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Abstract

In this paper, we develop a robust non-parametric realized integrated beta estima-

tor using high-frequency financial data contaminated by microstructure noise, which is

robust to the stylized features, such as the time-varying beta and the price-dependent

and autocorrelated microstructure noise. With this robust realized integrated beta es-

timator, we investigate dynamic structures of integrated betas and find a persistent au-

toregressive structure. To model this dynamic structure, we utilize the autoregressive-

moving-average (ARMA) model for daily integrated market betas. We call this the

dynamic realized beta (DR Beta). Then, we propose a quasi-likelihood procedure for

estimating the parameters of the ARMA model with the robust realized integrated

beta estimator as the proxy. We establish asymptotic theorems for the proposed es-

timator and conduct a simulation study to check the performance of finite samples of

the estimator. The proposed DR Beta model with the robust realized beta estimator

is also illustrated by using data from the E-mini S&P 500 index futures and the top

50 large trading volume stocks from the S&P 500 and an application to constructing

market-neutral portfolios.
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1 Introduction

Market beta is a statistical measure of assets’ sensitivity to the overall market. This measure

plays a central role as the systemic risk measurement in financial applications such as asset

pricing, risk management, and portfolio allocation (Fama and French, 2004; Perold, 2004).

Thus, the characteristic of the market beta is a primary concern in empirical finance. Espe-

cially, several empirical studies reported that market betas vary over time (Bos and Newbold,

1984; Breen et al., 1989; Hansen and Richard, 1987; Keim and Stambaugh, 1986). To ac-

count for the time-varying property, low- and high-frequency finance modeling approaches

have been independently adopted. In the low-frequency financial modeling approach, we

often employ discrete-time series regression models in either a non-parametric or parametric

framework based on low-frequency data such as daily, weekly, and monthly return data. For

example, Fama and MacBeth (1973) used a rolling window regression approach with the or-

dinary least square (OLS) method, and Black et al. (1992) employed the state-space model

by using the Kalman filter method. In addition, to account for market beta dynamics, several

studies proposed autoregressive time series models, such as generalized autoregressive con-

ditional heteroskedasticity (GARCH) model-type structures (Engle, 2016; González-Rivera,

1996; Koutmos et al., 1994; Ng, 1991). In contrast, Bollerslev et al. (2016) showed that incor-

porating high-frequency financial data offers more benefits while capturing beta dynamics.

Specifically, intraday data provide accurate estimations with sufficient data even within a

short time period. To exploit this property, several non-parametric market beta estimators

based on high-frequency data under continuous-time series regression models have been de-

veloped. For example, Barndorff-Nielsen and Shephard (2004) employed the OLS method

by calculating a ratio of the integrated covariance between assets and systematic factors

to the integrated variation of systematic factors. See also Andersen et al. (2006); Li et al.

(2017a); Mykland and Zhang (2006); Reiß et al. (2015). Mykland and Zhang (2009) further
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computed the market beta as the aggregation of market betas estimated over local blocks.

Aı̈t-Sahalia et al. (2020) proposed an integrated beta approach, using spot market betas in

the absence of market microstructure noise, and Andersen et al. (2021) investigated intraday

variation of spot market betas. Jacod and Rosenbaum (2013) introduced the non-parametric

inference for nonlinear volatility functionals of general multivariate Itô semimartingales in

a high-frequency, but without the presence of noise. Recently, Chen (2018) extended this

non-parametric inference to contexts with the presence of microstructure noise. They do not

allow for any dependent structure of the microstructure noise on the true latent price, nor do

they account for its autocorrelation. However, several studies indicated that the microstruc-

ture noise is not only dependent on the true latent price but also exhibits autocorrelation

(Hautsch and Podolskij, 2013; Jacod et al., 2019; Li et al., 2020; Li and Linton, 2022, 2023).

Thus, to measure the market beta accurately, we need to develop a robust realized beta

estimation procedure.

In this paper, to accommodate the stylized features, such as the time-varying beta and

the price-dependent and autocorrelated microstructure noise, we develop a robust realized

integrated beta (RIB) estimator for integrated betas with high-frequency data contaminated

by price-dependent and autocorrelated microstructure noise. For example, to handle the

time-varying spot beta process and the price-dependent and autocorrelated microstructure

noise, we estimate spot volatilities using the robust pre-averaging method (Jacod et al.,

2019). Then, we can calculate the spot betas using spot volatility estimators. However, due

to the microstructure noise, they have asymptotically diverged bias with a convergence rate of

m−1/4, which is known as the optimal with the presence of microstructure noise. To overcome

this problem, we introduce a bias adjustment scheme and integrate the bias-adjusted spot

beta estimators to obtain the realized integrated beta estimator. We show its asymptotic

properties and obtain the convergence ratem−1/4. To the best of our knowledge, the proposed

RIB is the first integrated beta estimator, which is robust to the financial features, such

as the time-varying beta and the price-dependent and autocorrelated microstructure noise.

Since the proposed RIB estimation procedure provides an accurate and robust market beta

estimator, it may help us study the dynamic structures of integrated market betas.
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With the RIB estimator, we find that the realized betas have persistent autoregressive

(AR) structures (see Figure 1 in Section 3). This result coincides with the previous liter-

ature. The literature on beta dynamics predominantly employs two approaches; modeling

conditional covariance (Engle, 2016; González-Rivera, 1996; Hansen et al., 2014; Koutmos

et al., 1994; Ng, 1991) and directly modeling conditional beta. Adrian and Franzoni (2009);

Ang and Chen (2007); Blume (1971) employed AR(1) structure to analyze beta dynamics

based on low-frequency data, such as monthly or quarterly stock returns. Andersen et al.

(2006); Becker et al. (2021); Hollstein and Prokopczuk (2016) employed the class of ARFIMA

structure on monthly, quarterly, and semiannual beta, estimated from 30-minute and daily

returns. In this paper, we model the daily integrated betas using the ARMA(p, q) model

to capture the persistent AR structure and call this dynamic realized beta (DR Beta). To

estimate the parameters of the ARMA model, we suggest a quasi-maximum likelihood esti-

mation procedure with the robust non-parametric RIB estimator. For example, we use RIB

as the proxy for the corresponding conditional expected integrated beta and employ the well-

known least square loss function. It is crucial to use a consistent estimator when working

with the ARMA model, as measurement errors can significantly jeopardize estimation and

prediction accuracy (Koreisha and Fang, 1999). Since incorporating ultra-high-frequency

data contaminated by microstructure noise is essential for obtaining consistent estimators

of daily integrated beta, the analysis of these betas presents different aspects of asymptotic

behavior compared to previous literature that uses at least monthly beta. To address these

points, we establish asymptotic theorems for the proposed estimation procedure and further

discuss how to conduct hypothesis tests.

The rest of the paper is organized as follows. In Section 2, we propose statistical inference

procedures for the integrated beta. In Section 3, we suggest the DR Beta model and examine

the parameter estimation procedure with their asymptotic theorems. In Section 4, we provide

a simulation study to check the finite sample performance for the proposed estimators. In

Section 5, we carry out an empirical study with the E-mini S&P 500 index futures and

50 individual stocks to investigate the advantage of the proposed model. In Section 6, we

conclude. The proofs and supplementary materials are collected in the online Appendix.
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2 Robust realized integrated beta estimator

2.1 Model setup

We first fix some notations that we will use. Let R+ = [0,∞) and N be the set of all positive

integers. Let Aij denote the (i, j)th element of a matrix A, A⊤ denote its transpose matrix,

and det(A) denote the determinant of A. We use the superscripts c and d for the continuous

and jump processes, respectively.

We consider the following diffusion regression model, as originally introduced in Mykland

and Zhang (2006) (see also Li et al. (2017a); Li and Xiu (2016); Reiß et al. (2015)):

dX2,t = βc
t−dX

c
1,t + βd

t−∆X
d
1,t + dVt, (2.1)

where X2 is a dependent process, X1 is a covariate process, and V is a residual process. Fur-

ther, Xc
1,t denotes the continuous part of the covariate process, and ∆Xd

1,t is its jump at time

t. Then, βc
t and βd

t are the time-varying factor loadings with respect to the continuous and

jump parts of X1, respectively. We assume that X1,t and Vt admit the following Grigelionis

decomposition of the forms:

X1,t = X1,0 +

∫ t

0

µ1,sds+

∫ t

0

σsdBs + d11{|d1|≤1} ∗ (p− q)t + d11{|d1|>1} ∗ pt,

Vt = V0 +

∫ t

0

µ2,sds+

∫ t

0

qsdWs + d21{|d2|≤1} ∗ (p− q)t + d21{|d2|>1} ∗ pt,

where µ1,t and µ2,t are càdlàg, progressively measurable, and locally bounded drifts, σt and

qt are adapted càdlàg processes, Bt and Wt are independent standard Brownian motions,

p is a Poisson random measure on R+ × E, with the compensator q(dt, dx) = dt ⊗ λ(dx)

and the Polish space (E, E), λ is a σ-finite measure, d1 and d2 are predictable functions on

Ω × R+ × E. All random quantities above are defined on a fixed filtered probability space

(Ω,F , (Ft)t≥0,P). Furthermore, σ2
t stays away from 0.

For the proposed time series regression model in (2.1), we assume that time-varying
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market betas follow a stochastic process defined on (Ω,F , P ) as follows:

dβc
t = µβ,tdt+ σβ,tdBβ,t, (2.2)

where µβ,t is progressively measurable and locally bounded drift, σβ,t is càdlàg, Bβ,t is a

standard Brownian motion with dBβ,tdWt = 0 and dBβ,tdBt = ρβ,tdt a.s. To measure the

daily market beta, we use the following integrated beta (Iβ):

Iβi =

∫ i

i−1

βc
tdt, i ∈ N. (2.3)

In this paper, the parameter of interest is the daily integrated beta. When the beta process

is constant over time with no price jumps, the integrated beta returns to the usual market

beta of the capital asset pricing model (CAPM). That is, the diffusion regression model

includes the traditional discrete-time CAPM regression.

Remark 1. In this paper, we separate the continuous and jump parts and mainly consider

the continuous part. We also investigate market betas corresponding to the jump part in the

empirical study, which is calculated based on the jump beta estimation method suggested

by Li et al. (2017b). However, unlike the beta for the continuous part, the beta for the jump

part does not have significant time series structures (see Figure 7). Thus, we focus on the

beta process for the continuous part.

For the high-frequency observations, one of the stylized features is that the transaction

prices are polluted by the market microstructure noise due to the discreteness of the price,

bid-ask spread bounce, and adverse selection effects, such as clearing costs (Aı̈t-Sahalia

and Yu, 2009). To reflect this, we assume that the observed log prices have the additive

microstructure noise as follows:

Y m
1,i = X1,ti + ϵm1,i and Y m

2,i = X2,ti + ϵm2,i, (2.4)

where ϵm1,i and ϵm2,i are the noise. Empirical studies reveal that the microstructure noise is

dependent on the true price (Aı̈t-Sahalia et al., 2011; Hansen and Lunde, 2006; Ubukata and
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Oya, 2009) and has positive autocorrelation (Jacod et al., 2017; Li and Linton, 2022). To

capture this, we allow microstructure noise to have a dependence on the true latent price,

diurnal features, and polynomial decaying autocorrelation. Before describing our assumption

about microstructure noise, we state the ρ-mixing property of a stationary random vector

χ = (χi)i∈Z = ((χ1,i, χ2,i)
⊤)i∈Z.

Definition 1. For a stationary process χ, let Gj = σ(χi : i ≤ j) and Gj = σ(χi : i ≥ j) be

the pre- and post-σ-fields at time j. A stationary process χ is v-polynomially ρ-mixing if for

some C > 0, ρk(χ) ≤ C/kv for all k ≥ 1, where

ρk(χ) = sup
{
|E(UV )| : U and V are random variables, measurable with respect to

G0 and Gk, respectively, E(U) = E(V ) = 0,E(U2) ≤ 1,E(V 2) ≤ 1
}
.

Assumption 1. The noise (ϵmi )i∈Z = ((ϵm1,i, ϵ
m
2,i)

⊤)i∈Z is realized as

ϵm1,i = ϑ1,tiχ1,i and ϵm2,i = ϑ2,tiχ2,i, (2.5)

where ϑ1 and ϑ2 are non-negative Itô semimartingales with locally bounded drift and càdlàg

diffusion terms. Furthermore, (χi)i∈Z is a stationary process, independent of the σ-field

F∞ =
∨

t>0Ft and v-polynomially ρ-mixing for some v ≥ 5. χ1,i and χ2,i are mean 0 and

variance 1 with finite moments of all orders.

Remark 2. Assumption 1 implies that there exists a constant C such that |rab(i)| ≤ C
(|i|+1)v

for all i ∈ Z and a, b ∈ {1, 2}, where rab(i) = E[χa,0χb,i]. Thus, Rab =
∑

i∈Z rab(i) is well

defined.

2.2 Robust realized integrated beta estimator

When it comes to estimating the integrated beta based on the observed high-frequency

financial data, there are a couple of obstacles. One is the microstructure noise, and the

other is the intraday dynamics of the spot beta process. In this section, we discuss how to

overcome these issues for the general stochastic beta process in (2.2).
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For simplicity, we temporarily assume that the distance between adjacent observations

is equal to ∆m = 1/m, where m is the number of high-frequency observations. We denote

the high-frequency observed time points tl = l/m for l = 1, . . . ,m. This equally spaced

observation time assumption can be easily extended to irregular observation time points.

We discuss this later. To manage the intraday dynamics–that is, the time-varying spot beta

process–we can use the following relationship:

d

dt
[Xc

2,t, X
c
1,t] = βc

t

d

dt
[Xc

1,t, X
c
1,t],

where Xc
2,t is the continuous part of the individual asset log price process, and [·, ·] denotes

the quadratic covariation. If βc
t is identifiable–that is, the spot volatility of Xc

1 is nonzero–,

we can obtain the spot beta by comparing the spot volatility of Xc
1 and the spot covolatility

between Xc
1 and Xc

2 as follows:

βc
t =

d
dt
[Xc

2,t, X
c
1,t]

d
dt
[Xc

1,t, X
c
1,t]
. (2.6)

This is similar to the result of the usual regression coefficient, which is the covariance of the

dependent and covariate variables over the variance of the covariate variable. The difference

is that the spot beta is defined by the spot volatility and covolatility. Thus, it can represent

the linear relationship at time t between the dependent and covariate processes. If the spot

volatility and covolatility are constant over time, the spot beta is the same as the usual

regression coefficient. By integrating the spot beta process, we finally obtain the integrated

beta. Therefore, as long as the spot volatility estimators perform well, we can estimate the

integrated beta.

To estimate spot volatilities, we employ the estimation method developed for estimating

integrated volatility with microstructure noise (Aı̈t-Sahalia et al., 2010; Barndorff-Nielsen

et al., 2008, 2011; Christensen et al., 2010; Fan and Kim, 2018; Jacod et al., 2009, 2019;

Shin et al., 2023; Xiu, 2010; Zhang, 2006; Zhang et al., 2005, 2016). In order to handle the

autocorrelation structure of the microstructure noise, we employ the pre-averaging method in

Jacod et al. (2019) as follows. We choose a sequence of integers, km, such that km = Ck∆
−1/2
m

for some positive constant Ck. We select a weight function g(·) on [0, 1] satisfying that g(·)
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is continuous, piecewise continuously differentiable with a piecewise Lipschitz derivative g′

with g(0) = g(1) = 0 and
∫ 1

0
g2(s)ds > 0. Let

ϕ0(s) =

∫ 1

s

g(u)g(u− s)du, ψ0 = ϕ0(0), ϕ1(s) =

∫ 1

s

g′(u)g′(u− s)du, ψ1 = ϕ1(0),

Φ00 =

∫ 1

0

ϕ2
0(s)ds, Φ01 =

∫ 1

0

ϕ0(s)ϕ1(s)ds, Φ11 =

∫ 1

0

ϕ2
1(s)ds.

We also choose a sequence of integers, lm, such that lm = Cl∆
−ς
m for some positive constant

Cl and ς ∈ [1
8
, 1
5
]. Then, for l = 1, . . . ,m, d = 1, . . . , lm, and any processes P and P ′, we

define

gmd = g

(
d

km

)
, Pm

l = Ptl , P̃m
l =

km−1∑
j=1

gmj
(
Pm
l+j − Pm

l+j−1

)
, P̄m

l =
1

lm

lm−1∑
i=0

Pm
l+i,

Em,d
PP ′,l =

(
Pm
l − P̄m

l+2lm

) (
P

′m
l+d − P̄

′m
l+4lm

)
, Em,−d

PP ′,l =
(
P

′m
l − P̄

′m
l+2lm

) (
Pm
l+|d| − P̄m

l+4lm

)
.

The spot covariance matrix Σ of (Xc
1, X

c
2)

⊤ at time tl is estimated with

Σ̂
m

l = Σ̂tl =

v(Y1, Y1, u1,m, u1,m, tl) v(Y1, Y2, u1,m, u2,m, tl)

v(Y2, Y1, u2,m, u1,m, tl) v(Y2, Y2, u2,m, u2,m, tl)

 ,

where

v(P, P ′, a, a′, tl) =
1

(bm − 2km)∆mkmψ0

{
bm−2km−1∑

i=0

P̃m
l+iP̃

′m
l+i1{|P̃m

l+i|≤a, |P̃ ′m
l+i|≤a′}

− 1

km

bm−6lm∑
i=0

k′m∑
d=−k′m

ϕm
d E

m,d
PP ′,l+i

}
,

ϕm
d = km

∑
i∈Z

(
gmi+1 − gmi

) (
gmi−d+1 − gmi−d

)
,

bm = Cb∆
−κ
m , k′m = Ck′∆

−τ
m for some positive constant Cb and Ck′ , tuning parameters

κ ∈ (2
3
, 3
4
) and τ ∈ ( 1

4v−4
, 1
8
], u1,m and u2,m are the thresholds chosen as u1,m = a1(km∆m)

ϖ1

and u2,m = a2(km∆m)
ϖ1 for some a1, a2 > 0, and ϖ1 ∈ ( [v]−1

2[v]−r
, 2[v]−5
4[v]−8

) for r defined in

Assumption 2(c). Under some mild conditions, we can show the consistency of the spot
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volatility estimator (see Theorem 1 and Figueroa-López and Wu (2022)). Using the plug-in

method, we can estimate the spot beta with the above spot volatility estimators. However,

due to the microstructure noise, the functional form of the spot volatility estimators has a

bias term. This fact prevents obtaining the asymptotic distribution with the convergence

rate ofm−1/4 when estimating the integrated beta by the simple integration of the biased spot

beta estimators. To overcome this, we introduce a bias adjustment scheme and construct a

realized integrated beta (RIB) estimator as follows:

RIB1 = Îβ1 = bm∆m

⌊ 1
bm∆m

⌋−1∑
i=0

(
β̂m
ibm − B̂m

ibm

)
, β̂m

i =
Σ̂

m

12,i

Σ̂
m,∗
11,i

, Σ̂
m,∗
11,i = max(Σ̂

m

11,i, δm),

(2.7)

where δm is a sequence of positive real numbers converging to zero and B̂m
ibm

is a de-biasing

term of the form

B̂m
i = B̂ti =

4

ψ2
0Ck

3bm∆
1/2
m


Ck

2Φ01

Σ̂
m,∗
11,i

+
Φ11ϑ̂

m

11,i(
Σ̂

m,∗
11,i

)2
(ϑ̂m

11,i

Σ̂
m

12,i

Σ̂
m,∗
11,i

− ϑ̂
m

12,i

) , (2.8)

ϑ̂
m

11,i = (bm − 6lm)
−1

i+bm−6lm∑
j=i

k′m∑
d=−k′m

Em,d
Y1Y1,j

, ϑ̂
m

12,i = (bm − 6lm)
−1

i+bm−6lm∑
j=i

k′m∑
d=−k′m

Em,d
Y1Y2,j

,

ϑ̂
m

22,i = (bm − 6lm)
−1

i+bm−6lm∑
j=i

k′m∑
d=−k′m

Em,d
Y2Y2,j

.

We utilize Σ̂
m,∗
11,l instead of Σ̂

m

11,l for estimating spot beta in order to prevent the denominator

of β̂m
i from being a non-positive value. Thanks to the de-biasing term B̂m

ibm
, the average form

in (2.7) can achieve the optimal convergence rate m−1/4.

Remark 3. The RIB estimator is developed along the lines of the estimators in Chen (2018);

Jacod and Rosenbaum (2013), which proposed estimators of integrated volatility function-

als. Specifically, Jacod and Rosenbaum (2013) considered the estimator in the absence of the

microstructure noise, and Chen (2018) addressed the case of presence i.i.d. microstructure

noise using the traditional pre-averaging scheme. The traditional pre-averaging scheme uti-

lizes the property of diverging microstructure noise in the high-frequency returns to remove

10



the microstructure noise effect. However, in the presence of price-dependent and autocorre-

lated microstructure noise, this approach faces challenges. The RIB estimator, adapting the

approach presented in Jacod et al. (2019), handles the dependent structure of microstructure

noise by directly obtaining a proxy for the microstructure noise. Therefore, the RIB estima-

tor is a consistent estimator of the integrated beta, whereas the others in Chen (2018); Jacod

and Rosenbaum (2013) are not consistent estimators in the presence of price-dependent and

autocorrelated microstructure noise. The consistency of estimators plays a crucial role in

time series analysis, as it contributes to capturing the time series dynamics.

To investigate the asymptotic behavior of the RIB estimator, we need the following

technical conditions.

Assumption 2.

(a) The processes σt and σ
−1
t are locally bounded.

(b) We have

σ2
t = σ2

0 +

∫ t

0

µ̃1,sds+

∫ t

0

σ̃sdB̃s + d̃11{|d̃1|≤1} ∗ (p− q)t + d̃11{|d̃1|>1} ∗ pt and

q2t = q20 +

∫ t

0

µ̃2,sds+

∫ t

0

q̃sdW̃s + d̃21{|d̃2|≤1} ∗ (p− q)t + d̃21{|d̃2|>1} ∗ pt,

where µ̃1,t and µ̃2,t are progressively measurable and locally bounded drifts; σ̃t and q̃t are

adapted càdlàg processes. The standard Brownian motions B̃t and W̃t satisfy almost

surely

dB̃tdBβ,t = 0, dB̃tdWt = 0, dB̃tdW̃t = 0, dB̃tdBt = ρ̃1,tdt,

dW̃tdBβ,t = 0, dW̃tdBt = 0, dW̃tdB̃t = 0, dW̃tdWt = ρ̃2,tdt,

where ρ̃1,t and ρ̃2,t are bounded. The stochastic processes µ̃1,t, µ̃2,t, σ̃t, q̃t, ρ̃1,t, and ρ̃2,t

are defined on (Ω,F , P ).

(c) For some r ∈ [0, 2[v]−8
2[v]−5

), there are a sequence Tk of stopping times increasing to ∞,

a sequence of deterministic nonnegative λ-integrable functions Jk on R2 such that
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|di(ω, t, z)|r ∧ 1 ≤ Jk(z),
∣∣βd

t−d1(ω, t, z)
∣∣r ∧ 1 ≤ Jk(z) and

∣∣d̃i(ω, t, z)∣∣2 ∧ 1 ≤ Jk(z)

for i ∈ {1, 2} and all (ω, t, z) with t ≤ Tk(ω).

(d) If Pt is one of the processes σ̃t, q̃t, ρ̃1,t, or ρβ,t, then it satisfies the property (P-2),

where

(P-k) There exist C > 0, such that E
[
supu∈[t,t+s](Pu − Pt)

k|Ft

]
≤ Cs a.s. for any

t, s ≥ 0.

Remark 4. The locally bounded condition of σ−1
t in Assumption 2(a) is required to identify

the beta from the processes. Assumption 2(c) is required to bound the degree of activity of

jumps (Aı̈t-Sahalia and Jacod, 2009). The parameter r should be less than 2[v]−8
2[v]−5

, whereas

Jacod et al. (2019) requires r < 2[v]−4
2[v]−3

. This is because theRIB estimator requires the second-

moment condition for the jump-truncation error, whereas Jacod et al. (2019) only requires

convergence in probability for the jump-truncation error. If χ is ρ-mixing with exponential

decay rate, we only require r < 1. Assumption 2(d) holds for any Itô semimartingale process

with bounded drift, diffusion, and jump terms.

The following theorem establishes the convergence rate and asymptotic distributions for

the proposed RIB estimator.

Theorem 1. Under Assumptions 1 and 2, we have

m1/4(RIB1 − Iβ1) →
∫ 1

0

RsdZ̃s F∞-stably as m→ ∞,

where Z̃ is a standard Brownian motion independent of F , Rs is the square root of

Rs =
2

ψ2
0

(
Φ00

Ckq
2
s

σ2
s

+ Φ01
A1,s

Ck

+ Φ11
A2,s

Ck
3

)
,

and

A1,s =
ϑ2
1,sR11q

2
s − 2βc

sϑ1,sϑ2,sR12 + ϑ2
2,sR22

σ2
s

+ ϑ2
1,sR11(β

c
s)

2,

A2,s =
ϑ2
1,s

σ4
s

(
2(βc

s)
2ϑ2

1,sR
2
11 − 4βc

sϑ1,sϑ2,sR11R12 + ϑ2
2(R11R22 +R2

12)
)
.
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Theorem 1 shows that the convergence rate of the RIB estimator is m−1/4, which is

known as the optimal rate with the presence of microstructure noise and establishes its

asymptotic normality. To extend the estimator over all periods, we set mi to be the total

number of high-frequency observations for the ith day and rewrite m =
∑n

i=1mi/n. We

further let the ti,j’s be the high-frequency observed time points for the ith day, such that

i − 1 = ti,0 < ti,1 < · · · < ti,mi
= i, where |ti,j − ti,j−1| = O (m−1) for all i, j. Then, we can

construct the RIB estimator as follows:

RIBi =
1

mi

mi−bmi∑
l=0

[
β̂i,ti,l − B̂i,ti,l

]
and β̂i,ti,l =

Σ̂21,ti,l

max(Σ̂22,ti,l , δmi
)
. (2.9)

Moreover, we can show Theorem 1 for each RIBi under the usual assumption in the asyn-

chronous high-frequency data analysis (see Assumption 3(e)). We utilize these well-performing

RIB estimators to analyze the dynamic structures of integrated betas in the following sec-

tion.

To utilize the asymptotic distribution result, we need to construct a consistent asymp-

totic variance estimator. In the following proposition, we propose the asymptotic variance

estimator and show its consistency.

Proposition 1. Under Assumptions 1 and 2, Ŝm = bm∆m

∑[ 1
bm∆m

]−1

i=0 R̂2,m
ibm

is a consistent

asymptotic variance estimator of the RIB estimator, where

R̂2,m
i =

2Ck

ψ2
0

[
Φ00

(
Σ̂

m

22,i

Σ̂
m,∗
11,i

−
(Σ̂

m

12,i)
2

(Σ̂
m,∗
11,i)

2

)
+

Φ01

C2
k

(
ϑ̂

m

22,i

Σ̂
m,∗
11,i

−
2Σ̂

m

12,iϑ̂
m

12,i

(Σ̂
m,∗
11,i)

2
+

Σ̂
m

22,iϑ̂
m

11,i

(Σ̂
m,∗
11,i)

2

)

+
Φ11

C3
k

(
2(Σ̂

m

12,iϑ̂
m

11,i)
2

(Σ̂
m,∗
11,i)

4
+

ϑ̂
m

11,iϑ̂
m

12,i

(Σ̂
m,∗
11,i)

2
− 4

Σ̂
m

12,iϑ̂
m

11,iϑ̂
m

12,i

(Σ̂
m,∗
11,i)

3
+

(ϑ̂
m

11,i)
2

(Σ̂
m,∗
11,i)

2

)]
,

where ϑ̂
m

11,i, ϑ̂
m

12,i, and ϑ̂
m

12,i are defined in (2.8). That is, we have Ŝm
p−→
∫ 1

0
R2

sds.
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Figure 1: The box plot (left) of the first-order autocorrelations of the daily realized integrated
betas for the top 50 large trading volume assets among the S&P 500 from January 1, 2010,
to December 31, 2016, and the ACF plots for the largest, 75th, 25th, and smallest first-order
autocorrelation among the 50 assets excluding outliers.

3 Dynamic analysis of integrated betas

3.1 Dynamic realized beta models

In this section, we conduct a dynamic analysis of integrated betas. To check the low-

frequency time series structure of high-frequency-based market betas, we draw autocorre-

lation function (ACF) plots for daily realized integrated betas for the top 50 large trading

volume stocks in Figure 1. Figure 1 shows that the realized beta has a persistent autoregres-

sive structure. To account for this beta dynamics, we consider the ARMA(p, q) structure on

integrated betas as follows:

Iβn = ω +

p∑
i=1

αiIβn−i +

q∑
i=1

γiDn−i +Dn, (3.1)

where Dn = Iβn−hn is martingale difference and hn is Fn−1-adapted. We call this dynamic

realized beta (DR Beta) model. The model (3.1) is equivalent to the following model:

Iβn = hn(θ) +Dn,

hn(θ) = ω +

q∑
i=1

γgi hn−i(θ) +

p∨q∑
i=1

αg
i Iβn−i, (3.2)
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where γgi = −γi, αg
i = αi1{i≤p} + γi1{i≤q}, and θ = (ω, γg1 , . . . , γ

g
q , α

g
1, . . . , α

g
p∨q) is model

parameter. Since (3.2) is more practicable than (3.1), we focus on estimating parameters of

(3.2).

3.2 Parametric estimation for the DR Beta model

3.2.1 Estimation procedure based on high-frequency data and a low-frequency

structure

According to the strong autoregressive structure of the RIBi’s in Figure 1, we now assume

that integrated market betas follow the DR Beta model defined in (3.2). To estimate the

true parameters θ0 = (ω0, γ
g
0,1, . . . , γ

g
0,q, α

g
0,1, . . . , α

g
0,p∨q), we consider the well-known ordinary

least squares (OLS) estimation, which compares the conditional expectations of integrated

betas and its non-parametric estimators RIBi’s as follows:

Ln,m(θ) = − 1

n

n∑
i=1

{RIBi − hi(θ)}2 . (3.3)

The difference between the hi(θ) and the RIBi can be decomposed into the martingale

difference and the estimation error. The estimation error is asymptotically negligible. Fur-

thermore, with some technical assumptions, the martingale difference terms have a negligible

effect on the estimation result. Thus, the RIB estimator can be utilized as the proxy of

hi(θ). To harness the quasi-likelihood function above, we first need to evaluate the condi-

tional expectation term hi(θ). Unfortunately, the true integrated betas are not observable.

Thus, we adopt their non-parametric estimators RIBi to evaluate hi(θ) as follows:

ĥn(θ) = ω +

q∑
i=1

γgi ĥn−i(θ) +

p∨q∑
j=1

αg
jRIBn−j.

Then, we define the quasi-likelihood function as follows:

L̂n,m(θ) = − 1

n

n∑
i=1

{
RIBi − ĥi(θ)

}2

, (3.4)

15



and estimate the model parameters by maximizing the quasi-likelihood function L̂n,m(θ) as

follows:

θ̂ = argmaxθ∈Θ L̂n,m(θ),

where Θ is the parameter space of θ.

To estimate ĥi(θ), we need initial values ĥ0(θ), . . . , ĥ−q+1(θ), and RIB0, . . . , RIB−p∨q+1,

which we cannot obtain from given information whereas it is required to get ĥ1(θ), . . . , ĥp∨q(θ).

Meanwhile, similar to Lemma 1 in Kim and Wang (2016), we can show that the dependence

of hi(θ) on initial values decays with the order n−1. Thus, we can utilize, for example,

1
n

∑n
i=1RIBi as initial values.

3.2.2 Asymptotic theory

In this subsection, we establish asymptotic theorems for the proposed estimator θ̂. We first

define some notations. Define ∥A∥max = max
1≤i≤k,1≤j≤k′

|Aij| for a k × k′ matrix A. Let C > 0

be generic constants whose values are free of n and m and may change from occurrence to

occurrence.

To explore the asymptotic behaviors of θ̂, the following technical conditions are required.

Assumption 3.

(a) Let

Θ = {(ω, γg1 , . . . , γgq , α
g
1, . . . , α

g
p∨q) : ωl < ω < ωu, γ

g
l < γg1 , . . . , γ

g
q < γgu,

αg
l < αg

1, . . . , α
g
p∨q < αg

u,

q∑
i=1

|γgi | < 1,

p∨q∑
i=1

∣∣1{i≤q}γ
g
i + 1{i≤p∨q}α

g
i

∣∣ < 1},

where ωl, ωu, α
g
l , α

g
u, γ

g
l , γ

g
u are known constants such that αg

l , α
g
u, γ

g
l and γ

g
u are in (−1, 1).

(b) For all θ ∈ Θ, |φθ(x)| = 0 ⇒ |x| > 1, where φθ(x) = 1−
∑p∨q

i=1(1{i≤q}γ
g
i +1{i≤p∨q}α

g
i )x

i.

(c) Υθ0(x) does not have no common root with φθ0(x), where Υθ(x) =
∑1

i=1 γ
g
i x

i.

(d) Di is stationary ergodic process satisfying sup
i≤n

E [D2
i |Fi−1] ≤ C.
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(e) There exist some fixed constants C1, C2 such that C1m ≤ mi ≤ C2m, and

sup
1≤j≤mi

|ti,j − ti,j−1| = O (m−1) and n2m−1 → 0 as m,n→ ∞.

(f) We have sup
i≤n

E
[
|RIBi − Iβi|2

]
≤ Cm−1/2.

Remark 5. Assumption 3(a)–(d) are usually imposed when analyzing asymptotic properties

of the ARMA-type models. For example, Assumption 3(b) implies the stationarity of Iβi and

hi(θ), and Assumption 3(c) is required to identify the parameter space. Finally, Assumption

3(f) is required to handle the estimation errors of the unobserved integrated betas. Under

some bounded moment conditions on the random quantities, we can show that Assumption

3(f) holds. We elaborate on conditions of the long-span asymptotic behavior of the RIB

estimator in Assumption 4.

The following theorems provide the asymptotic results including the convergence rate

and asymptotic normality for the proposed parameters θ̂.

Theorem 2. Under Assumption 3 (except for n2m−1 → 0), we have

∥θ̂ − θ0∥max = Op(m
−1/4 + n−1/2).

Theorem 3. Under Assumption 3, we have, as m,n→ ∞,

√
n(θ̂ − θ0)

d→ N(0, V ),

where

V = E
[
D2

1

](
E

[
∂h1(θ)

∂θ

∂h1(θ)

∂θ⊤

∣∣∣∣
θ=θ0

])−1

. (3.5)

Remark 6. Theorem 2 shows that the quasi-maximum likelihood estimator θ̂ has the converge

rate m−1/4 + n−1/2. The first term m−1/4 comes from estimating the integrated beta, which

is known as the optimal convergence rate with the presence of market microstructure noise.

The second term n−1/2 is the typical parametric convergence rate based on the low-frequency

observations. Theorem 3 establishes the asymptotic normality of θ̂.
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In the asymptotic analysis of low-frequency dynamics, the sample size, n, is allowed to

go to infinity. Thus, we need the long-span asymptotic behavior of the RIB estimator,

such as Assumption 3(f). However, this condition is not satisfied under the locally bounded

condition such as Assumption 2. To coincide with the asymptotic results of the proposed

estimation procedures, we investigate the long-span asymptotic behavior of RIB as follows.

Assumption 4.

(a) We have bounded 64th moment of σ, µ1, d1, β
c, βd, µβ, and σβ and bounded 32nd moment

of σ−1, µ̃1, σ̃, d̃1, ϑ1, ϑ2, µ2, q, and d2.

(b) The process µ1 satisfies (P-64) and the processes µ2, ϑ1, and ϑ2 satisfy (P-32) in As-

sumption 2(d).

(c) For some r ∈ [0, 2[v]−8
2[v]−5

), there are deterministic nonnegative λ-integrable functions J

on R2 such that

E[|d1(t, z)|r ∧ 1] ∨ E[|d2(t, z)|r ∧ 1] ∨ E[|βd
t−d1(t, z)|r ∧ 1] ≤ J (z),

E[|d̃1(t, z)|2 ∧ 1] ∨ E[|d̃2(t, z)|2 ∧ 1] ≤ J (z),

E[|d1(t, z)|64] ∨ E[|d2(t, z)|32] ∨ E[|d̃2(t, z)|32] ∨ E[|d̃1(t, z)|32] ≤ J (z).

Remark 7. To establish the convergence in the second mean in Theorem 4, we need moment

conditions on the spot error terms. For example, we consider the squared error of the de-

biasing term, (B̂m
ibm

−Bm
ibm

)2, from which the highest order error terms comes, where Bm
ibm

is

defined in the online Appendix equation (F.1). Technically, after applying Talyor’s theorem,

(B̂m
ibm

− Bm
ibm

)2 become an octic function of the errors of spot variations with denominator,

since B̂m
ibm

is a cubic function of estimated spot variations with denominator. Thus, we

need 16th-moment conditions (32nd-moment conditions) on spot variation terms (drift and

diffusion terms). Further, βc and βd are random processes which are multiplied by dXc
1

and dXd
1 . Therefore, we need 64th moment conditions for some random quantities. If we

assume that σ−1
t is bounded, then we can reduce the 64th and 32nd-moment conditions in

Assumptions 4(a), (b), and (c) by half, since we need one less Hölder’s inequality. On the
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other hand, unlike the case of asset price processes, it is economically sensible to consider

the random quantities in Assumption 4 as mean-reverting processes. When a mean-reverting

process follows a generalized Ornstein-Uhlenbeck process with Brownian motion, the high-

order moment condition, such as Assumption 4, can be satisfied. Thus, it is not restrictive.

The following theorem establishes the long-span asymptotic behavior for the proposed

RIB estimator.

Theorem 4. Under Assumptions 1, 2(b) and (d), and 4 with v ≥ 7, we have for δm =

Cδ∆
1−κ
16

m defined in (2.7),

sup
i∈N

E
[
(RIBi − Iβi)

2] ≤ Cm−1/2.

Theorem 4 shows that under some moment conditions, Assumption 3(f) is satisfied. That

is, the condition in Assumption 3(f) can be replaced by Assumption 4.

3.2.3 Hypothesis tests

In financial practices, we are interested in model validity and making statistical inferences,

such as hypothesis tests. To do this, we can harness the asymptotic normality result in

Theorem 3 as follows:

Tn =
√
nV̂ −1/2(θ̂ − θ0)

d→ N(0, I),

where V̂ is a consistent estimator of the asymptotic variance V defined in (3.5), and I is

a A × A identical matrix, where A = p ∨ q + q + 1. Then, with the test statistics Tn, we

can conduct hypothesis tests based on the standard normal distribution. To evaluate the

statistics Tn, we use the following asymptotic variance estimator,

V̂ =
1

n

n∑
i=1

{
RIBi − ĥi(θ̂)

}2
(
1

n

n∑
j=1

∂ĥj(θ̂)

∂θ

∂ĥj(θ̂)
⊤

∂θ

)−1

. (3.6)

Its consistency can be derived similarly to the proof of Theorem 3.
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4 A simulation study

We conducted simulations to check the finite sample performance of the proposed statistical

inference procedures. For simplicity, we chose p = q = 1 for the DR Beta model. In the

online Appendix, we provide a high-frequency data-generating process of the beta diffusion

process, whose integrated beta follows the DR Beta model. Using this data-generating

process, we generated the beta processes βc
ti,j

and the jump-diffusion processes X1,ti,j and

X2,ti,j for ti,j = i− 1 + j/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m as follows:

dX2,t = βc
t (θ)dX

c
1,t + βd

t J1,tdΛ1,t + dVt,

dX1,t = σtdBt + J1,tdΛ1,t, dVt = qtdWt + J2,tdΛ2,t,

dβc
t (θ) =

{
2 (t− [t])

(
ω1 + γ1β

c
[t](θ)

)
−
(
ω2 + βc

[t](θ)
)
− ν(Zt − Z[t]) + α1β

c
t (θ)

}
dt

+ν ([t] + 1− t) dZt,

dZtdBt = dZtdWt = dBtdWt = 0, (4.1)

where (ω1, ω2, γ1, α1, ν) = (−1.0,−1.5, 0.6, 0.2, 0.9), qt = 0.008, and Bt, Zt, and Wt are

standard Brownian motions. The parameters ω1 and ω2 control the deterministic quadratic

time-trend of the spot beta process, thereby determining its mean level. The persistent

feature of the beta process is governed by the parameters γ1 and α1, with α1 playing a key

role in regulating the intraday level autoregressive characteristic of the spot beta process.

The parameter ν controls the degree of intraday variation in the beta process. More detailed

explanations of the process and its properties can be found in the online Appendix. With

the chosen diffusion process parameters, the parameter of the DR Beta model becomes

θ0 = (ωg
0 , γ0, α

g
0) = (0.84, 0.20, 0.50). We generated the individual asset log price process

X1,t based on the realized GARCH-Itô model (Song et al., 2021) as follows:

dσ2
t =

{
2γ̃(t− ⌈t− 1⌉)(ω̃1 + σ2

⌈t−1⌉)− (ω̃2 + σ2
⌈t−1⌉) + α̃σ2

t − ν̃Z̃2
t

}
dt

+β̃J2
1,tdΛ1,t + 2ν̃(⌈t− 1⌉+ 1− t)Z̃tdB̃t,
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where a standard Brownian motion B̃t satisfies dB̃tdWt = dB̃tdUt = 0, dB̃tdBt = ρ̃dt,

(ω̃1, ω̃2, γ̃, α̃, β̃, ν̃, ρ̃) = (6.04× 10−5, 9.00× 10−6, 0.35, 0.4, 0.1, 1× 10−5,−0.5), and Z̃t = B̃t −

B̃⌈t−1⌉. The initial values for the simulation data were chosen to be βc
0(θ) = E [βc

1(θ)] = 2.72,

σ2
0 = E [σ2

1] = 7.55 × 10−5, X1,0 = 16, and X2,0 = 10. For the jump part, we consider the

finite activity jumps. Specifically, Λ1,t is a standard Poisson process with the intensities

λ1,t = 5 and λ2,t = 1, and the jump sizes J1,t and J2,t were generated as follows:

J2
1,t = max(4× 10−5 +M1,t, 4× 10−6) and J2

2,t = max(8× 10−6 +M2,t, 8× 10−7),

where M1,t and M2,t follow N(0, (5.5× 10−6)2) and N(0, (1× 10−6)2), respectively. For each

J1,t and J2,t, we further assigned a positive (negative) sign with probability 0.5 to make

a positive (negative) jump. Finally, βd
t was chosen to be 2.4, and we generated Brownian

motions using the Euler scheme.

The noisy high-frequency data Y1,ti,j and Y2,ti,j were generated from the model (2.4),

where the true log price processes X1,ti,j and X2,ti,j were generated from (4.1), and the

microstructure noise ϵ1,ti,j and ϵ2,ti,j follow (2.5), where ϑ1,t, ϑ2,t, and χi follow Ornstein–

Uhlenbeck-type processes with an U-shaped pattern and the AR(1) process with Gaussian

innovations as follows:

dϑ1,t = 10(µϑ1,t − ϑ1,t)dt+ s1dBt, dϑ2,t = 10(µϑ2,t − ϑ2,t)dt+ 0.6s2dBt + 0.8s2dWt,

µϑ1,t = s1(1 + 0.1 cos(2πt)), µϑ2,t = s2(1 + 0.1 cos(2πt)),

s1 = 2.234× 10−4, s2 = 5.464× 10−3,

χi =

0.5 0.1

0.1 0.5

χi−1 + ei, ei ∼i.i.d. N

0

0

 ,

 0.815 −0.652

−0.652 0.815

 .
In this specification of the noise, the noise-to-signal ratio in the returns is predominantly

determined by the parameters s1 and s2. Additionally, the cross-autocovariance structure

of the noise is influenced by the VAR coefficients and the covariance of their innovations.

This simulation setting satisfies Assumptions 3(a)–(f), and specifically, Assumption 3(f) can

be verified by confirming that it aligns with Assumption 4. We repeated the simulation
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process 1000 times. We normalized one second to 1/23400 so that the unit time contains 6.5

hours. For each simulation process, we generated high-frequency data with m = 23400 for

500 consecutive days and used the subsampled log prices of the last n = 125, 250, 500 days

with high-frequency observations m = 7800, 11700, 23400 per day.

0.5 1.0 1.5 2.0 2.5 3.0
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0.02
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Figure 2: The MSEs of RIB estimator with m = 23400 against varying Cb.

For the RIB estimator, we used the usual triangular weight function g(x) = {x∧(1−x)},

and set km = [∆−0.5
m ] and ϖ1 = 0.47 as recommended by Christensen et al. (2010) and Aı̈t-

Sahalia and Xiu (2016), respectively. For each estimation of the daily integrated beta, we

chose lm using the heuristic criterion presented in Section 5.1.2 of Jacod et al. (2017), where

the distance between two sequences is measured as the sum of their squared differences.

To determine k′m, we utilized the test for autocovariance of noise as presented in Corollary

3.5 in Jacod et al. (2017). Details can be found in the online Appendix A. In addition,

for the truncation, we chose a1 and a2 as four times the sample standard deviation of the

pre-averaged prices k
−1/2
m Ỹ m

1,td,k
and k

−1/2
m Ỹ m

2,td,k
, respectively. We then needed to determine

Cb. To do this, we checked the effect of the choice of Cb of the RIB estimator. Figure 2

depicts the estimated mean squared errors (MSE) of the RIB estimator with m = 23400

against varying Cb from 0.4 to 3.0, where κ = 0.67 and the integrated beta Iβi is calculated

as the Riemann sum of the true beta values for each trading days. From Figure 2, we find

that for Cb < 1, the MSEs decrease as Cb increases, and for Cb ≥ 1, the MSEs slightly
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increase as Cb increases. This may be because the window size for the spot betas should be

large enough to estimate spot betas, but too large a window size hinders the capture of the

intraday dynamics of the beta processes. From this analysis, we set Cb = 1.

We first checked the performance of the non-parametric integrated beta estimator, RIB,

proposed in Section 2.2. For comparison, we employed other integrated beta estimators pro-

posed by Chen (2018) and Christensen et al. (2010). Chen (2018) proposed the estimator

for volatility functionals and the integrated beta (CHEN) is a specific example. Chris-

tensen et al. (2010) calculated the integrated beta as a ratio of the integrated covariance

between assets and systematic factors to the integrated variation of systematic factors. The

proposed estimator utilizes a pre-averaged realized covariance estimator that is robust to

i.i.d. microstructure noise but is not to autocorrelated noise and price jump. On the other

hand, Jacod et al. (2019) proposed a robust pre-averaged integrated volatility estimator

that is robust to price-dependent and autocorrelated microstructure noise and price jump.

We employed the integrated beta estimator (PRVB), which adopts the robust pre-averaging

integrated volatility estimator of Jacod et al. (2019) as the input of the integrated beta

estimator in Christensen et al. (2010). The details of estimators can be found in the online

Appendix C. We note that PRVB is a consistent estimator of the ratio of the integrated

covariance between assets and systematic factors to the integrated variation of systematic

factors. That is, while PRVB is a consistent estimator of the integrated beta when the intra-

day beta or market volatility is constant over time, the PRVB is not a consistent estimator

of the integrated beta in general. On the other hand, CHEN is designed for estimating

time-varying beta, but it does not consider the autocorrelated microstructure noise. Fig-

ure 3 shows the MSEs of the non-parametric integrated beta estimators, RIB, CHEN, and

PRVB, for m = 7800, 11700, 23400. We note that the average value of the true integrated

beta was 2.802. Figure 3 shows that the MSEs of RIB and PRVB decrease as the number

of high-frequency observations increases, whereas the MSEs of CHEN do not. This is be-

cause the RIB and PRVB estimators can account for the autocorrelation structure of the

microstructure noise, whereas CHEN fails to handle it. Further, RIB and CHEN perform

better than PRVB since PRVB fails to deal with the time-varying beta. The magnitude of
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Figure 3: The MSEs of RIB, CHEN, and PRVB for m = 7800, 11700, 23400. The average
value of the true integrated beta was 2.802.
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Figure 4: The MSEs of the least squared estimates with m = 2340, 4680, 23400 and
n = 100, 250, 500.

the difference in performance between the RIB and PRVB estimators may depend on how

volatile the intraday beta and market volatility processes are. When comparing the perfor-

mances of the RIB and CHEN, the RIB estimator shows better performance form = 23400,

while CHEN does for m = 7800, 11700. It may be because the effect of the autocorrelated

microstructure noise increases as m increases, while the estimation variance of the denoise

term of RIB, which decreases as m increases, is larger than that of CHEN. These results

support the theoretical results derived in Section 2.2.
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Figure 5: The standard normal (original) quantile-quantile plots of the Z-statistics estimates
of ωg, γ1, and α

g
1 for n = 500, m = 7800, 11700, 23400.

Next, we checked the finite sample performances of the proposed DR Beta model. We first

estimated the model parameters using the proposed quasi-maximum likelihood estimation

in Section 3.2 for n = 100, 250, 500 and m = 7800, 11700, 23400. To estimate ĥi(θ), we set

initial values ĥ0(θ) = RIB0 =
1
n

∑n
i=1RIBi. Figure 4 draws the MSEs of the least squared

estimates θ̂’s for the model parameter θ0. From Figure 4, we find that the MSEs decrease as

n or m increases. These results match the theoretical findings in Section 3.2.

To check the asymptotic normality of the model parameters (ωg, γ1, α
g
1), we calculated

the Z-statistics proposed in Section 3.2.3. Figure 5 shows standard normal quantile-quantile
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plots of the Z-statistics estimates of ωg
1 , γ1, and α

g
1 for n = 500 and m = 7800, 11700, 23400.

From Figure 5, we find that the Z-statistics close to the standard normal distribution as

m increases–that is, the non-parametric integrated beta estimator RIB closes to the true

integrated beta Iβ. This result agrees with the theoretical findings in Section 3. Thus, based

on the proposed Z-statistics, we can conduct hypothesis tests for the model parameters using

the standard normal distribution.

The DR Beta model is an ARMA model for the integrated beta, utilizing the RIB, which

is a consistent estimator of the integrated beta. One of the advantages of employing this

consistent estimator to predict future market betas lies in its ability to effectively capture

the low-frequency autoregressive dynamic structure, which helps improve the predictability

of future beta values. Thus, we examined the out-of-sample performance of estimating

the one-day-ahead conditional expected integrated beta hn+1(θ0) to check the predictability

of the DR Beta model. We compared the DR Beta with three parametric models that

employ high-frequency data and two parametric models that use low-frequency data. For

the parametric model with high-frequency data, we considered the ARMA(1, 1) models,

which utilize CHEN (ARMAC) or PRVB (ARMAP) as daily realized beta, and Realized

Beta GARCH (RBG) model (Hansen et al., 2014), which is a multivariate GARCH model

utilizing realized measures of volatility and correlation. For the input covariance matrix of the

RBG model, we used realized covariance, the sum of squared log-returns, with 5-min, 1-min,

and 30-sec data (m = 78, 390, 780, respectively) to reduce the impact of the microstructure

noise. We also used the robust pre-averaging realized covariance (Jacod et al., 2019) as the

input of the RBG model (PRBG). Details of the RBG model can be found in Hansen et al.

(2014). For the parametric models with low-frequency data, we used the dynamic conditional

beta (DCB) model framework proposed by Engle (2016). Specifically, the beta prediction

can be established by comparing the conditional covariance between assets and systematic

factors to the conditional variance of systematic factors. The details of the procedure can

be found in the online Appendix C. We employed the BEKK(1,1) and DCC(1,1) models as

the conditional covariance matrix models, as suggested by Engle and Kroner (1995) and Bali

and Engle (2010), respectively. We call the beta estimators with BEKK(1,1) and DCC(1,1)
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Figure 6: The MSFEs of DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK
with n = 100, 250, 500 andm = 7800, 11700, 23400. The average value of h501,i(θ0) was 2.813.

BEKK and DCC, respectively. For each model, we calculated the mean squared forecast

errors (MSFEs) with the one-day-ahead forecasted beta across 1000 repeated simulations as

follows:
1

1000

1000∑
i=1

(
B̂etan+1,i − hn+1,i(θ0)

)2
,

where hn+1,i(θ0) is the true conditional expectation of the (n + 1)th integrated beta and

B̂etan+1,i denotes one of the forecasted beta obtained using a parametric model such as DR

Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK models at the ith sample-path

given the available information at time n. We note that the target of the benchmarks, except

for ARMAC, is the ratio of the integrated covariance between assets and systematic factors

to the integrated variation of systematic factors. Therefore, the MSFEs of the benchmarks

additionally include the error from the discrepancy between the true integrated beta and

the true ratio of the integrated covariance between assets and systematic factors to the

integrated variation of systematic factors. In Figure 6, the MSFEs of DR Beta, ARMAC,

ARMAP, PRBG, RBG, DCC, and BEKK are plotted for n = 100, 250, 500 and m =

7800, 11700, 23400. The average value of the true conditional expectation of 501st integrated

beta was 2.813. For the RBG model, we plotted only the MSFEs with m = 780, which is

the lowest MSFEs among m = 78, 390, 780. Figure 6 shows the MSFEs of the DR Beta
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and ARMAP decrease as n or m increases, but other estimators do not have any strong

pattern. This may be because the other benchmarks cannot account for the autocorrelated

microstructure noise well. When comparing the DR Beta and ARMAP models, the DR

Beta consistently outperforms the ARMAP. This is because the target variable of the PRVB

estimator differs from the integrated beta under the time-varying spot beta and market

volatility processes, thereby resulting in a less effective capture of integrated beta dynamics

by the ARMAP model. Meanwhile, the high-frequency-based ARMA models show better

performance than other competitors. When comparing the high-frequency-based ARMA

models, the ARMAC and the DR Beta models show the best performance for m = 7800 and

m = 11700, 23400, respectively, even though the CHEN has lower MSEs than the RIB for

m = 11700. This may be because CHEN cannot account for the autocorrelation structure of

the microstructure noise, which may cause some bias in the integrated beta estimation. From

this result, we can conclude that estimating the ratio of integrated covariance to integrated

variance cannot be a good proxy of integrated beta and the robust non-parametric integrated

beta estimator helps account for the market beta dynamics.

We end this section by remarking that the proposed RIB estimator is not only a con-

sistent estimator of the integrated beta under autocorrelated microstructure noise but also

consistent even in the absence of autocorrelation in microstructure noise. To assess the fi-

nite sample performance of the proposed estimator when the microstructure noise has zero

autocorrelation structure, we conducted an additional analysis under a setting of zero auto-

correlation in the microstructure noise and fixed all other parameters. The full methodology

and results of this analysis are presented in the online Appendix D.

5 Empirical analysis

In this section, we apply the proposed DR Beta model to real high-frequency trading data.

We obtained high-frequency data for the top 50 large trading volume stocks among the S&P

500 from the TAQ database in the Wharton Research Data Services (WRDS) system from

January 1, 2010, to December 31, 2016, 1762 trading days in total. We used the E-mini S&P
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Figure 7: The box plot (left) of the first-order autocorrelations of RIB (continuous) and
jump beta (jump) from January 1, 2010, to December 31, 2016, and the ACF plots for the
top four first-order autocorrelation stocks.

500 index futures as the market portfolio, which was obtained from Refinitiv Tick History.

We used 1-sec log-returns, which were subsampled by the previous tick (Zhang, 2011) scheme.

High-frequency data were available between the open and close of the market, so the number

of high-frequency observations for a full trading day is m = 23400.

To examine the goodness of fit, we conducted in-sample validation. We draw autocorrela-

tion plots for RIB and jump beta in Figures 1 and 7, where the jump beta is estimated by the

method suggested by Li et al. (2017b). As we discussed in Section 3, the integrated beta for

the continuous part has a strong autocorrelation structure, but the beta for the jumps does

not. Thus, it is reasonable to focus on modeling the beta for the continuous part. To con-

duct the validation of the DR Beta model, we first selected the (p, q) ∈ {(p, q) : 0 ≤ p, q ≤ 5}

of the DR Beta for each stock by BIC, and we estimated the parameters of the DR Beta

using the sample over the last 1000 trading days. Then, we conducted the hypothesis tests

proposed in Section 3.2.3. Table 1 reports the parameter estimates of the DR Beta model

with the selected (p, q) for each stock and their p-values. The BIC values were minimized

when (p, q) = (1, 1) for all stocks. All coefficients are significant at a significance level of

0.05, except for the case of the AMD. On the other hand, the higher γg1 + αg
1 implies more

persistent integrated beta process. From Table 1, we find that all stocks have the γg1 + αg
1

greater than 0.8, and for 36 stocks out of 50, γg1 + αg
1 is greater than 0.9. Thus, we can con-

clude that the proposed DR Beta model is statistically valid and may capture the persistent
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Table 1: Estimated parameters from the DR Beta model. The numbers in parentheses
indicate the p-value, multiplied by 10, from the hypothesis tests.

Stock ω γg1 αg
1 Stock ω γg1 αg

1

AAPL 0.126 (0.0) 0.539 (0.0) 0.325 (0.0) JPM 0.076 (0.0) 0.608 (0.0) 0.314 (0.0)
AIG 0.063 (0.0) 0.623 (0.0) 0.308 (0.0) KEY 0.111 (0.0) 0.542 (0.0) 0.354 (0.0)
AMAT 0.190 (0.0) 0.491 (0.0) 0.323 (0.0) KO 0.030 (0.0) 0.653 (0.0) 0.288 (0.0)
AMD 0.011 (1.0) 0.826 (0.0) 0.163 (0.0) MGM 0.045 (0.0) 0.715 (0.0) 0.248 (0.0)
ATVI 0.088 (0.0) 0.618 (0.0) 0.283 (0.0) MRK 0.056 (0.0) 0.622 (0.0) 0.299 (0.0)
BAC 0.083 (0.0) 0.608 (0.0) 0.315 (0.0) MRO 0.042 (0.0) 0.618 (0.0) 0.352 (0.0)
BMY 0.070 (0.0) 0.604 (0.0) 0.310 (0.0) MS 0.117 (0.0) 0.547 (0.0) 0.359 (0.0)
BSX 0.121 (0.0) 0.540 (0.0) 0.330 (0.0) MSFT 0.072 (0.0) 0.619 (0.0) 0.301 (0.0)
CSCO 0.112 (0.0) 0.541 (0.0) 0.326 (0.0) MU 0.091 (0.0) 0.683 (0.0) 0.254 (0.0)
CSX 0.073 (0.0) 0.607 (0.0) 0.314 (0.0) NEM 0.025 (0.0) 0.588 (0.0) 0.339 (0.0)
DAL 0.096 (0.0) 0.604 (0.0) 0.304 (0.0) NFLX 0.047 (0.0) 0.720 (0.0) 0.246 (0.0)
DIS 0.071 (0.0) 0.619 (0.0) 0.293 (0.0) NVDA 0.176 (0.0) 0.456 (0.0) 0.374 (0.0)
DOW 0.051 (0.0) 0.698 (0.0) 0.249 (0.0) ORCL 0.111 (0.0) 0.540 (0.0) 0.326 (0.0)
EBAY 0.106 (0.0) 0.554 (0.0) 0.327 (0.0) PFE 0.050 (0.0) 0.650 (0.0) 0.281 (0.0)
F 0.071 (0.0) 0.605 (0.0) 0.311 (0.0) PG 0.030 (0.0) 0.653 (0.0) 0.288 (0.0)
FCX 0.031 (0.1) 0.675 (0.0) 0.303 (0.0) QCOM 0.077 (0.0) 0.568 (0.0) 0.335 (0.0)
FITB 0.066 (0.0) 0.614 (0.0) 0.323 (0.0) RF 0.070 (0.0) 0.652 (0.0) 0.286 (0.0)
GE 0.129 (0.0) 0.489 (0.0) 0.332 (0.0) SCHW 0.112 (0.0) 0.554 (0.0) 0.355 (0.0)
GILD 0.070 (0.0) 0.607 (0.0) 0.327 (0.0) T 0.026 (0.0) 0.706 (0.0) 0.240 (0.0)
GLW 0.142 (0.0) 0.564 (0.0) 0.287 (0.0) VZ 0.027 (0.0) 0.707 (0.0) 0.241 (0.0)
HAL 0.067 (0.0) 0.644 (0.0) 0.296 (0.0) WFC 0.111 (0.0) 0.540 (0.0) 0.326 (0.0)
HBAN 0.047 (0.0) 0.674 (0.0) 0.278 (0.0) WMB 0.026 (0.1) 0.699 (0.0) 0.278 (0.0)
HPQ 0.178 (0.0) 0.526 (0.0) 0.301 (0.0) WMT 0.038 (0.0) 0.625 (0.0) 0.298 (0.0)
HST 0.077 (0.0) 0.618 (0.0) 0.295 (0.0) XOM 0.063 (0.0) 0.550 (0.0) 0.368 (0.0)
INTC 0.108 (0.0) 0.552 (0.0) 0.324 (0.0) XRX 0.138 (0.0) 0.568 (0.0) 0.283 (0.0)

30



Table 2: The mean of RIB estimates in the out-of-sample period and the MAPEs for the DR Beta, ARMAC, ARMAP,
PRBG, RBG, DCC, and BEKK for each stock.

Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK
AAPL 0.985 0.238 0.254 0.259 0.300 0.279 0.324 0.326 JPM 1.030 0.170 0.203 0.211 0.293 0.274 0.325 0.314
AIG 0.989 0.183 0.206 0.225 0.348 0.326 0.346 0.407 KEY 1.064 0.226 0.252 0.276 0.334 0.366 0.406 0.363
AMAT 1.028 0.215 0.235 0.262 0.388 0.397 0.443 0.365 KO 0.499 0.117 0.127 0.134 0.168 0.167 0.214 0.186
AMD 0.950 0.371 0.382 0.444 0.779 0.892 0.936 0.953 MGM 1.295 0.280 0.302 0.347 0.468 0.434 0.583 0.590
ATVI 0.847 0.208 0.225 0.242 0.313 0.331 0.359 0.293 MRK 0.674 0.142 0.162 0.159 0.341 0.185 0.241 0.218
BAC 1.181 0.240 0.261 0.303 0.431 0.382 0.465 0.490 MRO 1.400 0.295 0.325 0.349 0.404 0.412 0.562 0.595
BMY 0.740 0.163 0.185 0.184 0.248 0.237 0.312 0.271 MS 1.350 0.228 0.273 0.286 0.369 0.365 0.424 0.456
BSX 0.873 0.219 0.240 0.265 0.432 0.430 0.486 0.396 MSFT 0.889 0.168 0.191 0.194 0.260 0.269 0.293 0.223
CSCO 0.871 0.169 0.193 0.197 0.238 0.264 0.273 0.250 MU 1.444 0.329 0.363 0.379 0.531 0.525 0.653 0.593
CSX 0.943 0.180 0.205 0.224 0.302 0.282 0.404 0.385 NEM 0.466 0.277 0.279 0.286 0.407 0.452 0.535 0.514
DAL 1.016 0.263 0.280 0.305 0.626 0.422 0.511 0.431 NFLX 1.334 0.315 0.347 0.356 0.437 0.406 0.575 0.578
DIS 0.810 0.140 0.162 0.172 0.230 0.222 0.287 0.260 NVDA 1.104 0.237 0.256 0.283 0.376 0.374 0.496 0.460
DOW 0.995 0.186 0.206 0.232 0.343 0.311 0.405 0.478 ORCL 0.868 0.160 0.179 0.195 0.264 0.240 0.303 0.293
EBAY 0.936 0.185 0.207 0.212 0.300 0.279 0.360 0.307 PFE 0.700 0.149 0.166 0.170 0.188 0.204 0.235 0.199
F 0.903 0.206 0.212 0.262 0.377 0.388 0.483 0.438 PG 0.483 0.119 0.131 0.128 0.178 0.162 0.204 0.187
FCX 1.398 0.315 0.343 0.368 0.562 0.565 0.708 0.768 QCOM 0.845 0.157 0.181 0.179 0.250 0.238 0.349 0.273
FITB 1.046 0.199 0.229 0.254 0.290 0.299 0.346 0.346 RF 1.156 0.250 0.270 0.322 0.456 0.477 0.495 0.517
GE 0.769 0.151 0.164 0.190 0.241 0.264 0.321 0.298 SCHW 1.210 0.221 0.258 0.276 0.375 0.350 0.418 0.347
GILD 0.996 0.210 0.242 0.247 0.505 0.304 0.371 0.410 T 0.498 0.120 0.128 0.136 0.187 0.213 0.246 0.201
GLW 0.958 0.197 0.212 0.249 0.330 0.354 0.430 0.371 VZ 0.520 0.129 0.138 0.144 0.162 0.168 0.215 0.182
HAL 1.195 0.238 0.264 0.281 0.365 0.375 0.451 0.485 WFC 0.876 0.151 0.173 0.188 0.276 0.259 0.326 0.337
HBAN 0.957 0.218 0.236 0.286 0.471 0.509 0.475 0.483 WMB 1.073 0.257 0.277 0.301 0.351 0.336 0.553 0.568
HPQ 1.050 0.226 0.252 0.262 0.304 0.278 0.375 0.330 WMT 0.483 0.113 0.126 0.127 0.176 0.159 0.224 0.166
HST 0.923 0.198 0.211 0.245 0.404 0.411 0.530 0.514 XOM 0.778 0.136 0.159 0.163 0.191 0.190 0.226 0.217
INTC 0.895 0.163 0.186 0.197 0.228 0.257 0.297 0.246 XRX 0.919 0.235 0.242 0.289 0.509 0.537 0.566 0.447
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autoregressive structure.

To evaluate the out-of-sample performance, we computed the mean absolute prediction

error (MAPE) as follows:

1

n− 500

n∑
i=501

∣∣∣B̂etai −RIBi

∣∣∣ ,
where B̂etai denotes the one-day-ahead forecasted beta from parametric models such as

DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK, as defined in Section 4,

using a sample size of 500 for in-sample data. Unlike in a simulation study where the

true integrated beta is known, it is impossible to obtain the true integrated beta in the

empirical study. Therefore, we need to use the proxy of the true integrated beta when

calculating MAPE. Since, to the best of our knowledge, the proposed RIB estimator is

the only consistent estimator of integrated beta, we employed the RIB estimator as the

proxy of the true integrated beta. For each stock, we used the selected (p, q) order for the

DR Beta, ARMAC, and ARMAP models. In the case of ARMAC, we also checked their

performance with input integrated betas estimated by CHEN with data subsampled at 1,

5, 10, 30, and 60-second frequencies to deal with the autocorrelated microstructure noise.

Then, we reported the best performance results among the different frequencies. For RBG,

we used realized covariance, the sum of squared log-returns, with 5-min, 1-min, and 30-sec

data (m = 78, 390, 780, respectively) to handle the microstructure noise, and reported the

best results among them. The in-sample period is 500 days, and we estimated the models

using the rolling window scheme. Table 2 reports the mean of RIB estimates in the out-of-

sample period and the MAPEs for DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and

BEKK for 50 stocks. From Table 2, we find that the models using high-frequency information

show better performance than the models using only low-frequency information. Further,

the ARMA-type models utilizing realized betas usually perform better than the RBG and

PRBG models. When comparing the ARMA-type models using realized betas, MAPEs for

the proposed DR Beta or ARMAC have the smallest values for every stock, and DR Beta

always shows the lowest MAPE among the benchmarks. It may be because the proposed

DR Beta and ARMAC model can account for the time-varying beta by incorporating high-
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frequency data. These results indicate that accommodating the time-varying beta feature

helps account for the beta dynamics, and the DR Beta holds advantages in predicting future

integrated beta by utilizing the autoregressive structure with consistent RIB estimates.

We evaluated how well the proposed methodologies capture the autoregressive structure.

Adopting the idea of the Durbin-Watson test, we took into account regression residuals

between the non-parametric and out-of-sample predicted values using DR Beta, ARMAC,

ARMAP, PRBG, RBG, DCC, and BEKK. Specifically, for each model, we fitted the following

linear regression model:

RIBi = a+ b× B̂etai + ei,

where the B̂etai’s are one-day-ahead forecasted betas obtained using one of the DR Beta,

ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK. Then, we calculated the regression

residuals for each model and checked their autocorrelations.

Table 3 reports the first-order autocorrelations of the regression residuals for each model.

For ARMAC, only the result of the case with the lowest first-order autocorrelations of the

regression residuals among the different sample frequencies is reported for each stock. We

further provide the ACF plots for RIB and the models’ regression residuals (Figure A3)

and the box plot of the first-order autocorrelations of the regression residuals for each model

(Figure A4) in the online Appendix. From Table 3 and Figures A3 and A4, we find that

the proposed DR Beta and ARMAC models have much smaller autocorrelations for most of

the assets, but the other models still yield significantly non-zero autocorrelations for most

of the assets. This may be because the other competitors could not appropriately estimate

the integrated beta due to the time-varying beta feature. When comparing the DR Beta

and ARMAC models, the DR Beta model usually has smaller autocorrelation than the

ARMAC model. Specifically, for 28 stocks out of 50, DR Beta shows the best performance

among the benchmarks. One of the possible explanations is that the CHEN estimator,

which is used in the ARMAC model as the non-parametric beta estimator, cannot handle

the autocorrelation structure of the microstructure noise; thus, some autocorrelation may

remain in the regression residuals. From these numerical results, we can conjecture that

incorporating the stylized features, such as the time-varying beta and the autocorrelation
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Table 3: The first-order autocorrelations for the regression residuals between the non-parametric integrated beta esti-
mates, RIB, and the predicted integrated beta from DR Beta, ARMAC, ARMAP, PRBG, RBG, DCC, and BEKK.

Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK Stock RIB DRBeta ARMAC ARMAP PRBG RBG DCC BEKK
AAPL 0.583 0.048 0.095 0.173 0.259 0.292 0.512 0.571 JPM 0.548 0.036 0.045 0.262 0.319 0.319 0.497 0.513
AIG 0.620 0.056 0.054 0.217 0.241 0.232 0.485 0.472 KEY 0.554 0.062 0.079 0.264 0.335 0.412 0.552 0.556
AMAT 0.415 0.047 0.059 0.267 0.347 0.344 0.406 0.415 KO 0.598 0.050 0.061 0.206 0.309 0.348 0.598 0.598
AMD 0.578 0.052 0.070 0.124 0.331 0.456 0.517 0.571 MGM 0.584 0.086 0.065 0.276 0.386 0.297 0.583 0.570
ATVI 0.476 0.051 0.007 0.245 0.361 0.345 0.473 0.428 MRK 0.574 0.049 0.024 0.252 0.568 0.299 0.537 0.513
BAC 0.644 0.057 0.075 0.240 0.315 0.339 0.508 0.615 MRO 0.777 0.080 0.095 0.266 0.283 0.339 0.600 0.578
BMY 0.610 0.038 0.001 0.213 0.317 0.305 0.569 0.519 MS 0.628 0.085 0.076 0.280 0.331 0.330 0.507 0.623
BSX 0.498 0.063 0.068 0.237 0.459 0.461 0.476 0.487 MSFT 0.474 0.038 0.039 0.259 0.327 0.320 0.473 0.428
CSCO 0.466 0.061 0.079 0.255 0.340 0.392 0.466 0.457 MU 0.484 0.054 0.061 0.244 0.312 0.294 0.469 0.484
CSX 0.535 0.080 0.064 0.290 0.341 0.347 0.530 0.525 NEM 0.689 0.057 0.062 0.141 0.301 0.398 0.660 0.679
DAL 0.485 0.070 0.068 0.257 0.466 0.341 0.483 0.471 NFLX 0.544 0.032 0.036 0.213 0.327 0.321 0.542 0.543
DIS 0.472 0.040 0.021 0.272 0.345 0.337 0.470 0.465 NVDA 0.544 0.077 0.084 0.257 0.301 0.293 0.503 0.493
DOW 0.558 0.040 0.015 0.228 0.268 0.280 0.478 0.495 ORCL 0.503 0.046 0.028 0.239 0.351 0.274 0.478 0.481
EBAY 0.514 0.080 0.032 0.228 0.278 0.312 0.500 0.493 PFE 0.470 0.033 0.034 0.156 0.270 0.305 0.457 0.455
F 0.499 0.052 0.037 0.258 0.354 0.354 0.487 0.461 PG 0.615 0.043 0.061 0.196 0.378 0.322 0.597 0.609
FCX 0.753 0.026 0.049 0.220 0.164 0.256 0.494 0.549 QCOM 0.590 0.042 0.042 0.270 0.306 0.310 0.570 0.563
FITB 0.603 0.053 0.080 0.289 0.375 0.418 0.559 0.593 RF 0.571 0.064 0.092 0.270 0.448 0.456 0.556 0.570
GE 0.474 0.056 0.037 0.264 0.334 0.350 0.475 0.462 SCHW 0.508 0.040 0.045 0.269 0.371 0.315 0.508 0.503
GILD 0.661 0.094 0.071 0.306 0.632 0.343 0.610 0.643 T 0.470 0.040 0.034 0.207 0.354 0.379 0.470 0.470
GLW 0.391 0.034 0.047 0.222 0.338 0.345 0.359 0.383 VZ 0.480 0.077 0.069 0.224 0.301 0.330 0.480 0.479
HAL 0.616 0.066 0.066 0.269 0.346 0.338 0.587 0.593 WFC 0.579 0.076 0.081 0.285 0.376 0.358 0.515 0.524
HBAN 0.547 0.047 0.049 0.246 0.498 0.515 0.546 0.516 WMB 0.715 0.021 0.010 0.230 0.272 0.248 0.516 0.477
HPQ 0.454 0.077 0.052 0.270 0.316 0.309 0.447 0.445 WMT 0.514 0.051 0.061 0.198 0.379 0.353 0.514 0.513
HST 0.517 0.065 0.053 0.245 0.342 0.378 0.486 0.501 XOM 0.603 0.064 0.068 0.315 0.379 0.348 0.598 0.603
INTC 0.499 0.051 0.055 0.280 0.371 0.416 0.499 0.498 XRX 0.379 0.061 0.046 0.196 0.357 0.364 0.344 0.377

34



structure of the microstructure noise, helps account for the integrated beta dynamics. Thus,

the proposed DR Beta model can explain the integrated beta dynamics well by incorporating

the proposed robust realized integrated beta estimator.

Finally, to check the economic benefits of predicting future market beta, we analyzed

the out-of-sample performance of the market-neutral portfolios. We considered the close-

to-close log-returns of market-neutral portfolios constructed by holding a share of an asset,

simultaneously taking a short position in E-mini S&P 500 index futures contracts. The

amount of the futures contracts, namely the hedging ratio, was calibrated using the one-

day-ahead forecasted beta as follows:

(â, b̂) = argmina,b

n∑
i=1

(RA,i − (a+ bh̃i)RM,i)
2,

where (h̃i)i=1,...,n are in-sample fitted betas, and RA,i and RM,i are the ith close-to-close log-

returns of an asset and the market portfolio, respectively. That is, the forecasted hedging

ratio is â+ b̂B̂etan+1. To evaluate the effectiveness of the hedging, we calculated the absolute

correlation, the hedging effectiveness (Ederington, 1979), and the ex-post portfolio beta

between the hedged portfolio and the market portfolio as follows:

Absolute correlation =

∣∣∣∣∣ cov(RH , RM)√
var(RH)var(RH)

∣∣∣∣∣ ,
Hedging effectiveness = 1− var(RH)

var(RA)
, and Ex-post beta =

cov(RH , RM)

var(RM)
,

where RH,i = RA,i−(â+ b̂B̂etai)RM,i denotes the hedged portfolio’s out-of-sample log-return.

Table 4: The mean absolute correlation, hedging effectiveness, and ex-post beta between
the hedged portfolios and the market portfolio, where the hedged portfolios are constructed
based on the predicted beta using the OLS regression beta, DR Beta, ARMAC, ARMAP,
PRBG, RBG, DCC, and BEKK. Unhedged indicates the unhedged single-asset portfolio.

Measure \ Model Unhedged OLS DR Beta ARMAC ARMAP PRBG RBG DCC BEKK
Absolute Correlation 0.569 0.031 0.020 0.021 0.023 0.064 0.060 0.033 0.029
Hedging Effectiveness 0.000 0.334 0.338 0.337 0.339 0.330 0.331 0.333 0.330
Ex-post beta 1.154 0.057 0.034 0.035 0.038 0.124 0.115 0.058 0.054
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Table 4 reports the mean of absolute correlation, hedging effectiveness, and ex-post beta

for the unhedged single-asset portfolio (Unhedged), hedged portfolio using the one-day-

ahead forecasted beta from the regression beta (OLS), DR Beta, ARMAC, ARMAP, PRBG,

RBG, DCC, and BEKK models. For the forecasted beta using OLS, we employed the beta

derived from OLS regression on daily close-to-close log-returns, using a sample size of 500

in-samples. From Table 4, we find that the ARMA models incorporating high-frequency-

based non-parametric estimators as inputs show the best performance in hedging the market

factor. While the ARMA models provided comparable performances, incorporating the RIB

estimator led to an improvement in the absolute correlation and ex-post beta measures. In

the case of hedging effectiveness, the ARMAP is slightly better than the DR Beta model.

6 Conclusion

This paper investigates integrated market betas based on high-frequency financial data. We

first develop a robust non-parametric integrated beta estimation procedure, RIB, which

can handle the price-dependent and autocorrelated microstructure noise and time-varying

beta. Then, we establish its asymptotic properties. With this robust non-parametric RIB

estimator, we find the time-series structure of the integrated betas. To account for this

beta dynamics, we propose the DR Beta model. To estimate the model parameters, we

propose a quasi-likelihood estimation procedure and establish its asymptotic theorems. From

the empirical study, we find that the proposed DR Beta model using the robust realized

integrated beta estimator helps account for the integrated beta dynamics.
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