock returns. |Andersen et al.
(2006)); Becker et al.| (2021)); Hollstein and Prokopczuk! (2016]) employed the class of ARFIMA
structure on monthly, quarterly, and semiannual beta, estimated from 30-minute and daily
returns. In this paper, we model the daily integrated betas using the ARMA(p,q) model
to capture the persistent AR structure and call this dynamic realized beta (DR Beta). To
estimate the parameters of the ARMA model, we suggest a quasi-maximum likelihood esti-
mation procedure with the robust non-parametric RI B estimator. For example, we use RI B
as the proxy for the corresponding conditional expected integrated beta and employ the well-
known least square loss function. It is crucial to use a consistent estimator when working
with the ARMA model, as measurement errors can significantly jeopardize estimation and
prediction accuracy (Koreisha and Fang, |1999). Since incorporating ultra-high-frequency
data contaminated by microstructure noise is essential for obtaining consistent estimators
of daily integrated beta, the analysis of these betas presents different aspects of asymptotic
behavior compared to previous literature that uses at least monthly beta. To address these
points, we establish asymptotic theorems for the proposed estimation procedure and further
discuss how to conduct hypothesis tests.

The rest of the paper is organized as follows. In Section[2| we propose statistical inference
procedures for the integrated beta. In Section [3| we suggest the DR Beta model and examine
the parameter estimation procedure with their asymptotic theorems. In Section[d] we provide
a simulation study to check the finite sample performance for the proposed estimators. In
Section [0, we carry out an empirical study with the E-mini S&P 500 index futures and
50 individual stocks to investigate the advantage of the proposed model. In Section [6] we

conclude. The proofs and supplementary materials are collected in the online Appendix.



2 Robust realized integrated beta estimator

2.1 Model setup

We first fix some notations that we will use. Let Ry = [0, 00) and N be the set of all positive
integers. Let A;; denote the (i, j)th element of a matrix A, AT denote its transpose matrix,
and det(A) denote the determinant of A. We use the superscripts ¢ and d for the continuous
and jump processes, respectively.

We consider the following diffusion regression model, as originally introduced in |Mykland

and Zhang (2006)) (see also |Li et al. (2017a)); Li and Xiu| (2016)); |[Reiff et al.| (2015))):
dXyp = B dX7, + 5tdeX{l,t + dV, (2.1)

where X5 is a dependent process, X; is a covariate process, and V' is a residual process. Fur-
ther, X7, denotes the continuous part of the covariate process, and AX ﬁt is its jump at time
t. Then, 8¢ and 3¢ are the time-varying factor loadings with respect to the continuous and
jump parts of X, respectively. We assume that X;, and V; admit the following Grigelionis

decomposition of the forms:

t t
Xip= X1+ / p,sds + / 0sdBs + 011, <1y * (P — q)¢ + 011,51y * by,
0 0

t t
Vi=W +/ pa,sds + / qsdWs + 021y 1<ty * (P — q)¢ + 021y 51y * Pt
0 0

where 111, and po, are cadlag, progressively measurable, and locally bounded drifts, o; and
q; are adapted cadlag processes, B; and W, are independent standard Brownian motions,
p is a Poisson random measure on R™ x E, with the compensator q(dt,dx) = dt ® \(dx)
and the Polish space (F, &), A is a o-finite measure, 0; and ?s are predictable functions on
Q x Rt x E. All random quantities above are defined on a fixed filtered probability space
(Q, F, (F;)i>0, P). Furthermore, o? stays away from 0.

For the proposed time series regression model in (2.1)), we assume that time-varying



market betas follow a stochastic process defined on (2, F, P) as follows:
dﬁtc = ,LLBtht + gﬁ,tdBﬁ,h (22)

where pg, is progressively measurable and locally bounded drift, og, is cadlag, Bg, is a
standard Brownian motion with dBg,dW; = 0 and dBsdB; = psdt a.s. To measure the
daily market beta, we use the following integrated beta (I3):

15 = / Bedt, ieN, (2.3)
i—1

In this paper, the parameter of interest is the daily integrated beta. When the beta process
is constant over time with no price jumps, the integrated beta returns to the usual market
beta of the capital asset pricing model (CAPM). That is, the diffusion regression model

includes the traditional discrete-time CAPM regression.

Remark 1. In this paper, we separate the continuous and jump parts and mainly consider
the continuous part. We also investigate market betas corresponding to the jump part in the
empirical study, which is calculated based on the jump beta estimation method suggested
by |Li et al.| (2017b). However, unlike the beta for the continuous part, the beta for the jump
part does not have significant time series structures (see Figure . Thus, we focus on the

beta process for the continuous part.

For the high-frequency observations, one of the stylized features is that the transaction
prices are polluted by the market microstructure noise due to the discreteness of the price,
bid-ask spread bounce, and adverse selection effects, such as clearing costs (Ait-Sahalia
and Yu, [2009). To reflect this, we assume that the observed log prices have the additive
microstructure noise as follows:

Y =X, +efy and Yy = Xoy, + €5, (2.4)

52

where €, and €}, are the noise. Empirical studies reveal that the microstructure noise is

dependent on the true price (Ait-Sahalia et al., 2011} |Hansen and Lunde, 2006; Ubukata and



Oyal, [2009)) and has positive autocorrelation (Jacod et al., 2017; [Li and Linton, 2022). To
capture this, we allow microstructure noise to have a dependence on the true latent price,
diurnal features, and polynomial decaying autocorrelation. Before describing our assumption

about microstructure noise, we state the p-mixing property of a stationary random vector
X = (Xi)iez = (X105 X24) iez:

Definition 1. For a stationary process x, let G; = o(x; : i < j) and G = o(x; : 1 > J) be
the pre- and post-o-fields at time j. A stationary process x is v-polynomially p-mixing if for
some C' >0, pr(x) < C/EkY for all k > 1, where

pe(x) = sup{|E(UV)|:U and V are random variables, measurable with respect to
Go and G*, respectively, E(U) =E(V)=0,EU?) < 1,E(V?) < 1}.

. . o T . .
Assumption 1. The noise (€")icz = ((€1%, €5%) ' )icz is realized as
m m
€y, =X, and € =V21,X2;, (2.5)

where Y1 and 95 are non-negative Ito semimartingales with locally bounded drift and cadlag
diffusion terms. Furthermore, (X;)icz S a stationary process, independent of the o-field
Foo = Va0 Ft and v-polynomially p-mizing for some v > 5. x1; and xa,; are mean 0 and

variance 1 with finite moments of all orders.

Remark 2. Assumption |1/ implies that there exists a constant C' such that |r.(7)] < ﬁ
for all i € Z and a,b € {1,2}, where r4(¢) = E[xa0Xp:)- Thus, Ray = >,y Tas(i) is well

defined.

2.2 Robust realized integrated beta estimator

When it comes to estimating the integrated beta based on the observed high-frequency
financial data, there are a couple of obstacles. One is the microstructure noise, and the
other is the intraday dynamics of the spot beta process. In this section, we discuss how to

overcome these issues for the general stochastic beta process in (2.2)).
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For simplicity, we temporarily assume that the distance between adjacent observations
is equal to A,, = 1/m, where m is the number of high-frequency observations. We denote
the high-frequency observed time points ¢, = [/m for [ = 1,...,m. This equally spaced
observation time assumption can be easily extended to irregular observation time points.
We discuss this later. To manage the intraday dynamics—that is, the time-varying spot beta

process—we can use the following relationship:

d (& C C d C C
%[sz Xl,t] = 5t%[X1,taX1,t]>

where X3, is the continuous part of the individual asset log price process, and [-, -] denotes
the quadratic covariation. If f; is identifiable-that is, the spot volatility of X{ is nonzero—,
we can obtain the spot beta by comparing the spot volatility of X{ and the spot covolatility
between X7 and X§ as follows: ]

- Al 25
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This is similar to the result of the usual regression coefficient, which is the covariance of the
dependent and covariate variables over the variance of the covariate variable. The difference
is that the spot beta is defined by the spot volatility and covolatility. Thus, it can represent
the linear relationship at time t between the dependent and covariate processes. If the spot
volatility and covolatility are constant over time, the spot beta is the same as the usual
regression coefficient. By integrating the spot beta process, we finally obtain the integrated
beta. Therefore, as long as the spot volatility estimators perform well, we can estimate the
integrated beta.

To estimate spot volatilities, we employ the estimation method developed for estimating
integrated volatility with microstructure noise (Ait-Sahalia et al.; 2010; Barndorff-Nielsen
et al., 2008] 2011} |Christensen et al., 2010 [Fan and Kim| 2018; Jacod et al., 2009, 2019;
Shin et al., [2023; |Xiu|, 2010; Zhang, [2006; [Zhang et al. 2005| 2016)). In order to handle the
autocorrelation structure of the microstructure noise, we employ the pre-averaging method in
Jacod et al.| (2019)) as follows. We choose a sequence of integers, k,,, such that k,, = C’kA;f/ 2
for some positive constant C. We select a weight function g(-) on [0, 1] satisfying that g(-)



is continuous, piecewise continuously differentiable with a piecewise Lipschitz derivative ¢’

with ¢(0) = g(1) = 0 and fo s)ds > 0. Let

1

dos) = / 9(u)g(u — 8)du, o = do(0), di(s) = / '(w)g/(u— 8)du, = 61(0),

@00—/% )ds, @01—/9250 )b1(s)ds, @11—/9251

We also choose a sequence of integers, [,,,, such that {,,, = C;A_° for some positive constant
C; and ¢ € [%, %] Then, for l = 1,...,m,d = 1,...,l,,, and any processes P and P’, we
define

km—1 Im—1
m d m Nm N m m m \
94 =9 (k_) g Pl = Ptu Pl = 9; (Pl+] Pl+] 1) Z l+z7

/

d ) / = —d ’ — _
Entty = (B = Pita,) (Plta—Plta,) . & = (P - sz;lm) (Pl = Plias,)
The spot covariance matrix X of (X¢, X5)T at time ¢; is estimated with

am v(Y1, Y1, ut s Ui ms t) 0(Y1, Yo, Ut g, Uam, )
Zl :Etl — ’

U(Y27Y17U’2,m7u1,m7tl) 'U(}/Q,}/Q,UZm,Uzm,tl)

where
1 m 2k77L
/ / _ =~/
R =g —zkm)AmkmwO{ Z Pl“Plﬂ {PIl<a. 1Pl <a'}
bm—6lm K
1 m m md
LSy et
i=0  d=—Fk/,
o =km > (91— g") (9" a1 — gi”id) :
USY/
by, = CyALF, kI = CpAT for some positive constant Cj, and Cjs, tuning parameters

K € (% %) and T € (4U e %], U1 and ug,, are the thresholds chosen as uy ;, = a1 (k)™

and us,, = ag(knl,)® for some aj,as > 0, and w; € ([gflw iﬁ 2) for r defined in

Assumption (c) Under some mild conditions, we can show the consistency of the spot



volatility estimator (see Theorem [l| and [Figueroa-Lopez and Wu| (2022)). Using the plug-in
method, we can estimate the spot beta with the above spot volatility estimators. However,
due to the microstructure noise, the functional form of the spot volatility estimators has a
bias term. This fact prevents obtaining the asymptotic distribution with the convergence
rate of m~'/* when estimating the integrated beta by the simple integration of the biased spot
beta estimators. To overcome this, we introduce a bias adjustment scheme and construct a

realized integrated beta (RIB) estimator as follows:

1
lrmam 1 S
RIB = 1B, = buA BBy ), greeogn )
1 =15 = bnlAn, ., — Bin, ) B = = 11,i = max( 11,is m)s
i=0 11,

(2.7)
where 9, is a sequence of positive real numbers converging to zero and Bjj is a de-biasing

term of the form

-~m ~m
2
Bm_ B — 4 Ci"®o1 CI)llﬁll,z‘ [ z]12,1' 9" 2.8
i T 201,3p AL2 o T o 2 1,0 gm* — Y12, ’ (2.8)
Y5Cr7bm Ak D (21“.) 11,i
z+bm 6lm Ko, 1+bm 6lm Ko,
Qm m,d Am o m,d
1911,1‘ = (b — 6l E E €Y1Y1 e 12,1‘ = (b — 6l E E gY1Y2,]7
Jj=t d=—Fk!, Jj=t d=—k},

'H!‘bm 6lm 'Im

a5 = (b = 6lu)™ D Y &Y

Jj=t d=—k!,

We utilize iﬁt instead of iﬁ 1 for estimating spot beta in order to prevent the denominator
of ﬁm from being a non-positive value. Thanks to the de-biasing term sz , the average form

mn . can acnieve e optimal convergence rate m .
in (2.7 hieve the optimal g t 1/4

Remark 3. The RIB estimator is developed along the lines of the estimators in|Chen! (2018));
Jacod and Rosenbaum| (2013), which proposed estimators of integrated volatility function-
als. Specifically, Jacod and Rosenbaum (2013) considered the estimator in the absence of the
microstructure noise, and (Chen| (2018)) addressed the case of presence i.i.d. microstructure
noise using the traditional pre-averaging scheme. The traditional pre-averaging scheme uti-

lizes the property of diverging microstructure noise in the high-frequency returns to remove
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the microstructure noise effect. However, in the presence of price-dependent and autocorre-
lated microstructure noise, this approach faces challenges. The RI B estimator, adapting the
approach presented in|Jacod et al.| (2019), handles the dependent structure of microstructure
noise by directly obtaining a proxy for the microstructure noise. Therefore, the RIB estima-
tor is a consistent estimator of the integrated beta, whereas the others in |Chen| (2018); |Jacod
and Rosenbaum| (2013) are not consistent estimators in the presence of price-dependent and
autocorrelated microstructure noise. The consistency of estimators plays a crucial role in

time series analysis, as it contributes to capturing the time series dynamics.

To investigate the asymptotic behavior of the RIB estimator, we need the following

technical conditions.
Assumption 2.

(a) The processes o, and o, ' are locally bounded.

(b) We have

t t
O'?:O‘g—l—/o ﬁ178d8+/0 8sst+011{’51‘§1}*(p_q)t+011{’51|>1}*pt and

t t
4 = +/ fiz,sds + / qsdW + 021{|52|§1} *(p—q)+ 021{|52|>1} * Pe,
0 0

where [11 4 and fiz, are progressively measurable and locally bounded drifts; o, and q; are
adapted cadlag processes. The standard Brownian motions B, and Wt satisfy almost

surely

dBdBs, =0, dBdW, =0, dBdW,=0, dB,dB,=py,dt,
d/thdBﬁ7t = O, devtdBt = 0, d/thdEt = 07 d/-thth == ﬁ27tdt7

where p14 and pay are bounded. The stochastic processes [i1y, flat, Ot, G, P14, aNd P2y

are defined on (2, F, P).

2[v]—8

(c) For some r € [0, R

), there are a sequence Ty of stopping times increasing to oo,

a sequence of deterministic nonnegative \-integrable functions J, on R? such that

11



0i(w,t,2)[" AT < Jil2), [BLon(w, t,2)|] AT < Ti(2) and [3i(w,t,2)| A1 < Ti(2)
fori € {1,2} and all (w,t,z) with t < Ti(w).

(d) If P, is one of the processes Gy, Gi, P1t, O pay, then it satisfies the property (P-2),

where

(P-k) There exist C > 0, such that E [sup,cp . q(Pu— P)*|F] < Cs as. for any
t,s > 0.

Remark 4. The locally bounded condition of o; ' in Assumption (a) is required to identify

the beta from the processes. Assumption (C) is required to bound the degree of activity of

jumps (Ait-Sahalia and Jacod, 2009). The parameter r should be less than gm:i’
2[v]—4
2[v]—3

whereas

Jacod et al.|(2019) requires r < . This is because the RI B estimator requires the second-
moment condition for the jump-truncation error, whereas |Jacod et al.| (2019) only requires
convergence in probability for the jump-truncation error. If x is p-mixing with exponential
decay rate, we only require r < 1. Assumption (d) holds for any It6 semimartingale process
with bounded drift, diffusion, and jump terms.

The following theorem establishes the convergence rate and asymptotic distributions for

the proposed RIB estimator.

Theorem 1. Under Assumptions|[]] and |3, we have

1
m1/4(RIBl —15)) — / R.dZ, Fuo-stably as m — oo,
0

where Z is a standard Brownian motion independent of F, R is the square root of

2 Crq? Ay Ags
;as = Ppg—==> + P Z P == ,
w% ( 00 (73 ot Cy " Ck3

and

02 Ri1q? — 2691 305, R1a + 92 R
Al,s _ 1,s1t114 1,5V2,s4112 2, 22+19%73R11(B§)2,

2
05

2

19 S
Ags = ﬁ (2(55)219?,53%1 — 4B501 sV s Ri1 Ry + V3(Ri1 Raa + R%g)) :

S
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Theorem |[1| shows that the convergence rate of the RIB estimator is m~"*, which is
known as the optimal rate with the presence of microstructure noise and establishes its
asymptotic normality. To extend the estimator over all periods, we set m; to be the total
number of high-frequency observations for the ith day and rewrite m = >  m;/n. We
further let the ¢, ;’s be the high-frequency observed time points for the ith day, such that
i—1=tg<ti1 <-+<tim =1, where [t;; —t; ;1| = O (m™!) for all i, j. Then, we can

construct the RIB estimator as follows:

mi—bm, fa
— o1,
RIB; = [5“ _ ] and B, = . 2.9
12(; tit tz ti maX(222t”75 ) ( )

Moreover, we can show Theorem (1| for each RIB; under the usual assumption in the asyn-
chronous high-frequency data analysis (see Assumption[3[(e)). We utilize these well-performing
RIB estimators to analyze the dynamic structures of integrated betas in the following sec-
tion.

To utilize the asymptotic distribution result, we need to construct a consistent asymp-
totic variance estimator. In the following proposition, we propose the asymptotic variance

estimator and show its consistency.

~ 1 ]_1 ~
Proposition 1. Under Assumptz'ons and@, S = b\, Zl[i’gm”] be:: s a consistent

asymptotic variance estimator of the RIB estimator, where

RZMm 2_Ck (Ezz,i _ (2121)2> L 20 ®gy (19221 _ 221272‘791% 4 222,1'191171‘)
z vs Sh, B0 G\EL O G B0
oy (R BT S G
3 M, * Mk MLk )
Ck (211,1')4 ( 11 7,) (211,1')3 (211,1')2

-~m

where '5?11, V15, and 5121 are defined in (2.8). That is, we have S L5 fol R2ds.

13
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Figure 1: The box plot (left) of the first-order autocorrelations of the daily realized integrated
betas for the top 50 large trading volume assets among the S&P 500 from January 1, 2010,
to December 31, 2016, and the ACF plots for the largest, 75th, 25th, and smallest first-order
autocorrelation among the 50 assets excluding outliers.

3 Dynamic analysis of integrated betas

3.1 Dynamic realized beta models

In this section, we conduct a dynamic analysis of integrated betas. To check the low-
frequency time series structure of high-frequency-based market betas, we draw autocorre-
lation function (ACF) plots for daily realized integrated betas for the top 50 large trading
volume stocks in Figure [T} Figure[[]shows that the realized beta has a persistent autoregres-
sive structure. To account for this beta dynamics, we consider the ARMA(p, ¢) structure on

integrated betas as follows:
p q
IBy=w+> ailBui+ Y %iDui+ Dy, (3.1)
i=1 i=1

where D,, = I3, — h,, is martingale difference and h,, is F,,_i-adapted. We call this dynamic
realized beta (DR Beta) model. The model (3.1]) is equivalent to the following model:

q pVq
hal0) = w0+ 3 Aha () + 3 afTBs (32)
=1 =1

14



where 7] = —v;, o = ailpicpy + vil<gy, and 0 = (w,77,...,77, o1, ..., apy,) is model
parameter. Since (3.2]) is more practicable than (3.1)), we focus on estimating parameters of

B2).

3.2 Parametric estimation for the DR Beta model

3.2.1 Estimation procedure based on high-frequency data and a low-frequency

structure

According to the strong autoregressive structure of the RIB;’s in Figure [I, we now assume
that integrated market betas follow the DR Beta model defined in (3.2). To estimate the
true parameters g = (Wo, V515 - V0.q0 Q010 - -+ » X pvg)> We consider the well-known ordinary
least squares (OLS) estimation, which compares the conditional expectations of integrated

betas and its non-parametric estimators RIB;’s as follows:
1< )
L,n(0)=—— RIB; — h;(0)}. 3.3
nl®) == 304 ) (33)

The difference between the h;(#) and the RIB; can be decomposed into the martingale
difference and the estimation error. The estimation error is asymptotically negligible. Fur-
thermore, with some technical assumptions, the martingale difference terms have a negligible
effect on the estimation result. Thus, the RIB estimator can be utilized as the proxy of
hi(#). To harness the quasi-likelihood function above, we first need to evaluate the condi-
tional expectation term h;(#). Unfortunately, the true integrated betas are not observable.

Thus, we adopt their non-parametric estimators RIB; to evaluate h;(6) as follows:

q pVq
() =w+ Y Whai(0) + > IRIB, ;.
i=1 j=1

Then, we define the quasi-likelihood function as follows:

on®= -3 {r1B,~h(0)} (3.4)

=1
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and estimate the model parameters by maximizing the quasi-likelihood function an (0) as
follows:

= argmaxycq Znym(ﬁ),

where O is the parameter space of 6.
To estimate E,;(@), we need initial values ﬁo(G), . ,ﬁ_qﬂ(é), and RIBy,...,RIB_pyqt1,
which we cannot obtain from given information whereas it is required to get A @), ... ,Epvq(ﬁ).
Meanwhile, similar to Lemma 1 in |Kim and Wang] (2016), we can show that the dependence
1

of h;(#) on initial values decays with the order n™".

% ZLI RIB; as initial values.

Thus, we can utilize, for example,

3.2.2 Asymptotic theory

In this subsection, we establish asymptotic theorems for the proposed estimator 0. We first

define some notations. Define ||A| .. = max |A;| for a k x &’ matrix A. Let C' > 0
1<i<k, 1<j<k’

be generic constants whose values are free of n and m and may change from occurrence to

occurrence.

To explore the asymptotic behaviors of 5, the following technical conditions are required.

Assumption 3.

(a) Let
© = {(w, . ,1daf,...,ad,) w<w<wy, ] <, <A,
q pVq
of <aof,... ad, < aﬁ,z V] < 1,2 1<)y + La<pugro?| < 13,
i=1 i=1

where wy, wy, o, &, 48 are known constants such that of ,a9,~] andv9 are in (—1,1).
(b) Forall® € ©, |pg(x)] = 0= |z| > 1, where pg(z) = 1 =S 2N Lyeyv! + Licpup o)z,
(¢) To,(x) does not have no common root with @, (x), where To(zx) = Y21, 77,

(d) D; is stationary ergodic process satisfying supE [D?|F;_1] < C.

<n
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(e) There exist some fized constants Cy, Cy such that Cym < m; < Com, and

sup |ti; —tij—1] = O (m™') and n*m™ — 0 as m,n — oo.
1<j<m;

(f) We have supE [|RIB; — IBZ-|2] < COm~12.
i<n

Remark 5. Assumption [3(a)-(d) are usually imposed when analyzing asymptotic properties
of the ARMA-type models. For example, Assumption 3|(b) implies the stationarity of I3; and
hi(#), and Assumption (C) is required to identify the parameter space. Finally, Assumption
B(f) is required to handle the estimation errors of the unobserved integrated betas. Under
some bounded moment conditions on the random quantities, we can show that Assumption
Bf) holds. We elaborate on conditions of the long-span asymptotic behavior of the RIB

estimator in Assumption [

The following theorems provide the asymptotic results including the convergence rate

and asymptotic normality for the proposed parameters 0.

Theorem 2. Under Assumption@ (except for n*m~1 — 0), we have
16 = Gollmax = Op(m~ Y4 4+ n~1/2).
Theorem 3. Under Assumption |3, we have, as m,n — oo,

V(@ —6o) % N(0,V),

]) | 55

Remark 6. Theoremshows that the quasi-maximum likelihood estimator § has the converge

where
Ohs(6) Il (6)
00 007

szum<E

rate m~'/* 4+ n=1/2. The first term m~/* comes from estimating the integrated beta, which
is known as the optimal convergence rate with the presence of market microstructure noise.

—-1/2

The second term n is the typical parametric convergence rate based on the low-frequency

observations. Theorem [3| establishes the asymptotic normality of 9.
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In the asymptotic analysis of low-frequency dynamics, the sample size, n, is allowed to
go to infinity. Thus, we need the long-span asymptotic behavior of the RIB estimator,
such as Assumption [3(f). However, this condition is not satisfied under the locally bounded
condition such as Assumption 2] To coincide with the asymptotic results of the proposed

estimation procedures, we investigate the long-span asymptotic behavior of RIB as follows.
Assumption 4.

(a) We have bounded 64th moment of o, ju1, 01, 8%, 8%, g, and oz and bounded 32nd moment
Of 0_17 /117 8/7517 7-917 192, M2, q, and 0s.

(b) The process p satisfies (P-64) and the processes 2,01, and ¥y satisfy (P-32) in As-
sumption[d(d).

(¢) For some r € [0, g{ﬁ:g), there are deterministic nonnegative A\-integrable functions [J

on R? such that

Elfou(t, 2)[" A1V E[[0a(t, 2)|" A1 VE[IBLO1(E,2)]" A 1] < T (2),
E[[o:(t, 2) A 1] VE[[os(2, 2)* A 1] < T (2),
E[[o1(t, 2)|*] v E[[os(t, )] V E[[os(t, 2)[] v Efos (2, 2)[*) < T (2).

Remark 7. To establish the convergence in the second mean in Theorem [, we need moment
conditions on the spot error terms. For example, we consider the squared error of the de-
biasing term, (E;}}m — Bj}' )?, from which the highest order error terms comes, where B} is
defined in the online Appendix equation . Technically, after applying Talyor’s theorem,
(B\fg’m — B}’ )? become an octic function of the errors of spot variations with denominator,
since §Z§m is a cubic function of estimated spot variations with denominator. Thus, we
need 16th-moment conditions (32nd-moment conditions) on spot variation terms (drift and
diffusion terms). Further, 8¢ and 3¢ are random processes which are multiplied by dX¢
and dX¢. Therefore, we need 64th moment conditions for some random quantities. If we

1

assume that o, * is bounded, then we can reduce the 64th and 32nd-moment conditions in

Assumptions [f{(a), (b), and (c) by half, since we need one less Hélder’s inequality. On the
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other hand, unlike the case of asset price processes, it is economically sensible to consider
the random quantities in Assumption 4 as mean-reverting processes. When a mean-reverting
process follows a generalized Ornstein-Uhlenbeck process with Brownian motion, the high-

order moment condition, such as Assumption [4] can be satisfied. Thus, it is not restrictive.

The following theorem establishes the long-span asymptotic behavior for the proposed

RIB estimator.

Theorem 4. Under Assumptions [1], [4(b) and (d), and [ with v > 7, we have for 6,, =
C'(;An%;‘f defined in (2.7)),

supE [(RIB; — I8)%] < Cm™ /2.
ieN
Theorem [ shows that under some moment conditions, Assumption [|(f) is satisfied. That
is, the condition in Assumption (f) can be replaced by Assumption

3.2.3 Hypothesis tests

In financial practices, we are interested in model validity and making statistical inferences,
such as hypothesis tests. To do this, we can harness the asymptotic normality result in
Theorem [3 as follows:

T, = vV 120 = 6,) % N(0,1),

where V is a consistent estimator of the asymptotic variance V' defined in (3.5), and I is
a A x A identical matrix, where A = pV ¢+ g+ 1. Then, with the test statistics T,,, we
can conduct hypothesis tests based on the standard normal distribution. To evaluate the

statistics T},, we use the following asymptotic variance estimator,

~ N~ o~ —1
5 1g = a2 [1 = 9hy(0) 9hy(0)T
vV o= n;{RIBZ hz(e)} (n T . (3.6)

Jj=1

Its consistency can be derived similarly to the proof of Theorem [3]
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4 A simulation study

We conducted simulations to check the finite sample performance of the proposed statistical
inference procedures. For simplicity, we chose p = ¢ = 1 for the DR Beta model. In the
online Appendix, we provide a high-frequency data-generating process of the beta diffusion
process, whose integrated beta follows the DR Beta model. Using this data-generating
process, we generated the beta processes 6&_ and the jump-diffusion processes X, . and

Xoy,, fort;j=i—1+j/m,i=1,2,...,n,j=1,2,...,m as follows:

dXoy = Bi(0)dX7T, + ﬁtd‘]l,tdAl,t +dV;,
dX,; = 0:dB; + JydN1y,  dV; = qdW; + JoidAsy,

dp(0) = < 2 (t — [t]) (w1 +7185(0)) — (w2 + B(0)) — v(Ze — Zpy) + alﬂf(e)}dt
+v ([t]+ 1 —1t)dZ;,
dZydBy = dZ,dW, = dB,dW; = 0, (4.1)

where (wq,ws,v1,a1,v) = (—1.0,—1.5,0.6,0.2,0.9), ¢ = 0.008, and B;, Z;, and W, are
standard Brownian motions. The parameters w; and wy control the deterministic quadratic
time-trend of the spot beta process, thereby determining its mean level. The persistent
feature of the beta process is governed by the parameters v, and «q, with a; playing a key
role in regulating the intraday level autoregressive characteristic of the spot beta process.
The parameter v controls the degree of intraday variation in the beta process. More detailed
explanations of the process and its properties can be found in the online Appendix. With
the chosen diffusion process parameters, the parameter of the DR Beta model becomes
0o = (wg,v0,0f) = (0.84,0.20, 0.50). We generated the individual asset log price process
X1+ based on the realized GARCH-It6 model (Song et al. 2021)) as follows:

do? = {2“7'(75 — [t = 1)@ + 0% y) — (@ + 0% 1)) + do? — 1723} dt
FBI2 AN+ 20([t — 1] + 1 — 1) Z,d B,
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where a standard Brownian motion Et satisfies détth = détht = O,dgtdBt = pdt,
(@1, 82,7, , 8,7,p) = (6.04 x 1075,9.00 x 107, 0.35,0.4,0.1,1 x 10°, —0.5), and Z, = B, —
E[t,ﬂ. The initial values for the simulation data were chosen to be g5(6) = E [5£(0)] = 2.72,
ot =E[o}] = 755 x 107°, X145 = 16, and X0 = 10. For the jump part, we consider the
finite activity jumps. Specifically, A;; is a standard Poisson process with the intensities

A1 =5 and Aoy = 1, and the jump sizes J;; and Jo; were generated as follows:
Ji,=max(4 x 107 + My, 4x107°) and Jj, =max(8 x 107° + My, 8x1077),

where M;; and My, follow N(0, (5.5 x 107%)2) and N(0, (1 x 107%)?), respectively. For each
Jit and Jo,, we further assigned a positive (negative) sign with probability 0.5 to make
a positive (negative) jump. Finally, 3¢ was chosen to be 2.4, and we generated Brownian
motions using the Euler scheme.

The noisy high-frequency data Y1, and Ya,,  were generated from the model ,
where the true log price processes X, . and X, = were generated from , and the
microstructure noise €, ; and gy, . follow , where ¥4, U2, and x; follow Ornstein—
Uhlenbeck-type processes with an U-shaped pattern and the AR(1) process with Gaussian

innovations as follows:

A9y, = 10(pg, 1 — V10)dt + s1dBy, Ve, = 10(j1g, . — 9a,)dt + 0.655dB; + 0.852dW,,
pg,t = s1(1+0.1cos(2mt)),  pg,r = s2(1 + 0.1cos(2nt)),
s1=2.234 x107%, s, =5.464 x 1073,

0.5 0.1 0 0.815 —0.652

Xi_1+ €, € ~iia N 7
0.1 0.5 0 —0.652 0.815

In this specification of the noise, the noise-to-signal ratio in the returns is predominantly
determined by the parameters s; and s;. Additionally, the cross-autocovariance structure
of the noise is influenced by the VAR coefficients and the covariance of their innovations.
This simulation setting satisfies Assumptions 3(a)—(f), and specifically, Assumption 3(f) can

be verified by confirming that it aligns with Assumption 4. We repeated the simulation
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process 1000 times. We normalized one second to 1/23400 so that the unit time contains 6.5
hours. For each simulation process, we generated high-frequency data with m = 23400 for
500 consecutive days and used the subsampled log prices of the last n = 125,250,500 days
with high-frequency observations m = 7800, 11700, 23400 per day.

0.124

0.101

0.08 1

MSE

0.06 1

0.04 4

0.02 1

Cp

Figure 2: The MSEs of RIB estimator with m = 23400 against varying Cj,.

For the RI B estimator, we used the usual triangular weight function g(x) = {zA(1—2)},
and set k,, = [A,%°] and @, = 0.47 as recommended by |Christensen et al.| (2010) and |Ait-
Sahalia and Xiul (2016)), respectively. For each estimation of the daily integrated beta, we
chose [,, using the heuristic criterion presented in Section 5.1.2 of Jacod et al.| (2017)), where
the distance between two sequences is measured as the sum of their squared differences.
To determine k!, we utilized the test for autocovariance of noise as presented in Corollary
3.5 in [Jacod et al| (2017). Details can be found in the online Appendix [A]l In addition,
for the truncation, we chose a; and as as four times the sample standard deviation of the
pre-averaged prices kﬁll/ 2}71@“ and k;bl/ 2)7273d7k, respectively. We then needed to determine
Cy. To do this, we checked the effect of the choice of Cj of the RIB estimator. Figure
depicts the estimated mean squared errors (MSE) of the RIB estimator with m = 23400
against varying C from 0.4 to 3.0, where k = 0.67 and the integrated beta I; is calculated
as the Riemann sum of the true beta values for each trading days. From Figure [2] we find

that for ', < 1, the MSEs decrease as (j, increases, and for C, > 1, the MSEs slightly
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increase as Cj, increases. This may be because the window size for the spot betas should be
large enough to estimate spot betas, but too large a window size hinders the capture of the
intraday dynamics of the beta processes. From this analysis, we set C}, = 1.

We first checked the performance of the non-parametric integrated beta estimator, RI B,
proposed in Section For comparison, we employed other integrated beta estimators pro-
posed by |Chen| (2018)) and |Christensen et al. (2010). (Chen| (2018) proposed the estimator
for volatility functionals and the integrated beta (CHEN) is a specific example. |Chris-
tensen et al| (2010) calculated the integrated beta as a ratio of the integrated covariance
between assets and systematic factors to the integrated variation of systematic factors. The
proposed estimator utilizes a pre-averaged realized covariance estimator that is robust to
i.i.d. microstructure noise but is not to autocorrelated noise and price jump. On the other
hand, |Jacod et al| (2019) proposed a robust pre-averaged integrated volatility estimator
that is robust to price-dependent and autocorrelated microstructure noise and price jump.
We employed the integrated beta estimator (PRVB), which adopts the robust pre-averaging
integrated volatility estimator of [Jacod et al. (2019)) as the input of the integrated beta
estimator in (Christensen et al.| (2010). The details of estimators can be found in the online
Appendix [C] We note that PRVB is a consistent estimator of the ratio of the integrated
covariance between assets and systematic factors to the integrated variation of systematic
factors. That is, while PRVB is a consistent estimator of the integrated beta when the intra-
day beta or market volatility is constant over time, the PRVB is not a consistent estimator
of the integrated beta in general. On the other hand, CHEN is designed for estimating
time-varying beta, but it does not consider the autocorrelated microstructure noise. Fig-
ure |3 shows the MSEs of the non-parametric integrated beta estimators, RI B, CHEN, and
PRVB, for m = 7800, 11700, 23400. We note that the average value of the true integrated
beta was 2.802. Figure [3| shows that the MSEs of RIB and PRVB decrease as the number
of high-frequency observations increases, whereas the MSEs of CHEN do not. This is be-
cause the RIB and PRVB estimators can account for the autocorrelation structure of the
microstructure noise, whereas CHEN fails to handle it. Further, RI B and CHEN perform
better than PRV B since PRVB fails to deal with the time-varying beta. The magnitude of
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Figure 3: The MSEs of RI B, CHEN, and PRVB for m = 7800, 11700, 23400. The average
value of the true integrated beta was 2.802.
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Figure 4: The MSEs of the least squared estimates with m = 2340, 4680, 23400 and
n = 100, 250, 500.

the difference in performance between the RI B and PRVB estimators may depend on how
volatile the intraday beta and market volatility processes are. When comparing the perfor-
mances of the RI B and CHEN, the RI B estimator shows better performance for m = 23400,
while CHEN does for m = 7800, 11700. It may be because the effect of the autocorrelated
microstructure noise increases as m increases, while the estimation variance of the denoise
term of RIB, which decreases as m increases, is larger than that of CHEN. These results

support the theoretical results derived in Section [2.2]
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Figure 5: The standard normal (original) quantile-quantile plots of the Z-statistics estimates
of w9, 71, and «f for n = 500, m = 7800, 11700, 23400.

Next, we checked the finite sample performances of the proposed DR Beta model. We first
estimated the model parameters using the proposed quasi-maximum likelihood estimation
in Section for n = 100, 250, 500 and m = 7800, 11700, 23400. To estimate Ei(ﬁ), we set
initial values ho(6) = RIB, = L3 RIB;. Figure |4 draws the MSEs of the least squared
estimates s for the model parameter 6. From Figure 4] we find that the MSEs decrease as
n or m increases. These results match the theoretical findings in Section 3.2

To check the asymptotic normality of the model parameters (w9, v1,ad), we calculated

the Z-statistics proposed in Section [3.2.3l Figure [5|shows standard normal quantile-quantile
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plots of the Z-statistics estimates of wy, 71, and af for n = 500 and m = 7800, 11700, 23400.
From Figure [5, we find that the Z-statistics close to the standard normal distribution as
m increases—that is, the non-parametric integrated beta estimator RIB closes to the true
integrated beta I 3. This result agrees with the theoretical findings in Section 3] Thus, based
on the proposed Z-statistics, we can conduct hypothesis tests for the model parameters using
the standard normal distribution.

The DR Beta model is an ARMA model for the integrated beta, utilizing the RI B, which
is a consistent estimator of the integrated beta. One of the advantages of employing this
consistent estimator to predict future market betas lies in its ability to effectively capture
the low-frequency autoregressive dynamic structure, which helps improve the predictability
of future beta values. Thus, we examined the out-of-sample performance of estimating
the one-day-ahead conditional expected integrated beta h,1(6y) to check the predictability
of the DR Beta model. We compared the DR Beta with three parametric models that
employ high-frequency data and two parametric models that use low-frequency data. For
the parametric model with high-frequency data, we considered the ARMA(1,1) models,
which utilize CHEN (ARMAC) or PRVB (ARMAP) as daily realized beta, and Realized
Beta GARCH (RBG) model (Hansen et al. 2014), which is a multivariate GARCH model
utilizing realized measures of volatility and correlation. For the input covariance matrix of the
RBG model, we used realized covariance, the sum of squared log-returns, with 5-min, 1-min,
and 30-sec data (m = 78,390, 780, respectively) to reduce the impact of the microstructure
noise. We also used the robust pre-averaging realized covariance (Jacod et al., |[2019) as the
input of the RBG model (PRBG). Details of the RBG model can be found in |Hansen et al.
(2014). For the parametric models with low-frequency data, we used the dynamic conditional
beta (DCB) model framework proposed by [Engle| (2016). Specifically, the beta prediction
can be established by comparing the conditional covariance between assets and systematic
factors to the conditional variance of systematic factors. The details of the procedure can
be found in the online Appendix [C] We employed the BEKK(1,1) and DCC(1,1) models as
the conditional covariance matrix models, as suggested by Engle and Kroner| (1995) and Bali

and Engle (2010)), respectively. We call the beta estimators with BEKK(1,1) and DCC(1,1)
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Figure 6: The MSFEs of DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK
with n = 100, 250, 500 and m = 7800, 11700, 23400. The average value of hso; ;(6) was 2.813.

BEKK and DCC, respectively. For each model, we calculated the mean squared forecast

errors (MSFEs) with the one-day-ahead forecasted beta across 1000 repeated simulations as

follows:
— <B€tan+1,i — hn+1,z‘(90)) )
1000 —

where hy,,41,(6p) is the true conditional expectation of the (n + 1)th integrated beta and
B/eﬁnm denotes one of the forecasted beta obtained using a parametric model such as DR
Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK models at the ith sample-path
given the available information at time n. We note that the target of the benchmarks, except
for ARMAC, is the ratio of the integrated covariance between assets and systematic factors
to the integrated variation of systematic factors. Therefore, the MSFEs of the benchmarks
additionally include the error from the discrepancy between the true integrated beta and
the true ratio of the integrated covariance between assets and systematic factors to the
integrated variation of systematic factors. In Figure [6] the MSFEs of DR Beta, ARMAC,
ARMAP, PRBG, RBG, DCC, and BEKK are plotted for n = 100, 250, 500 and m =
7800, 11700, 23400. The average value of the true conditional expectation of 501st integrated
beta was 2.813. For the RBG model, we plotted only the MSFEs with m = 780, which is
the lowest MSFEs among m = 78,390, 780. Figure [6] shows the MSFEs of the DR Beta
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and ARMAP decrease as n or m increases, but other estimators do not have any strong
pattern. This may be because the other benchmarks cannot account for the autocorrelated
microstructure noise well. When comparing the DR Beta and ARMAP models, the DR
Beta consistently outperforms the ARMAP. This is because the target variable of the PRVB
estimator differs from the integrated beta under the time-varying spot beta and market
volatility processes, thereby resulting in a less effective capture of integrated beta dynamics
by the ARMAP model. Meanwhile, the high-frequency-based ARMA models show better
performance than other competitors. When comparing the high-frequency-based ARMA
models, the ARMAC and the DR Beta models show the best performance for m = 7800 and
m = 11700, 23400, respectively, even though the CHEN has lower MSEs than the RIB for
m = 11700. This may be because CHEN cannot account for the autocorrelation structure of
the microstructure noise, which may cause some bias in the integrated beta estimation. From
this result, we can conclude that estimating the ratio of integrated covariance to integrated
variance cannot be a good proxy of integrated beta and the robust non-parametric integrated
beta estimator helps account for the market beta dynamics.

We end this section by remarking that the proposed RIB estimator is not only a con-
sistent estimator of the integrated beta under autocorrelated microstructure noise but also
consistent even in the absence of autocorrelation in microstructure noise. To assess the fi-
nite sample performance of the proposed estimator when the microstructure noise has zero
autocorrelation structure, we conducted an additional analysis under a setting of zero auto-
correlation in the microstructure noise and fixed all other parameters. The full methodology

and results of this analysis are presented in the online Appendix [D}

5 Empirical analysis

In this section, we apply the proposed DR Beta model to real high-frequency trading data.
We obtained high-frequency data for the top 50 large trading volume stocks among the S&P
500 from the TAQ database in the Wharton Research Data Services (WRDS) system from
January 1, 2010, to December 31, 2016, 1762 trading days in total. We used the E-mini S&P
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Figure 7: The box plot (left) of the first-order autocorrelations of RIB (continuous) and
jump beta (jump) from January 1, 2010, to December 31, 2016, and the ACF plots for the
top four first-order autocorrelation stocks.

500 index futures as the market portfolio, which was obtained from Refinitiv Tick History.
We used 1-sec log-returns, which were subsampled by the previous tick (Zhang, [2011)) scheme.
High-frequency data were available between the open and close of the market, so the number
of high-frequency observations for a full trading day is m = 23400.

To examine the goodness of fit, we conducted in-sample validation. We draw autocorrela-
tion plots for RI B and jump beta in Figures[I]and [7], where the jump beta is estimated by the
method suggested by |Li et al.| (2017b)). As we discussed in Section , the integrated beta for
the continuous part has a strong autocorrelation structure, but the beta for the jumps does
not. Thus, it is reasonable to focus on modeling the beta for the continuous part. To con-
duct the validation of the DR Beta model, we first selected the (p,q) € {(p,q) : 0 < p,q < 5}
of the DR Beta for each stock by BIC, and we estimated the parameters of the DR Beta
using the sample over the last 1000 trading days. Then, we conducted the hypothesis tests
proposed in Section [3.2.3] Table [1| reports the parameter estimates of the DR Beta model
with the selected (p, q) for each stock and their p-values. The BIC values were minimized
when (p,q) = (1,1) for all stocks. All coefficients are significant at a significance level of
0.05, except for the case of the AMD. On the other hand, the higher 7{ + «f implies more
persistent integrated beta process. From Table 1, we find that all stocks have the v{ + of
greater than 0.8, and for 36 stocks out of 50, 77 + af is greater than 0.9. Thus, we can con-

clude that the proposed DR Beta model is statistically valid and may capture the persistent
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Table 1: Estimated parameters from the DR Beta model. The numbers in parentheses
indicate the p-value, multlphed by 10, from the hypothesis tests.

Stock w v ocf Stock w v af

AAPL 0.126 (0.0) 0.539 (0.0) 0.325 (0.0) JPM _ 0.076 (0.0) 0.608 (0.0) 0.314 (0.0)
AIG  0.063 (0.0) 0.623 (0.0) 0.308 (0.0) KEY  0.111 (0.0) 0.542 (0.0) 0.354 (0.0)
AMAT 0.190 (0.0) 0.491 (0.0) 0.323 (0.0) KO  0.030 (0.0) 0.653 (0.0) 0.288 (0.0)
AMD  0.011 (1.0) 0.826 (0.0) 0.163 (0.0) MGM  0.045 (0.0) 0.715 (0.0) 0.248 (0.0)
ATVI  0.088 (0.0) 0.618 (0.0) 0.283 (0.0) MRK  0.056 (0.0) 0.622 (0.0) 0.299 (0.0)
BAC  0.083 (0.0) 0.608 (0.0) 0.315(0.0) MRO  0.042 (0.0) 0.618 (0.0) 0.352 (0.0)
BMY  0.070 (0.0) 0.604 (0.0) 0.310 (0.0) MS  0.117 (0.0) 0.547 (0.0) 0.359 (0.0)
BSX  0.121 (0.0) 0.540 (0.0) 0.330 (0.0)  MSFT 0.072 (0.0) 0.619 (0.0) 0.301 (0.0)
CSCO  0.112 (0.0) 0.541 (0.0) 0.326 (0.0) MU  0.091 (0.0) 0.683 (0.0) 0.254 (0.0)
CSX  0.073 (0.0) 0.607 (0.0) 0.314 (0.0) NEM  0.025 (0.0) 0.588 (0.0) 0.339 (0.0)
DAL 0.096 (0.0) 0.604 (0.0) 0.304 (0.0) NFLX  0.047 (0.0) 0.720 (0.0) 0.246 (0.0)
DIS  0.071(0.0) 0.619 (0.0) 0.203 (0.0) NVDA 0.176 (0.0) 0.456 (0.0) 0.374 (0.0)
DOW  0.051 (0.0) 0.698 (0.0) 0.249 (0.0) ORCL 0.111 (0.0) 0.540 (0.0) 0.326 (0.0)
EBAY 0.106 (0.0) 0.554 (0.0) 0.327 (0.0) PFE  0.050 (0.0) 0.650 (0.0) 0.281 (0.0)
F 0.071 (0.0) 0.605 (0.0) 0.311 (0.0) PG 0.030 (0.0) 0.653 (0.0) 0.288 (0.0)
FCX  0.031 (0.1) 0.675 (0.0) 0.303 (0.0) QCOM 0.077 (0.0) 0.568 (0.0) 0.335 (0.0)
FITB  0.066 (0.0) 0.614 (0.0) 0.323 (0.0) RF 0.070 (0.0) 0.652 (0.0) 0.286 (0.0)
GE 0.129 (0.0) 0.489 (0.0) 0.332 (0.0) SCHW 0.112 (0.0) 0.554 (0.0) 0.355 (0.0)
GILD  0.070 (0.0) 0.607 (0.0) 0.327 (0.0) T 0.026 (0.0) 0.706 (0.0) 0.240 (0.0)
GLW  0.142 (0.0) 0.564 (0.0) 0.287 (0.0)  VZ 0.027 (0.0) 0.707 (0.0) 0.241 (0.0)
HAL  0.067 (0.0) 0.644 (0.0) 0.296 (0.0) WFC  0.111 (0.0) 0.540 (0.0) 0.326 (0.0)
HBAN 0.047 (0.0) 0.674 (0.0) 0.278 (0.0)  WMB  0.026 (0.1) 0.699 (0.0) 0.278 (0.0)
HPQ  0.178 (0.0) 0.526 (0.0) 0.301 (0.0) WMT  0.038 (0.0) 0.625 (0.0) 0.298 (0.0)
HST  0.077 (0.0) 0.618 (0.0) 0.205 (0.0)  XOM  0.063 (0.0) 0.550 (0.0) 0.368 (0.0)
INTC  0.108 (0.0) 0.552 (0.0) 0.324 (0.0) XRX  0.138 (0.0) 0.568 (0.0) 0.283 (0.0)
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Table 2: The mean of RIB estimates in the out-of-sample period and the MAPESs for the DR Beta, ARMAC, ARMAP,
PRBG, RBG, DCC, and BEKK for each stock.

Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK
AAPL 0.985  0.238 0.254 0.259 0.300 0.279 0.324 0.326 JPM 1.030 0.170 0.203 0.211 0.293 0.274 0.325 0.314
AIG 0989  0.183 0.206 0.225 0.348 0.326 0.346 0.407 KEY 1.064 0.226 0.252 0.276 0.334 0.366 0.406 0.363
AMAT 1.028  0.215 0.235 0.262 0.388 0.397 0.443 0.365 KO 0.499  0.117 0.127 0.134 0.168 0.167 0.214 0.186
AMD 0.950 0.371 0.382 0.444 0.779 0.892 0.936 0.953 MGM 1.295 0.280 0.302 0.347 0.468 0.434 0.583 0.590
ATVI 0.847  0.208 0.225 0.242 0.313 0.331 0.359 0.293 MRK 0.674  0.142 0.162 0.159 0.341 0.185 0.241 0.218
BAC 1.181  0.240 0.261 0.303 0.431 0.382 0.465 0.490 MRO 1.400 0.295 0.325 0.349 0.404 0.412 0.562 0.595
BMY 0.740 0.163 0.185 0.184 0.248 0.237 0.312 0.271 MS 1.350  0.228 0.273 0.286 0.369 0.365 0.424 0.456
BSX 0.873  0.219 0.240 0.265 0.432 0.430 0.486 0.396 MSFT 0.889  0.168 0.191 0.194 0.260 0.269 0.293 0.223
CSCO 0.871  0.169 0.193 0.197 0.238 0.264 0.273 0.250 MU 1.444  0.329 0.363 0.379 0.531 0.525 0.653 0.593
CSX 0943  0.180 0.205 0.224 0.302 0.282 0.404 0.385 NEM 0.466  0.277 0.279 0.286 0.407 0.452 0.535 0.514
DAL 1.016 0.263 0.280 0.305 0.626 0.422 0.511 0.431 NFLX 1.334 0.315 0.347 0.356 0.437 0.406 0.575 0.578
DIS 0.810  0.140 0.162 0.172 0.230 0.222 0.287 0.260 NVDA 1.104  0.237 0.256 0.283 0.376 0.374 0.496 0.460
DOW 0.995 0.186 0.206 0.232  0.343 0.311 0.405 0.478 ORCL 0.868  0.160 0.179 0.195 0.264 0.240 0.303 0.293
EBAY 0.936  0.185 0.207 0.212 0.300 0.279 0.360 0.307 PFE 0.700  0.149 0.166 0.170 0.188 0.204 0.235 0.199
F 0.903  0.206 0.212 0.262 0.377 0.388 0.483 0.438 PG 0.483  0.119 0.131 0.128 0.178 0.162 0.204 0.187
FCX 1.398  0.315 0.343 0.368 0.562 0.565 0.708 0.768 QCOM 0.845  0.157 0.181 0.179 0.250 0.238 0.349 0.273
FITB 1.046  0.199 0.229 0.254 0.290 0.299 0.346 0.346 RF 1.156  0.250 0.270 0.322  0.456 0.477 0.495 0.517
GE 0.769  0.151 0.164 0.190 0.241 0.264 0.321 0.298 SCHW 1.210  0.221 0.258 0.276 0.375 0.350 0.418 0.347
GILD 0.996  0.210 0.242 0.247 0.505 0.304 0.371 0.410 T 0.498  0.120 0.128 0.136  0.187 0.213 0.246 0.201
GLW 0.958  0.197 0.212 0.249 0.330 0.354 0.430 0.371 VZ 0.520  0.129 0.138 0.144 0.162 0.168 0.215 0.182
HAL 1.195 0.238 0.264 0.281 0.365 0.375 0.451 0.485 WFC 0.876  0.151 0.173 0.188 0.276 0.259 0.326 0.337
HBAN 0.957  0.218 0.236 0.286 0.471 0.509 0.475 0.483 WMB 1.073  0.257 0.277 0.301 0.351 0.336 0.553 0.568
HPQ 1.050 0.226 0.252 0.262 0.304 0.278 0.375 0.330 WMT 0.483 0.113 0.126 0.127 0.176 0.159 0.224 0.166
HST 0.923 0.198 0.211 0.245 0.404 0.411 0.530 0.514 XOM 0.778  0.136 0.159 0.163 0.191 0.190 0.226 0.217
INTC 0.895 0.163 0.186 0.197 0.228 0.257 0.297 0.246 XRX 0919 0.235 0.242 0.289 0.509 0.537 0.566 0.447




autoregressive structure.

To evaluate the out-of-sample performance, we computed the mean absolute prediction

error (MAPE) as follows:

1 " —
Beta; — RIB;|
n—500;5;1‘ cra

where B/€ELZ» denotes the one-day-ahead forecasted beta from parametric models such as
DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK, as defined in Section [,
using a sample size of 500 for in-sample data. Unlike in a simulation study where the
true integrated beta is known, it is impossible to obtain the true integrated beta in the
empirical study. Therefore, we need to use the proxy of the true integrated beta when
calculating MAPE. Since, to the best of our knowledge, the proposed RIB estimator is
the only consistent estimator of integrated beta, we employed the RIB estimator as the
proxy of the true integrated beta. For each stock, we used the selected (p,q) order for the
DR Beta, ARMAC, and ARMAP models. In the case of ARMAC, we also checked their
performance with input integrated betas estimated by CHEN with data subsampled at 1,
5, 10, 30, and 60-second frequencies to deal with the autocorrelated microstructure noise.
Then, we reported the best performance results among the different frequencies. For RBG,
we used realized covariance, the sum of squared log-returns, with 5-min, 1-min, and 30-sec
data (m = 78,390, 780, respectively) to handle the microstructure noise, and reported the
best results among them. The in-sample period is 500 days, and we estimated the models
using the rolling window scheme. Table [2| reports the mean of RIB estimates in the out-of-
sample period and the MAPEs for DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and
BEKK for 50 stocks. From Table[2] we find that the models using high-frequency information
show better performance than the models using only low-frequency information. Further,
the ARMA-type models utilizing realized betas usually perform better than the RBG and
PRBG models. When comparing the ARMA-type models using realized betas, MAPEs for
the proposed DR Beta or ARMAC have the smallest values for every stock, and DR Beta
always shows the lowest MAPE among the benchmarks. It may be because the proposed
DR Beta and ARMAC model can account for the time-varying beta by incorporating high-
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frequency data. These results indicate that accommodating the time-varying beta feature
helps account for the beta dynamics, and the DR Beta holds advantages in predicting future
integrated beta by utilizing the autoregressive structure with consistent RIB estimates.

We evaluated how well the proposed methodologies capture the autoregressive structure.
Adopting the idea of the Durbin-Watson test, we took into account regression residuals
between the non-parametric and out-of-sample predicted values using DR Beta, ARMAC,
ARMAP, PRBG, RBG, DCC, and BEKK. Specifically, for each model, we fitted the following
linear regression model:

RIB; = a + b x Beta; + ¢;,

where the l?eai’s are one-day-ahead forecasted betas obtained using one of the DR Beta,
ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK. Then, we calculated the regression
residuals for each model and checked their autocorrelations.

Table |3| reports the first-order autocorrelations of the regression residuals for each model.
For ARMAC, only the result of the case with the lowest first-order autocorrelations of the
regression residuals among the different sample frequencies is reported for each stock. We
further provide the ACF plots for RIB and the models’ regression residuals (Figure
and the box plot of the first-order autocorrelations of the regression residuals for each model
(Figure in the online Appendix. From Table 3| and Figures and , we find that
the proposed DR Beta and ARMAC models have much smaller autocorrelations for most of
the assets, but the other models still yield significantly non-zero autocorrelations for most
of the assets. This may be because the other competitors could not appropriately estimate
the integrated beta due to the time-varying beta feature. When comparing the DR Beta
and ARMAC models, the DR Beta model usually has smaller autocorrelation than the
ARMAC model. Specifically, for 28 stocks out of 50, DR Beta shows the best performance
among the benchmarks. One of the possible explanations is that the CHEN estimator,
which is used in the ARMAC model as the non-parametric beta estimator, cannot handle
the autocorrelation structure of the microstructure noise; thus, some autocorrelation may
remain in the regression residuals. From these numerical results, we can conjecture that

incorporating the stylized features, such as the time-varying beta and the autocorrelation
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Table 3: The first-order autocorrelations for the regression residuals between the non-parametric integrated beta esti-

mates, RIB, and the predicted integrated beta from DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK.

Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK

Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK

AAPL 0.583
AIG  0.620
AMAT 0.415
AMD  0.578
ATVI 0.476
BAC  0.644
BMY 0.610
BSX  0.498
CSCO 0.466
CSX  0.535
DAL  0.485
DIS  0.472
DOW  0.558
EBAY 0.514
F 0.499
FCX  0.753
FITB 0.603
GE 0474
GILD 0.661
GLW  0.391
HAL  0.616
HBAN 0.547
HPQ  0.454
HST  0.517
INTC 0.499

0.048
0.056
0.047
0.052
0.051
0.057
0.038
0.063
0.061
0.080
0.070
0.040
0.040
0.080
0.052
0.026
0.053
0.056
0.094
0.034
0.066
0.047
0.077
0.065
0.051

0.095
0.054
0.059
0.070
0.007
0.075
0.001
0.068
0.079
0.064
0.068
0.021
0.015
0.032
0.037
0.049
0.080
0.037
0.071
0.047
0.066
0.049
0.052
0.053
0.055

0.173
0.217
0.267
0.124
0.245
0.240
0.213
0.237
0.255
0.290
0.257
0.272
0.228
0.228
0.258
0.220
0.289
0.264
0.306
0.222
0.269
0.246
0.270
0.245
0.280

0.259 0.292 0.512
0.241 0.232 0.485
0.347 0.344 0.406
0.331 0.456 0.517
0.361 0.345 0.473
0.315 0.339 0.508
0.317 0.305 0.569
0.459 0.461 0.476
0.340 0.392 0.466
0.341 0.347 0.530
0.466 0.341 0.483
0.345 0.337 0.470
0.268 0.280 0.478
0.278 0.312 0.500
0.354 0.354 0.487
0.164 0.256 0.494
0.375 0.418 0.559
0.334 0.350 0.475
0.632 0.343 0.610
0.338 0.345 0.359
0.346 0.338 0.587
0.498 0.515 0.546
0.316 0.309 0.447
0.342 0.378 0.486
0.371 0.416 0.499

0.571
0.472
0.415
0.571
0.428
0.615
0.519
0.487
0.457
0.525
0.471
0.465
0.495
0.493
0.461
0.549
0.593
0.462
0.643
0.383
0.593
0.516
0.445
0.501
0.498

JPM  0.548
KEY 0.554
KO 0.598
MGM 0.584
MRK 0.574
MRO 0.777
MS 0.628
MSFET 0.474
MU 0.484
NEM 0.689
NFLX 0.544
NVDA 0.544
ORCL 0.503
PFE 0.470
PG 0.615
QCOM 0.590
RF 0.571
SCHW 0.508
T 0.470
V7 0.480
WFC  0.579
WMB 0.715
WMT 0.514
XOM 0.603
XRX 0.379

0.036
0.062
0.050
0.086
0.049
0.080
0.085
0.038
0.054
0.057
0.032
0.077
0.046
0.033
0.043
0.042
0.064
0.040
0.040
0.077
0.076
0.021
0.051
0.064
0.061

0.045
0.079
0.061
0.065
0.024
0.095
0.076
0.039
0.061
0.062
0.036
0.084
0.028
0.034
0.061
0.042
0.092
0.045
0.034
0.069
0.081
0.010
0.061
0.068
0.046

0.262
0.264
0.206
0.276
0.252
0.266
0.280
0.259
0.244
0.141
0.213
0.257
0.239
0.156
0.196
0.270
0.270
0.269
0.207
0.224
0.285
0.230
0.198
0.315
0.196

0.319 0.319 0.497
0.335 0.412 0.552
0.309 0.348 0.598
0.386 0.297 0.583
0.568 0.299 0.537
0.283 0.339 0.600
0.331 0.330 0.507
0.327 0.320 0.473
0.312 0.294 0.469
0.301 0.398 0.660
0.327 0.321 0.542
0.301 0.293 0.503
0.351 0.274 0.478
0.270 0.305 0.457
0.378 0.322 0.597
0.306 0.310 0.570
0.448 0.456 0.556
0.371 0.315 0.508
0.354 0.379 0.470
0.301 0.330 0.480
0.376 0.358 0.515
0.272 0.248 0.516
0.379 0.353 0.514
0.379 0.348 0.598
0.357 0.364 0.344

0.513
0.556
0.598
0.570
0.513
0.578
0.623
0.428
0.484
0.679
0.543
0.493
0.481
0.455
0.609
0.563
0.570
0.503
0.470
0.479
0.524
0.477
0.513
0.603
0.377




structure of the microstructure noise, helps account for the integrated beta dynamics. Thus,
the proposed DR Beta model can explain the integrated beta dynamics well by incorporating
the proposed robust realized integrated beta estimator.

Finally, to check the economic benefits of predicting future market beta, we analyzed
the out-of-sample performance of the market-neutral portfolios. We considered the close-
to-close log-returns of market-neutral portfolios constructed by holding a share of an asset,
simultaneously taking a short position in E-mini S&P 500 index futures contracts. The
amount of the futures contracts, namely the hedging ratio, was calibrated using the one-

day-ahead forecasted beta as follows:

(Ei,/b\) = argmin, Z(RAJ- —(a+ b’}\ii)RMﬂ'>2,

=1

where (h;)i1,.., are in-sample fitted betas, and R4, and Ry; are the ith close-to-close log-
returns of an asset and the market portfolio, respectively. That is, the forecasted hedging
ratio is a+/b\@n+1. To evaluate the effectiveness of the hedging, we calculated the absolute
correlation, the hedging effectiveness (Ederington, (1979), and the ex-post portfolio beta
between the hedged portfolio and the market portfolio as follows:

Absolute correlation = cov(Ru, Ru) ’
v/ var(Ry)var(Rp)
Hedging effectiveness = 1 — M7 and Ex-post beta = M7
Val“(RA) Var(RM)

where Ry, = Ra;— (5+ZB/eELi)RM7i denotes the hedged portfolio’s out-of-sample log-return.

Table 4: The mean absolute correlation, hedging effectiveness, and ex-post beta between
the hedged portfolios and the market portfolio, where the hedged portfolios are constructed
based on the predicted beta using the OLS regression beta, DR Beta, ARMAC, ARMAP,

PRBG, RBG, DCC, and BEKK. Unhedged indicates the unhedged single-asset portfolio.
Measure \ Model Unhedged OLS DR Beta ARMAC ARMAP PRBG RBG DCC BEKK

Absolute Correlation 0.569 0.031 0.020 0.021 0.023 0.064 0.060 0.033 0.029
Hedging Effectiveness 0.000 0.334 0.338 0.337 0.339 0.330 0.331 0.333 0.330
Ex-post beta 1.154 0.057 0.034 0.035 0.038 0.124 0.115 0.058 0.054
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Table [4| reports the mean of absolute correlation, hedging effectiveness, and ex-post beta
for the unhedged single-asset portfolio (Unhedged), hedged portfolio using the one-day-
ahead forecasted beta from the regression beta (OLS), DR Beta, ARMAC, ARMAP, PRBG,
RBG, DCC, and BEKK models. For the forecasted beta using OLS, we employed the beta
derived from OLS regression on daily close-to-close log-returns, using a sample size of 500
in-samples. From Table [ we find that the ARMA models incorporating high-frequency-
based non-parametric estimators as inputs show the best performance in hedging the market
factor. While the ARMA models provided comparable performances, incorporating the RI B
estimator led to an improvement in the absolute correlation and ex-post beta measures. In

the case of hedging effectiveness, the ARMAP is slightly better than the DR Beta model.

6 Conclusion

This paper investigates integrated market betas based on high-frequency financial data. We
first develop a robust non-parametric integrated beta estimation procedure, RIB, which
can handle the price-dependent and autocorrelated microstructure noise and time-varying
beta. Then, we establish its asymptotic properties. With this robust non-parametric R/ B
estimator, we find the time-series structure of the integrated betas. To account for this
beta dynamics, we propose the DR Beta model. To estimate the model parameters, we
propose a quasi-likelihood estimation procedure and establish its asymptotic theorems. From
the empirical study, we find that the proposed DR Beta model using the robust realized

integrated beta estimator helps account for the integrated beta dynamics.
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