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Abstract

In financial applications, we often observe both global and local factors that are

modeled by a multi-level factor model. When detecting unknown local group mem-

berships under such a model, employing a covariance matrix as an adjacency matrix

for local group memberships is inadequate due to the predominant effect of global fac-

tors. Thus, to detect a local group structure more effectively, this study introduces

an inverse covariance matrix-based financial adjacency matrix (IFAM) that utilizes

negative values of the inverse covariance matrix. We show that IFAM ensures that

the edge density between different groups vanishes, while that within the same group

remains non-vanishing. This reduces falsely detected connections and helps identify

local group membership accurately. To estimate IFAM under the multi-level factor

model, we introduce a factor-adjusted GLASSO estimator to address the prevalent

global factor effect in the inverse covariance matrix. An empirical study using returns

from international stocks across 20 financial markets demonstrates that incorporat-

ing IFAM effectively detects latent local groups, which helps improve the minimum

variance portfolio allocation performance.
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1 Introduction

Local factors, which influence only a specific subset of observed variables, have recently

garnered increasing attention for their role in explaining certain economic and financial

dynamics alongside global factors. Empirical analyses have shown that local factors play a

significant role in shaping results in economic and financial studies (Fama and French, 2012;

Ferson and Harvey, 1993; Griffin, 2002; Heston and Rouwenhorst, 1994; Kose et al., 2003).

For example, local factors introduce heterogeneity into data due to their relationships and

dynamics, which is often overlooked when focusing solely on global factors.

Based on this insight, several methodologies have been developed for analyzing multi-

level factor models. They usually stem from high-dimensional factor analysis and principal

component analysis (PCA) (Ando and Bai, 2016; Bai and Wang, 2015; Choi and Kim, 2023;

Choi et al., 2018; Han, 2021). One such method is the Double Principal Orthogonal complE-

ment Thresholding (Double-POET) proposed by Choi and Kim (2023). This method first

applies PCA to estimate global factors. It then applies PCA separately to each nationality-

based group to estimate local factors from the remaining data after removing the global

factors. After both global and local factors are removed, it finally uses a thresholding pro-

cedure on what remains to capture the idiosyncratic volatility. An important aspect of this

procedure is the use of correct group memberships to ensure that variables are accurately

associated with their respective local factors. However, nominal group memberships, such as

country, regional, or industry classification, may not fully capture the effects of local factors,

which leads to potential estimation errors (Ando and Bai, 2017). To address this issue, it is

necessary to identify the latent group memberships that reflect the local factor effects.

A common approach for analyzing networks and detecting the group structure of assets is

to construct an adjacency matrix. In this matrix, each row and column correspond to a stock,

and the entries represent the similarity between pairs of stocks. Researchers often use the
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correlation of returns (Billio et al., 2012; Bonanno et al., 2004; Chi et al., 2010; Diebold and

Yılmaz, 2014; Peralta and Zareei, 2016; Vandewalle et al., 2001). However, the correlation

matrix is not suitable for detecting local groups in the presence of strong common factors

because the dominant global factors can overshadow the local relationships between assets.

To remove the common factor effect, PCA is often employed; however, it can introduce a

tuning parameter issue, such as incorrectly determining the number of global factors. Even

when the number of global factors is correctly identified, residual estimation errors may

hinder the accurate detection of local groups. Another way to analyze the asset network is

to use precision matrices. Precision matrices are conventionally employed in the context of

Gaussian graphical models, where the off-diagonal entries with proper normalization using

the diagonal elements of the matrix are interpreted as the negative conditional correlation

between pairs of variables given the remaining variables (Fan et al., 2016b; Friedman et al.,

2008; Ha and Sun, 2014; Meinshausen and Bühlmann, 2006). However, to the best of our

knowledge, no existing studies have explicitly linked the precision matrix to multi-level factor

models and explored its property to distinguish local groups.

In this paper, we introduce the inverse covariance matrix-based financial adjacency matrix

(IFAM) constructed by negative entries of an inverse covariance matrix to present the local

group structure of asset returns. The proposed IFAM highlights relationships between assets

by reducing the influence of predominant common factors and amplifying the relatively

smaller effects of local factors. Specifically, the intuition behind focusing on the negative

values of the inverse covariance matrix can be understood by considering its eigenvalue

decomposition. Let the covariance matrix of asset returns, Σ ∈ Rp×p, be decomposed as

Σ = UVU⊤, where V1,1 > · · · > Vp,p > 0 are the eigenvalues. For some k ∈ N, the matrix

U·,1:k approximately spans the factor loading space and captures both global and local factors

under pervasive conditions (see Assumption 1). When two assets i and j belong to the same

local group, they may share the same factor exposures. Thus, the inner product of their

factor loadings, Ui,1:k ·Uj,1:k, is expected to be positive. However, since U is orthonormal,

the inner product of the entire loading vectors must be zero, that is, Ui,· · Uj,· = 0. As a

consequence, the inner product of the residual factor loadings corresponding to the k + 1
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to p dimensions, Ui,k+1:p ·Uj,k+1:p, must be negative to offset the positive contribution from

the common local factor space. This negative relationship is reflected in the inverse matrix,

where the off-diagonal entries, [Σ−1]i,j = U⊤
i,·V

−1Uj,·, are more likely to be negative for

pairs of assets within the same local group. Therefore, focusing on the negative values of

the inverse matrix provides a natural way to detect local groups. This finding aligns with

the conventional Gaussian graphical model approach that uses negative partial correlations,

which are calculated from a precision matrix, to identify groups (Bilgrau et al., 2020; Chandra

et al., 2024; Fan et al., 2016b; Santiago et al., 2024). Based on this intuition, we show the

asymptotic property of IFAM. Specifically, with a proper threshold level, the edge density

within the same group remains non-vanishing asymptotically, while the edge density between

different groups vanishes. That is, connections within groups persist, while those between

groups weaken.

In practice, since the true precision matrix is not observable, we need to estimate it. For

a large number of assets, in the conventional Gaussian graphical model, precision matrix

estimators, such as the graphical LASSO (GLASSO) (Friedman et al., 2008) and the con-

strained ℓ1-minimization for inverse matrix estimation (CLIME) (Cai et al., 2011), require

the sparsity condition. However, in a multi-level factor model, the presence of global factors

makes it challenging to attain the required sparsity. Hence, we propose a factor-adjusted

GLASSO estimator. This method first identifies global factors, then applies a sparse inverse

matrix estimator, GLASSO, to the covariance after excluding the global factor component,

and finally reconstructs the overall inverse covariance matrix using the Sherman-Morrison-

Woodbury identity. We demonstrate its asymptotic properties and achieve an elementwise

ℓ∞ convergence rate, which enables the factor-adjusted GLASSO estimator to construct

IFAM with the same asymptotic properties as one constructed from the true inverse co-

variance matrix. In practice, the clearer group separation property of IFAM leads to more

accurate clustering results, which is essential for estimating local factor components. These

clustering results can be obtained using various clustering algorithms. In our numerical

studies, we employ the regularized spectral clustering (RSC) (Amini et al., 2013; Chaudhuri

et al., 2012; Joseph and Yu, 2016; Qin and Rohe, 2013). Then, the detected labels are incor-
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porated into the Double-POET procedure, which helps in more accurate estimation of the

true large volatility matrix. Furthermore, in the empirical study, we show that incorporating

the proposed IFAM improves the performance of minimum variance portfolio allocations.

The rest of the paper is organized as follows. In Section 2, we set up the model and

propose IFAM and the factor-adjusted GLASSO estimator with their asymptotic properties.

In Section 3, we conduct a simulation study to demonstrate the effectiveness of IFAM in

detecting local groups. In Section 4, we carry out an empirical study on portfolio allocation

using the Double-POET method with group memberships identified by IFAM, which illus-

trates the practical advantage of using accurately identified group memberships. Finally, we

conclude in Section 5. Appendix provides all proofs.

2 Inverse covariance matrix-based financial adjacency

matrix

2.1 Model setup

We first fix some notations. Let σmin(A), σmax(A), and σi(A) denote the minimum, maxi-

mum, and ith largest eigenvalues, respectively, of the positive semi-definite matrix A. Let

[A]i,j denote the (i, j)th element of a matrix A. Let [A]S represent the submatrix of A

formed by selecting rows and columns indexed by the elements of S, where S is the ordered

set of indices.

We consider the multi-level factor model as follows:

yit = bc⊤i f c
t + bgi⊤i f gi

t + uit for i = 1, . . . , p and t = 1, . . . , T, (2.1)

where yit is the observed data for the ith asset at time t; gi is the group that includes the

ith asset; f c
t and bci are rc × 1 vectors of latent global common factors and its corresponding

factor loadings, respectively; f gi
t and bgii are rgi × 1 vectors of latent local factors that only

affect the group gi and its corresponding factor loadings; and uit is an idiosyncratic error. We
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consider the unknown group membership gi ∈ G = {G1, . . . , GJ} and assume that the size of

each group is O(pv) for some v ∈ (0, 1). Therefore, we have J = O(p1−v). We can construct a

concatenated factor loading matrix B ∈ Rp×r, where r = rc +
∑J

j=1 rGj
, r̄j = rc +

∑j
k=1 rGk

,

and

[B]i,j =


bci,j, if 1 ≤ j ≤ rc,

bgii,j−r̄h(j)−1
, if gi = Gh(j), where h(j) = min {k ∈ N|j ≤ r̄k} ,

0, otherwise.

(2.2)

Then, we can rewrite the model (2.1) in vector form as

Yt = Bcf
c
t +BgF

g
t + Ut

= BFt + Ut,

whereBc = [B]·,1:rc ,Bg = [B]·,(rc+1):r, Yt = (y1t, . . . , ypt)
⊤, Ft =

(
f c⊤
t , fG1⊤

t , fG2⊤
t , . . . , fGJ⊤

t

)⊤
,

F g
t = [Ft](rc+1):r, and Ut = (u1t, . . . , upt)

⊤. We can rewrite the model (2.1) in matrix form as

Y = FcB
⊤
c + FgB

⊤
g +U

= FB⊤ +U,

where Y = (Y1, . . . , YT )
⊤ ∈ RT×p, F = (F1, . . . , FT )

⊤ ∈ RT×r, U = (U1, . . . , UT )
⊤ ∈ RT×p,

Fc = [F]·,1:rc , and Fg = [F]·,(rc+1):r. Then, the covariance matrix can be written as

Σ = BcΣcB
⊤
c +BgΣgB

⊤
g +Σu

= BΣFB
⊤ +Σu,

where Σc = cov(f c
t ), Σg = cov(F g

t ), and ΣF = cov(Ft). We denote the precision matrix

as Ω = Σ−1. We note that the identifiability condition for the latent factor model, such

as the orthogonality, is not imposed. That is, the model (2.1) is a general regression form.

On the other hand, within each local group, the loadings associated with each local factor
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retain the same sign to reflect the same direction of influence on that factor. Without loss

of generality, we assume that each loading is a unit vector (see Assumption 1 (a)).

2.2 Inverse covariance matrix-based financial adjacency matrix

The covariance matrix Σ is not suitable as an adjacency matrix for detecting local groups

because the strong influence of global factors, whose eigenvalues are of order O(p), over-

shadows the smaller eigenvalues of local factors, which are of order O(pv). To mitigate

the predominant effect of global factors, we consider the inverse of the covariance matrix,

Ω, since the inverse operation transforms the eigenvalues into their reciprocals, while the

eigenvectors remain the same. On the other hand, for the ith and jth assets that belong to

the same group, the loadings corresponding to the first few eigenvalues may tend to have

positive inner products because the effects of the corresponding local factors tend to be in

the same direction. That is, the signs of the factor loadings in the same group tend to be

the same. This implies that the loadings corresponding to the remaining eigenvalues tend

to have negative inner products to satisfy the orthogonality of eigenvectors. Thus, the off-

diagonal entries of the inverse covariance matrix are more likely to be negative for pairs

of assets within the same group. Therefore, we define the inverse covariance matrix-based

financial adjacency matrix (IFAM), AΩ, as follows:

[AΩ]i,j =

−Ωi,j, if Ωi,j < 0,

0, otherwise.
(2.3)

In this paper, we assume that the assets in the same local group have the same sign of the

factor loadings. That is, we consider that assets are in the same local group if their signs of

the latent local factor loadings are the same.

For better understanding, we consider a simplified case with one global factor and one

local factor for each group:

yit = bcif
c
t + bgii f

gi
t + uit for i = 1, . . . , p and t = 1, . . . , T.
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In the empirical study, the strongest factor is usually the market factor, which implies that

bci , i = 1, . . . , p, are market betas from the capital asset pricing model (CAPM) (Avellaneda

and Lee, 2010; Connor and Korajczyk, 1993; Laloux et al., 2000; Plerou et al., 2002). Thus,

the signs of bci ’s are positive. That is, the market factor represents the comovement of every

asset. Similarly, since the local factor governs the comovement of the local group, the signs

of bgii ’s tend to be the same. In the latent factor model, under a pervasiveness condition,

the eigenvector corresponding to the first eigenvalue approximates the global factor loadings,

and the subsequent eigenvectors, from the second to the (1 + J)th, approximately span the

local factor loading space. To provide clearer insight into the structure of the inverse matrix

by obtaining a more manageable elementwise expression, we assume that the global and

local factors, along with the idiosyncratic returns, are uncorrelated. Under a normalization

condition for factor identification, that is, the sum of squared loadings equals one for all

factors, the inverse matrix can be written as

[Ω]i,j = ωij −Hij −Qij, (2.4)

where ωij = [Σ−1
u ]i,j, σ

2
gi
= var(f gi

t ), σ2
c = var(f c

t ),

Hij =


ωiiωjj

b
gi
i b

gi
j∑

k∈gi
ωkk(b

gi
k )

2
+σ−2

gi

, if gi = gj,

0, otherwise,

Qij = Q3(ωiib
c
i −Q1,giQ2,giωiib

gi
i )(ωjjb

c
j −Q1,gjQ2,gjωjjb

gj
j ),

Q1,G =

(
σ−2
G +

∑
k∈G

ωkk(b
G
k )

2

)−1

, Q2,G =
∑
k∈G

ωkkb
c
kb

G
k ,

and Q3 =

(
σ−2
c +

p∑
k=1

ωkk(b
c
k)

2 +
∑
G∈G

(∑
k∈G ωkkb

c
kb

G
k

)2
σ−2
G +

∑
k∈G ωkk(bGk )

2

)−1

.

The detailed calculations, which utilize the Sherman-Morrison-Woodbury matrix identity,

are provided in Appendix A. Based on the multi-level factor structure with the pervasive

and incoherence conditions (see Assumption 1), we have σ2
c ≍ O(p), σ2

gi
≍ O(pv), ωii ≍ O(1),
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bci ≍ O(p−1/2), and bgii ≍ O(p−v/2) for all 1 ≤ i ≤ p. Then, we have Hij ≍ O(p−v) within

groups and Qij ≍ O(p−1) for any i and j, which implies Qij is negligible compared to Hij

within groups. We note that Hij and Qij mainly come from the local and global factors,

respectively. By taking the inverse matrix, their magnitudes are changed as above. Thus,

we can successfully distinguish between the local and global factors. Furthermore, since the

signs of all bgii are the same, Hij is positive. Consequently, under the sparsity condition of

the inverse idiosyncratic volatility matrix Σ−1
u , the off-diagonal entries of the inverse matrix

are negative for pairs of assets within the same local group, while those between different

groups are negligible.

It is worth noting that both IFAM and conventional partial correlation approach focus

on the negative off-diagonal elements of the precision matrix to assess connections within

groups. Intuitively, from the perspective of the partial correlation approach, ωij primarily

influences partial correlation, while Qij and Hij can be interpreted as residual components

coming from approximating global and local factors. Unless ωij conveys additional local

group information, this may lead to an ambiguous intuitive interpretation of the precision

matrix for detecting local groups. In contrast, IFAM under the multi-level factor model

highlights that Hij plays a central role in detecting local group structure. Specifically, the

values of Hij are positive, larger in magnitude than Qij, and more prevalent within group

relationships compared to the sparse inverse idiosyncratic volatility elements ωij. Therefore,

Hij is a crucial component for accurately identifying local group structures.

To investigate the asymptotic behaviors of IFAM based on the true inverse, we need the

following technical conditions.

Assumption 1.

(a) We have diag(B⊤B) = (1, . . . , 1)⊤ and there exist positive constants C1 and C2 such

that for any 1 ≤ i ≤ p and some v ∈ (0, 1),

C1p
−1/2 ≤ bci ≤ C2p

−1/2 and C1p
−v/2 ≤ bgii ≤ C2p

−v/2.
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(b) There exist positive constants C1, . . . , C6 such that

C1p ≤ σi(ΣF ) ≤ C2p for i = 1, . . . , rc,

C3p
v ≤ σi(ΣF ) ≤ C4p

v for i = rc + 1, . . . , r,

C5 ≤ σi(Σu) ≤ C6 for i = 1, . . . , p.

(c) There exist positive constants C1 and C2 such that

C1 ≤ σmin(B
⊤B) ≤ σmax(B

⊤B) ≤ C2.

(d) There exist a constant C and sparsity numbers sb = O(pγsb ) and sg = O(1) such that

γsb < min(v
3
, 1−v

4
),

max
G∈G

∑
(i,j)∈G×Gc

1([Σ−1
u ]i,j ̸= 0) ≤ sb, max

1≤i≤p

∑
j∈gi

1([Σ−1
u ]i,j ̸= 0) ≤ sg, and

∥∥Σ−1
u

∥∥
max

< C.

Remark 1. Assumptions 1(a)–(b) imply the pervasiveness of the factors that is essential to

analyze latent factor models (Bai, 2003; Chamberlain and Rothschild, 1983; Choi and Kim,

2023; Fan et al., 2013, 2018; Kim and Fan, 2019; Lam and Yao, 2012; Stock and Watson,

2002). The same signs on the loadings associated with each local or global factor are imposed

to ensure that each factor reflects a uniform direction of influence. We only need the same sign

condition. In this study, for simplicity, we assume that the signs are positive. Assumption

1(c) ensures that each global or local factor has a nontrivial influence (Bai and Ng, 2002;

Bai, 2003, 2009; Stock and Watson, 2002). Assumption 1(d) is a sparsity condition for

identifying local groups. The first and second sparsity conditions imply that there are sparse

relationships between and within groups, respectively, in terms of idiosyncratic returns.

The following theorem establishes the edge density within groups and between groups

for IFAM.
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Theorem 1. Under Assumption 1, for any group G, there exist positive values ϵ1,p = o(p−v)

and ϵ2,p = O(sgp
−v) such that

|G×G|−1
∑

(i,j)∈G×G

1([AΩ]i,j ≥ δG|G|−1 − ϵ1,p) >
γ2G

s4g(rc + rG)6
− ϵ2,p, (2.5)

where sb and sg are the parameters defined in Assumption 1, γG =
σ2
min([Σ

−1
u ]G)

16∥[Σ−1
u ]G∥2maxCGD

, D =

σmax(B
⊤Σ−1

u B), CG = ∥[B]G,·∥2max |G|, and δG = 1
4D
σ2
min([Σ

−1
u ]G)

√
rc + rG are constants not

depending on p. Furthermore, for any group G, there exist positive values ϵ3,p = o(p−v) and

ϵ4,p = O(sbp
−1) such that

|G×Gc|−1
∑

(i,j)∈G×Gc

1([AΩ]i,j ≥ ϵ3,p) < ϵ4,p. (2.6)

Theorem 1 shows that the submatrix of the inverse covariance matrix, corresponding to

the same group, contains an asymptotically non-vanishing ratio of significant negative values,

while the submatrix corresponding to the between-group relationships has an asymptotically

vanishing ratio of significant negative values. Thus, IFAM can represent financial network

connections by choosing an appropriate thresholding level of the order O(p−v). This ensures

that the groups can be effectively distinguished by clustering algorithms, such as minimum

cut and spectral clustering (Coja-Oghlan, 2010; Jerrum and Sorkin, 1998; McSherry, 2001;

Mossel et al., 2015; Rohe et al., 2011). In practice, several approaches can be applied to

choose an appropriate thresholding level. One method involves selecting a threshold that

ensures the thresholded graph exhibits desired topological properties, such as a specific edge

density, average node degree, or network connectivity (Adamovich et al., 2022; Langer et al.,

2013; Pan et al., 2023; Perkins and Langston, 2009; Zhou et al., 2018). Another approach

uses significance-based thresholding, where the thresholding level is set based on the statis-

tical significance of edge weights under an assumed prior distribution (Ghoroghchian et al.,

2021; Ghosh and Barnett, 2023; Roberts et al., 2017; Serrano et al., 2009). This method

ensures that only meaningful connections are retained in the graph. Finally, optimization-

based selection chooses a thresholding level that maximizes an objective function. In this
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approach, objective functions, often calculated through cross-validation, can include predic-

tion accuracy or the silhouette index for clustering results, as well as criteria like minimizing

the difference between the thresholded graph and the original weighted graph (De Choudhury

et al., 2010; Dimitriadis et al., 2017; Gates et al., 2014; Huang et al., 2012).

2.3 Estimating IFAM from observed data

Theorem 1 establishes the property of IFAM based on the true inverse covariance matrix.

However, the true inverse covariance matrix is not available in practice, so it must be esti-

mated from data. In a high-dimensional setting, estimating the inverse covariance matrix

directly from the algebraic inverse of the sample covariance matrix is challenging. To tackle

this issue, several estimators that utilize the sparsity structure of the inverse matrix, such

as GLASSO (Friedman et al., 2008) and CLIME (Cai et al., 2011), have been developed.

However, global factors make it hard to satisfy the necessary sparsity condition of the in-

verse covariance matrix. To address this, we can use a factor-adjusted scheme and the

Sherman-Morrison-Woodbury identity. For example, we first estimate the factor-adjusted

input covariance matrix, ΣE = BgΣgB
⊤
g +Σu, as follows:

Σ̂E = Σ̂−
rc∑
i=1

ν̂iη̂iη̂
⊤
i ,

where ν̂i and η̂i are the ith largest eigenvalue of the sample covariance Σ̂ and its corresponding

eigenvector, respectively, and rc is the number of global factors. Then, we apply the GLASSO

method (Friedman et al., 2008) to the factor-adjusted input covariance matrix to estimate

ΩE = Σ−1
E as follows:

Ω̂E = argmaxΩ≻0 log detΩ− tr(Σ̂EΩ)− ρT∥Ω∥1, (2.7)
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where ρT is a tuning parameter determined in Proposition 1. Finally, using the Sherman-

Morrison-Woodbury identity, the inverse covariance matrix is estimated as follows:

Ω̂ = Ω̂E − Ω̂EÛ
(
diag(V̂ )−1 + Û⊤Ω̂EÛ

)−1

Û⊤Ω̂E, (2.8)

where V̂ ∈ Rrc and Û ∈ Rp×rc are the largest rc eigenvalues and corresponding eigenvectors

for the sample covariance matrix Σ̂, respectively. We call this the factor-adjusted GLASSO

estimator. Using it, we can construct the estimated IFAM, denoted by AΩ̂, by substituting

Ω in (2.3) with its estimator, Ω̂.

To obtain the same asymptotic property for IFAM constructed from the factor-adjusted

GLASSO estimator, it is necessary to bound the elementwise ℓ∞ convergence rate of factor-

adjusted GLASSO estimator by o(p−v). To establish this convergence rate, the following

conditions are required (Ravikumar et al., 2011).

Assumption 2.

(a) There exist positive constants a1, a2, and v∗ such that for any 1 ≤ i, j ≤ p and

x ∈ (0, 1/v∗], we have

P
(∣∣∣Σ̂ij −Σij

∣∣∣ ≥ x
)
≤ e−a2Txa1 .

(b) There exist a positive integer d = O(pv) such that

max
1≤j≤p

p∑
i=1

1(ΩE,ij ̸= 0) ≤ d.

(c) There exists some α ∈ (0, 1] such that

max
e∈Sc

∥∥Γe,S (ΓS)
−1
∥∥
1
≤ 1− α,

where Γ = ΣE ⊗ ΣE and S = {(i, j)|1 ≤ i ̸= j ≤ p,ΩE,ij ̸= 0} ∪ {(1, 1), . . . , (p, p)}.

Here, Γe,S denotes the submatrix of Γ corresponding to the row indexed by e and the

columns indexed by S.
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Remark 2. Assumption 2(a) implies the exponential-type tail condition. For instance, if

returns follow a normal distribution, then we can set a1 = 2. Assumption 2(b) imposes the

sparsity condition for the graph ΩE, which represents group information. Assumption 2(c)

imposes an incoherence condition, which restricts the influence of the non-edge off-diagonal

elements on the edge off-diagonal elements (Meinshausen and Bühlmann, 2006; Ravikumar

et al., 2011; Tropp, 2006; Wainwright, 2009; Zhao and Yu, 2006).

The following proposition establishes the elementwise ℓ∞ convergence rate for the factor-

adjusted GLASSO estimator.

Proposition 1. Under Assumptions 1 and 2, with v < 1/5, let c and C be given positive

constants. Then, there exists a positive constant C̄ such that, for T > C̄p8v log p and ρT =

α(48(2− α)κ2Γκ
3
Σd)

−1, we have

∥∥∥Ω̂−Ω
∥∥∥
max

≤
∥∥∥Ω̂−Ω

∥∥∥
2
≤ Cp−3v + Cpv

√
log p

T
(2.9)

with probability at least 1− p−c, where κΓ =
∥∥Γ−1

S

∥∥
∞ and κΣ = ∥ΣE∥∞.

Proposition 1 shows that the factor-adjusted GLASSO estimator achieves a convergence

rate of O(pv(p−4v +
√

log p
T

)). This convergence rate comes from two main components. The

term O(p−4v+
√

log p
T

) originates from estimating the inverse of the factor-adjusted covariance

matrix using the GLASSO estimation procedure, and it is consistent with the results of

Theorem 1 in Ravikumar et al. (2011). In contrast, the term O(pv) comes from handling

the Sherman-Morrison-Woodbury matrix identity. Specifically, the matrix multiplication of

estimated matrices requires the ℓ2 convergence rate of the inverse estimation of the factor-

adjusted matrix, which is discussed in Corollary 3 in Ravikumar et al. (2011). To consistently

estimate the entire non-zero local group structure in the optimization problem in (2.7), we

need a sufficient number of observations, such as T > C̄p8v log p.

In the following theorem, we extend the discussion to the case of the estimated inverse

covariance matrix, Ω̂, which can be obtained using the factor-adjusted GLASSO estimator.

14



Theorem 2. Suppose that Assumption 1 holds and

∥∥∥Ω̂−Ω
∥∥∥
max

= o(p−v). (2.10)

Then, for any group G, there exist positive values ϵ1,p = o(p−v), ϵ2,p = O(sgp
−v) such that

|G×G|−1
∑

(i,j)∈G×G

1([AΩ̂]i,j ≥ δG|G|−1 − ϵ1,p) >
γ2G

s4g(rc + rG)6
− ϵ2,p, (2.11)

where sb and sg are the parameters defined in Assumption 1, γG =
σ2
min([Σ

−1
u ]G)

16∥[Σ−1
u ]G∥2maxCGD

, D =

σmax(B
⊤Σ−1

u B), CG = ∥[B]G,·∥2max |G|, and δG = 1
4D
σ2
min([Σ

−1
u ]G)

√
rc + rG are constants not

depending on p. Furthermore, for any group G, there exist positive values ϵ3,p = o(p−v) and

ϵ4,p = O(sbp
−1) such that

|G×Gc|−1
∑

(i,j)∈G×Gc

1([AΩ̂]i,j ≥ ϵ3,p) < ϵ4,p. (2.12)

Theorem 2 shows that the estimated IFAM can obtain the same property as Theorem 1.

Furthermore, by Proposition 1, for T > C̄p8v log p, the factor-adjusted GLASSO estimator

has the elementwise ℓ∞ convergence rate of O(p−3v) with high probability, which is faster

than the required rate in (2.10). Thus, the IFAM estimator constructed by the factor-

adjusted GLASSO estimator can enjoy the properties of IFAM in Theorem 2. We note that

the results of Theorem 2 hold as long as an inverse covariance matrix estimator satisfies

(2.10). The proposed factor-adjusted GLASSO estimator is one of them.

2.4 Group identification via IFAM and its application to large

volatility matrix estimation

The properties established in Theorems 1 and 2 suggest that IFAM can be interpreted as a

stochastic block model (SBM). Several studies have demonstrated the inference procedures

for SBM, such as the maximum likelihood estimator, variational estimator, and the use of

spectral embedding, as well as their asymptotic properties (Allman et al., 2011; Ambroise
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and Matias, 2012; Celisse et al., 2012; Hagen and Kahng, 1992; Lei and Rinaldo, 2015; Mc-

Sherry, 2001; Rohe et al., 2011; Shi and Malik, 2000). However, SBM has some potential

issues, as thresholding always entails a loss of information, and the disruption of the latent

structure becomes more severe when an incorrect threshold is selected, which lead to in-

accurate clustering results (Aicher et al., 2015; Thomas and Blitzstein, 2011). In light of

these challenges, other researchers have explored weighted adjacency matrix and studied its

asymptotic properties, particularly with respect to spectral embedding techniques (Aicher

et al., 2015; Gallagher et al., 2024; Saade et al., 2014; Qin and Rohe, 2013; Xu et al., 2020;

Zhang and Rohe, 2018). To minimize the aforementioned problems, as well as the impact

of tuning parameters, we employ the regularized spectral clustering (RSC) proposed by Qin

and Rohe (2013) using IFAM in (2.3) as an input matrix to identify the group memberships

of the financial assets. Details for constructing the weighted adjacency matrix can be found

in (3.2). Under certain regularity conditions, the mis-clustering rate of the RSC method be-

comes asymptotically negligible as the sample size increases (Qin and Rohe, 2013). Details

of the algorithm can be found in Appendix C.

In financial applications under the multi-level factor model, accurate local group labels

are crucial to improve large volatility matrix estimation. In this study, we identify the

local group labels using the RSC method with the proposed IFAM and incorporate these

labels into the Double-POET procedure (Choi and Kim, 2023). The procedure consists of

three steps. First, the global factor matrix is estimated by applying the PCA procedure to

the sample covariance matrix. Next, for each group identified using IFAM, we extract the

submatrix of the sample covariance matrix that corresponds to that group after removing the

global factors, and then apply the PCA procedure to estimate the local factor matrix. The

number of global and local factors are determined using the eigenvalue ratio method (Ahn and

Horenstein, 2013). Finally, a thresholding scheme (Fan et al., 2013, 2016a) is applied to the

remaining residuals to estimate the idiosyncratic volatility matrix. By summing the global,

local, and idiosyncratic volatility matrices, the large volatility matrix is estimated. Details

of the Double-POET procedure can be found in Choi and Kim (2023). The accurate group

structure derived from IFAM enables more precise estimation of the local factor matrix. As
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a result, the residual idiosyncratic component is also estimated more accurately. Therefore,

the accurate estimation of the local factor matrix leads to more precise estimation of both

the idiosyncratic volatility and the resulting large volatility matrix. In the empirical study,

we find that incorporating IFAM shows the best performance in terms of minimum variance

portfolio allocations.

3 Simulation study

In this section, we conducted simulations to examine the properties of the proposed IFAM

and evaluate its effectiveness in producing accurate clustering labels. We generated the data

from the following multi-level factor model:

yit =
5∑

l=1

bcilf
c
tl +

2∑
l=1

bgiil f
gi
tl + uit for i = 1, . . . , p and t = 1, . . . , T. (3.1)

The first factor loadings for the global and local factors, bci1 and b
gi
i1, respectively, were drawn

from i.i.d. Uniform(0.2, 1.8) and Uniform(0.5, 1.5). For the other factor loadings, bcil and b
gi
il

for l ≥ 2, were generated as bcil = bci1 +U c
il and b

gi
il = bgii1 +U gi

il , where U
c
il and U

gi
il were drawn

from i.i.d. Uniform(−0.16, 0.16) and Uniform(−0.3, 0.3), respectively. The global factors

(f c
t1, . . . , f

c
t5)

⊤ and local factors (f gi
t1 , f

gi
t2 )

⊤ follow N (0,Σc) and N (0, σ2
gi
Σg), where σgi ’s were

drawn from i.i.d. Gamma(α, β) with α = β = 5 for each gi,

Σc =



4.01 −1 −1 −1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1


, and Σg =

 0.26 −0.25

−0.25 0.25

 .

This data generating process (DGP) satisfies Assumption 1(a)–(c).

To set the sparse covariance matrix, we first generated S = diag(s1, . . . , sp), where si’s

were drawn from i.i.d. Gamma(50, 50). Then, for each pair of different groups j1 and j2, we

17



generated dj1 ∈ Rp and dj2 ∈ Rp, where all elements of dj1 and dj2 are zeros except for one

randomly chosen element in each group, with the nonzero value drawn from N (0, 1/4). We

then set a sparse idiosyncratic covariance matrix as follows:

Σu = (0.03)2

S +
∑

{j1,j2}⊂G
j1 ̸=j2

qj1,j2(dj1 + dj2)(dj1 + dj2)
⊤


−1

and qj1,j2 ∼ Bern(
1

|G|
√

log |G|
),

where G is a set of groups. This idiosyncratic volatility matrix satisfies the sparsity condition

in Assumption 1(d). We varied the sample size T = 250, 500, 1000, the number of groups

|G| = 10, 20, 30, and the number of assets in each group |G| = 10, 20, 30. We repeated the

simulation 500 times for each setting.

To construct IFAM, we estimated the inverse covariance matrix using the factor-adjusted

GLASSO estimator in (2.8). For the inverse of the factor-adjusted covariance, we used the

GLASSO estimator (Friedman et al., 2008) as follows:

Ω̂E(ρ̂) = argmaxΩ≻0 log detΩ− tr(Σ̂r∗c ,EΩ)− ρ̂∥Ω∥1,

where Σ̂r∗c ,E = Σ̂ −
∑r∗c

i=1 ν̂iη̂iη̂
⊤
i , ν̂i and η̂i are the ith largest eigenvalue of the sample

covariance Σ̂ and its corresponding eigenvector, respectively, r∗c is the chosen number of

common factors by the eigenvalue ratio method (Ahn and Horenstein, 2013), and ρ̂ is the

tuning parameter determined by the BIC criterion (Lian, 2011; Wang et al., 2009):

ρ̂ = argminρ BIC(ρ) = argminρ tr(Σ̂r∗c ,EΩ̂E(ρ))− log det Ω̂E(ρ) + kρ
log T

T
,

where kρ is the number of non-zero elements in the lower diagonal part of Ω̂E(ρ). We then

applied the procedure in (2.3) to convert the estimated inverse matrix Ω̂ into IFAM AΩ̂ and

subsequently normalized the financial adjacency matrix as follows:

ÃΩ̂ = D
−1/2

Ω̂
AΩ̂D

−1/2

Ω̂
, (3.2)
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where DΩ̂ ∈ Rp×p is a diagonal matrix whose ith diagonal element is [Ω̂]i,i.

We first verified the property of IFAM proposed in Theorems 1 and 2, which implies that

IFAM effectively limits the false positive rate (FPR) for detecting edges between groups while

maintaining sufficient precision for detecting edges within groups. With the thresholding

level τ , we can transform a normalized weighted adjacency matrix to a binary matrix as

follows:

(1([Al]i1,i2 > τ))i1,i2=1,...,p , (3.3)

where Al is the normalized weighted adjacency matrix for the lth repeated simulation. A

binary matrix is the form of observations in a stochastic block model. For the lth repeated

simulation and the group G ∈ G, we calculated edge densities (EDG,τ,l) within and between

groups varying τ from 0 to 1 as follows:

EDG,τ,l,within =

∑
(i1,i2)∈G×G 1([Al]i1,i2 > τ)

|G×G|
and

EDG,τ,l,between =

∑
(i1,i2)∈G×Gc 1([Al]i1,i2 > τ)

|G×Gc|
. (3.4)

When it comes to group membership identification, the minimum edge density within groups

and the maximum edge density between groups are crucial (Abbe, 2018; Mossel et al., 2015).

Therefore, we calculated the mean edge density within and between groups as

EDτ,within =
1

500

500∑
l=1

min
G∈G

EDG,τ,l,within and

EDτ,between =
1

500

500∑
l=1

max
G∈G

EDG,τ,l,between.

For comparison, we constructed a normalized weighted adjacency matrix based on the sam-

ple covariance matrix by adjusting the common factor effect as follows. We first calcu-

lated Σ̂rc,u = Σ̂−
∑rc

i=1 ν̂iη̂iη̂
⊤
i , and based on this matrix, constructed the (non-normalized)
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weighted adjacency matrix as follows:

AΣ̂rc,u
=

|[Σ̂rc,u]i1,i2|, if i1 ̸= i2,

0, otherwise.

Then, we obtained the normalized weighted adjacency matrix, ÃΣ̂rc,u
, by normalizing AΣ̂rc,u

using the normalization procedure (3.2). To obtain a binary matrix, we applied the same

thresholding procedure described in (3.3) to the normalized weighted adjacency matrix. To

give more advantage to this method, we varied the number of common factors rc from one

to ten and chose the one with the best performance. We called it COV.

Figure 1 shows the edge densities EDτ,within and EDτ,between for IFAM and COV adjacency

matrices, where the edges were identified using the threshold τ ranging from 0 to 1. Figure 2

displays the scatter plots of EDτ,within and EDτ,between pairs for different values of the threshold

τ . We note that EDτ,within and EDτ,between correspond to precision and FPR, respectively.

The adjacency matrices were constructed using the sample sizes of 250, 500, and 1000, as well

as the true covariance and inverse matrices. For the COV adjacency matrix, we plotted the

maximum mean edge density within groups and the minimum mean edge density between

groups for r = 1, . . . , 10. From Figure 1, we find that the edge density between groups for

IFAM vanishes drastically as the threshold τ increases, while for COV, it decreases more

slowly. From Figures 1 and 2, we observe that IFAM maintains a higher edge density

within groups compared to COV at any given FPR level. That is, the proposed IFAM can

represent the group membership information well by choosing an appropriate thresholding

level τ . These findings are consistent with the results presented in Theorems 1 and 2. When

comparing the edge density within groups, the values of IFAM are consistently lower than

those of COV. Specifically, as the threshold τ approaches zero, COV’s edge density within

groups nears 1, while the edge density of IFAM is below some level. This is because IFAM

removes non-negative values to reduce FPR.

We verified the effectiveness of the proposed IFAM in capturing the underlying group

membership. To achieve this, we applied the RSC algorithm (Qin and Rohe, 2013) to the
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Figure 1: The mean edge densities EDτ,within and EDτ,between for IFAM and COV adjacency
matrices, where the edges were identified using the threshold τ , varied from 0 to 1. The
adjacency matrices were constructed using sample sizes of 250, 500, and 1000, as well as the
true covariance and inverse matrices.

constructed normalized weighted adjacency matrices to obtain the group membership ϕK ,

where K is the number of clusters. Details can be found in Appendix C. To apply the

clustering algorithm, we need to determine the number of clusters. Since the Double-POET

method can estimate the large volatility matrix accurately as long as the group membership is

correctly identified (Choi and Kim, 2023), we chose the group membership ϕK̂ that minimizes
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Figure 2: Scatter plot of EDτ,between (FPR) and EDτ,within (precision) pairs for different
values of the threshold τ . The adjacency matrices were constructed using sample sizes of
250, 500, and 1000, as well as the true covariance and inverse matrices.

the C-fold cross-validated log-likelihood loss of the Double-POET estimation as follows:

K̂ = argminK

1

C

C∑
i=1

tr(Σ̂−i(Σ̂i,ϕK
)−1)− log det((Σ̂i,ϕK

)−1),

where K is the number of clusters, Σ̂−i is the sample covariance matrix using the ith fold

test samples, and Σ̂i,ϕK
is the Double-POET estimation using the ith fold train samples with

label ϕK . We set C = 2. To assess the accuracy of the clustering, we calculated the adjusted
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Rand index (ARI) (Hubert and Arabie, 1985) between the true group membership and the

estimated group membership, ϕK̂ . Specifically, the ARI can be calculated as

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

) ,
where nij is the number of elements in both cluster i in the true clustering and cluster j

in the predicted clustering, ai is the sum of elements in the true cluster i, bj is the sum of

elements in the predicted cluster j, and n is the total number of elements. The ARI ranges

from −1 to 1, where 1 indicates perfect clustering, and 0 represents random clustering. The

ARI is a well-known measure for evaluating clustering performance, as it adjusts for random

chance, is not biased by the number of clusters, and remains fair even when cluster sizes are

imbalanced (Hubert and Arabie, 1985; Vinh et al., 2009; Warrens and van der Hoef, 2022).

For comparison, we additionally considered the normalized weighted adjacency matrix

based on GLASSO as well as the COV normalized weighted adjacency matrix. Since off-

diagonal elements of the normalized inverse covariance matrix can be interpreted as the

partial correlation with reversed signs (Lauritzen, 1996) in Gaussian graphical models, we

multiplied the off-diagonal elements of the GLASSO estimation by −1 to make it a weighted

adjacency matrix. We also applied the same normalization as in (3.2) to the weighted

adjacency matrix. For GLASSO, we treated this matrix as a signed weighted adjacency

matrix (Chiang et al., 2012; Cucuringu et al., 2019, 2021; Kunegis et al., 2010) to align with

the interpretation of partial correlations. We applied the same clustering algorithm to the

normalized weighted adjacency matrix to obtain the group membership from GLASSO.

Figure 3 shows average ARIs for IFAM, COV, and GLASSO with the number of clusters

set to 10, 20, and 30, and cluster sizes of 10, 20, and 30, across varying T = 250, 500, 1000.

From Figure 3, we find that the average ARI of IFAM increases as the sample size T increases.

This may be because IFAM can capture the underlying group membership more accurately as

the sample size increases. Furthermore, IFAM outperforms the other benchmarks in terms of

average ARI across all settings. It may be because IFAM effectively limits the false positive

rate while maintaining sufficient precision for detecting edges, as shown in Figures 1 and 2.
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Figure 3: Average ARIs for IFAM, COV, and GLASSO with the number of clusters set to
10, 20, and 30, and cluster sizes of 10, 20, and 30 for T = 250, 500, 1000.

We assessed whether incorporating IFAM for group membership identification improves

covariance matrix estimation. To do this, we employed the Double-POET method (Choi

and Kim, 2023), which requires group membership information. The group membership

was obtained from IFAM, GLASSO, or COV. For the number of global and local factors,

we used the eigenvalue ratio test (Ahn and Horenstein, 2013). To estimate idiosyncratic

volatility, we followed the hard thresholding scheme in Fan et al. (2013), which selects the

minimum threshold value such that the thresholded matrix becomes positive definite for all

values greater than this threshold. We then calculated the mean matrix max, Frobenius,
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Figure 4: Mean matrix max, Frobenius, and relative Frobenius norms for the matrix errors
for the specification with p = 400 and 20 groups.

and relative Frobenius norms for the matrix errors to evaluate the accuracy of the estimated

covariance matrix. We display the results for the case where p = 400 and there are 20 groups.

The remaining settings provided in Appendix B and the results are similar. Figure 4 shows

the mean matrix max, Frobenius, and relative Frobenius norms for the matrix errors across

varying T = 250, 500, 1000. From Figure 4, we find that the mean matrix max, Frobenius,

and relative Frobenius norms for the matrix errors decrease as the sample size T increases.

Furthermore, IFAM outperforms COV and GLASSO in terms of the matrix max, Frobenius,

and relative Frobenius norms for the matrix errors across all settings. This is because IFAM

effectively identified the group membership, which improves the large covariance estimation

using the Double-POET method.

Finally, we checked the portfolio allocation performance using the Double-POET esti-

mation with IFAM, GLASSO, and COV labels. That is, given the estimated Double-POET

volatility matrix, Σ̂ϕ, where ϕ is the obtained group membership, we minimized the following

portfolio risk function:

ŵk = argmin
wk s.t. w⊤

k J=1 and ∥wk∥1≤c0

w⊤
k Σ̂ϕwk,

where J = (1, . . . , 1)⊤ ∈ Rp and c0 is the gross exposure constraint that ranges from 1 to
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4. We then computed the expected out-of-sample portfolio risk as ŵ⊤
k Σŵk, where Σ is the

true covariance.
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Figure 5: Average expected out-of-sample portfolio risk using the Double-POET estimation
with group memberships obtained from IFAM, GLASSO, and COV, against the gross expo-
sure constraint c0 for T = 250, 500, 1000.

Figure 5 shows the average expected out-of-sample portfolio risk using the Double-POET

estimation with group memberships obtained from IFAM, GLASSO, and COV, against the

gross exposure constraint c0 for T = 250, 500, 1000. From Figure 5, we find that the average

expected out-of-sample risk of IFAM decreases as the sample size increases, and using the

group membership obtained from IFAM results in a lower average expected out-of-sample

portfolio risk compared to using GLASSO and COV across all settings. This is because

the group membership obtained from IFAM is accurate, which enables the large volatility

matrix to become more accurate as the sample size increases. This results in better portfolio

allocation performance. From these results, we can conclude that IFAM effectively identifies

the group membership, which improves the large covariance estimation and leads to better

portfolio allocation performance.
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4 Empirical analysis

In this section, we investigated the applicability of the proposed IFAM to empirical data.

We first applied the clustering algorithm to IFAM derived from the empirical data. Then, we

estimated the large volatility matrix using the Double-POET method based on the obtained

group membership. Finally, we conducted portfolio allocation using the estimated large

volatility matrix. We acquired weekly log-returns of global stock markets from January

2005 to December 2023 for 400 assets, evenly selected from 20 countries based on their

total market capitalization, from the Compustat database in the Wharton Research Data

Services (WRDS) system. We used weekly returns to mitigate the effect of varying trading

hours across countries. The total number of sample weeks was 980. We excluded stocks with

missing data or no variation in this period.
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Figure 6: The proportion of industry sectors across countries for two periods.

We first examined the clustering results from the RSC method using IFAM. To observe

potential changes in the group structure over time, we considered two clustering results,

one from January 2005 to December 2013 and the other from January 2014 to December

2023. This division ensures a sufficient number of observations, 457 and 523, respectively,
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to estimate the inverse covariance matrix.

Figure 6 shows the proportion of industry sectors by country in the dataset for both

periods. From Figure 6, we find that the proportion of the industry sector of each country

is stable across the two periods, except for China. In the case of China, the proportion of

the financial sector increased while the proportion of the industrial sector decreased.

Table 1: Size of each group for two periods.
Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Period 1 93 42 28 27 23 22 20 20 20 20 16 15 14 13 11 10 6
Period 2 59 29 26 22 20 20 19 19 19 18 18 18 17 17 16 16 15 14 10 8

Table 1 reports the number of groups and the size of each group for the two periods. Since

the labeling of group membership was arbitrary, we renumbered the groups in descending

order based on group size. From Table 1, we observe that the number of groups is smaller

in the first period (17 groups) compared to the second period (20 groups). Additionally,

the largest group size in the first period is 93, while, in the second period, it is 59. This

suggests that the group structure in the second period may be more heterogeneous than in

the first period, possibly due to the global financial crisis of 2008. Specifically, during the

first period, global stock markets were heavily influenced by the crisis and followed similar

recovery patterns, which may have contributed to a more homogeneous group structure. In

contrast, the second period saw multiple geopolitical and economic disruptions, including

the U.S.-China trade war, the COVID-19 pandemic, and the Russia-Ukraine war, which

may have contributed to the more heterogeneous group structure.

To further understand how the groups are structured across countries and sectors, we

checked the distribution of the firms in each sector and country for the two periods. Figures

7 and 8 show the distribution of the firms in each country and sector, respectively, for the

two periods. Specifically, the (i, j)th cell in the figures represents the proportion of firms in

country or sector i that belong to the jth group, mij = nij/
∑J

k=1 nik, where J is the chosen

number of groups and nik is the number of firms that belong to country or sector i and

group k. From Figure 7, we observe that firms from each Asian country tend to form their

own distinct group, and there are no significant changes in the distribution of firms within
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Figure 7: Distribution of the firms in each country, where the (i, j)th element is the propor-
tion of firms in a country i such that they belong to jth group.

each country between the two periods. From Figure 8, we find that in the first period, no

sector is clustered within a specific group, while in the second period, several sectors, such

as information technology, energy, and utilities, show a tendency to cluster within certain

groups. From these results, we can conclude that, in the first period, macroeconomic factors

and country-level policies likely played a more dominant role, which led to less pronounced

sectoral clustering. In the second period, however, there appears to be an increased influence

of sector-specific factors. This influence is likely driven by global trends, such as technological

advancements, energy transition, and regulatory changes in the utilities sector.

To investigate the economic benefit of IFAM, we investigated a minimum variance port-

folio allocation performance using the group membership obtained from IFAM. To estimate

IFAM, we used 500 in-sample observations. We estimated the large volatility matrix using
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Figure 8: Distribution of the firms in each sector, where the (i, j)th element is the proportion
of firms in a sector i such that they belong to jth group.

the Double-POET method with the obtained group memberships, ϕ. To reflect the current

market conditions, we used the last 50 in-sample log-returns for the Double-POET estima-

tion. To estimate global and local factors, we followed the same procedure described in

Section 3. For the thresholding of the idiosyncratic volatility part, we used the global in-

dustry classification standard (GICS). For example, we kept the volatilities within the same

sector, but set others to zero (Fan et al., 2016a). We then conducted the minimum variance

portfolio allocation using the estimated volatility matrix, Σ̂ϕ. That is, given the estimated

Double-POET volatility matrix, Σ̂ϕ, we minimized the following portfolio risk function:

ŵk = argmin
wk s.t. w⊤

k J=1 and ∥wk∥1≤c0

w⊤
k Σ̂ϕwk,

where J = (1, . . . , 1)⊤ ∈ Rp and c0 is the gross exposure constraint that ranges from 1 to 8.

For a given period with m weeks, we computed the annualized out-of-sample portfolio risk
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as

R =

√√√√52

m

m∑
k=1

(
ŵ⊤

k Yk+1

)2
,

where Yk+1 is the log-returns vector of the week k+1. We applied the rolling window scheme

and used two different out-of-sample periods–week 501 to week 740 and week 741 to week

980–and the whole out-of-sample period.

For comparison, we conducted portfolio allocation using other benchmark group mem-

berships. The first benchmark was based on nationality, which was not data-driven. For the

data-driven benchmarks, we utilized COV and GLASSO as inputs to the RSC algorithm.

These benchmark group memberships were then applied to the same Double-POET esti-

mation procedure for portfolio allocation. The results may depend on the specification of

the number of global factors. When we examined the number of global factors using the

eigenvalue ratio test (Ahn and Horenstein, 2013) for every rolling window, the number of

global factors varied from 1 to 5 with 1, 2, 3, 4, and 5 factors selected for 283, 182, 13, 1, and

1 cases, respectively. Therefore, to assess whether the proposed group membership could

outperform the benchmarks, we evaluated the results across this range of settings by varying

the number of global factors from 1 to 5. For each period and benchmark, we selected the

specification that minimized out-of-sample portfolio risk.

Figure 9 plots the annualized out-of-sample portfolio risks obtained using the Double-

POET procedure with different group memberships–IFAM, COV, GLASSO, and nationality–

across two different periods as well as the whole period. From Figure 9, we find that utilizing

the proposed IFAM for the Double-POET procedure results in the lowest portfolio risk.

Furthermore, incorporating IFAM outperforms the other benchmarks under most exposure

constraints. This may be because the proposed IFAM effectively identifies local groups

that share common local factors, which are crucial for accurately estimating the local factor

component of the large volatility matrix.
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Figure 9: Annualized out-of-sample portfolio risks using the Double-POET procedure with
one of the group membership among IFAM, COV, GLASSO, and nationality for the two
different periods and the whole period.

5 Conclusion

This study proposes a novel adjacency matrix for financial data that effectively identifies

group membership under the multi-level factor model. We show the asymptotic behaviors of

the edge density within and between groups of IFAM. Specifically, IFAM effectively reduces

the false positive rate while it maintains sufficient precision for detecting edges. To construct

IFAM from data under the multi-level factor model, we propose the factor-adjusted GLASSO

estimator. We show that this method consistently estimates the inverse covariance matrix by

addressing the prevalent global factor effect in the inverse covariance matrix. In the empirical

analysis, we also demonstrate that IFAM improves the minimum variance portfolio allocation

performance.
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A Inverse matrix calculations under a simplified multi-

level factor model

Let [A]S1,S2 be the submatrix of A formed by selecting rows indexed by the elements of

S1 and columns indexed by the elements of S2, where S1 and S2 are the ordered set of

indices. Similarly, we define [A]S = (Ai)i∈S for a vector A and a set of indices S. We recall

Σ = BcΣcB
⊤
c + BgΣgB

⊤
g + Σu and ΣE = BgΣgB

⊤
g + Σu = Ω−1

E . Using the Sherman-

Morrison-Woodbury matrix identity, we have

ΩE = Ωu −ΩuBgSB
⊤
g Ωu,

where S = (Σ−1
g +B⊤

g ΩuBg)
−1. Simple algebra shows that

[S]i,j =


1∑

k∈gi
ωkk(b

gi
k )

2
+σ−2

gi

, if i = j,

0, otherwise.

Therefore, we have

[ΩE]i,j =


ωii − ω2

ii
(b

gi
i )2∑

k∈gi
ωkk(b

gi
k )

2
+σ−2

gi

, if i = j,

−ωiiωjj
b
gi
i b

gi
j∑

k∈gi
ωkk(b

gi
k )

2
+σ−2

gi

, if i ̸= j and gi = gj,

0, otherwise.

For any group G, we define a value Q1,G = 1/(σ−2
G +

∑
k∈G ωkk(b

G
k )

2) and a vector wG =

(ωkkb
G
k )k∈G. Then, for any G ∈ G, we have

[ΩE]G = [Ωu]G −Q1,GwGw
⊤
G and [ΩE]G,Gc = 0. (A.1)

We can rewrite (A.1) as

[ΩE]i,j = ωij −Hij, (A.2)
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where

Hij =


ωiiωjj

b
gi
i b

gi
j∑

k∈gi
ωkk(b

gi
k )

2
+σ−2

gi

, if gi = gj,

0, otherwise.

Using the Sherman-Morrison-Woodbury matrix identity, we have

Ω = ΩE −ΩEBcQ3B
⊤
c ΩE, (A.3)

where Q3 = (σ−2
c +B⊤

c ΩEBc)
−1. Using (A.1), we have

B⊤
c ΩEBc =

∑
G∈G

[Bc]
⊤
G[ΩE]G[Bc]G

=
∑
G∈G

[Bc]
⊤
G([Ωu]G −Q1,GwGw

⊤
G)[Bc]G

=

p∑
k=1

ωkk(b
c
k)

2 +
∑
G∈G

Q1,G([Bc]
⊤
GwG)

2

=

p∑
k=1

ωkk(b
c
k)

2 +
∑
G∈G

(∑
k∈G ωkkb

c
kb

G
k

)2
σ−2
G +

∑
k∈G ωkk(bGk )

2
.

Therefore, we have

Q3 =

(
σ−2
c +

p∑
k=1

ωkk(b
c
k)

2 +
∑
G∈G

(∑
k∈G ωkkb

c
kb

G
k

)2
σ−2
G +

∑
k∈G ωkk(bGk )

2

)−1

.

For any group G, we define a value Q2,G =
∑

k∈G ωkkb
c
kb

G
k . Simple algebra shows that

[ΩEBc]G = [ΩE]G[Bc]G + [ΩE]G,Gc [Bc]Gc

= [Ωu]G[Bc]G −Q1,GwGw
⊤
G[Bc]G

= (ωkkb
c
k −Q1,GQ2,Gωkkb

G
k )k∈G,
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where the second equality is due to (A.1). Therefore, we have for any 1 ≤ i, j ≤ p,

[ΩEBcQ3B
⊤
c ΩE]ij = Q3[ΩEBc]i[ΩEBc]j

= Q3(ωiib
c
i −Q1,giQ2,giωiib

gi
i )(ωjjb

c
j −Q1,gjQ2,gjωjjb

gj
j ).

Using (A.3) and (A.2), we have

[Ω]i,j = ωij −Hij −Qij,

where Qij = Q3(ωiib
c
i −Q1,giQ2,giωiib

gi
i )(ωjjb

c
j −Q1,gjQ2,gjωjjb

gj
j ).

B Additional simulation analyses

In this section, we present the full simulation results for all cases, including varying the

number of clusters from 10 to 30 and cluster sizes from 10 to 30.

Figures 10, 11, and 12 draw the mean matrix max, Frobenius, and relative Frobenius

norms for the matrix estimation errors, respectively. From Figures 10, 11, and 12, we find

that the matrix errors decrease as the sample size increases, and IFAM outperforms the other

benchmarks. These results are consistent with the main simulation analysis.

Figures 13, 14, and 15 draw the average expected out-of-sample risk using the Double-

POET estimation with group memberships obtained from IFAM, GLASSO, and COV,

against the gross exposure constraint c0 for varying the number of clusters and cluster size

from 10 to 30 for T = 250, 500, and 1000, respectively. From Figures 13, 14, and 15, we find

that IFAM achieves the lowest average expected out-of-sample risk across all specifications.

From these results, we can conclude that IFAM provides better group membership identifi-

cation compared to other benchmarks, regardless of the number of clusters or cluster size,

which leads to improved matrix estimation and portfolio allocation performance.
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Figure 10: Mean matrix max norm for the large matrix estimation error for various p and
the number of groups.

45



400 600 800 1000
T

0.50

0.52

0.54

0.56

0.58

0.60
p=100, 10 groups

400 600 800 1000
T

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
p=200, 20 groups

400 600 800 1000
T

0.70

0.75

0.80

0.85

0.90

0.95

p=300, 30 groups
IFAM
GLASSO
COV

400 600 800 1000
T

1.00

1.05

1.10

1.15

p=200, 10 groups

400 600 800 1000
T

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

p=400, 20 groups

400 600 800 1000
T

1.4

1.5

1.6

1.7

1.8

1.9
p=600, 30 groups

400 600 800 1000
T

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

p=300, 10 groups

400 600 800 1000
T

1.8

1.9

2.0

2.1

2.2

2.3

2.4
p=600, 20 groups

400 600 800 1000
T

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
p=900, 30 groups

Frobenius

Figure 11: Mean matrix Frobenius norm for the large matrix estimation error for various p
and the number of groups.
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Figure 12: Mean matrix relative Frobenius norm for the large matrix estimation error for
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Figure 13: Average expected out-of-sample portfolio risk using the Double-POET estima-
tion with group memberships obtained from IFAM, GLASSO, and COV, against the gross
exposure constraint c0 for varying the number of clusters and cluster size from 10 to 30 for
T = 250.
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Figure 14: Average expected out-of-sample portfolio risk using the Double-POET estima-
tion with group memberships obtained from IFAM, GLASSO, and COV against the gross
exposure constraint c0 for varying the number of clusters and cluster size from 10 to 30 for
T = 500.

49



1 2 3 4

6.0
7.0
8.0
9.0

20.0

10 4 p=100, 10 groups
IFAM
GLASSO
COV

1 2 3 4

3.0

4.0
5.0
6.0
7.0
8.0
9.0

10 4 p=200, 20 groups

1 2 3 4

2.0

3.0

4.0
5.0
6.0
7.0
8.0
9.0

10 4 p=300, 30 groups

1 2 3 4

4.0
5.0
6.0
7.0
8.0
9.0

20.0

10 4 p=200, 10 groups

1 2 3 4

2.0

3.0

4.0
5.0
6.0
7.0
8.0
9.0

10 4 p=400, 20 groups

1 2 3 4
9.0

20.0

30.0
40.0
50.0
60.0
70.0
80.090.0

10 5 p=600, 30 groups

1 2 3 4
3.0

4.0
5.0
6.0
7.0
8.0
9.0

20.0
10 4 p=300, 10 groups

1 2 3 4

2.0

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10 4 p=600, 20 groups

1 2 3 4
7.08.09.0

20.0

30.0
40.0
50.0
60.0
70.080.090.0

10 5 p=900, 30 groups

1000 samples

Figure 15: Average expected out-of-sample portfolio risk using the Double-POET estima-
tion with group memberships obtained from IFAM, GLASSO, and COV against the gross
exposure constraint c0 for varying the number of clusters and cluster size from 10 to 30 for
T = 1000.
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C Clustering algorithm

For the group membership identification, we use the regularized spectral clustering algorithm

(Qin and Rohe, 2013) as in Algorithm 1.

Algorithm 1 Regularized spectral clustering algorithm

Step 1 Estimate the regularized graph Laplacian:

Lτ = D−1/2
τ AD−1/2

τ ,

where A is a given weighted adjacency matrix, D is a diagonal degree matrix with Dii =∑
j |[A]ij|, τ = 1

p

∑p
i=1Dii is a regularization parameter, Dτ is a regularized diagonal

degree matrix with [Dτ ]i,i = Dii + τ .
Step 2 Find the eigenvectors U1, . . . , UK ∈ Rp corresponding to the K largest eigenvalues
of Lτ

Step 3 Estimate the normalized eigenvectors Ũ ∈ Rp×(K−1) by normalizing each of U ’s
rows to have unit length, where U = [U2, . . . , UK ] ∈ Rp×(K−1) (Ũij = Uij/(

∑
j U

2
ij)

1/2).

Step 4 Conduct k-means clustering on the K-dimensional feature matrix, Ũ , using K
clusters.

D Proofs

D.1 Proof of Theorem 1

Lemma 1. Under Assumption 1, for any G ∈ G, there exists a set A ⊂ G such that

|A| ≥ γG|G|
s2g(rc+rG)3

and each element in KG,A is greater than δG|G|−1, where

δG =
σ2
min([Σ

−1
u ]G)

√
rc + rG

4σmax(B⊤Σ−1
u B)

, γG =
σ2
min([Σ

−1
u ]G)

16∥[Σ−1
u ]G∥2maxσmax(B⊤Σ−1

u B)CG

,

CG = ∥[B]G,·∥2max|G|, KG = [Σ−1
u ]G[B]G,·Y [B]⊤G,·[Σ

−1
u ]G,

Y = (B⊤Σ−1
u B)−1 − (B⊤Σ−1

u B)−1ΣF
−1(B⊤Σ−1

u B)−1, and KG,A = [KG]A .

Proof of Lemma 1. Let J be the set of non-zero vector columns of [B]G,·. Simple

algebra shows that

KG = [Σ−1
u ]G[B]G,J [Y ]J [B]⊤G,J [Σ

−1
u ]G.
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Assumptions 1(c)–(d) imply that there exist C1 and C2 such that C1 < σmin(B
⊤Σ−1

u B) ≤

σmax(B
⊤Σ−1

u B) < C2. By Assumption 1(b), there exists C3 such that σmax(Σ
−1
F ) < C3p

−v.

Therefore, by Weyl’s theorem, we have

1

2
σ−1
max(B

⊤Σ−1
u B) < σmin(Y) ≤ σmax(Y) < 2σ−1

min(B
⊤Σ−1

u B) (D.1)

for sufficiently large p. Let VJΣVV⊤
J be the eigendecomposition of [Y ]J . Using the fact that

tr(M⊤
2 M1M2) ≥ σmin(M1) tr(M

⊤
2 M2) for any positive definite matrix M1 and conformable

matrix M2, we have

∥[Σ−1
u ]G[B]G,JVJΣ

1/2
V ∥2F = tr(Σ

1/2
V V⊤

J [B]⊤G,J ([Σ
−1
u ]G)

2[B]G,JVJΣ
1/2
V )

≥ σ2
min([Σ

−1
u ]G) tr(Σ

1/2
V V⊤

J [B]⊤G,J [B]G,JVJΣ
1/2
V )

= σ2
min([Σ

−1
u ]G) tr([B]G,J [Y ]J [B]⊤G,J )

≥ 1

2
σ2
min([Σ

−1
u ]G)σ

−1
max(B

⊤Σ−1
u B)∥[B]G,J ∥2F

≥ 1

2
σ2
min([Σ

−1
u ]G)σ

−1
max(B

⊤Σ−1
u B)|J |, (D.2)

where the second and last equalities are by (D.1) and Assumption 1(a), respectively. On the

other hand, for the ith row of [Σ−1
u ]G[B]G,JVJΣ

1/2
V , we have

∥[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,·∥22 =

∑
j∈J

(∑
l∈J

∑
k∈G

[[Σ−1
u ]G]i,kBk,l[VJΣ

1/2
V ]l,j

)2

≤ |J |
∑
j∈J

∑
l∈J

(∑
k∈G

[[Σ−1
u ]G]i,kBk,l[VJΣ

1/2
V ]l,j

)2

≤ sg|J |
∑
j∈J

∑
l∈J

∑
k∈G s.t.

[Σ−1
u ]i,k ̸=0

(
[[Σ−1

u ]G]i,kBk,l[VJΣ
1/2
V ]l,j

)2
≤ s2g|J |3C2

J ∥[Σ−1
u ]G∥2max∥VJΣ

1/2
V ∥2max

≤ 2s2g|J |3C2
J ∥[Σ−1

u ]G∥2maxσ
−1
min(B

⊤Σ−1
u B), (D.3)

where CJ = ∥[B]G,J ∥max = O(p−v/2) and the first and second inequalities follow from
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Jensen’s inequality and Assumption 1(d). Let δ =
σ2
min([Σ

−1
u ]G)|J |

4|G|σmax(B⊤Σ−1
u B)

. We have

∥[Σ−1
u ]G[B]G,JVJΣ

1/2
V ∥2F

=
∑
i∈A

∥[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,·∥22 +

∑
i∈G\A

∥[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,·∥22

≤
∑
i∈A

∥[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,·∥22 + |G \ A|δ

≤
∑
i∈A

∥[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,·∥22 +

1

4
σ2
min([Σ

−1
u ]G)σ

−1
max(B

⊤Σ−1
u B)|J |, (D.4)

where A =
{
i ∈ G

∣∣∣∥[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,·∥22 > δ

}
. Using (D.2) and (D.4), we have

1

4
σ2
min([Σ

−1
u ]G)σ

−1
max(B

⊤Σ−1
u B)|J | ≤

∑
i∈A

∥[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,·∥22

≤ 2s2g|J |3C2
J ∥[Σ−1

u ]G∥2maxσ
−1
min(B

⊤Σ−1
u B)|A|,

where the second inequality is due to (D.3). Therefore, we have

|A| ≥ σ2
min([Σ

−1
u ]G)

8s2g|J |2∥[Σ−1
u ]G∥2maxC

2
Jσmax(B⊤Σ−1

u B)
=

2γG|G|
s2g(rc + rG)2

. (D.5)

Using the fact that KG = ([Σ−1
u ]G[B]G,JVJΣ

1/2
V )([Σ−1

u ]G[B]G,JVJΣ
1/2
V )⊤, we have

[KG,A]i,j = ψ⊤
i ψj,

where ψi, ψj ∈ ΨG,A = {[[Σ−1
u ]G[B]G,JVJΣ

1/2
V ]i,· ∈ R|J ||i ∈ A}. We can consider a set of

points {ψ/ ∥ψ∥2 |ψ ∈ ΨG,A} on the unit sphere in R|J |. By Theorem 1.1 in Böröczky and

Wintsche (2003) and the pigeonhole principle, there exists a set A ⊂ A such that |A| ≥ |A|
2|J |

and (ψ⊤
i ψj)/(∥ψi∥2∥ψj∥2) ≥ |J |−1/2 for any i, j ∈ A. Therefore, for any i, j ∈ A, we have

[KG,A]i,j ≥ ψ⊤
i ψj

≥ ψ⊤
i ψj

∥ψi∥2∥ψj∥2
∥ψi∥2∥ψj∥2

≥ |J |−1/2δ.
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This fact and (D.5) conclude that there exists a set A ⊂ G such that |A| ≥ γG|G|
s2g(rc+rG)3

and

each element in KG,A is greater than δG|G|−1. ■

Lemma 2. Under Assumption 1, we have

[χ]i,j =

O(p
−(1−v)/2 + sbp

−v), if (i, j) ∈ O,

O(1), otherwise,

where O = {(i, j)|rc + 1 ≤ i, j ≤ r and h(i) ̸= h(j)}, h is defined in (2.2), and χ = (B⊤ΣuB)−1.

Proof of Lemma 2. Since C1 < σmin(B
⊤Σ−1

u B) ≤ σmax(B
⊤Σ−1

u B) < C2 for some

positive constants C1 and C2, we have ∥χ∥max ≤ C−1
1 . Specifically, we have

|[χ]i,j| ≤ C−1
1 for all (i, j) ∈ {1, . . . , r}2 \ O. (D.6)

Let D = {(i, j)|1 ≤ i, j ≤ rc} ∪ {(i, j)|r̄k−1 < i, j ≤ r̄k for some 1 ≤ k ≤ J} and Φ =

B⊤Σ−1
u B = Φd + Φe, where Φd is the block-diagonal matrix of Φ, that is, [Φd]i,j = Φi,j

for (i, j) ∈ D and [Φd]i,j = 0 for (i, j) /∈ D, and Φe is the corresponding off-block-diagonal

matrix of Φ. Then, we have C1 < σi([Φd]) < C2 for all 1 ≤ i ≤ r. Consider [Φe]i,j for any

i, j, and k such that 1 ≤ i ≤ rc, r̄Gk−1
< j ≤ r̄Gk

, and 1 ≤ k ≤ J . There exists a positive

constant C3 such that

|[Φe]i,j| =

∣∣∣∣∣
p∑

x=1

∑
y∈Gk

[B]x,i[Σ
−1
u ]x,y[B]y,j

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Gk

∑
y∈Gk

[B]x,i[Σ
−1
u ]x,y[B]y,j +

∑
x∈Gc

k

∑
y∈Gk

[B]x,i[Σ
−1
u ]x,y[B]y,j

∣∣∣∣∣∣
≤ C(sgp

−(1−v)/2) + C(p−(1+v)/2sb)

≤ C3p
−(1−v)/2, (D.7)

where the first inequality is by Assumption 1(d). Consider rc < i, j ≤ r and h(i) ̸= h(j).
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We have

|[Φe]i,j| =

∣∣∣∣∣∣
∑

x∈Gh(i)

∑
y∈Gh(j)

[B]x,i[Σ
−1
u ]x,y[B]y,j

∣∣∣∣∣∣
= O(sbp

−v), (D.8)

where the second equality is by Assumption 1(d). Furthermore, using Assumption 1(d), we

can show

max
rc+1≤i≤r

r∑
j=1

1([Φe]i,j ̸= 0) ≤ rc + r̃ + r̃sb ≤ 3r̃sb, (D.9)

where r̃ = max(rc, r1, r2, . . . , rJ). Using the fact that Φ = (I + ΦeΦ
−1
d )Φd, we have

Φ−1 = Φ−1
d (I + ΦeΦ

−1
d )−1

= Φ−1
d (I − ΦeΦ

−1
d + ΦeΦ

−1
d ΦeΦ

−1
d − · · · )

= Φ−1
d − Φ−1

d ΦeΦ
−1
d + Φ−1

d ΦeΦ
−1
d ΦeΦ

−1
d − · · ·

=
∞∑
k=0

Φ̃k,

where Φ̃0 = Φ−1
d , Φ̃k = Φ̃k−1P for k ≥ 1, P = −ΦeΦ

−1
d , and the second equality follows

from recursively applying the Sherman-Morrison-Woodbury matrix identity. Since Φ−1
d is a

block-diagonal matrix, P satisfies the properties of Φe, i.e. (D.7), (D.8), and (D.9). Let

Φ̃k =

Wk,1 W⊤
k,3

Wk,3 Wk,2

 and P =

P1 P⊤
3

P3 P2

 ,

where Wk,1, P1 ∈ Rrc×rc , Wk,2, P2 ∈ R(r−rc)×(r−rc), and Wk,3, P3 ∈ R(r−rc)×rc . Simple algebra

shows that P1 = 0. Then, we have

Wk+1,2 = Wk,3P
⊤
3 +Wk,2P2.
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We have

∞∑
k=0

Wk+1,2 =

(
∞∑
k=0

Wk,3

)
P⊤
3 +

(
∞∑
k=0

Wk,2

)
P2.

Then, for rc < i, j ≤ r and h(i) ̸= h(j), we have

|[χ]i,j| =

∣∣∣∣∣[Φ−1
d ]i,j +

∞∑
k=0

[Wk+1,2]i−rc,j−rc

∣∣∣∣∣
=

∣∣∣∣∣
(

∞∑
k=0

[Wk,3]i−rc,·

)
[P⊤

3 ]·,j−rc

∣∣∣∣∣+
∣∣∣∣∣
(

∞∑
k=0

[Wk,2]i−rc,·

)
[P2]·,j−rc

∣∣∣∣∣
≤ Cp−(1−v)/2 + Csbp

−v,

where the last inequality follows from (D.6), (D.7), (D.8), and (D.9). Therefore, we have

[χ]i,j =

O(p
−(1−v)/2 + sbp

−v), if rc + 1 ≤ i, j ≤ r and h(i) ̸= h(j),

O(1), otherwise.

■

Proof of Theorem 1. It is sufficient to show that

|G×G|−1
∑

(i,j)∈G×G

1([Σ−1]i,j ≤ −δG|G|−1 + ϵ1,p) >
γ2G

s4g(rc + rG)6
− ϵ2,p (D.10)

and |G×Gc|−1
∑

(i,j)∈G×Gc

1(|[Σ−1]i,j| ≥ ϵ3,p) < ϵ4,p, (D.11)

where ϵ1,p = o(p−v), ϵ2,p = O(sgp
−v), ϵ3,p = o(p−v), and ϵ4,p = O(sbp

−1). Using the Sherman-

Morrison-Woodbury matrix identity, we have

Σ−1 = (BΣFB
⊤ +Σu)

−1

= Σ−1
u −Σ−1

u B(Σ−1
F +B⊤Σ−1

u B)−1B⊤Σ−1
u .
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Using the Sherman-Morrison-Woodbury matrix identity recursively, we have

(ΣF
−1 +B⊤Σ−1

u B)−1 =
∞∑
k=0

(−1)k((B⊤Σ−1
u B)−1ΣF

−1)k(B⊤Σ−1
u B)−1

= (B⊤Σ−1
u B)−1 − (B⊤Σ−1

u B)−1ΣF
−1(B⊤Σ−1

u B)−1

+(B⊤Σ−1
u B)−1ΣF

−1(B⊤Σ−1
u B)−1ΣF

−1(B⊤Σ−1
u B)−1 − · · · .

Let Y = (B⊤Σ−1
u B)−1 − (B⊤Σ−1

u B)−1ΣF
−1(B⊤Σ−1

u B)−1. Then, we have

Σ−1 = Σ−1
u −Σ−1

u BYB⊤Σ−1
u +

∞∑
k=2

Zk, (D.12)

where Zk = (−1)kΣ−1
u B((B⊤Σ−1

u B)−1ΣF
−1)k(B⊤Σ−1

u B)−1B⊤Σ−1
u . Simple algebra shows

that there exists a constant C such that ∥Zk∥max = O(( C
pv
)k) for all k ≥ 2. Therefore, for

sufficiently large p, we have ∥∥∥∥∥
∞∑
k=2

Zk

∥∥∥∥∥
max

≤ Cp−2v.

We simply write this as follows:
∞∑
k=2

Zk = O(p−2v). (D.13)

By Lemma 2 and the fact that

∥∥(B⊤Σ−1
u B)−1ΣF

−1(B⊤Σ−1
u B)−1

∥∥
max

≤
∥∥(B⊤Σ−1

u B)−1ΣF
−1(B⊤Σ−1

u B)−1
∥∥
2
≤ Cp−v,

we have

[Y ]i,j =

O(p
−(1−v)/2 + sbp

−v), if rc + 1 ≤ i, j ≤ r and h(i) ̸= h(j),

O(1), otherwise.
(D.14)

Let B = Σ−1
u BYB⊤Σ−1

u . Using (D.12) and (D.13), we have

Σ−1 = Σ−1
u − B +O(p−2v). (D.15)
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Then, for 1 ≤ i, j ≤ p, we have

[B]i,j =

p∑
l=1

p∑
k=1

[Σ−1
u ]i,k[BYB⊤]k,l[Σ

−1
u ]l,j

=
∑
H∈G

∑
l∈H

∑
k∈H

[Σ−1
u ]i,k[BYB⊤]k,l[Σ

−1
u ]l,j

+
∑
H1∈G

∑
H2∈G\{H1}

∑
l∈H2

∑
k∈H1

[Σ−1
u ]i,k[BYB⊤]k,l[Σ

−1
u ]l,j. (D.16)

Consider (D.10). Using (D.15), we have [Σ−1]G = [Σ−1
u ]G− [B]G+O(p−2v). There are at

most sg|G| non-zero elements in [Σ−1
u ]G by Assumption 1. The last term on the right-hand

side of (D.15) is o(p−v). Thus, it is sufficient for proving (D.10) that

|G×G|−1
∑

(i,j)∈G×G

1([B]i,j ≥ δG|G|−1 −O(
s2b

p(1+v)/2
+

s3b
p2v

)) >
γ2G

s4g(rc + rG)6
−O(s2b |G|−2).

(D.17)

For any x1 ∈ H, x2 ∈ H ′, and different groups H ̸= H ′ ∈ G, we have

∣∣[[BYB⊤]H,H′ ]x1,x2

∣∣ = |Bx1,·YBx2,·|

≤

∣∣∣∣∣
rc∑

y1=1

rc∑
y2=1

Bx1,y1Yy1,y2Bx2,y2

∣∣∣∣∣
+

∣∣∣∣∣∣
rc∑

y1=1

r̄H′∑
y2=r̄H′−rH′+1

Bx1,y1Yy1,y2Bx2,y2

∣∣∣∣∣∣
+

∣∣∣∣∣
r̄H∑

y1=r̄H−rH+1

rc∑
y2=1

Bx1,y1Yy1,y2Bx2,y2

∣∣∣∣∣
+

∣∣∣∣∣∣
r̄H∑

y1=r̄H−rH+1

r̄H′∑
y2=r̄H′−rH′+1

Bx1,y1Yy1,y2Bx2,y2

∣∣∣∣∣∣
= O

(
1

p(1+v)/2
+

1

p
+

sb
p2v

)
, (D.18)

where the last equality follows from Assumption 1(d) and (D.14). Using (D.16) for all
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(i, j) ∈ G×G, we have

[B]G = [Σ−1
u ]G[BYB⊤]G[Σ

−1
u ]G +

∑
H∈G\{G}

[Σ−1
u ]G,H [BYB⊤]H [Σ

−1
u ]H,G

+[Σ−1
u ]G[BYB⊤]G,Gc [Σ−1

u ]Gc,G + [Σ−1
u ]G,Gc [BYB⊤]Gc,G[Σ

−1
u ]G

+
∑

H,H′∈G\{G}
H ̸=H′

[Σ−1
u ]G,H [BYB⊤]H,H′ [Σ−1

u ]H′,G

= [Σ−1
u ]G[BYB⊤]G[Σ

−1
u ]G +

∑
H∈G\{G}

[Σ−1
u ]G,H [BYB⊤]H [Σ

−1
u ]H,G

+O

(
s2b
p
+

s2b
p(1+v)/2

+
s3b
p2v

)
, (D.19)

where the last equality follows from Assumption 1 and (D.18). By Lemma 1 and Assumption

1(d), the first term on the right-hand side of (D.19) has at least
γ2
G|G|2

s4g(rc+rG)6
elements that are

greater than δG|G|−1, where γG and δG are defined in Lemma 1. On the other hand, we have∥∥∥∥∥∥
∑

H∈G\{G}

[Σ−1
u ]G,H [BYB⊤]H [Σ

−1
u ]H,G

∥∥∥∥∥∥
0

≤
∑

H∈G\{G}

∥∥[Σ−1
u ]G,H [BYB⊤]H [Σ

−1
u ]H,G

∥∥
0

≤
∑

H∈G\{G}

∥∥[Σ−1
u ]G,H

∥∥2
0

≤ s2b ,

where the last inequality is by Assumption 1(d). This fact with (D.19) implies (D.17), and

we conclude that (D.10) and (2.5) hold.

Consider (D.11). Using (D.15), we have [Σ−1]G,Gc = [Σ−1
u ]G,Gc− [B]G,Gc+O(p−2v). There

are at most sb non-zero elements in [Σ−1
u ]G,Gc by Assumption 1. Thus, it is sufficient for

proving (D.11) that

|G×Gc|−1
∑

(i,j)∈G×Gc

1

(
[|B]i,j| ≥ O

(
s2b

p(1+v)/2
+

s3b
p2v

))
< O(sbp

−1). (D.20)
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Similar to (D.19), using (D.16) and Assumption 1(d), for any G′ ∈ G \G, we have

[B]G,G′ = [Σ−1
u ]G[BYB⊤]G[Σ

−1
u ]G,G′ + [Σ−1

u ]G,G′ [BYB⊤]G′ [Σ−1
u ]G′

+
∑

H∈G\{G,G′}

[Σ−1
u ]G,H [BYB⊤]H [Σ

−1
u ]H,G′

+[Σ−1
u ]G[BYB⊤]G,G′ [Σ−1

u ]G′ + [Σ−1
u ]G,G′ [BYB⊤]G′,G[Σ

−1
u ]G,G′

+[Σ−1
u ]G[BYB⊤]G,G̃[Σ

−1
u ]G̃,G′ + [Σ−1

u ]G,G̃[BYB⊤]G̃,G[Σ
−1
u ]G,G′

+[Σ−1
u ]G,G′ [BYB⊤]G′,G̃[Σ

−1
u ]G̃,G′ + [Σ−1

u ]G,G̃[BYB⊤]G̃,G′ [Σ
−1
u ]G′

+
∑

H,H′∈G\{G,G′}
H ̸=H′

[Σ−1
u ]G,H [BYB⊤]H,H′ [Σ−1

u ]H′,G′

= [Σ−1
u ]G[BYB⊤]G[Σ

−1
u ]G,G′ + [Σ−1

u ]G,G′ [BYB⊤]G′ [Σ−1
u ]G′

+
∑

H∈G\{G,G′}

[Σ−1
u ]G,H [BYB⊤]H [Σ

−1
u ]H,G′

+O

(
s2b

p(1+v)/2
+

s3b
p2v

)
, (D.21)

where G̃ =
⋃

H∈G\{G,G′}H. Therefore, we can show (D.20) by using the fact that

∑
(i,j)∈G×Gc

1

(
|[B]i,j| > O

(
s2b

p(1+v)/2
+

s3b
p2v

))
≤ ∥[Σ−1

u ]G[BYB⊤]G[Σ
−1
u ]G,Gc∥0 +

∑
G′∈G\{G}

∥[Σ−1
u ]G,G′ [BYB⊤]G′ [Σ−1

u ]G′∥0

+
∑

H∈G\{G,G′}

∥∥[Σ−1
u ]G,H [BYB⊤]H [Σ

−1
u ]H,Gc

∥∥
0

≤ |G|
∥∥[Σ−1

u ]G,Gc

∥∥
0
+

∑
G′∈G\{G}

|G′|
∥∥[Σ−1

u ]G,G′
∥∥
0
+

∑
H∈G\{G,G′}

∥∥[Σ−1
u ]G,H

∥∥
0

∥∥[Σ−1
u ]H,Gc

∥∥
0

= O(sbp
v),

where the first inequality is by (D.21) and the last equality follows from Assumption 1(d).

Thus, we conclude that (D.11) and (2.6) hold. ■
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D.2 Proof of Proposition 1

Proof of Proposition 1. We follow the proof of Theorem 1 in Ravikumar et al. (2011),

which applies the primal-dual witness method (Wainwright, 2009). The primal-dual witness

method constructs both a primal solution and a dual witness that satisfy the optimality

conditions simultaneously. It begins by constructing the primal solution under the assumed

sparsity pattern and then checks its asymptotic properties. It then verifies the solution by

checking the sufficient conditions for strict dual feasibility.

We firstly introduce the key terms and notations for the proof. Let

Ω̂E = argminΩ≻0,Ω=Ω⊤ tr(Σ̂EΩ)− log detΩ+ ρT∥Ω∥1,

Ω̃E = argminΩ≻0,Ω=Ω⊤,ΩE,Sc=0 tr(Σ̂EΩ)− log detΩ+ ρT∥Ω∥1, Z̃ = ρ−1
T

(
−Σ̂E + Ω̃

−1

E

)
,

W = Σ̂E −ΣE, ∆ = Ω̃E −ΩE, and R(∆) = Ω̃
−1

E −Ω−1
E +Ω−1

E ∆Ω−1
E ,

where S is defined in Assumption 2(c). We also define Ā = vec(A) for the vectorized version

of the matrix or set A, and AT = (A(i,j))(i,j)∈T for a matrix A and a set of tuples T . The sub-

differential of the norm ∥·∥1 evaluated at some M ∈ Rp×p consists of the set of all symmetric

matrices Z ∈ Rp×p such that

Zij =


0, if i = j,

sign(Mij), if i ̸= j and Mij ̸= 0,

∈ [−1, 1], if i ̸= j and Mij = 0.

Simple algebra shows that κΓ =
∥∥Γ−1

S

∥∥
∞ = O(1), κΣ = ∥ΣE∥∞ = O(pv), and ρT =

O(p−4v). By Lemma 6 in Ravikumar et al. (2011), we have

∥∆∥max ≤ 2κΓ (∥W∥max + ρT ) . (D.22)
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By (A.2) in Appendix of Choi and Kim (2023), we have

∥W∥max ≤ C
(
1/p1−v +

√
log p/T

)
. (D.23)

With v < 1/5, we observe that there exists Tp = O(p8v log p) such that for T ≥ Tp,

∥W∥max ≤ C
(
1/p1−v +

√
log p/T

)
<

α2

24κ3Σκ
2
Γd(4− 2α)2

.

Using Lemma 5 in Ravikumar et al. (2011), we can show

∥R(∆)∥max <
3

2
d ∥∆∥2max κ

3
Σ

≤ 24κ3Σκ
2
Γρ

2
Td

≤ α2

24κ3Σκ
2
Γd(4− 2α)2

, (D.24)

where the second inequality is due to (D.22). Therefore, we have

max {∥W∥max , ∥R(∆)∥max} <
α2

24κ3Σκ
2
Γd(4− 2α)2

. (D.25)

The stationary condition for the solution Ω̃E can be written as

Σ̂E − Ω̃
−1

E + ρT Z̃ = 0. (D.26)

Simple algebra shows that

0 = Σ̂E − Ω̃
−1

E + ρT Z̃

= Σ̂E −ΣE −
(
Ω̃

−1

E −Ω−1
E +Ω−1

E ∆Ω−1
E

)
+Ω−1

E ∆Ω−1
E + ρT Z̃

= Ω−1
E ∆Ω−1

E +W −R(∆) + ρT Z̃.

By vectorizing, the stationary condition can be rewritten as

Γ∆̄ + W̄ − R̄(∆) + ρT
¯̃
Z = 0. (D.27)
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By decomposing (D.27) into S and Sc, and using the fact that ∆̄Sc = 0, we have

ΓS∆̄S + W̄S − R̄(∆)S + ρT
¯̃
ZS = 0 and (D.28)

ΓSc,S∆̄S + W̄Sc − R̄(∆)Sc + ρT
¯̃
ZSc = 0. (D.29)

Using (D.28) and the fact that ΓS is invertible, we have

∆̄S = (ΓS)
−1(−W̄S + R̄(∆)S − ρT

¯̃
ZS).

By substituting this into (D.29), we have

¯̃
ZSc = ρ−1

T ΓSc,S (ΓS)
−1 (W̄S − R̄(∆)S

)
− ρ−1

T

(
W̄Sc − R̄(∆)Sc

)
+ ΓSc,S (ΓSc,S)

−1 ¯̃ZS. (D.30)

Therefore, we have

∥∥∥ ¯̃ZSc

∥∥∥
max

≤ ρ−1
T

∥∥ΓSc,S (ΓS)
−1
∥∥
1

(∥∥W̄S

∥∥
max

+
∥∥R̄(∆)S

∥∥
max

)
+ρ−1

T

(∥∥W̄Sc

∥∥
max

+
∥∥R̄(∆)Sc

∥∥
max

)
+
∥∥∥ΓSc,S (ΓSc,S)

−1 ¯̃ZS

∥∥∥
max

≤ 2− α

ρT

(∥∥W̄∥∥
max

+
∥∥R̄(∆)

∥∥
max

)
+ (1− α)

< 1,

where the second and last inequalities are due to Assumption 2(c) and (D.25), respectively.

Therefore, strict dual feasibility is satisfied, and thus Ω̃E = Ω̂E. We have

∥∥∥Ω̂E −ΩE

∥∥∥
max

= ∥∆∥max ≤ 2CκΓ

(
1/p1−v +

√
log p/T + ρT

)
, (D.31)

where the inequality is due to (D.22) and (D.23). Similar to Corollary 3 in Ravikumar et al.

(2011), we can show that

∥∥∥Ω̂E −ΩE

∥∥∥
2

≤ 2κΓ

(
1/p1−v +

√
log p/T + ρT

)
min(p

1+v
2 , pv)

= O(p−3v + pv
√

log p/T ). (D.32)
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Consider Ω̂ − Ω. Let UV U⊤ be the eigendecomposition of BcΣcB
⊤
c , where U ∈ Rp×rc

contains the eigenvectors corresponding to the nonzero eigenvalues, and V ∈ Rrc×rc is the

diagonal matrix of these eigenvalues. By the Sherman-Morrison-Woodbury matrix identity,

we have

Ω̂−Ω = Ω̂E −ΩE −R1, (D.33)

where

R1 =
(
Ω̂E −ΩE

)
Û
(
V̂ −1 + Û⊤Ω̂EÛ

)−1

Û⊤Ω̂E

+ΩE(Û − U)
(
V̂ −1 + Û⊤Ω̂EÛ

)−1

Û⊤Ω̂E

+ΩEU
(
V̂ −1 + Û⊤Ω̂EÛ

)−1

(Û⊤ − U⊤)Ω̂E

+ΩEU
(
V̂ −1 + Û⊤Ω̂EÛ

)−1

U⊤(Ω̂E −ΩE)

+ΩEU

[(
V̂ −1 + Û⊤Ω̂EÛ

)−1

−
(
V −1 + U⊤ΩEU

)−1
]
U⊤ΩE. (D.34)

Simple algebra shows that

∥Û − U∥22 ≤ ∥Û − U∥2F
≤ prc max

1≤i≤rc
∥Û·,i − U·,i∥2∞

≤ C

(
1

p2(1−v)
+

log p

T

)
,

where the last inequality is by Lemmas A.2 and A.3 in Appendix of Choi and Kim (2023).

Let G1 =
(
V̂ −1 + Û⊤Ω̂EÛ

)−1

and G2 =
(
V −1 + U⊤ΩEU

)−1
. We have

∥G1 −G2∥2 = ∥G1(G
−1
1 −G−1

2 )G2∥2
≤ ∥G1∥2∥G2∥2∥V̂ −1 − V −1 + Û⊤Ω̂EÛ − U⊤ΩEU∥2
≤ C

(
∥V̂ −1 − V −1∥2 + ∥Û⊤Ω̂EÛ − U⊤ΩEU∥2

)
. (D.35)

For the first term on the right-hand side of (D.35), we have

∥V̂ −1 − V −1∥2 ≤ ∥V̂ −1∥2∥V −1∥2∥V̂ − V ∥2
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≤ C
1

p2

(
p

√
log p

T
+ ∥ΣE∥2

)

≤ C

(
p−1

√
log p

T
+ p−2+v

)
, (D.36)

where the second inequality is by Lemmas A.1 and A.3 in Appendix of Choi and Kim (2023)

as well as Weyl’s inequality. For the second term on the right-hand side of (D.35), we have

∥Û⊤Ω̂EÛ − U⊤ΩEU∥2
≤ ∥Û⊤Ω̂EÛ − Û⊤Ω̂EU∥2 + ∥Û⊤Ω̂EU − Û⊤ΩEU∥2 + ∥Û⊤ΩEU − U⊤ΩEU∥2
≤ C

(
∥Û − U∥2 + ∥Ω̂E −ΩE∥2

)
≤ C

(
p−3v + pv

√
log p

T

)
, (D.37)

where the last inequality is by the fact that v < 1
5
. Therefore, we can bound the last term

on the right-hand side of (D.34) under the spectral norm as follows:

∥∥ΩEU (G1 −G2)U
⊤ΩE

∥∥
2

≤ C ∥G1 −G2∥2
≤ C

(
∥V̂ −1 − V −1∥2 + ∥Û⊤Ω̂EÛ − U⊤ΩEU∥2

)
≤ C

(
p−3v + pv

√
log p

T

)
,

where the second inequality follows from (D.35) and the third inequality follows from (D.36),

(D.37), and the fact that v < 1/5. Similarly, we can bound the remaining four terms on the

right-hand side of (D.34) under the spectral norm by C(p−3v+pv
√

log p
T

). Thus, we conclude

∥Ω̂−Ω∥2 ≤ ∥Ω̂E −Σ−1
E ∥2 + ∥R1∥2

≤ C

(
p−3v + pv

√
log p

T

)
.

■
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D.3 Proof of Theorem 2

Proof of Theorem 2. It is sufficient to show that

|G×G|−1
∑

(i,j)∈G×G

1([Ω̂]i,j ≤ −δG|G|−1 + ϵ1,p) >
γ2G

s4g(rc + rG)6
− ϵ2,p (D.38)

and |G×Gc|−1
∑

(i,j)∈G×Gc

1(|[Ω̂]i,j| < ϵ3,p) > 1− ϵ4,p, (D.39)

where ϵ1,p = o(p−v), ϵ2,p = O(sgp
−v), ϵ3,p = o(p−v), and ϵ4,p = O(sbp

−1). Consider indices i

and j such that [Ω]i,j ≤ −δG|G|−1 + ϵ1,p. By (D.10), there exists ϵ̄1,p = o(p−v) such that

[Ω̂]i,j ≤ [Ω]i,j +
∥∥∥Ω̂−Ω

∥∥∥
max

≤ −δG|G|−1 + ϵ̄1,p.

Therefore, we conclude (D.38).

Consider indices i and j such that |[Ω]i,j| ≤ ϵ3,p. By (D.11), there exists ϵ̄3,p = o(p−v)

such that

∣∣∣[Ω̂]i,j

∣∣∣ ≤ |[Ω]i,j|+
∥∥∥Ω̂−Ω

∥∥∥
max

≤ ϵ̄3,p.

Therefore, we conclude (D.39). ■
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