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Abstract

This paper introduces a dynamic minimum variance portfolio (MVP) model using
nonlinear volatility dynamic models, based on high-frequency financial data. Specifi-
cally, we impose an autoregressive dynamic structure on MVP processes, which helps
capture the MVP dynamics directly. To evaluate the dynamic MVP model, we es-
timate the inverse volatility matrix using the constrained `1-minimization for in-
verse matrix estimation (CLIME) and calculate daily realized non-normalized MVP
weights. Based on the realized non-normalized MVP weight estimator, we propose
the dynamic MVP model, which we call the dynamic realized minimum variance
portfolio (DR-MVP) model. To estimate a large number of parameters, we employ
the least absolute shrinkage and selection operator (LASSO) and predict the future
MVP and establish its asymptotic properties. Using high-frequency trading data, we
apply the proposed method to MVP prediction.

Keywords: CLIME, high-frequency data, LASSO, nonlinear dynamics, inverse matrix
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1 Introduction

The minimum variance portfolio (MVP) has received growing attention (DeMiguel et al.,

2009; Fan et al., 2012; Ledoit and Wolf, 2017). Unlike the mean-variance portfolio proposed

in Markowitz (1952), the MVP avoids the difficulty of estimating expected returns (Merton,

1980) and only requires accurate covariance matrix estimators. Furthermore, empirical

studies have found that the MVP can enjoy both lower risk and higher return, compared

with some benchmark portfolios (Chan et al., 1999; Clarke et al., 2006; Haugen and Baker,

1991; Jagannathan and Ma, 2003).

Several well-performing non-parametric realized volatility estimators have been devel-

oped since high-frequency financial data became available. Examples of the finite number

of assets include two-time scale realized volatility (Zhang et al., 2005), multi-scale realized

volatility (Zhang, 2006, 2011), wavelet estimator (Fan and Wang, 2007), kernel realized

volatility (Barndorff-Nielsen et al., 2008, 2011), pre-averaging realized volatility (Chris-

tensen et al., 2010; Jacod et al., 2009), quasi-maximum likelihood estimator (Aı̈t-Sahalia

et al., 2010; Xiu, 2010), local method of moments (Bibinger et al., 2014), and robust pre-

averaging realized volatility (Fan and Kim, 2018; Shin et al., 2023). On the other hand,

estimation methods for large volatility matrices have been developed based on the sparse

volatility matrix structure and approximate factor models (Aı̈t-Sahalia and Xiu, 2017; Dai

et al., 2019; Fan et al., 2012; Kim et al., 2018a,b; Pelger, 2019; Tao et al., 2013). Using

these non-parametric volatility matrix estimation procedures, we can accurately estimate

large volatility matrices within a relatively short time period, such as one day or a few

days. This makes it possible to estimate past optimal MVP weights. For example, Fan

et al. (2012) studied the MVP under the gross-exposure constraint, and Cai et al. (2020)

proposed the estimation of high-dimensional MVP using the constrained `1-minimization

for inverse matrix estimation (CLIME) (Cai et al., 2011).
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In practice, we often need to predict future MVPs given current information. To predict

the MVP, we often first predict the large volatility matrix and then we solve the minimum

variance portfolio problem with the predicted large volatility matrix estimator (Kim and

Fan, 2019; Shin et al., 2021). However, this approach does not reflect the MVP dynamics

directly, which may cause some loss of explanatory power from them. To check the MVP

dynamics, we draw the box-plots for the autocorrelations for each non-normalized MVP

weight in Figure 1, where the non-parametric MVP weight estimation method is presented

in Section 3.1. The horizontal red dotted line in Figure 1 indicates the significant autocorre-

lation level with 5% significance. From Figure 1, we find that the weight has autoregressive

dynamics. Thus, by directly modeling these dynamics, we may be able to better explain

the MVP dynamics. This fact leads us to develop an MVP dynamic model.
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Figure 1: Box-plots of the first- to twentieth-order autocorrelations for each non-normalized
MVP weight.

In this paper, we propose a dynamic MVP model based on high-frequency financial

data. Specifically, we first investigate a non-parametric MVP estimation procedure. To

tackle the curse of dimensionality, we impose a sparse structure on the inverse matrices

of daily integrated volatility matrices. Using high-frequency financial data, we estimate

daily integrated volatility matrices and then, to accommodate the sparsity, employ the

CLIME procedure (Cai et al., 2011). With the inverse matrix estimator, we estimate non-

3



normalized MVP weights and establish their asymptotic properties. Then, to capture the

autoregressive dynamic structure of these weights, we propose a dynamic MVP model.

Since the proposed model explains low-frequency dynamics based on high-frequency fi-

nancial data, we connect the low-frequency dynamics with a continuous diffusion process.

That is, the proposed model has the rigorous mathematical background when it comes to

incorporating high-frequency financial data to analyze low-frequency dynamics. We call

this the dynamic realized minimum variance portfolio (DR-MVP) model. To evaluate the

proposed DR-MVP model, we need to estimate a large number of parameters that come

from a large number of assets and long period time series. To handle this curse of dimen-

sionality, we assume that the model parameters are sparse and employ an `1-penalty, such

as the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996). Based

on the predicted non-normalized MVP weights, we estimate the conditional expected future

MVP and show its consistency. In the empirical study, we find the benefit of adopting the

DR-MVP model.

The rest of the paper is organized as follows. Section 2 introduces the DR-MVP model

based on high-dimensional Itô diffusion processes and investigates its properties. Section

3 proposes the non-parametric MVP estimation procedure and the parameter estimation

method for the high-dimensional DR-MVP model, and establishes its asymptotic proper-

ties. In Section 4, we conduct a simulation study to check the finite sample performance of

the proposed estimator. In Section 5, we apply the estimation method to high-frequency

trading data. The conclusion is presented in Section 6, and we collect the proofs in the

online Appendix.
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2 Realized Minimum Variance Portfolio

Let Xt = (X1,t, . . . , Xp,t)
> be the vector of true log-prices of p assets at time t. The log-price

follows the following continuous diffusion process:

dXt = µtdt+ σtdBt, (2.1)

where µt and σt are drift and instantaneous volatility processes, and Bt is a p-dimensional

standard Brownian motion. Stochastic processes Xt, µt, and σt are defined on a filtered

probability space (Ω,F , {Ft, t ∈ [0,∞)}, P ) with filtration Ft satisfying the usual condi-

tions, such as càdlàg and adapted processes. We denote Σt = σtσ
>
t ; that is, σt is square

root of positive semidefinite spot covariance matrix Σt.

We construct a portfolio at the beginning of the market and hold it during trading

hours. Let w̄d be the realized optimal MVP at day d, which satisfies

w̄d = arg min
h

h>Γdh s.t. 1>h = 1, (2.2)

where 1 = (1, . . . , 1)> ∈ Rp, and Γd =
∫ d
d−1 σtσ

>
t dt is the daily integrated volatility. Then,

we have the following closed form:

w̄d =
1

1>Γ−1d 1
wd, where wd = Γ−1d 1.

The MVP weight vector w̄d minimizes the quadratic variation of the portfolio. Specifically,

we have the portfolio w̄>d Xt during t ∈ [d − 1, d), and its quadratic variation for the dth

day is [
w̄>d Xt

]
d
−
[
w̄>d Xt

]
d−1 = w̄>d Γdw̄d a.s.

Since w̄d satisfies (2.2), the quadratic variation obtains the minimum value among the class
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of the weight h such that 1>h = 1. We call w̄d the realized MVP.

In this paper, we investigate the realized MVP dynamics and construct dynamic models

to accommodate them. We first investigate the non-normalized weight wd = Γ−1d 1. We

consider the following inverse matrix dynamic model:

Ωd = Gd(θ) + Ud, (2.3)

where Gd(θ) is Fd−1-adapted, θ is a model parameter, and E [Ud|Fd−1] = 0 a.s. Then, we

have the following dynamic realized portfolio:

wd = gd(θ) + εd, (2.4)

where gd(θ) = Gd(θ)1 , εd = Ud1, and εd’s are martingale differences. Thus, the condi-

tional expected value of wd is E [wd|Fd−1] = gd(θ) a.s. We call this the dynamic realized

minimum variance portfolio (DR-MVP) model. We note that gd(θ) can be any function of

Fd−1-adapted variables, and one of the possible choices is a form of autoregressive (AR),

as follows:

gd(θ) = β0 +

q∑
j=1

βjwd−j, (2.5)

where β0 ∈ Rp and βj’s are p-by-p matrices. There are many structures of Gd(θ) satisfying

(2.4). For example, Gd(θ) can be the form of BEKK(0, q) (Engle and Kroner, 1995) that

can ensure its positive semidefiniteness. Specifically, (2.5) holds if

Gd(θ) = B0B
>
0 +

q∑
j=1

BjΩd−jB
>
j , (2.6)

where [Bj]kl = βj,kl/
√∑p

r=1 βj,rl and β0 = B0B
>
0 1 under some conditions on β or Ω.

The toy examples are as follows. One of the sufficient conditions is that Ω is a diagonal
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matrix. The diagonal condition allows β to be of any form, while the correlation between

returns of assets should be zero, which is too restrictive. Another sufficient condition is

that all column-sums of β are the same. For example, β> has an eigenvector of p−1/21. We

note that if the corresponding eigenvalue is bounded, then its effect on the inverse matrix

is relatively small. Under the β restrictive condition, we do not need a condition for the

inverse matrix Ω. Alternatively, to relieve the condition, we can consider a compromise

condition that balances the diagonal condition and β restrictive condition. Specifically, the

compromise condition is that if
∑p

t=1 βtk 6=
∑p

t=1 βtl, then Ωkl is zero. Under this condition,

(2.5) holds if (2.6) is satisfied. These toy examples illustrate that there exists an inverse

matrix dynamic model satisfying the DR-MVP model. In general, we can associate the

inverse matrix dynamics model of the BEKK form with the DR-MVP model by dividing

the integrated volatility matrix into two parts. One of the matrices follows an inverse

matrix dynamic model with Gd(θ) satisfying (2.6), and the other matrix serves as the

supplementary component to make the MVP weights satisfy (2.5). We provide the specific

condition in the online Appendix A.1 and utilize it in the simulation study.

We construct a diffusion volatility matrix process that satisfies the inverse matrix dy-

namic model. In the following theorem, we show the existence of an instantaneous volatility

process satisfying (2.3).

Theorem 1. Suppose that the volatility matrix process satisfies, for any d ∈ N and t ∈

(d− 1, d],

Σt = 2At− −At−Σ−1d−1At− + (4〈t〉 − 3〈t〉2)At−(Σ−1d−1 −Gd(θ))At− −At−MtAt−, (2.7)

where 〈t〉 = t − d + 1, At = 〈t〉−1
(∫ t

d−1 Σsds
)

, Mt =
∫ t
d−1 dZt, and Zt is a symmetric

matrix-valued martingale process. Then, its inverse integrated volatility matrices follow the

inverse matrix dynamic model (2.3); that is, Ωd = (
∫ d
d−1 Σtdt)

−1 = Gd(θ) + Ud, where
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Ud =
∫ d
d−1 Mtdt is a martingale difference.

Theorem 1 indicates that as long as an instantaneous volatility process satisfies (2.7),

its inverse integrated volatility matrix over the dth period can be decomposed into the

conditional expectation Gd(θ) and the martingale difference Ud. Meanwhile, the proposed

instantaneous volatility process should satisfy the positive semidefiniteness for any time

t. In the online Appendix A.2, we provide sufficient conditions that ensure the positive

semidefiniteness of the proposed volatility process. On the other hand, in terms of volatil-

ity processes, the proposed instantaneous volatility model accommodates the nonlinear

dynamics, which helps capture the MVP dynamics. This is the main difference from the

existing parametric high-frequency-based large volatility dynamic models (Kim and Fan,

2019; Shin et al., 2021). The empirical study supports the nonlinear volatility model (see

Section 5).

The goal of this paper is to predict the future MVP given the current available infor-

mation. Thus, the variable of interest is the conditional expected portfolio, namely

E [w̄d|Fd−1] = E

[
wd

1>wd

∣∣∣∣Fd−1] .
Due to the random fluctuation term, this is not exactly the same as the normalized gd(θ),

gd(θ)
1>gd(θ)

. We investigate the error coming from this approximation. To do this, we need the

following technical conditions.

Assumption 1.

(a) For any d, there exist positive constants C1 and C2 such that C1 ≤ p−11>Gd(θ)1 ≤ C2

and C1 ≤ p−11>Ωd1 ≤ C2, where Gd(θ) = E [Ωd|Fd−1].

(b) εi,d’s are sub-Gaussian, and we have E
[
(1>εd)

2
∣∣Fd−1] ≤ pC almost surely, where

εd = (ε1,d, . . . , εp,d)
>.
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Remark 1. Assumption 1(a) is related to the eigenvalue condition for the inverse ma-

trix. That is, if eigenvalues are bounded and strictly bigger than zero, Assumption 1(a)

is satisfied. However, when considering factor models, we can have some eigenvalues that

converge to zero with p−1 order. Furthermore, if p−1/21> is close to the factor loading

matrix space, Assumption 1(a) may not hold. However, in this case, we have that 1>Ωd1

has the constant order, and 1>εd also has the constant order. Thus, we can obtain the

same result in Proposition 1. For simplicity, we impose Assumption 1, and, in this paper,

we implicitly assume that the non-normalized weight wd is a usual finite random vector

that does not depend on p. If it does not hold, by multiplying the corresponding order, we

can make the vector have a constant order. Therefore, this condition is not strong. On the

other hand, for the inverse matrix, we assume the sparsity (see (3.1)), which implies the

sparsity of the random fluctuation part Ud. Thus, it is not restrictive to assume that the

row-wise sum of Ud has a finite random variable (Assumption 1(b)). In fact, if the random

fluctuation elements Uijd’s are cross-sectionally independent or weakly dependent, we can

obtain Assumption 1(b).

The following proposition shows the error rate of the approximation.

Proposition 1. Under Assumption 1, we have

∥∥∥∥E [w̄d|Fd−1]−
gd(θ)

1>gd(θ)

∥∥∥∥
max

= Op

(∥∥∥∥ gd(θ)

1>gd(θ)

∥∥∥∥
max

p−1/2 + p−3/2
√

log p

)
, (2.8)∥∥∥∥E [w̄d|Fd−1]−

gd(θ)

1>gd(θ)

∥∥∥∥
1

= Op

(∥∥∥∥ gd(θ)

1>gd(θ)

∥∥∥∥
1

p−1/2
)
. (2.9)

Proposition 1 indicates that the conditional expected MVP can be estimated well by

the normalized gd(θ) as the number of assets goes to infinity. The error is p−1/2 times

smaller than the normalized gd(θ), except for the case that the rate of the ‖gd(θ)‖max is

less than
√

log p. Thus, we use gd(θ)
1>gd(θ)

as the conditional expected value of the realized

MVP. In the following section, we discuss how to estimate gd−1(θ).
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3 Estimation Procedure

The intraday log-prices for the dth day are observed at td,i, i = 1, . . . ,md, where d −

1 = td,0 < td,1 < · · · < td,md = d. Unfortunately, due to market microstructure noises,

true high-frequency observations, Xtd,i ’s, are not observed. To account for the market

microstructure noises, we assume that the observed log-prices Ytd,i have the following

additive noise structure:

Ytd,i = Xtd,i + etd,i , for d = 1, . . . , N, i = 1, . . . ,md,

where Xt is the true log-price and etd,i ’s are microstructure noises with mean zero.

To remove the effect of market microstructure noises, researchers have constructed

nonparametric realized volatility estimators that take advantage of subsampling and local

averaging techniques so that the integrated volatility can be estimated consistently and

efficiently (Aı̈t-Sahalia et al., 2010; Christensen et al., 2010; Fan and Kim, 2018; Jacod

et al., 2009; Xiu, 2010; Zhang, 2006, 2011). They demonstrated that the realized volatility

estimator has the convergence rate of m−1/4, which is known as the optimal convergence

rate with the presence of the microstructure noise. In this paper, we employ the pre-

averaging realized volatility estimator (Christensen et al., 2010; Jacod et al., 2009) in the

numerical study. We denote the realized volatility matrix estimator by Γ̂.

3.1 Non-parametric Realized Minimum Variance Portfolio Esti-

mator

We first introduce some notations. For any given p1 by p2 matrix M = (Mij), the Frobenius

norm of M is denoted by ‖M‖F =
√

tr(M>M), the matrix spectral norm ‖M‖2 is the
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square root of the largest eigenvalue of MM>, and let

‖M‖1 = max
1≤j≤p2

p1∑
i=1

|Mij|, ‖M‖∞ = max
1≤i≤p1

p2∑
j=1

|Mij|, ‖M‖max = max
i,j
|Mij|.

C’s denote generic positive constants whose values are free of other parameters and may

change from appearance to appearance.

In this section, we introduce a realized MVP estimation procedure. To estimate the

realized MVP, we first estimate the inverse matrix of the integrated volatility matrix. We as-

sume that the inverse matrix of the integrated volatility matrix, Γ−1d = Ωd = (Ωij,d)i,j=1,...,p,

satisfies the following sparsity condition:

sup
d

max
1≤i≤p

p∑
j=1

|Ωij,d|δ ≤ sp a.s., (3.1)

where δ ∈ [0, 1) and sp is diverging slowly with respect to p, such as log p. To accommodate

this sparsity, we use the constrained `1-minimization for inverse matrix estimation (CLIME)

(Cai et al., 2011) with the realized volatility matrix estimator. Specifically, let Ω̂d be the

solution for the following optimization problem:

min ‖A‖1 s.t. ‖Γ̂dA− I‖max ≤ τm, (3.2)

where τm is the tuning parameter specified in Proposition 2. Then, we estimate the realized

non-normalized MVP estimator as ŵd = Ω̂d1. To investigate its asymptotic behavior, we

need the following technical conditions.

Assumption 2.

(a) There exists a large Ca depending on given constant a such that

P
(
|Γ̂ij,d − Γij,d| ≥ Ca

√
log(p ∨N)m−1/4

)
≤ C(p ∨N)a.
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(b) maxd≤N ‖Ωd‖1 ≤ C a.s.

Remark 2. The sub-exponential tail condition in Assumption 2(a) is often imposed to

handle high-dimensional statistics. Under the bounded instantaneous and drift condition,

we can obtain the sub-exponential condition (Kim and Wang, 2016; Tao et al., 2013). In

contrast, for heavy-tailed observations, by employing the truncation method, we can obtain

Assumption 2(a) (Fan and Kim, 2018; Shin et al., 2023). Thus, Assumption 2(a) is not

restrictive.

The following proposition establishes the convergence rates for the inverse matrix esti-

mator and realized non-normalized MVP estimator.

Proposition 2. Under Assumption 2 and the sparsity condition (3.1), we choose τm =

Cτm
−1/4

√
log(p ∨N) for some large constant Cτ . Then, we have

max
d≤N
‖Ω̂d −Ωd‖max ≤ Cτm, max

d≤N
‖Ω̂d −Ωd‖1 ≤ Cspτ

1−δ
m , and (3.3)

max
d≤N
‖ŵd −wd‖max ≤ Cspτ

1−δ
m (3.4)

with probability greater than 1− (p ∨N)−c for any given positive constant c.

Remark 3. Proposition 2 indicates that the CLIME estimator has the convergence rate

m−1/4
√

log(p ∨N). When microstructure noise is present, it is known that m−1/4 is the

optimal rate (Tao et al., 2013). Thus, the CLIME estimator can obtain the optimal rate

up to log order. On the other hand, since the realized non-normalized MVP estimator

ŵd is the form of the row-wise sum of the CLIME estimator, the convergence rate of ŵd

is bounded by the `1 norm bound of the CLIME estimator. When we consider the exact

sparsity (δ = 0), ŵd has the convergence rate spm
−1/4

√
log(p ∨N). The term sp is the

number of non-zero elements, which is usually assumed to be negligible in high-dimensional

statistics, such as log p. Thus, ŵd has the optimal rate m−1/4 up to log order.
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3.2 Model Parameter Estimator

In this paper, we assume that gd(θ) is a function of the past realized non-normalized

MVP weights wd−1, . . . ,w1. That is, we consider a time series structure. We note that it

would be straightforward to extend this to a more general model by including exogenous

variables. We estimate gd(θ) by using the plug-in method. Specifically, we use the realized

non-normalized MVP estimator ŵd’s instead of wd’s. We denote this estimator by ĝd(θ).

For example, when we consider the AR(q) structure, we have

ĝd(θ) = (ĝi,d(θ1), . . . , ĝp,d(θp))
> = β0 +

q∑
j=1

βjŵd−j.

In this section, since the empirical study supports the AR structure (see Figure 1), we

derive asymptotic theorems based on the AR(q) model for simplicity. However, for any

well-defined gd(θ), we can derive similar results under some regularity conditions.

The model is based on the high-dimensional vector autoregressive (VAR) model. Thus,

we suffer from the curse of dimensionality. To tackle this obstacle, we assume that the

coefficient βj is sparse (see Assumption 3(b)). To accommodate the sparsity, we employ

the LASSO for each weight as follows:

θ̂i = arg min
θi
Ln,i(θi) + λn‖θi‖1,

where Ln,i(θi) = 1
n

∑n
d=1 (ŵi,q+d − ĝi,q+d(θi))2 with n = N − q samples and λn is a tuning

parameter defined in Theorem 2. We note that the lag order q is allowed to increase with

N . To analyze its asymptotic behaviors, we need the following technical conditions.

Assumption 3.

(a) Wd = (w>d , . . . ,w
>
d−q+1)

> is strictly stationary, and the spectral radius of A is less
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than one, where

A =



β1 β2 . . . βq−1 βq

Ip 0 · · · 0 0

0 Ip 0 · · · 0

...
. . . 0 0

0 0 0 Ip 0


.

(b) The number of nonzero elements of θ0,i is bounded by sβ ≥ 1, where θ0,i is the true

parameter for the ith weight.

(c) The process Wd is α-mixing, and the α mixing coefficients satisfy α(k) = O(ck) for

some c ∈ (0, 1).

(d) maxd ‖ŵd −wd‖max ≤ Cspτ
1−δ
m .

(e) Define Ui =
{
u ∈ Rqp+1 :

∥∥uSci ∥∥1 ≤ 3 ‖uSi‖1
}

, where Si = {j : jth element of θ0,i 6=

0}, uSi is the subvector obtained by stacking {uj : j ∈ Si}, and uSci is the subvector

obtained by stacking {uj : j ∈ Sci }. Then, there exists a constant κ > 0 such that the

following inequality holds for some D ≥ 48sβλn/κ and 1 ≤ i ≤ p, where the specific

value of λn is given in Theorem 2:

inf{u>∇2Ln,i(θi)u : u ∈ Ui, ‖u‖2 = 1, ‖θi − θ0,i‖1 ≤ D} ≥ κ.

Remark 4. Assumption 3(a) is the strictly stationary and stable condition for the VAR(1)

model for Wd, which is a first-order representation of (2.5). For the model (2.7), the strictly

stationarity holds if Zt is a strictly stationary process and the spectral radius of A is less

than one. Assumption 3(c) is satisfied with an exponentially decaying absolute summation

condition on coefficients of MA(∞) representations of Wd (see Assumption (A2) in Masini

et al. (2022) and Theorem 2.1 in Chanda (1974)), which restricts the coefficients βj’s.
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Assumption 3(d) is satisfied with high probability by Proposition 2. In contrast, when we

employ other estimation procedures for the MVP weights, as long as Assumption 3(d)-type

condition is satisfied, we can obtain a similar result. That is, as long as the realized non-

normalized MVP estimator performs well, the proposed estimation method works. Finally,

Assumption 3(e) is the eigenvalue conditions for the Hessian matrix ∇2Ln,i(θi). This is

called the localized restricted eigenvalue (LRE) condition (Fan et al., 2018; Shin et al.,

2021; Sun et al., 2020), which implies strictly positive restricted eigenvalues over a local

neighborhood.

The following theorem establishes the asymptotic convergence rate for the LASSO es-

timation procedure.

Theorem 2. Suppose that N is greater than the lag order q such that the number of

usable observations n = N − q diverges as N increases. Under Assumptions 1–3, take

λn ≥ C(sβspτ
1−δ
m + n−1/2

√
log(p ∨ q)) for some large constant C, which goes to zero as p

and n go to infinity. Then, we have

max
i
‖θ̂i − θ0,i‖1 ≤ C

sβλn
κ

and max
i
‖θ̂i − θ0,i‖2 ≤ C

s
1/2
β λn

κ
(3.5)

with probability at least 1− (p ∨ q)−c for any given positive constant c.

Remark 5. Theorem 2 shows that the LASSO estimator has the convergence rate λn

with sβ term. When we consider exact sparsity for the inverse matrix (δ = 0), we have

the convergence rate m−1/4 + n−1/2 with additional sp and sβ up to log order. The term

m−1/4 is the cost to estimate the unobserved non-normalized MVP using the high-frequency

observations. The term n−1/2 is the usual convergence rate for estimating low-frequency

models with the n period. Given the lag order q, the total number of variables for the

LASSO estimator is pq. Therefore, the lag order q and the number of assets p affect the

convergence rate λn of the LASSO estimator.
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The main purpose of this paper is to predict the future MVP. To do this, we estimate

the conditional MVP weight as ̂̄wn+1 = ĝn+1(θ̂i)

1>ĝn+1(θ̂i)
. In the following theorem, we investigate

its asymptotic properties.

Theorem 3. Under the assumptions in Theorem 2, we have

‖ĝn+1(θ̂)− gn+1(θ0)‖max ≤ C
sβλn
κ

(3.6)

and

‖ ̂̄wn+1 − E (w̄n+1|Fn) ‖1 ≤ C

(
sβλn
κ

+

∥∥∥∥ gn+1(θ)

1>gn+1(θ)

∥∥∥∥
1

p−1/2
)

(3.7)

with probability at least 1− (p ∨ q)−c for any given positive constant c.

Theorem 3 indicates that the proposed conditional expected non-normalized MVP esti-

mator ĝn+1(θ̂) can consistently estimate the future non-normalized MVP with the sβλn

order. Furthermore, the conditional MVP weight estimator has the convergence rate

sβλn +
∥∥∥ gn+1(θ)

1>gn+1(θ)

∥∥∥
1
p−1/2. The first term sβλn is the cost to estimate unobserved future

non-normalized MVP using the high-frequency and low-frequency observations. The sec-

ond term
∥∥∥ gn+1(θ)

1>gn+1(θ)

∥∥∥
1
p−1/2 is the approximation error. From Theorem 3, we can conclude

that the proposed estimation method can consistently estimate the future MVP.

3.3 Discussion on Price Jumps

In financial practice, we often observe jumps. In the presence of price jumps, quadratic

covariation can be decomposed into continuous and jump components, and the product of

its inverse and one vector is the non-normalized MVP in the ex-post sense. On the other

hand, several empirical studies reported that the volatility dynamics can be better explained

by decomposing quadratic covariation into its continuous and jump components, since

jumps are associated with news announcements and have less persistent features (Andersen
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et al., 2007; Barndorff-Nielsen and Shephard, 2006; Corsi et al., 2010; Lee and Mykland,

2008). In a similar spirit, employing MVP using integrated volatility rather than quadratic

covariation may help capture the conditional MVP dynamics well. To check this, we

conduct an empirical study to compare integrated volatility and quadratic covariation and

report the results in the online Appendix D. We find that employing integrated volatility

shows better performance. Details can be found in the online Appendix D.

To estimate integrated volatility in the presence of price jumps, we first detect jumps

from observed stock log-return data and estimate the integrated volatility. For example,

Fan and Wang (2007) and Zhang et al. (2016) employed the wavelet method to identify the

jumps based on noisy high-frequency data. Mancini (2004) studied a threshold method for

jump detection and presented the order of an optimal threshold, and Davies and Tauchen

(2018) further examined a data-driven threshold method. They demonstrated that the

estimator of jump variation has the convergence rate of m−1/4, which further helps the

estimator of integrated volatility to achieve the optimal convergence rate of m−1/4. In

this paper, we employ the jump-robust pre-averaging realized volatility matrix estimator

(JPRVM) (Aı̈t-Sahalia and Xiu, 2016) and describe the procedure in the online Appendix

B. Then, we can show that this estimator satisfies Assumption 2(a) under the sub-Gaussian

condition, and with it, we can apply the proposed estimation procedure and obtain the same

result.

3.4 Choice of the Tuning Parameters

To apply the proposed estimators, we need to choose the tuning parameters τm and λn for

the CLIME estimator and the LASSO estimator, respectively. For the CLIME estimator,

we estimate it by varying Cτ of τm = Cτm
−1/4

√
log (p ∨N), and we select Cτ among 100

logarithmically spaced points ranging from 10−6 to 10, which minimizes the likelihood loss,
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as follows:

Ω̂d,τ = argminΩ ‖Ω‖1 s.t.
∥∥∥Γ̂dΩ− I

∥∥∥
max
≤ τ,

Ω̂d = Ω̂d,τ∗ , where τ ∗ = argmin
τ∈{τm|Cτ∈[10−6,10]}

〈Ω̂d,τ , Γ̂d〉 − log det(Ω̂d,τ ).

For the LASSO estimator, we need to choose the tuning parameters λn. The estimation of

the DR-MVP model typically faces the small-n-large-P situation (Chen and Chen, 2008).

For example, in our empirical study (Section 5), we have n = 252 − 50 = 202 and P =

200× 50 = 10000 for the estimation of the DR-MVP model with an AR(50) specification.

Therefore, we select the tuning parameter λn from 100 logarithmically spaced points ranging

from 10−6 to 10, which minimizes the extended Bayesian information criterion (EBIC)

(Chen and Chen, 2008, 2012) of the LASSO estimation, where

EBIC = n log(Ln,i(θi)) + ‖θi‖0 log(n) + 2 ‖θi‖0 γ logP,

Ln,i = 1
n

∑n
d=1(ŵi,d − ĝi,d(θi))

2, γ = 0.5, as Chen and Chen (2012) suggested, and P

represents the number of covariates under consideration.

4 Simulation Study

We conducted simulations to show that the proposed methodology has good finite sample

performance and compared the proposed method with other existing methods. In Section 5,

we find that the heterogeneous autoregressive (HAR) specification for the DR-MVP model

can help explain the MVP dynamics. To reflect this feature, we considered the HAR-type

VAR(22) structure for the DR-MVP model, which is

wd = β0 + β1w̄
(1)
d + β5w̄

(5)
d + β22w̄

(22)
d + εd, (4.1)

18



where w̄
(k)
d = k−1

∑k
j=1 wd−j is the average level of MVP weights over the previous k days.

The true log-prices for the p assets follow the jump-diffusion process

dXt = σtdBt + JtdΛt,

where Bt is a p-dimensional standard Brownian motion, Σt = σtσ
>
t is the instantaneous

volatility process, the jump sizes Jt obey the independent normal distributionN(0.05, 0.0052)

with randomly determined signs, and Λt is a p-dimensional Poisson process with intensity

5. The instantaneous volatility matrix Σt follows the data-generating process introduced

in the online Appendix A, so the DR-MVP model in (4.1) is satisfied. For each simula-

tion process, we generated high-frequency data with m = 23400 for 500 consecutive days.

We used the subsampled log-prices of the last N = 125, 250, 500 days with high-frequency

observations m = 2340, 7800, 23400 per day and repeated the simulation procedure 100

times.

To estimate the integrated volatility matrix, we utilized the POET procedure (Fan

et al., 2013). Specifically, the input integrated volatility matrix for the POET proce-

dure is estimated by the JPRVM estimator in the online Appendix B. We then took a

hard thresholding function with threshold level
√

log p/m1/2 + 1/
√
p for the idiosyncratic

volatility matrix.

Figure 2 draws the mean of matrix `1-norms and max norms of Ω̂d −Ωd and mean max

and `1-norms of ŵd − wd for the CLIME and realized non-normalized MVP estimators

with m = 2340, 7800, 23400. From Figure 2, we find that the mean estimation errors of

non-parametric estimators decrease as the number of high-frequency observations increases.

These results support the theoretical results derived in Proposition 2.

We then checked the finite sample performances of the DR-MVP model. We first esti-

mated the model parameters by the LASSO forN = 125, 250, 500 andm = 2340, 7800, 23400,
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Figure 2: Mean of matrix max and `1-norms of Ω̂d −Ωd and mean max and `1-norms
of ŵd − wd for the CLIME and realized non-normalized MVP estimators with m =
2340, 7800, 23400.

and the cases employing the true MVPs. Figure 3 depicts the mean errors of maxi‖θ̂i−θ0,i‖1

and maxi‖θ̂i−θ0,i‖2 for the DR-MVP estimator. From Figure 3, we find that the mean er-

rors decrease as the number of high- or low-frequency observations increases. These results

support the theoretical findings in Theorem 2.
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Figure 3: Mean errors of maxi‖θ̂i− θ0,i‖1 and maxi‖θ̂i− θ0,i‖2 for the proposed DR-MVP
estimator with N = 125, 250, 500 and m = 2340, 7800, 23400, and the true MVP.

The main purpose of this paper is to predict the future MVP. Thus, we investigated

the out-of-sample performance of estimating the one-day-ahead conditional non-normalized

and normalized MVP gd+1(θ0) and E [w̄d+1|Fd], where we calculated E [w̄d+1|Fd] by the

Monte Carlo method. For comparisons, we considered one additional DR-MVP model

that utilizes the simple HAR model (HAR) (Corsi, 2009) for estimating the future non-
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normalized MVP weights, and HAR employs the OLS procedure to estimate parameters.

We also consider a non-parametric estimator that only utilizes the latest CLIME estimator,

such as Ω̂d1 and Ω̂d1

1>Ω̂d1
. The CLIME estimator is based on the martingale assumption for

the non-normalized MVP weights. Finally, we employed the parametric estimator FIVAR

(Shin et al., 2021), which can account for the factor and idiosyncratic volatility dynamics.

With regard to the FIVAR estimator, we first obtained the estimated conditional volatility

matrix Γ̂
F

d+1 by the FIVAR estimator, and we calculated the non-normalized and normalized

MVPs as (Γ̂
F

d+1)
−11 and

(Γ̂
F
d+1)

−11

1>(Γ̂
F
d+1)

−11
, respectively. To estimate the one-day-ahead FIVAR

volatility matrix, we followed the same procedure suggested in Shin et al. (2021).
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Figure 4: Mean of ‖ĝd+1(θ̂)−gd+1(θ0)‖max and ‖ ̂̄wd+1−E [w̄d+1|Fd]‖1 for N = 125, 250, 500
and m = 2340, 7800, 23400, along with cases employing the true values in place of nonpara-
metric estimators.

To provide numerical support for Theorem 3, Figure 4 draws the mean of ‖ĝd+1(θ̂) −

gd+1(θ0)‖max and ‖ ̂̄wd+1 − E [w̄d+1|Fd]‖1 for N = 125, 250, 500 and m = 2340, 7800, 23400,

along with cases employing the true values in place of nonparametric estimators. From

Figure 4, we find that the parametric models perform better than the nonparametric model
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CLIME. When comparing the parametric models, the DRMVP-HAR model performs better

than others for higher m and n, while the FIVAR model performs better in terms of

‖ĝd+1(θ̂)−gd+1(θ0)‖max for m = 2340. This implies that we need sufficient high-frequency

observations to utilize the estimated MVP as inputs of the DR-MVP models. Moreover,

we find that the mean prediction errors of the conditional non-normalized and normalized

MVPs decrease as the number of high- or low-frequency observations increases. These

results support the theoretical results in Theorem 3. We note that additional prediction

error analyses for different norms can be found in the online Appendix C.

We further investigated the out-of-sample risk of the minimum variance portfolio al-

location problem. The out-of-sample risk of a normalized portfolio ̂̄wd+1 is calculated as

R = ̂̄w>d+1Γd+1 ̂̄wd+1, where Γd+1 is the one-day-ahead integrated volatility matrix. Fig-

ure 5 depicts the mean out-of-sample normalized portfolio risk for the DR-MVP, FIVAR,

and CLIME models with N = 125, 250, 500 and m = 2340, 7800, 23400, and the cases em-

ploying the true values in place of nonparametric estimators. The horizontal black solid

line in Figure 5 indicates the mean out-of-sample normalized portfolio risk that can be

achieved with the true gd+1(θ). Figure 5 shows that the DR-MVP model performs best

among the benchmarks, except for the small m case (m = 2340). This is because the

DR-MVP model can directly capture the MVP dynamics. On the other hand, the mean

out-of-sample risk for the DR-MVP, FIVAR, and CLIME models decreases as the number

of high- or low-frequency observations increases. This may be because, as the number of

high- or low-frequency observations increases, we can obtain more accurate input volatility

matrix estimator and parametric estimations, respectively.

We end this section by remarking that the proposed DR-MVP model shows comparable

performance when the true model is misspecified. To assess the robustness of the proposed

methodology when the true model is misspecified, we conducted an additional analysis

assuming that the data-generating process follows a different specification, namely the
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Figure 5: Mean out-of-sample normalized portfolio risk for the DR-MVP, FIVAR, and
CLIME models with N = 125, 250, 500 and m = 2340, 7800, 23400, along with cases em-
ploying the true values in place of nonparametric estimators.

FIVAR data generating process (Shin et al., 2021). The full methodology and results of

this robustness analysis are presented in the online Appendix B.

5 Empirical study

In this section, we apply the proposed DR-MVP model to real high-frequency stock trading

data. We obtained high-frequency data from January 2016 to December 2017, 503 trading

days in total, for the top 200 large trading volume stocks among the components of the S&P

500 from the TAQ database in the Wharton Research Data Service (WRDS) system. In

order to calculate the covariances between different assets, we employed the pairwise-refresh

time scheme proposed by Fan et al. (2012) to obtain synchronized samples. The average

values of daily means, medians, standard deviations, minimums, and maximums of the

number of daily synchronized samples are 6283, 5474, 4030, 1968, and 225180, respectively.

To employ the proposed DR-MVP model, we first needed to obtain the inverse matrix

estimators of the realized volatility matrix estimators by the CLIME estimation procedure.

For the input volatility matrix, we used the JPRVM estimator defined in the online Ap-

pendix B to the synchronized intraday log-prices for each pair of stocks. We then employed

the POET procedure introduced by Fan et al. (2013, 2016) and used the global industry
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classification standard (GICS) for the threshold level for the idiosyncratic part (Fan et al.,

2016). Specifically, we kept the idiosyncratic volatilities within the same sector, but set zero

for others. Then, with the POET estimator, we applied the CLIME estimator to obtain

the inverse matrix estimations Ω̂d and the MVPs ŵd = Ω̂d1 with the tuning parameters

τn, chosen by the procedure in Section 3.4.

We then estimated ĝd+1(θ̂) by LASSO with the tuning parameters λn, chosen by the

procedure in Section 3.4. For the explanatory variables of ĝd+1(θ), we considered two cases,

such as 50 lagged realized MVPs (DRMVP-50) and HAR-type realized MVPs (DRMVP-

HAR). The latter can reproduce relatively long memory persistence, such as AR(22), while

remaining parsimonious. Specifically, we assumed the VAR structure for ĝd+1(θ) with

HAR-type realized MVPs as follows:

ĝd+1(θ) = β0 +
∑

h∈{1,5,22}

βhŵ
(h)
d , (5.1)

where ŵ
(h)
d = 1

h

∑d
j=d−h+1 ŵj. We used the rolling window scheme to predict the one-day-

ahead non-normalized MVPs, where the in-sample period was 252 days.

To check if the proposed model had captured the MVP dynamics well, we investigated

the out-of-sample performance of the minimum variance portfolio allocation problem. We

computed the out-of-sample annualized portfolio risk of the normalized portfolios for a

given period with d days. Furthermore, to assess how close the out-of-sample portfolio risk

is to the ex-post minimum variance portfolio risk, we calculated the mean relative portfolio

risks. Specifically, the annualized risk and the mean relative risk are calculated as follows:

Annualized risk =

√√√√252

d

d∑
k=1

39∑
i=1

rk,i( ̂̄wk)2 and Mean relative risk =
1

d

d∑
k=1

∑39
i=1 rk,i( ̂̄wk)

2∑39
i=1 rk,i(w̄k)2

,

where ̂̄wk is a normalized portfolio and rk,i( ̂̄wk) = ̂̄w>k (Y(k − 1 + i
39

) − Y(k − 1 + i−1
39

))
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is the 10-minute portfolio log-return and w̄k is the ex-post normalized minimum variance

portfolio obtained from the CLIME estimator. Finally, we computed the mean `2-norm

of the difference between the estimated out-of-sample normalized MVP and the ex-post

normalized MVP,
∑d

k=1 ‖ ̂̄wk−w̄k‖2/d. We used two different out-of-sample periods, namely

from day 253 to day 378 and from day 379 to day 503, denoted by Period 1 and Period 2,

respectively. We considered two benchmarks based on the CLIME and FIVAR estimators

and one additional DR-MVP model that utilizes the simple HAR model (HAR), defined in

Section 4. For example, HAR follows the proposed DR-MVP model, but the off-diagonal

elements of the
(
βi,h
)
h=1,5,22

are restricted to zero and θ̂i = arg minθi Ln,i(θi). All the

benchmark portfolios were normalized to measure the out-of-sample portfolio risks.

Table 1: Out-of-sample annualized and relative risks of the normalized MVP with the
DR-MVP, HAR, FIVAR, and CLIME models for Period 1, Period 2, and the whole period.

Annualized risks
Period DRMVP-50 DRMVP-HAR HAR FIVAR CLIME
1 4.667% 4.660% 4.512% 4.923% 4.801%
2 4.199% 4.182% 4.124% 4.447% 4.333%
Whole 4.438% 4.427% 4.322% 4.690% 4.572%

Mean relative risks
Period DRMVP-50 DRMVP-HAR HAR FIVAR CLIME
1 1.339 1.337 1.301 1.434 1.379
2 1.358 1.351 1.323 1.479 1.412
Whole 1.348 1.344 1.312 1.457 1.396

Table 1 reports the out-of-sample annualized risks and relative risks of the normalized

MVP with the DRMVP-50, DRMVP-HAR, HAR, FIVAR, and CLIME models. From

Table 1, we find that the DR-MVP-based models (DRMVP-50, DRMVP-HAR, and HAR)

show the best performance. The HAR model is slightly better than the DRMVP-50 and

DRMVP-HAR models. This may be because the DR-MVP models help capture the MVP

dynamics, while the estimation error of the HAR model parameter is smaller than that of

the LASSO-based parameter. That is, the sparsity structure on the HAR model parameters

may explain the MVP dynamics well. However, the difference is relatively small; thus, the
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LASSO procedure can also capture the MVP dynamics. On the other hand, the model using

the CLIME estimator to obtain the inverse matrix performs better than one using the direct

inverse operation, such as the FIVAR model. This may be because accommodating the

sparsity of the inverse matrix helps account for the MVP weights.

Table 2: Average rank of daily 10-minute portfolio risks for the DRMVP-50, DRMVP-
HAR, HAR, FIVAR, and CLIME models for Period 1, Period 2, and the whole period. In
the parentheses, we report the number of those ranked first among the models.

Period DRMVP-50 DRMVP-HAR HAR FIVAR CLIME
1 3.192 (20) 2.800 (11) 2.520 (45) 2.856 (23) 3.632 (26)
2 3.238 (15) 2.524 (17) 2.167 (45) 3.151 (21) 3.921 (28)
Whole 3.215 (35) 2.661 (28) 2.343 (90) 3.004 (44) 3.777 (54)

In addition to evaluating annualized and relative risks, we computed daily risk ranks

for the DRMVP-50, DRMVP-HAR, HAR, FIVAR, and CLIME models. Since the rank

measure effectively mitigates the undue effect of outlying risks, which can distort annualized

and relative risk measures, the rank measure serves as a metric to evaluate whether the

proposed model consistently performs better than the other models. Table 2 reports the

average rank and the number of those ranked first of daily 10-minute portfolio risks for the

DRMVP-50, DRMVP-HAR, HAR, FIVAR, and CLIME models. From Table 2, we find that

the HAR model consistently shows the best performance. Meanwhile, the FIVAR model

has better average ranks than the DRMVP-50 and CLIME models, whereas the DRMVP-50

and CLIME have smaller annualized risks and mean relative risks. One possible explanation

is that the CLIME-based weights are distinct from the FIVAR weights, and the CLIME-

based estimators are likely to have similar behavior in terms of the 10-minute portfolio risks.

In this situation, the average rank can be more advantageous for FIVAR than DRMVP-50

and CLIME that show consistently worse performance among the CLIME-based estimators.

Table 3 reports the mean `2-norm of the difference between the ex-post normalized

MVP obtained from the CLIME estimator and the estimated normalized MVP using the

DRMVP-50, DRMVP-HAR, HAR, FIVAR, and CLIME models for Period 1, Period 2,
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Table 3: Mean `2-norm of the difference between the ex-post normalized MVP obtained
from the CLIME estimator and the estimated normalized MVP using the DRMVP-50,
DRMVP-HAR, HAR, FIVAR, and CLIME models for Period 1, Period 2, and the whole
period.

Period DRMVP-50 DRMVP-HAR HAR FIVAR CLIME
1 0.154 0.154 0.148 0.169 0.191
2 0.134 0.133 0.127 0.140 0.166
Whole 0.144 0.143 0.138 0.154 0.179

and the whole period. From Table 3, we find that the DR-MVP-based models perform

better than the other benchmarks. The HAR model shows the best performance among

the DR-MVP-based models. The mean of `2-norm of the CLIME model is greater than

that of the FIVAR model, although the annualized risks and the mean relative risks of the

CLIME are less than that of the FIVAR. This may be due to the fact that the FIVAR

model captures the linear dynamics of both factor and idiosyncratic volatilities using past

volatility matrices. Therefore, by Taylor’s expansion, the FIVAR model is able to partially

approximate the dynamics of the MVP. From these results, we can conjecture that the

proposed DR-MVP model can capture the MVP dynamics.

To compare the predictive accuracy among the DRMVP-50, DRMVP-HAR, HAR, FI-

VAR, and CLIME models, we conducted Diebold-Mariano (DM) tests (Diebold and Mari-

ano, 2002) for the 10-minute portfolio risks, relative risks, and `2-norms. We compared the

DRMVP-HAR model with other models as follows:

H0 : E [R∗i ] = E [Ri] vs. H1 : E [R∗i ] < E [Ri] ,

where R∗i and Ri are one of the 10-minute portfolio risks, relative risks, or `2-norms for

the DRMVP-HAR model and the other models, respectively. Table 4 reports the p-values

of the DM tests based on 10-minute portfolio risks, relative risks, and `2-norm for the

DRMVP-HAR model versus one of the DRMVP-50, HAR, FIVAR, and CLIME models
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for Period 1, Period 2, and the whole period. From Table 4, we can find that the p-values

of DM tests based on 10-minute portfolio risks, relative risks, and `2-norm are less than

0.1 for all periods, except for the HAR model. From this result, we can conclude that our

proposed DR-MVP model performs significantly better than the other models.

Table 4: The p-values of the DM tests based on 10-minute portfolio risks, relative risks,
and `2-norm for the DRMVP-HAR model versus one of the DRMVP-50, HAR, FIVAR,
and CLIME models for Period 1, Period 2, and the whole period.

Risk Relative risk
Period DRMVP-50 HAR FIVAR CLIME DRMVP-50 HAR FIVAR CLIME
1 0.086 1.000 0.000 0.014 0.075 1.000 0.000 0.007
2 0.000 1.000 0.000 0.004 0.000 1.000 0.000 0.000
Whole 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000

`2-norm
Period DRMVP-50 HAR FIVAR CLIME
1 0.086 1.000 0.000 0.014
2 0.000 1.000 0.000 0.004
Whole 0.000 1.000 0.000 0.000

To check the economic benefit of predicting MVPs, we calculated the Sharpe ratio as

ĒR/S, where ĒR and S are the mean and standard deviation of the excess return ERi,

respectively, ERi = ̂̄w>i Ri− rf,i, Ri are close-to-close log-return vectors of p-stocks for day

i, and rf,i is 3-month T-bill rate for day i. Table 5 reports the out-of-sample Sharpe ratios

of the normalized MVP with the DRMVP-50, DRMVP-HAR, HAR, FIVAR, and CLIME

models for Period 1, Period 2, and the whole period. Table 5 shows that the proposed

DRMVP model does not significantly outperform the other models. This may be because

the primary objective of the DR-MVP model is to forecast MVP, which does not necessarily

correspond to the point that maximizes the Sharpe ratio on the efficient frontier. It would

be an interesting future study to investigate and develop a model to capture the dynamics

of the tangency portfolio that maximizes the Sharpe ratio. We leave this for a future study.
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Table 5: Out-of-sample Sharpe ratios of the normalized MVP with the DRMVP-50,
DRMVP-HAR, HAR, FIVAR, and CLIME models for Period 1, Period 2, and the whole
period.

Period DRMVP-50 DRMVP-HAR HAR FIVAR CLIME
1 0.149 0.155 0.213 0.177 0.231
2 0.152 0.142 0.146 0.086 0.182
Whole 0.151 0.148 0.179 0.133 0.206

6 Conclusion

In this paper, we proposed a novel dynamic realized MVP model that can accommodate

nonlinear volatility dynamics by directly explaining the MVP dynamics. To obtain non-

parametric realized MVPs for each day, we employed the CLIME estimation procedure

under the sparse condition for the inverse volatility matrix. With the non-parametric re-

alized MVP, we found the AR dynamic structure for the realized MVP and constructed

dynamic models to explain the AR structure. To connect the high-frequency-based infor-

mation and low-frequency dynamics, we suggested a diffusion process that would provide

the rigorous mathematical background. The empirical study shows that modeling the dy-

namic structure of the realized MVP helps account for the market dynamics in terms of

the minimum variance portfolio.
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