
Adaptive Robust Large Volatility Matrix Estimation Based

on High-Frequency Financial Data

Minseok Shin1, Donggyu Kim1*, and Jianqing Fan2,3,†

1College of Business, Korea Advanced Institute of Science and Technology (KAIST), South Korea

2Capital University of Economics and Business, China

3Department of Operations Research and Financial Engineering, Princeton University, USA

August 17, 2023

Abstract

Several novel statistical methods have been developed to estimate large integrated volatil-

ity matrices based on high-frequency financial data. To investigate their asymptotic behaviors,

they require a sub-Gaussian or finite high-order moment assumption for observed log-returns,

which cannot account for the heavy-tail phenomenon of stock-returns. Recently, a robust esti-

mator was developed to handle heavy-tailed distributions with some bounded fourth-moment

assumption. However, we often observe that log-returns have heavier tail distribution than

the finite fourth-moment and that the degrees of heaviness of tails are heterogeneous across

asset and over time. In this paper, to deal with the heterogeneous heavy-tailed distributions,

we develop an adaptive robust integrated volatility estimator that employs pre-averaging

and truncation schemes based on jump-diffusion processes. We call this an adaptive robust

pre-averaging realized volatility (ARP) estimator. We show that the ARP estimator has a

sub-Weibull tail concentration with only finite 2α-th moments for any α > 1. In addition,

we establish matching upper and lower bounds to show that the ARP estimation procedure

*corresponding author. Tel: +82-02-958-3448. E-mail addresses: minseokshin@kaist.ac.kr (M. Shin), dong-
gyukim@kaist.ac.kr (D. Kim), jqfan@princeton.edu (J. Fan).
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is optimal. To estimate large integrated volatility matrices using the approximate factor

model, the ARP estimator is further regularized using the principal orthogonal complement

thresholding (POET) method. The numerical study is conducted to check the finite sample

performance of the ARP estimator.

Keywords: heterogeneity, tail index, pre-averaging, minimax lower bound, optimality, POET,

factor model

1 Introduction

In modern financial studies and practices, volatility estimation is fundamental in risk management,

performance evaluation, and portfolio allocation. Due to the wide availability of high-frequency

financial data, many well-performing volatility estimation methods have been developed to estimate

integrated volatilities. Examples include two-time scale realized volatility (TSRV) (Zhang et al.,

2005), multi-scale realized volatility (MSRV) (Zhang, 2006, 2011), wavelet estimator (Fan and

Wang, 2007), pre-averaging realized volatility (PRV) (Christensen et al., 2010; Jacod et al., 2009),

kernel realized volatility (KRV) (Barndorff-Nielsen et al., 2008, 2011), quasi-maximum likelihood

estimator (QMLE) (Aı̈t-Sahalia et al., 2010; Xiu, 2010), and the local method of moments (Bibinger

et al., 2014). One of the stylized facts of financial data is the existence of price jumps, and

empirical studies have shown that the decomposition of daily variation into its continuous and jump

components can better explain the volatility dynamics (Aı̈t-Sahalia et al., 2012; Andersen et al.,

2007; Barndorff-Nielsen and Shephard, 2006; Corsi et al., 2010; Song et al., 2020). For example,

Fan and Wang (2007) and Zhang et al. (2016) employed the wavelet method to identify the jumps

based on noisy high-frequency data. Mancini (2004) studied a threshold method for jump detection

and presented the order of an optimal threshold, and Davies and Tauchen (2018) further examined

a data-driven threshold method. These estimation methods perform well for a small number

of assets. However, we often encounter a large number of assets in practices such as portfolio

allocation, which results in the curse of dimensionality. To overcome the curse of dimensionality

and obtain an efficient and effective large volatility estimator, we often impose the approximate

factor structure on the volatility matrix (Fan and Kim, 2018; Fan et al., 2013, 2018; Kim and
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Fan, 2019). For example, to account for common market factors such as sector, firm size, and

book-to-market ratios, the factor-based high-dimensional Itô process is widely employed, and the

idiosyncratic volatility is assumed to be sparse (Aı̈t-Sahalia and Xiu, 2017; Fan et al., 2016a,b; Kim

et al., 2018b; Kong, 2018). The principal orthogonal complement thresholding (POET) method

(Fan et al., 2013) is often employed to estimate these low-rank plus sparse matrices.

The performance of the factor-based large volatility matrix estimator critically depends on

the accuracy of each element of the integrated volatility estimator. Specifically, sub-Weibull tail

concentration for the input volatility matrix estimator is required to investigate its asymptotic

behaviors (Fan et al., 2013; Kim and Fan, 2019; Kong, 2018). However, one stylized fact of

stock-return data is heavy-tailedness, which violates the sub-Gaussian assumption of the stock-

return data. Recently, with a bounded fourth-moment assumption on the microstructural noise,

Fan and Kim (2018) developed a robust estimation method, which can attain sub-Gaussian tail

concentration with the optimal convergence rate. See also Catoni (2012); Minsker (2018). However,

we often observe that the bounded fourth-moment condition is violated. For example, Figure 1

shows the five selected box plots of daily log kurtoses for the 1-minute log-returns of the 200 most

liquid assets on the S&P 500 index, calculated using the previous tick scheme. These five selected

plots correspond to the days with the largest interquartile range (IQR), the 75th, 50th, 25th, and

0th (smallest) percentile of the IQR among 501 trading days in 2015–2016. From Figure 1, we find

that the log-return data are heavy-tailed and also have heterogeneous degrees of heaviness of tails

across the different assets and days. See also Cont (2001); Mao and Zhang (2018); Massacci (2017).

These facts generate the demand for developing an adaptive robust estimation method that can

handle heterogeneous heavy-tailedness.

In this paper, we develop an adaptive robust integrated volatility estimator based on jump-

diffusion processes contaminated by microstructural noises. We first use the pre-averaging scheme

(Jacod et al., 2009) to adjust the unbalanced order relationship between the microstructural noises

and true log-returns. We then employ the truncation method (Minsker, 2018) using the daily

moment conditions of assets. Specifically, we truncate pre-averaged variables according to their

heavy-tailedness, which allows for adaptive learning merits to be enjoyed. Also, the truncation

method sufficiently mitigates the effect of the jump signal on the pre-averaged variables. We
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Figure 1: The box plots for the daily distributions of log kurtoses calculated from 1-min log returns
based on the most liquid 200 stocks on the S&P 500 index. The 5 selected box plots correspond
to 5 days with the largest IQR, the 75th, 50th, 25th, and 0th (smallest) percentile of the IQR
among 501 trading days in 2015–2016, respectively. The red dash marks the kurtosis for the t5-
distribution. There are many assets whose 1-minute log-returns have empirical kurtosis larger than
t5-distribution and the numbers depend on the day of the market conditions.

call the proposed estimator the adaptive robust pre-averaging realized volatility (ARP) estimator.

We show that the ARP estimator has sub-Weibull tail concentration, with finite 2α-th moment

assumption for any α > 1. Also, by establishing matching upper and lower bounds for a pre-

averaging estimator class, we show that the proposed estimator can achieve the optimal rate. To

make inferences about large integrated volatility matrices using the ARP estimator, we employ the

factor-based high-dimensional Itô process, which admits a low-rank plus sparse structure for the

volatility matrix. The ARP estimator is further regularized by the POET method, and we also

investigate the theoretical properties of the POET estimator from the ARP estimator. Finally,

we propose an estimation method for the tail index α, resulting a full data-driven procedure, and

investigate its properties.

The rest of the paper is organized as follows. Section 2 provides the model and data structure for

estimating each daily integrated volatility, and Section 3 introduces an adaptive robust integrated

volatility estimation method. Section 4 establishes the concentration property and optimality of the

proposed estimator. In Section 5, with the approximate factor model, we show how to estimate the
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large integrated volatility matrix using the proposed estimation procedure. There, we also propose

the tail index estimator and show its concentration property. Section 6 presents a simulation study

to illustrate the finite sample performances of the proposed estimator and applies the estimation

method to the 200 most-liquid assets on the S&P 500. The conclusion is presented in Section 7,

and proofs are collected in the Appendix.

2 The model setup

We first introduce some notations. For any given p1 by p2 matrix A = (Aij)1≤i≤p1,1≤j≤p2
, let

∥A∥1 = max
1≤j≤p2

p1∑
i=1

|Aij|, ∥A∥∞ = max
1≤i≤p1

p2∑
j=1

|Aij|, ∥A∥max = max
i,j

|Aij|.

The matrix spectral norm ∥A∥2 is the square root of the largest eigenvalue of AA⊤, and the

Frobenius norm of A is denoted by ∥A∥F =
√
tr(A⊤A). We will use C to denote a generic

positive constant whose value is free of n and p and may vary between appearances.

Let X(t) = (X1(t), . . . , Xp(t))
⊤ be the vector of true log-prices for p assets at time t. To model

the high-frequency financial data, we often employ the jump-diffusion process as follows:

dX(t) = dXc(t) + J(t)

= µ(t)dt+ σ⊤(t)dWt + J(t), (2.1)

where Xc(t) = (Xc
1(t), . . . , X

c
p(t))

⊤ with Xc(0) = X(0) is the vector of true continuous log-prices

at time t, µ(t) = (µ1(t), . . . , µp(t))
⊤ is a drift vector, σ(t) is a q by p matrix, Wt is a q dimensional

independent Brownian motion, and the stochastic processes µ(t), X(t), Xc(t), and σ(t) are defined

on a filtered probability space (Ω,F , {Ft, t ∈ [0, 1]}, P ) with filtration Ft satisfying the usual

conditions. For the jump part, J(t) = (J1(t), . . . , Jp(t))
⊤ denotes the jump process and each Ji(t)

is decomposed as

Ji(t) = Ji1(t) + Ji2(t),
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where

Ji1(t) =

∫ t

0

∫
|x|>1

xNi(dx, ds)

is the sum of the big jumps, Ni is a Poisson random measure defined on R × [0, 1] with intensity

measure Ii(dx)ds,

Ji2(t) =

∫ t

0

∫
|x|≤1

x[Ni(dx, ds)− Ii(dx)ds]

is the compensated sum of small jumps, and Ni(dx, ds) − Ii(dx)ds is the compensated Poisson

random measure. We assume that Ji1(t) is a compound Poisson process with the bounded intensity

and Ji2(t) is an independent Lévy process. For the small jumps, we define the Blumenthal-Gettor

index π as

π = inf{δ ≥ 0,

∫
|x|≤1

|x|δIi(dx) <∞ for all i = 1, . . . , p}.

We note that the Blumenthal-Gettor index π measures the activity of small jumps. We describe

the condition for π in Assumption 1. This kind of jump processes is widely used to explain price

jumps (Aı̈t-Sahalia et al., 2020; Andersen et al., 2021; Cont and Mancini, 2007; Li et al., 2017;

Mancini, 2009). The instantaneous volatility matrix of the continuous log-price Xc(t) is

γ(t) = (γij(t))1≤i,j≤p = σ⊤(t)σ(t),

and their quadratic variation is

[Xc,Xc]t =

∫ t

0

γ(s)ds =

(∫ t

0

γij(s)ds

)
1≤i,j≤p

=

∫ t

0

σ⊤(s)σ(s)ds.

The parameter of interest is the integrated volatility matrix of Xc(t),

Γ = [Xc,Xc]1 =

∫ 1

0

γ(s)ds. (2.2)

Unfortunately, we cannot directly observe the true log-prices X(t). In fact, observed high-

frequency data are contaminated by microstructural noises. Furthermore, high-frequency data

encounter a non-synchronization problem, in which transactions for multiple assets often arrive
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asynchronously. In this regard, we assume that the observed log-price Yi(ti,k) obeys the following

model:

Yi(ti,k) = Xi(ti,k) + ϵi(ti,k) for i = 1, . . . , p, k = 0, . . . , ni, (2.3)

where ti,k is the k-th observation time point of the i-th asset, and for each given i = 1, . . . , p,

ϵi(ti,k), k = 0, . . . , ni, are i.i.d. noises with a mean of zero. We assume that for i, j = 1, . . . , p,

E [ϵi (t) ϵj (t)] = ηij and ϵi(t) is independent of ϵj(t
′) for t ̸= t′.

To handle the microstructural noise issue, several estimation methods have been developed

(Aı̈t-Sahalia et al., 2010; Barndorff-Nielsen et al., 2008, 2011; Bibinger et al., 2014; Christensen

et al., 2010; Fan and Wang, 2007; Jacod et al., 2009; Xiu, 2010; Zhang et al., 2005; Zhang, 2006,

2011). They work well for a finite number of assets and are widely adopted to develop large

volatility matrix estimation procedures (Kim et al., 2018a, 2016; Wang and Zou, 2010). However,

the observed log-prices are heavy-tailed, so these methods cannot lead to the estimators with the

sub-Weibull concentration bound, which is essential for making inferences about the asymptotic

behaviors of the large volatility matrix estimation procedures. To tackle the heavy-tail issue, Fan

and Kim (2018) proposed the robust pre-averaging realized volatility estimation procedure, which

can achieve the sub-Gaussian tail concentration with only the finite fourth-moment condition on

the microstructural noise. However, as shown in Figure 1, the degrees of heaviness of tails of assets’

log-returns is heterogeneous across assets and over time. Furthermore, jumps in the true log-price

process can also cause heavy-tailed distributions. To account for these features, we accommodate

heterogeneous degrees of tail distributions based on the jump-diffusion process contaminated by

microstructural noises. We allow each asset to have its own order of the highest finite absolute

moment (see Assumption 1 in Section 4 for details).

3 Adaptive robust pre-averaging realized volatility estima-

tor

In this section, we introduce an adaptive robust integrated volatility estimation procedure to handle

non-synchronization, price jump, and microstructural noise. To handle the non-synchronization

problem, we consider the generalized sampling time proposed by Aı̈t-Sahalia et al. (2010). We note
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that the generalized sampling time scheme includes synchronization schemes such as previous tick

(Zhang, 2011; Wang and Zou, 2010) and refresh time (Barndorff-Nielsen et al., 2011; Fan et al.,

2012). See also Bibinger et al. (2014); Chen et al. (2020); Fan and Kim (2019); Hayashi and Yoshida

(2005, 2011); Malliavin et al. (2009); Park et al. (2016). We define the generalized sampling time

as follows.

Definition 1. (Aı̈t-Sahalia et al., 2010). A sequence of time points τ = {τ0, . . . , τn} is said to be

the generalized sampling time if

(1) 0 = τ0 < τ1 < · · · < τn−1 < τn = 1;

(2) there exists at least one observation for each asset between consecutive τj’s; and

(3) the time intervals, {∆j = τj − τj−1; j = 1, . . . , n}, satisfy supj ∆j
p−→ 0.

Examples of generalized sampling scheme include the previous tick approach discussed in Zhang

(2011) and the refresh time scheme in Barndorff-Nielsen et al. (2011). For the i-th asset, we

select arbitrary observation, Yi(τi,k), between τk−1 and τk. In other words, we choose any τi,k ∈

(τk−1, τk] ∩ {ti,l, l = 0, 1, . . . , ni} for i = 1, . . . , p.

Based on synchronized time, τ , we adopt the pre-averaging method to manage the microstruc-

tural noise (Jacod et al., 2009). For the observed log-returns, Yi(τi,k+1)− Yi(τi,k), i = 1, . . . , p, k =

1, . . . , n − 1, the variance of the microstructural noise 2ηii dominates the continuous log-return

volatility
∫ τi,k+1

τi,k
γii(t)dt. Therefore, it is difficult to estimate the integrated volatility without

smoothing for denoising. To adjust the order relationship between the noises and continuous log-

returns, we use the following pre-averaged data to suppress the noises (Christensen et al., 2010;

Jacod et al., 2009):

Zi(τk) =
Kn−1∑
l=0

g

(
l

Kn

)
{Yi(τi,k+l+1)− Yi(τi,k+l)} for i = 1, . . . , p, k = 1, . . . , n−Kn, (3.1)

where the weight function g(·) is continuous and piecewise continuously differentiable with a piece-

wise Lipschitz derivative g′ and satisfies g(0) = g(1) = 0 and
∫ 1

0
{g(t)}2dt > 0. In this paper, we

choose bandwidth parameter Kn as CKn
1/2 for some constants CK , which yields the optimal rate
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n−1/4 for the resulting estimator. Then, the continuous log-returns and noises in Zi(τk)’s are of the

same order of magnitude (Fan and Kim, 2018). However, the pre-averaged random variables still

have heterogeneous heavy-tails across assets. Furthermore, there exist jump variations in the pre-

averaged data, which create outliers. To handle these problems, we robustly estimate the volatility

matrix by applying an adaptive truncation method according to the tails of the continuous part of

the data.

We define the quadratic pre-averaged random variables

Qij(τk) =
n−Kn

ϕKn

Zi(τk)Zj(τk) for i, j = 1, . . . , p, k = 1, . . . , n−Kn, (3.2)

where ϕ = 1
Kn

∑Kn−1
ℓ=0

{
g
(

ℓ
Kn

)}2

, and let

αij = 2 ∧ 2αiαj

αi + αj

, (3.3)

where αi is the order of the highest finite moment for the continuous part of Qii(τk) (see Assumption

1 in Section 4). We note that the harmonic mean provides that the continuous part of Qij(τk) has

the finite
2αiαj

αi + αj

-th moment (see Proposition 1(a) in the Appendix). Furthermore, since we can

obtain the optimal convergence rate under the finite second moment condition for the continuous

part of Qij(τk) (Fan and Kim, 2018) even when it has higher moments, we set αij ≤ 2. Therefore,

we define αij as (3.3).

Then, to handle the heterogeneous heavy-tails, we propose the following adaptive truncation

method:

T̂α
ij,θ =

1

(n−Kn)θij

n−Kn∑
k=1

ψαij
{θijQij (τk)} , (3.4)

where θij is a truncation parameter specified in Theorem 1 and implemented by (5.17), and ψα (x)
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is a bounded non-decreasing function defined for α ∈ (1, 2] as follows:

ψα (x) =



− log(1− tα + cαt
α
α) if x ≥ tα

− log(1− x+ cαx
α) if 0 ≤ x ≤ tα

log(1 + x+ cα|x|α) if − tα ≤ x ≤ 0

log(1− tα + cαt
α
α) if x ≤ −tα,

where cα = max
{
(α− 1)/α,

√
(2− α)/α

}
, and tα = (1/αcα)

1/(α−1) . We note that to obtain the

optimal sub-Weibull tail concentration for the ARP estimator, the inequality − log(1−x+cα|x|α) ≤

ψα (x) ≤ log(1 + x + cα|x|α) is required. Since the term cα appears in the upper bound, we need

to choose cα as small as possible under the following condition

1 + x+ cα|x|α > 0 and − log(1− x+ cα|x|α) ≤ log(1 + x+ cα|x|α)

for all x ∈ R. To satisfy the above inequality and obtain the sharp bound of the concentration

inequality, we choose cα = max
{
(α− 1)/α,

√
(2− α)/α

}
. On the other hand, since f(x) =

1+x+ cα|x|α has the minimum at x = − (1/αcα)
1/(α−1), to make ψα (x) non-decreasing, we choose

tα = (1/αcα)
1/(α−1). This proposed truncation is also able to mitigate the impact of jumps since

the impact of each jump for the truncated quadratic pre-averaged random variables is bounded

by the truncation level CKn/(nθij). In this point of view, the proposed approach is different

from the literature that handles the jumps by finding the exact jump locations. For example,

Cont and Mancini (2007) and Mancini (2009) first detected the jump locations and estimated

the integrated volatility only using the time intervals with no jumps. Their theorems rely on

the condition that the increments of the continuous part is bounded. However, in this paper, we

assume that the microstructural noise has the heavy tails, which makes it hard to distinguish the

jumps and outliers from the heavy-tailed microstructural noise. Thus, to handle this issue, we

first determine the truncation parameter according to the moment condition of the microstructural

noises and then control the impact of jumps using the selected truncation parameter. We note

that other truncation methods can also achieve a similar goal (see Fan et al. (2021)). It will be
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shown that the proposed adaptive robust estimator T̂α
ij,θ possesses the sub-Weibull concentration

bounds (see Theorem 1). Furthermore, by employing the tick-by-tick overlapping scheme, we can

mitigate the effect of the irregular observation time point, which can cause the inconsistency for

the pre-averaging estimator without the tick-by-tick overlapping (Mykland et al., 2019).

The adaptive robust estimator T̂α
ij,θ is, however, not a consistent estimator of the true integrated

volatility Γij, because the noises still remain in each Qij(τk). Indeed, it will be shown that T̂α
ij,θ

converges to

Tij = Γij + ρij, (3.5)

where

ρij =

∑n
k=1 1(τi,k = τj,k)

ϕKn

ζηij, ζ =
Kn−1∑
l=0

{
g

(
l

Kn

)
− g

(
l + 1

Kn

)}2

= O

(
1

Kn

)
,

with the covariance of noise ηij defined in (2.3), and 1(·) is the indicator function. Hence, to

estimate the integrated volatility Γij, we adjust T̂α
ij,θ by subtracting an estimator of ρij. For this

purpose, let us first define an adaptive robust estimator, ρ̂αij,θ, as

ρ̂αij,θ =
ζ

ϕKnθρ,ij

n−1∑
k=1

ψαij
{θρ,ijQρ,ij (τk)} , (3.6)

where

Qρ,ij(τk) =
1

2
{Yi(τi,k+1)− Yi(τi,k)}{Yj(τj,k+1)− Yj(τj,k)} (3.7)

for i, j = 1, . . . , p, k = 1, . . . , n − 1, and θρ,ij is truncation parameter that will be specified in

Theorem 3. We now define the integrated volatility estimator as follows:

Γ̂α
ij = T̂α

ij,θ − ρ̂αij,θ. (3.8)

We call this the adaptive robust pre-averaging realized volatility (ARP) estimator. This provides

a preliminary consistent estimate of Γ̂ij, which will be further regularized.
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4 Theoretical properties of the ARP estimator

In this section, we show the concentration property and optimality of the ARP estimator by

establishing matching upper and lower bounds for both T̂α
ij,θ and ρ̂αij,θ. We define

Y c
i (τi,k) = Xc

i (τi,k) + ϵi(τi,k), Zc
i (τk) =

Kn−1∑
l=0

g

(
l

Kn

)
{Y c

i (τi,k+l+1)− Y c
i (τi,k+l)} ,

Qc
ij(τk) =

n−Kn

ϕKn

Zc
i (τk)Z

c
j (τk), and

Qc
ρ,ij(τk) =

1

2
{Y c

i (τi,k+1)− Y c
i (τi,k)}{Y c

j (τj,k+1)− Y c
j (τj,k)},

whereXc
i (t) is the true continuous log-price process defined in (2.1), and the superscript c represents

the continuous part of the true log-price. Now, to investigate asymptotic properties of T̂α
ij,θ, we

make the following assumptions.

Assumption 1.

(a) There exist positive constants νµ and νγ such that

max
1≤i≤p

sup
0≤t≤1

|µi(t)| ≤ νµ a.s., and max
1≤i≤p

sup
0≤t≤1

γii(t) ≤ νγ a.s.

(b) The generalized sampling time {τj} is independent of the true log-price related processes de-

fined in (2.1) and the noise ϵi(ti,k). The time intervals, {∆j = τj − τj−1, 1 ≤ j ≤ n}, satisfy

max
1≤j≤n

∆j ≤ Cn−1 a.s.

(c) There exist positive constants, νQ and α1, . . . , αp > 1, such that for all 1 ≤ k ≤ n−Kn,

max
1≤i≤p

E {|Qc
ii(τk)|

αi} ≤ νQ.

(d) For i, j = 1, . . . , p, E [ϵi (ti,k) ϵj (tj,k′)] = ηij for ti,k = tj,k′, ϵi(ti,k) is independent of ϵj(tj,k′)

for ti,k ̸= tj,k′, and ϵi(·) is independent of the true log-price related processes.
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(e) The Blumenthal-Gettor index π satisfies π ∈ [0, 2), and we have

Ii(|x| > n(1−αi)/(4αi−2αiπ)) <∞ for i = 1, . . . , p.

Remark 1. For Assumption 1(a), the boundedness condition of the instantaneous volatility pro-

cess γii(t) can be relaxed to the locally boundedness condition when we investigate the asymptotic

behaviors of volatility estimators, such as their convergence rate (see Aı̈t-Sahalia and Xiu (2017)).

Specifically, Lemma 4.4.9 in Jacod and Protter (2012) indicates that if the asymptotic result, such

as convergence in probability or stable convergence in law, is satisfied under the boundedness con-

dition, it is also satisfied under the locally boundedness condition. From this point of view, because

we consider a finite time period, it is sufficient to investigate the asymptotic properties under the

boundedness condition. Thus, Assumption 1(a) is not restrictive.

Remark 2. First of all, the finite 2αi-th moment condition for the microstructural noises with

Assumption 1(a),(b),(d) implies Assumption 1(c). It is the finite moment condition, which entails

that the quadratic pre-averaged variable, Qc
ij(τk), for the continuous part satisfies

E
{∣∣Qc

ij(τk)
∣∣αij

∣∣∣Fτk

}
≤ C a.s. (4.1)

for all 1 ≤ i, j ≤ p and 1 ≤ k ≤ n − Kn, where αij is defined in (3.3) (see Proposition 1(a)

in the Appendix). To account for the heterogeneous heavy-tailedness, we allow the tail index αi

to vary from 1 to infinity. If αi = 2 for all i = 1, . . . , p, it is the similar setting as that of

Fan and Kim (2018), and the ARP estimator has universal truncation, which we call the universal

robust pre-averaging realized volatility (URP) estimator. The main difficulty in extending the theory

for the URP estimator to that for the ARP estimator is that αi’s may not be integers. Thus,

to obtain the optimal convergence rate, we need to choose appropriate truncation function and

truncation parameters and carefully derive the upper bounds. We note that when αi < 2, the

URP estimator needs to choose the smallest tail index for all tails. This choice cannot provide the

optimal convergence rate for the heterogeneous heavy-tailedness. On the other hand, to implement

the ARP procedure, we need to estimate the tail indices, which may cause some estimation errors.

To overcome this problem, we proposed the novel tail index estimation procedure and show its
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concentration properties in Section 5.2. To investigate the heterogeneous heavy-tail, we compare

the ARP and URP estimators in the numerical studies.

Remark 3. Assumption 1(e) allows the infinity number of small jumps. However, we additionally

need the finite number of jumps whose sizes are bigger than n(1−αi)/(4αi−2αiπ) due to the outliers

coming from the heavy-tailed observations. Specifically, since the microstructural noises have the

heavy tails, Qc
ii(τk) can have large values that are comparable to the jumps. To handle this issue,

we need the condition Ii(|x| > n(1−αi)/(4αi−2αiπ)) < ∞. We note that if π = 0, Assumption 1(e)

is not required. Furthermore, to investigate asymptotic theorems for the tail index estimation in

Section 5.2, we need the condition π = 0 (see Assumption 4(b)).

Remark 4. To obtain the sub-Weibull tail concentration, we technically need some bounded con-

dition for the target parameter, such as Assumption 1(a). However, if we change the parameter of

interest to the sum of conditional expected values as follows:

Γnew =
n−1∑
k=0

E

{∫ τk+1

τk

γ(t)dt

∣∣∣∣Fτk

}

and impose the bounded condition for the conditional expected values, namely,

max
1≤i≤p

max
0≤k≤n−1

E

[{
(τk+1 − τk)

−1

∫ τk+1

τk

γii(t)dt

}αi
∣∣∣∣Fτk

]
≤ νγ a.s.,

we can obtain the same result for the new target parameter Γnew. Under this condition, the ran-

dom fluctuation of the instantaneous volatility process can be the source of the heavy-tailedness.

Then, the proposed procedure can estimate the new target parameter Γnew with the optimal rate

n(1−αij)/2αij .

The theorem below shows that T̂α
ij,θ has the sub-Weibull tail concentration with a convergence

rate of n(1−αij)/2αij .

Theorem 1. (Upper bound) Under the models (2.1) and (2.3) and Assumption 1, let δ−1 ∈

[nc, en
1/2

] for some positive constant c > 0. Take

θij =

(
Kn log (3K

2
nδ

−1)

(αij − 1) cαij
Sij(n−Kn)

)1/αij

,
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where Sij =
1

n−Kn

∑n−Kn

k=1 Uij (τk), and Uij (τk)’s are some positive constants defined in Proposi-

tion 1(a). Then, we have, for a sufficiently large n,

Pr
{
|T̂α

ij,θ − Tij| ≤ C
(
n−1/2 log δ−1

)(αij−1)/αij
}
≥ 1− δ. (4.2)

Theorem 1 indicates that T̂α
ij,θ has the sub-Weibull concentration bound with the convergence

rate of n(1−αij)/2αij . Specifically, as long as the number of assets, p, satisfies pb+2 ∈ [nc, en
1/2

] for

some positive constant c > 0, we have

Pr

{
max

1≤i,j≤p
|T̂α

ij,θ − Tij| ≥ Cb

(
n−1/2 log p

)(α−1)/α
}

≤ p−b

for any constant b > 0 and α = min1≤i≤p αi, where Cb is some constant depending on b, which is the

essential condition for investigating inferences of large integrated volatility matrix (see Proposition

1). An interesting finding is that there is a trade-off between the convergence rate n(1−αij)/2αij and

the tail indices αi and αj. This raises the question of whether the upper bound in (4.2) is optimal.

Let T̂ij (Qij (τk) , δ) = T̂ij (Qij (τ1) , . . . , Qij (τn−Kn) , δ) be any pre-averaging estimator for Tij

defined in (3.5), which takes the values of pre-averaged variables Qij (τk) , k = 1, . . . , n − Kn,

defined in (3.2). The following theorem establishes the lower bound for the maximum con-

centration probability among the class of pre-averaging estimators T̂ij (Qij (τk) , δ) which satisfy

max1≤i≤p E {|Qc
ii(τk)|

αi} ≤ C for all 1 ≤ k ≤ n−Kn.

Theorem 2. (Lower bound) Under the assumptions in Theorem 1, let αij ∈ (1, 2) for some 1 ≤

i, j ≤ p. Then, we have, for a sufficiently large n,

min
T̂ij(Qij(τk),δ)

max
Qc∈Ξ(α1,...,αp)

Pr
{
|T̂ij (Qij (τk) , δ)− Tij| ≥ C

(
n−1/2 log δ−1

)(αij−1)/αij
}
≥ δ, (4.3)

where

Ξ(α1, . . . , αp) = {Qc = (Qc
ii(τk))i=1,...,p,k=1,...,n−Kn : max

i,k
E {|Qc

ii(τk)|
αi} ≤ C}.

Theorem 2 shows that the lower bound is n(1−αij)/2αij , which matches the upper bound in

Theorem 1. Thus, the proposed estimator obtains the optimal convergence rate of n(1−αij)/2αij .
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Remark 5. To handle the microstructural noise, we use the sub-sampling scheme, and the number

of non-overlapping quadratic pre-averaged variables Qij(τk) is Cn
1/2, which is known as the optimal

choice. That is, we are only able to use n1/2 observations to estimate Tij due to the microstructural

noise, which is the cost of managing the microstructural noise. Thus, the optimal convergence

rate is expected to be the square root of the rates of the estimators that are not affected by the

microstructural noise. From this point of view, the convergence rate n(1−αij)/2αij is consistent with

the results in Devroye et al. (2016) and Sun et al. (2020).

Recall that the ARP estimator has the following bias adjustment:

Γ̂α
ij = T̂α

ij,θ − ρ̂αij,θ. (4.4)

Thus, to establish the concentration inequality for the ARP estimator Γ̂α
ij, we need to investigate

ρ̂αij,θ. To do this, we use the quadratic log-return random variables Qρ,ij(τk) defined in (3.7) and

require the following moment condition.

Assumption 2. There exists a positive constant νρ,Q such that

max
1≤i≤p

E
{∣∣Qc

ρ,ii(τk)
∣∣αi
}
≤ νρ,Q

for all 1 ≤ k ≤ n− 1.

Remark 6. Assumption 2 indicates that the continuous part of the observed log-return, Y c
i (τi,k+1)−

Y c
i (τi,k), has finite 2αi-th moment. We note that Assumption 1(c) is satisfied under Assumption

1(a),(b),(d) and Assumption 2 (see Proposition 2 in the Appendix).

With this αij-th moment condition, we establish the concentration inequalities for the ARP

estimator Γ̂α
ij in the following theorem.

Theorem 3. (Upper bound) Under the assumptions in Theorem 1 and Assumption 2, take

θρ,ij =

(
log (6δ−1)

(αij − 1) cαij
Sρ,ij(n− 1)

)1/αij

,
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where Sρ,ij =
1

n− 1

∑n−1
k=1 Uρ,ij (τk), and Uρ,ij (τk)’s are some positive constants defined in Proposi-

tion 1(b). Then, for a sufficiently large n, we have

Pr
{
|ρ̂αij,θ − ρij| ≤ C

(
n−1 log δ−1

)(αij−1)/αij

}
≥ 1− δ (4.5)

and

Pr
{
|Γ̂α

ij − Γij| ≤ C
(
n−1/2 log δ−1

)(αij−1)/αij
}
≥ 1− 2δ. (4.6)

Theorem 3 shows that ρ̂αij,θ has a sub-Weibull tail concentration bound with a convergence rate

of n(1−αij)/αij , which is negligible compared to the upper bound in Theorem 1. Thus, the ARP

estimator has a sub-Weibull tail concentration with an optimal convergence rate of n(1−αij)/2αij as

shown in Theorems 1–2. Although the upper bound for ρ̂αij,θ is dominated by the upper bound

in Theorem 1, it is worth checking whether ρ̂αij,θ is an optimal estimator. Let ρ̂ij (Qρ,ij (τk) , δ) =

ρ̂ij (Qρ,ij (τ1) , . . . , Qρ,ij (τn−1) , δ) be any estimator for ρij, possibly depending on δ. The following

theorem provides a lower bound for the maximum concentration probability among the class of

estimators ρ̂ij (Qρ,ij (τk) , δ) which satisfy max1≤i≤p E
{∣∣Qc

ρ,ii(τk)
∣∣αi
}
≤ C for all 1 ≤ k ≤ n− 1.

Theorem 4. (Lower bound) Under the assumptions in Theorem 3, let αij ∈ (1, 2) for some 1 ≤

i, j ≤ p. Then, we have, for a sufficiently large n,

min
ρ̂ij(Qρ,ij(τk),δ)

max
Qc

ρ∈Ξρ(α1,...,αp)
Pr
{
|ρ̂ij (Qρ,ij (τk) , δ)− ρij| ≥ C

(
log δ−1/n

)(αij−1)/αij

}
≥ δ, (4.7)

where

Ξρ(α1, . . . , αp) = {Qc
ρ = (Qc

ρ,ii(τk))i=1,...,p,k=1,...,n−1 : max
i,k

E
{∣∣Qc

ρ,ii(τk)
∣∣αi
}
≤ C}.

The upper bound in (4.5) and lower bound in (4.7) match, which implies that ρ̂αij,θ achieves

the optimal rate. In sum, the proposed estimators for Tij and ρij are both optimal in terms of

convergence rate, which implies that the ARP estimator is also optimal in the class of pre-averaging

approaches.
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5 Application to large volatility matrix estimation

In this section, we discuss how to estimate large integrated volatility matrices based on the approx-

imate factor model using the ARP estimator. Specifically, we assume that the integrated volatility

matrix has the following low-rank plus sparse structure:

Γ = Θ+Σ =
r∑

k=1

λ̄kq̄kq̄
⊤
k +Σ,

where Θ is a low-rank volatility matrix with the i-th largest eigenvalue λ̄i > 0 and its associated

eigenvector q̄i. The low-rank volatility matrix Θ accounts for the factor effect on the volatility

matrix, and we assume that its rank r is bounded. The sparse volatility matrix Σ stands for

idiosyncratic risk and satisfies the following sparse condition:

max
1≤i≤p

p∑
j=1

|Σij|q(ΣiiΣjj)
(1−q)/2 ≤Mσsp a.s., (5.1)

where Mσ is a positive random variable with E (M2
σ) < ∞, q ∈ [0, 1), and sp is a deterministic

function of p that grows slowly in p. When Σii is bounded from below, and q = 0, sp measures the

maximum number of nonvanishing elements in each row of matrix Σ. This low-rank plus sparse

structure is widely adopted for studying large matrix inferences (Aı̈t-Sahalia and Xiu, 2017; Bai,

2003; Bai and Ng, 2002; Fan and Kim, 2018; Fan et al., 2018; Jung et al., 2022; Kim et al., 2018b;

Stock and Watson, 2002).

5.1 Principal orthogonal complement thresholding

To harness the low-rank plus sparse structure, we employ the POET method (Fan et al., 2013)

as follows. We first decompose an input volatility matrix using the ARP estimators in (3.8) as

follows:

Γ̂ =
(
Γ̂α
ij

)
i,j=1,...,p

=

p∑
k=1

λ̂kq̂kq̂
⊤
k ,
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where λ̂i is the i-th largest eigenvalue of Γ̂, and q̂i is its corresponding eigenvector. Then, using

the first r principal components, we estimate the low-rank volatility matrix Θ by

Θ̂ =
r∑

k=1

λ̂kq̂kq̂
⊤
k .

To estimate the sparse volatility matrix Σ, we first calculate the input idiosyncratic volatility

matrix estimator Σ̃ = (Σ̃ij)1≤i,j≤p = Γ̂ − Θ̂ and employ the adapted thresholding method as

follows:

Σ̂ij =


Σ̃ij ∨ 0, if i = j

sij(Σ̃ij)1(|Σ̃ij| ≥ ϖij), if i ̸= j

and Σ̂ = (Σ̂ij)1≤i,j≤p,

where the thresholding function sij(·) satisfies that |sij(x)−x| ≤ ϖij, and the adaptive thresholding

level ϖij = ϖn

√
(Σ̃ii ∨ 0)(Σ̃jj ∨ 0), which corresponds to the correlation thresholding at level

ϖn. Examples of the thresholding function sij(x) include the soft thresholding function sij(x) =

x − sign(x)ϖij and the hard thresholding function sij(x) = x. The tuning parameter ϖn will

be specified in Proposition 1. In the empirical study, we use the hard thresholding method. We

note that the large volatility matrix estimation method proposed by Kong (2018) first estimates the

instantaneous factor and idiosyncratic volatility matrices by applying principal component analysis

(PCA) to the instantaneous volatility matrices. Then, by aggregating the instantaneous factor and

idiosyncratic volatility matrix estimators, they estimate the integrated factor and idiosyncratic

volatility matrix, respectively. Similarly, we can use the proposed robust estimation procedure to

estimate the instantaneous input volatility matrix. Then, we may obtain similar results.

With the low-rank volatility matrix estimator Θ̂ = (Θ̂ij)1≤i,j≤p and the sparse volatility matrix

estimator Σ̂ = (Σ̂ij)1≤i,j≤p, we estimate the integrated volatility matrix Γ by

Γ̃POET = Θ̂+ Σ̂.

To investigate asymptotic behaviors of high-dimensional statistical inference methods such as the

POET estimator, the sub-Weibull concentration inequality is required and is satisfied by the ARP

estimator, as shown in Theorem 3. Thus, the POET estimator based on the ARP estimators
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can enjoy asymptotic properties similar to those established in Fan and Kim (2018). To study

its asymptotic behaviors, we need the following technical conditions, imposed by Fan and Kim

(2018), but the sub-Weibull concentration rate is different because we consider heterogeneous

heavy-tailedness.

Assumption 3.

(a) Let Dλ = min{λ̄i− λ̄i+1 : 1 ≤ i ≤ r}, (λ1+ pMσ)/Dλ ≤ C1 a.s., and Dλ ≥ C2p a.s. for some

generic constants C1 and C2, where λ̄r+1 = 0, Mσ is defined in (5.1), and λ̄i and λi are the

i-th eigenvalues of Θ and Γ, respectively.

(b) For some fixed constant C3, we have

p

r
max
1≤i≤p

r∑
j=1

q̄2ij ≤ C3 a.s.,

where q̄j = (q̄1j, . . . , q̄pj)
⊤ is the j-th eigenvector of Θ.

(c) The smallest eigenvalue of Σ stays away from zero almost surely.

(d) sp/
√
p+

(
n−1/2 log p

)(αmin−1)/αmin = o(1), where αmin = min1≤i≤p αi.

Under Assumption 3, we can establish the following proposition, similar to the proof of Theorem

3 in Fan and Kim (2018). Below, we assume a generic input Γ̂ that satisfies (5.2). In particular,

the ARP estimator satisfies the condition, as shown in Theorem 3.

Proposition 1. Under the model (2.1), let αmin = min1≤i≤p αi and assume that the concentration

inequality,

Pr

{
max

1≤i,j≤p
|Γ̂ij − Γij| ≥ C

(
n−1/2 log p

)(αmin−1)/αmin

}
≤ p−1, (5.2)

Assumption 3, and the sparse condition (5.1) are met. Take ϖn = Cϖβn for some large fixed

constant Cϖ, where βn = Mσsp/p +
(
n−1/2 log p

)(αmin−1)/αmin. Then, we have, for a sufficiently

large n, with probability greater than 1− 2p−1,

∥Σ̂−Σ∥2 ≤ CMσspβ
1−q
n , (5.3)

∥Σ̂−Σ∥max ≤ Cβn, (5.4)
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∥Γ̃POET − Γ∥Γ ≤ C
[
p1/2

(
n−1/2 log p

)(2αmin−2)/αmin
+Mσspβ

1−q
n

]
, and (5.5)

∥Γ̃POET − Γ∥max ≤ Cβn, (5.6)

where the relative Frobenius norm ∥A∥2Γ = p−1∥Γ−1/2AΓ−1/2∥2F . Furthermore, suppose thatMσspβ
1−q
n =

o(1). Then, with probability approaching 1, the minimum eigenvalue of Σ̂ is bounded away from 0,

Γ̃POET is non-singular,

∥Σ̂
−1

−Σ−1∥2 ≤ CMσspβ
1−q
n , and (5.7)

∥Γ̃
−1

POET − Γ−1∥2 ≤ CMσspβ
1−q
n . (5.8)

Remark 7. Unlike Theorem 3 in Fan and Kim (2018), Proposition 1 imposes the sub-Weibull

concentration condition (5.2), which is the optimal rate with only finite 2αmin-th moments, as

shown in Theorems 1–4. Note that if 2p3 ∈ [nc, en
1/2

] for some positive constant c > 0, Theorem

3 shows that the ARP estimator satisfies (5.2) for δ = 1/ (2p3). Also, the POET estimator is

consistent in terms of the relative Frobenius norm as long as p = o(n(2αmin−2)/αmin). That is, the

convergence rate is a function of the minimum tail index αmin.

In the numerical study, we often observe that Γ̃POET is singular when the sample size n is

small. To overcome this issue, we add some small value to all of the diagonal entries of Γ̃POET .

Specifically, we adjust Γ̃POET by

Γ̂POET = Γ̃POET + cPOETn
−1/2Ip (5.9)

for some constant cPOET > 0, where Ip is the p dimensional identity matrix. This type of adjustment

is often used when estimating the large inverse matrices (Cai et al., 2011, 2016). We note that the

adjustment (5.9) does not affect the theoretical properties of the POET estimator.
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5.2 Tail index estimation

In this section, we propose an estimation procedure for the tail indices. Specifically, we modify the

Hill’s estimator (Hill, 1975) as follows. Let

H
(j)
i = j log

(
D

(j)
i

D
(j+1)
i

)
for j = 1, . . . , n− 2,

whereD
(1)
i ≥ . . . ≥ D

(n−1)
i are the order statistics of {|Yi (τi,2)−Yi (τi,1) |, . . . , |Yi (τi,n)−Yi (τi,n−1) |}.

Then, the tail index is estimated by

α̃i =
un

2
∑un

j=1H
(j)
i 1

(
H

(j)
i ≤ ω

) , (5.10)

where un → ∞ is a given sequence such that un/n→ 0 and ω is a truncation parameter which will

be determined in Theorem 5. We note that the indicator function is used to handle the jumps in

D
(j)
i .

To investigate the theoretical properties of α̃i, we need the following assumptions.

Assumption 4.

(a) For each 1 ≤ i ≤ p, |ϵi (τi,2) − ϵi (τi,1) |, . . . , |ϵi (τi,n) − ϵi (τi,n−1) | have the cumulative distri-

bution function Fi(x) satisfying

Fi(x) = 1− (ci/x)
2αi for x ≥ C (n/un)

1/(2αi) ,

where ci is some positive constant.

(b) max
1≤i≤p

αi ≤ C, max
1≤i≤p

ci ≤ C, and the Blumenthal-Gettor index π = 0.

(c) nκ ≤ p for some positive constant κ, (log p)2 /un → 0 as n, p→ ∞, and un ≤ n(αmax+1)/(2αmax+1),

where αmax = max
1≤i≤p

αi.

Remark 8. Assumption 4(a) indicates that |ϵi (τi,k)− ϵi (τi,k−1) |, k = 2, . . . , n, have the same tail

distribution as the Pareto distribution with a scale parameter ci and a shape parameter 2αi, which

has only finite 2αi-th moment. The Pareto distribution is widely used to model the heavy-tailed
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distribution (Chin, 2008; Coronel-Brizio and Hernandez-Montoya, 2005; Dagum, 2014; Nirei and

Aoki, 2016). Since we only require the condition for the tail, Assumption 4(a) is not restrictive.

We note that for appropriate scale parameter ci, the Pareto distribution with the shape parameter

2αi has asymptotically the same tails as the t-distribution with 2αi degrees of freedom. Finally, we

need the condition un ≤ n(αmax+1)/(2αmax+1) to handle the jumps using the threshold method. Since

(αmax + 1)/(2αmax + 1) > 1/2, we can choose un = Cun
1/2, which results in the convergence rate

n−1/4 (see Theorem 5). Thus, this condition is not restrictive.

The theorem below shows that α̃i has the sub-exponential tail concentration with a convergence

rate of u
−1/2
n .

Theorem 5. Under the models (2.1) and (2.3) and Assumption 4, for any given positive constant

a, choose ω = Cω,a log p for some large constant Cω,a > 0. Then, for a sufficiently large n, we have,

with probability at least 1− p−a,

max
1≤i≤p

|α̃i − αi| ≤ Cu−1/2
n log p. (5.11)

As discussed above, since (αmax + 1)/(2αmax + 1) > 1/2, we can obtain the convergence rate

(5.11) of at least n−1/4. In this paper, we choose un = Cun
1/2 for some constant Cu. This choice is

enough to obtain the theoretical results obtained in Theorem 3, which will be shown in Proposition

2.

Since α̃i has the estimation error, α̃i can be bigger than the true tail index αi. In this case,

the truncation parameters θii and θρ,ii may go to zero and then the heavy-tailedness may not be

handled well. To tackle this obstacle, we adjust α̃i as follows:

α̂i = α̃i − cξn
−ξ log p, (5.12)

where cξ is some positive constant and 0 < ξ < 1/4. Then, under the assumptions in Theorem 5,

we have

Pr

{
max
1≤i≤p

(α̂i − αi) < 0 and max
1≤i≤p

|α̂i − αi| ≤ Cn−ξ log p

}
≥ 1− p−a. (5.13)

The following proposition shows that with α̂i, we can obtain the same theoretical results as in
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Theorem 3.

Proposition 2. Under the assumptions in Theorem 1, Theorem 3, and Theorem 5, let log p ≤ Cnw

for some positive constant w < ξ. Choose the estimator of αij as

α̂ij = 2 ∧ 2α̂iα̂j

α̂i + α̂j

. (5.14)

Then, for any given positive constant a, we have, with probability at least 1− p−a,

|Γ̂α
ij − Γij| ≤ C

(
n−1/2 log p

)(αij−1)/αij
. (5.15)

Proposition 2 indicates that the ARP estimator with α̂ij also has the optimal convergence rate.

Thus, the POET estimator based on the ARP estimators also satisfies (5.2), and so it can enjoy

the same theoretical results as in Proposition 1.

5.3 Discussion on the tuning parameter selection

To implement the ARP estimation procedure, we need to choose tuning parameters. In this section,

we discuss how to select the tuning parameters for the numerical studies. To obtain α̃i in (5.10),

we choose

un = cu⌊n1/2⌋ and ω = cω log p,

where cu and cω are tuning parameters. Since the tail index should be bigger than 1, we adjust α̃i

as follows:

α̂i = max{α̃i − cξn
−ξ log p, 1.1}, (5.16)

where ξ and cξ are tuning parameters. In the numerical study, we choose cu = 2, cω = 1/3, ξ = 0.2,

and cξ = 0.01. Then, we obtained α̂ij based on (5.14). For the estimation of Tij and ρij, we note

that the truncation function ψα(x) truncates the variables around zero, which produces some bias

(Minsker, 2018). We also note that truncating the variables around some other constant does not

affect the asymptotic theoretical results. Thus, to improve the performance of the ARP estimator

in the numerical perspective, we truncate the variables around their median value. Specifically,

let MQij be the median of Qij (τk), k = 1, . . . , n − Kn, and MQρ,ij be the median of Qρ,ij (τk),
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k = 1, . . . , n− 1. Then, we estimate Tij and ρij as follows:

T̂α
ij,θ =MQij +

1

(n−Kn)θij

n−Kn∑
k=1

ψαij
{θij [Qij (τk)−MQij]}

and

ρ̂αij,θ =
(n− 1)ζ

ϕKn

[
MQρ,ij +

1

(n− 1)θρ,ij

n−1∑
k=1

ψαij
{θρ,ij [Qρ,ij (τk)−MQρ,ij]}

]
.

With this scheme, we choose the thresholding level as follows:

θij = c

(
Kn log p

(α̂ij − 1) cα̂ij
Ŝij(n−Kn)

)1/α̂ij

(5.17)

and

θρ,ij = c

(
log p

(α̂ij − 1) cα̂ij
Ŝρ,ij(n− 1)

)1/α̂ij

, (5.18)

where Ŝij =
1

n−Kn

∑n−Kn

k=1

{
|Qij (τk)−MQij|α̂ij

}
, Ŝρ,ij =

1

n− 1

∑n−1
k=1

{
|Qρ,ij (τk)−MQρ,ij|α̂ij

}
,

and c is a tuning parameter. In the simulation study, we choose c as 0.5. For the empirical study,

we choose c that minimizes the corresponding mean squared prediction error (MSPE) for the in-

sample period. Details can be found in Section 6.2. In ψα(x), cα is determined by α̂ij, that is,

cα̂ij
= max

{
(α̂ij − 1)/α̂ij,

√
(2− α̂ij)/α̂ij

}
. In the pre-averaging stage, we choose Kn = ⌊n1/2⌋

and g(x) = x ∧ (1 − x). Finally, we select cPOET = 3median
{
λ1

(
Γ̃POET

)
, . . . , λp

(
Γ̃POET

)}
,

where λi

(
Γ̃POET

)
is the i-th largest eigenvalue of Γ̃POET .

6 Numerical study

6.1 A simulation study

To check the finite sample performance of the ARP estimator, we conducted a simulation study. We

considered the jump diffusion process and generated the data with frequency 1/nall. We used the

heterogeneous heavy-tail process (heavy-tail process 1), a homogeneous heavy-tail process (heavy-

tail process 2), and a sub-Gaussian process. We generated the non-synchronized observation time

points and employed the refresh time scheme. Specifically, we considered the following true log-
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price process:

dX(t) = µ(t)dt+ ϑ⊤(t)dW∗
t + σ⊤(t)dWt + L(t)dN(t),

where µ(t) = (0.02, . . . , 0.02)⊤, W∗
t and Wt are r and p dimensional independent Brownian mo-

tions, respectively, ϑ(t) and σ(t) are r by r and p by p matrices, respectively, L(t) is the jump size,

and N(t) is the p dimensional Poisson process with the intensity I(t). To generate two heavy-tail

processes, we used a setting similar to those in Wang and Zou (2010) and Fan and Kim (2018).

Specifically, let σ(t) be the Cholesky decomposition of ς(t) = (ςij(t))1≤i,j≤p. The diagonal elements

of ς(t) come from four different processes: geometric Ornstein-Uhlenbeck processes, the sum of

two CIR processes (Cox et al., 1985; Barndorff-Nielsen, 2002), the volatility process in Nelson’s

GARCH diffusion limit model (Wang, 2002), and the two-factor log-linear stochastic volatility pro-

cess (Huang and Tauchen, 2005) with leverage effect. Details can be found in Wang and Zou (2010).

To control the tail behaviors of the instantaneous volatility matrix ς(t), we used the t-distribution

as follows:

ςii(tl) = (1 + |tdfi,l|) ς̃ii(tl),

where for l = 1, . . . , nall, tdfi,l are the i.i.d. t-distributions with degrees of freedom dfi, tl = l/nall,

and ς̃ii(tl) were generated by the four processes listed above. To account for the heterogeneous

heavy-tailed distribution (heavy-tail process 1), dfi were generated from the unif(3, 4), whereas,

for the homogeneous heavy-tailed distribution (heavy-tail process 2), we set dfi = 5. To obtain the

sparse instantaneous volatility matrix ς(t), we generated its off-diagonal elements as follows:

ςij(tl) = {κ(tl)}|i−j|
√
ςii(tl)ςjj(tl), 1 ≤ i ̸= j ≤ p,

where the process κ(t) is given by

κ(t) =
e

1
2
u(t) − 1

e
1
2
u(t) + 1

, du(t) = 0.03{0.64− u(t)}dt+ 0.118u(t)dWκ,t,

Wκ,t =
√
0.96W 0

κ,t − 0.2

p∑
i=1

Wit/
√
p,

andW 0
κ,t, κ = 1, . . . , p, are one dimensional Brownian motions independent of the Brownian motions

W∗
t and Wt. The low-rank instantaneous volatility matrix ϑ⊤(t)ϑ(t) is B⊤{ϑf (t)}⊤ϑf (t)B, where
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B = (Bij)1≤i≤r,1≤j≤p ∈ Rr×p, and Bij was generated from the unif(-0.7, 0.7), and ϑf (t) was

generated similar to σ(t). Specifically, ϑf (t) is the Cholesky decomposition of ςf (t), and the

diagonal elements of ςf (t) at time tl were

ςfii(tl) =
{
1 +

∣∣∣tfdfi,l∣∣∣} ς̃fii(tl),

where tfdfi,l, l = 1, . . . , nall, are the i.i.d. t-distributions with degrees of freedom dfi, and ς̃
f
ii(tl), l =

1, . . . , nall, were generated from the geometric Ornstein-Uhlenbeck processes. The off-diagonal

elements of ςf (t) were set as zero. For the jump part, we chose I(t) = (25, . . . , 25)⊤, and the jump

size Li(t) was obtained from independent t-distribution with degrees of freedom dfi and standard

deviation 0.15
√∫ 1

0
γii(t)dt. We also generated a sub-Gaussian process similarly to the heavy-tail

process, except that t-distribution terms were set as standard normal distribution terms.

To generate the observation time points, we first obtained (nall + 1) sampling time points,

tk = k/nall, k = 0, . . . , nall. Based on these points, we generated non-synchronized data similar to

the scheme in Aı̈t-Sahalia et al. (2010), as follows. First, p random proportions wi, i = 1, . . . , p,

were independently generated from the unif(0.8, 1). Second, we set each tk as the observation

time point of the i-th asset if the independent Bernoulli random variable with parameter wi had a

value of 1. Third, the noise-contaminated high-frequency observations Yi(ti,k) were generated from

the model (2.3). Specifically, the noise ϵi(ti,k) was obtained from independent t-distribution with

degrees of freedom dfi and standard deviation 0.05
√∫ 1

0
γii(t)dt. We chose p = 200 and r = 3, and

we varied nall from 1000 to 4000. We employed the refresh time scheme to obtain synchronized

data.

To investigate the effect of the adaptiveness of the proposed ARP procedure, we introduce a

universal robust pre-averaging realized volatility (URP) estimator, which uses the same estimation

procedure as the ARP estimator with α̂ij = 2 for all 1 ≤ i, j ≤ p. That is, the URP estimator

truncates the pre-averaged variables with the universal tail index level. Also, we employed the

robust pre-averaging realized volatility (RPRV) estimator (Fan and Kim, 2018), which can handle
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the bounded fourth moment condition as the URP estimator. Specifically, we first obtained

T̂RPRV
ij = argmin

x

n−Kn∑
k=0

ℓhij

(
n−Kn + 1

ϕKn

Zi(τk)Zj(τk)1 {|Zi(τk)| ≤ vi,n}1 {|Zj(τk)| ≤ vj,n} − x

)
,

where hij is the truncation parameter, Kn = ⌊n1/2⌋, ℓh is the Huber loss

ℓh(x) =


2h|x| − h2 if |x| ≥ h

x2 if |x| < h,

and vi,n = ci,vn
−0.235 is a thresholding level for some constant ci,v. We chose ci,v as 7 times the

sample standard deviation for the pre-averaged variables n1/4Zi (τk). We note that the thresholding

for Zi(τk) is used to handle the jumps. Then, we obtained

η̂RPRV
ii = argmin

x

n−1∑
k=0

ℓhη,ii

(
[Yi(τk+1)− Yi(τk)]

2 /2− x
)
,

where hη,ii is the truncation parameter. With T̂RPRV
ij and η̂RPRV

ii , we calculated the RPRV estimator

as follows:

Γ̂RPRV
ij = T̂RPRV

ij − n−Kn + 1

ϕKn

ζη̂RPRV
ij 1(i = j).

In the numerical study, we chose

hij =

√
(n−Kn + 1)̂bij

Kn log p
and hη,ii =

√
nb̂η,ii
2 log p

,

where the asymptotic variance estimators b̂ij and b̂η,ii can be obtained by (4.9) and (5.2) in Fan and

Kim (2018). We also employed the jump adjusted pre-averaging realized volatility matrix (PRVM)

estimator (Aı̈t-Sahalia and Xiu, 2016; Christensen et al., 2010; Jacod et al., 2009) as follows:

Γ̂PRV
ij =

1

ϕKn

n−Kn∑
k=1

{
Zi (τk)Zj (τk)−

1

2
Ŷi,j (τk)

}
1 {|Zi (τk)| ≤ vi,n}1 {|Zj (τk)| ≤ vj,n} ,
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where

Ŷi,j (τk) =
Kn∑
l=1

[{
g

(
l

Kn

)
− g

(
l − 1

Kn

)}2

× (Yi(τk+l)− Yi(τk+l−1)) (Yj(τk+l)− Yj(τk+l−1))

]
,

vi,n is defined the same as in the case of the RPRV estimator, Kn = ⌊n1/2⌋, and g (x) = x∧ (1− x).

Thus, we calculated the input volatility matrix using the adaptive robust pre-averaging realized

volatility matrix (ARPM), universal robust pre-averaging realized volatility matrix (URPM), ro-

bust pre-averaging realized volatility matrix (RPRVM), and jump adjusted pre-averaging realized

volatility matrix (PRVM) estimators. We used the tuning parameters discussed in Section 5.3.

We note that the PRVM estimator cannot account for the heavy-tail and that the URPM and

RPRVM estimators cannot explain the heterogeneity of different degrees of the heaviness of tail

distributions.

To make the estimates positive semi-definite, we projected the volatility matrix estimators onto

the positive semi-definite cone in the spectral norm. To calculate the POET estimators, we used

the hard thresholding scheme and selected the thresholding level by minimizing the corresponding

Frobenius norm. Then, we adjusted the POET estimators using the identity matrix to avoid the

singularity for the finite sample as described in (5.9). The average estimation errors under the

Frobenius norm, relative Frobenius norm, ∥ · ∥Γ, ℓ2-norm (spectral norm), and maximum norm

were computed based on 1000 simulations. The average numbers of synchronized time points with

the refresh time scheme were 300.5, 599.8, 1199.7 for nall = 1000, 2000, 4000, respectively.

Table 1: The mean squared errors (MSEs) of estimators for αij given n
all = 1000, 2000, 4000.

MSE
Tail type \ nall 1000 2000 4000
Heterogeneous 0.056 0.039 0.028
Homogeneous 0.119 0.054 0.019

Table 1 reports the mean squared errors (MSEs) of estimators for αij against the sample size nall

for two heavy-tail processes. For the heterogeneous heavy-tail process, 2αi’s were generated from

the unif(3, 4), and 2αi=5 for the homogeneous heavy-tail process. We calculated αij using (5.14)

in Section 5.2. From Table 1, we can find that for the heterogeneous and homogeneous heavy-tail
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processes, the MSE decreases as the sample size nall increases. We also find that the MSEs for the

heterogenous case are much smaller than the homogeneous case when nall = 1000, 2000 but larger

when nall = 4000. This is because for the homogeneous case, the true α is 2.5, while, according to

the proposed procedure and RPRVM, the maximum possible α is 2. Thus, we calculated the MSEs

with α = 2. When nall is small, there were relatively many estimates smaller than 2. In contrast,

when nall is large (nall = 4000), most of estimates were greater than 2. Finally, we note that, for

the sub-Gaussian process, more than 99 percent of αij was estimated to be 2 for nall = 4000 (this

is regarded as correctly estimated, due to the sub-Gaussianity of the truncated average). These

results indicate that the proposed tail index estimator works well.

Figure 2 plots the Frobenius, relative Frobenius, spectral, and max norm errors against the

sample size nall for the POET estimators from the ARPM, URPM, RPRVM, and PRVM estima-

tors. Figure 3 depicts the spectral norm errors against the sample size nall for the inverse POET

estimators with the ARPM, URPM, RPRVM, and PRVM estimators. As expected, the ARPM

estimator outperforms other estimators for the heterogeneous heavy-tail process. For the homoge-

neous heavy-tail and sub-Gaussian processes, the ARPM, URPM, and RPRVM estimators perform

similarly and outperform the PRVM estimator. One possible explanation of the poor performance

of the PRVM estimator in the Gaussian noise case is that the true return process contains heavy

distributions over time; hence, robust methods outperform. In sum, the ARPM estimator is robust

to the heterogeneity of the heaviness of tails and adapts to the homogeneity of the heaviness of

tails.

6.2 An empirical study

In this section, we applied the proposed ARP estimator to the high-frequency trading data of

200 assets, collected from January 2015 to December 2016 (501 trading days). The 200 largest-

volume stocks were selected from the S&P 500, and the data was obtained from the Wharton Data

Service (WRDS) system. Days with half trading hours were excluded. Figure 4 plots the daily

synchronized sample sizes from the refresh time scheme for the 200 assets. As seen in Figure 4,

sampling frequency higher than 1 minute can lead to the nonexistence of the observation between

some consecutive sample points. Hence, we employed 1-min log-return data with the previous
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Figure 2: The Frobenius, relative Frobenius, spectral, and max norm error plots (corresponding
to four rows) of the POET estimators with the ARPM (black dot), URPM (red cross), RPRVM
(green diamond), and PRVM (blue triangle) estimators for p = 200 and nall = 1000, 2000, 4000.

tick scheme to mitigate the potential heterogeneity from observed time intervals and the irregular

observation time errors (Mykland et al., 2019).

To measure the heterogeneous heavy-tailedness over time, we estimated the tail indices using
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Figure 3: The spectral norm error plots of the inverse POET estimators with ARPM (black dot),
URPM (red cross), RPRVM (green diamond), and PRVM (blue triangle) estimators for p = 200
and nall = 1000, 2000, 4000.
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Figure 4: The number of daily synchronized samples from the refresh time scheme for 200 assets over
251 days in 2016. The blue dash and red solid lines indicate the numbers of possible observations
for 30-sec and 1-min log-returns in each trading day, which are 780 and 390, respectively.

α̂i proposed in (5.16). Figure 5 shows the box plots of daily estimated tail indices α̂i of 200 assets

for each of five selected days in 2015–2016: from the day with the largest IQR to the day with

the smallest IQR among 501 days. It provides stark evidence that the tail indices of observed

log-returns are heterogeneous over time, which matches the daily kurtoses result in Figure 1. This

supports the heterogeneous heavy-tail assumption.

To apply POET estimation procedures, we first needed to determine the rank r. We calculated

501 daily integrated volatility matrices using the ARPM estimation procedure with c=0.5, which

is used in the simulation study. Figure 6 shows the scree plot, drawn using the eigenvalues from

the sum of 501 ARPM estimates. As seen in Figure 6, the possible values of the rank r are 1, 2,

32



●

●

●

●

●

●

● ●

●
●

●●

●

●
●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

(a) (b) (c) (d) (e)

1
2

3
4

5

Box plot

Day

α̂ i

Figure 5: The box plots of the distributions of the daily estimated tail indices α̂i for the 200 most
liquid stocks among the S&P 500 index in 2015–2016. Day (a) has the largest IQR, and days
(b)–(e) have the 75th, 50th, 25th, and 0th (minimum) percentile of the IQR among 501 trading
days in 2015–2016, respectively.

and 3; hence, we conducted the empirical study for r = 1, 2, 3. However, we reported the results

only for r = 3 since the empirical results are similar for r = 1, 2, 3 and choosing r = 3 gives the

best overall performance. We note that the errors caused by the underestimation of the number of

factors is more severe than that caused by the overestimation (Fan et al., 2013).
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Figure 6: The scree plot of eigenvalues of the sum of 501 ARPM estimates.

To estimate the sparse volatility matrix Σ, we used the Global Industry Classification Standard

(GICS) (Fan et al., 2016a). Specifically, the covariance matrix for idiosyncratic components for the

different sectors are set to zero, and those for the same sector are maintained. This corresponds to
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hard-thresholding using the sector information. To make the estimates positive semi-definite, we

projected the POET estimators onto the positive semi-definite cone in the spectral norm. Then,

we adjusted the POET estimators with the identity matrix to prevent the singularity as described

in (5.9).

To choose the tuning parameter c in the empirical study, we first defined

ΛARPM(c) =
1

s

s∑
d=1

∥Γ̂
ARPM

d (c)− Γ̂
PRVM

d+1 ∥2F ,

where Γ̂
ARPM

d (c) and Γ̂
PRVM

d are the POET estimator from the ARPM estimator with tuning

parameter c and POET estimator from the PRVM estimator for the d-th day, respectively. Then,

we selected c by minimizing ΛARPM(c) over c ∈ (0, 1). We chose the in-sample period as day 1 to

day 150 and obtained c = 0.35 for the ARP estimator. We note that stationarity is a reasonable

assumption on volatility in financial time series, which motivates the above tuning parameter

selection procedure. Similarly, for the URPM estimator, we defined

ΛURPM(c, α) =
1

s

s∑
d=1

∥Γ̂
URPM

d (c, α)− Γ̂
PRVM

d+1 ∥2F ,

where Γ̂
URPM

d (c, α) is the POET estimator from the URPM estimator with tuning parameter c

and universal tail index α for the d-th day. We selected c and α by minimizing ΛURPM(c, α) over

c ∈ (0, 1) and α ∈ [1.1, 2]. The selected parameters are c = 0.75 and α = 2.

To check the performance of the proposed ARP estimation procedure, we first investigated the

mean squared prediction error (MSPE) for the POET estimators defined by

MSPE(Γ̂) =
1

d2 − d1 + 1

d2∑
d=d1

∥Γ̂
l

d − Γ̂
PRVM

d+1 ∥2F , (6.1)

where (d2 − d1 + 1) is the number of days in the out-of-sample period,

Γ̂
l

d =
1

l

l∑
m=1

Γ̂d−m,
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Γ̂d can be POET estimators from the ARPM, URPM, RPRVM, and PRVM estimators for the

d-th day, and l is the averaging length. We used l = 1, 5, 10, and set the out-of-sample period as

day 161 to day 501. Then, we split the out-of-sample period into two parts. The two periods are

denoted by period 1 (day 161 to day 331) and period2 (day 332 to day 501). We note that since the

PRVM estimator is not robust, the MSPE in (6.1) may not be a perfect measure. Table 2 reports

the MSPE results for the POET estimators from the inputs of the ARPM, URPM, RPRVM, and

PRVM estimators for l = 1, 5, 10. We find that the ARPM estimator outperforms other estimators

for all periods and averaging lengths. This may be because the proposed ARPM estimator can

help deal with heterogeneous heavy-tailed distributions and incorporating the heterogeneous heavy-

tailedness helps account for the volatility dynamics.

Table 2: The MSPEs of the POET estimators from the ARPM, URPM, RPRVM, and PRVM
estimators for the three averaging lengths (whole period: day 161 to day 501, period 1: day 161 to
day 331, period 2: day 332 to day 501).

MSPE ×104

Estimator
ARPM URPM RPRVM PRVM

1 day whole period 6.501 7.106 6.664 9.748
period 1 11.632 12.807 11.955 17.533
period 2 1.339 1.371 1.343 1.916

5 day whole period 6.555 7.083 6.604 7.044
period 1 11.778 12.736 11.851 12.659
period 2 1.300 1.397 1.326 1.395

10 day whole period 6.875 7.360 6.939 7.080
period 1 12.428 13.281 12.522 12.811
period 2 1.290 1.404 1.324 1.316

To check the out-of-sample performance, we applied the ARPM, URPM, RPRVM, and PRVM

estimators to the following minimum variance portfolio allocation problem:

min
ω
ω⊤Γ̂

l

dω, subject to ω⊤J = 1 and ∥ω∥1 ≤ c0, (6.2)

where J = (1, . . . , 1)⊤ ∈ Rp, the gross exposure constraint c0 was changed from 1 to 6,

Γ̂
l

d =
1

l

l∑
m=1

Γ̂d−m,
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and Γ̂d could be the POET estimators from the ARPM, URPM, RPRVM, and PRVM estimators

for the d-th day. To calculate the out-of-sample risks, we constructed the portfolios at the beginning

of each trading day using the stock weights (6.2), calculated using the data from the previous l

days. We then held this for one day and calculated the realized volatility using the 10-min portfolio

log-returns. The average of their square root was used for out-of-sample risk. We used l = 1, 5, 10,

and tested the performances for the whole period (day 161 to day 501), period 1 (day 161 to day

331), and period 2 (day 332 to day 501).

Figure 7 depicts the out-of-sample risks of the portfolios constructed by the POET estimators

from the ARPM, URPM, RPRVM, and PRVM estimators for l = 1, 5, 10. We can find that the

averaged volatility matrix predictors (l = 5, 10) perform slightly better than the one-day (l = 1)

volatility matrix predictors. One possible explanation is that the market is volatile and the one-day

volatility is too volatile to be used as a predictor. When comparing the estimation procedures, the

ARPM estimator shows a stable result and performs the best overall. This result lends further

support to our claim that the heavy-tailed distributions of observed log-returns are heterogeneous,

as shown in Figure 1 and Figure 5, and that the proposed ARP estimation procedure can account

for the heterogeneity of the degrees of heaviness of tail distributions.

7 Conclusion

In this paper, we develop the adaptive robust pre-averaging realized volatility (ARP) estimation

method to handle the heterogeneous heavy-tailed distributions of stock-returns. To account for

the heterogeneity of the heavy-tailedness from microstructural noises and price jumps, the ARP

estimator truncates quadratic pre-averaged random variables according to daily tail indices. We

demonstrate that the proposed ARP estimator achieves sub-Weibull tail concentration with the

optimal convergence rate by showing that its upper bound matches its lower bound. To estimate

large integrated volatility matrices, the ARP estimator is further regularized using the POET

procedure, and the asymptotic properties of the POET estimator from the ARP estimator are also

investigated. In the empirical study, for the purpose of portfolio allocation, the POET estimator

based on the ARP estimator performs best overall. These findings suggest that when it comes to
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Figure 7: The out-of-sample risks of the optimal portfolios constructed using the POET estimators
from the ARPM (black dot), URPM (red cross), RPRVM (green diamond), and PRVM (blue
triangle) estimators for the three averaging lengths (whole period: day 161 to day 501, period 1:
day 161 to day 331, period 2: day 332 to day 501).

estimating the integrated volatility matrices, the proposed ARP estimation procedure helps handle

the heterogeneous tail distributions of observed log-returns.

The non-synchronization could be another source of the heavy-tailedness, and the heterogeneity

of time intervals can cause some heterogeneous variation. However, in this paper, we do not focus
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on this issue and mainly consider the noise and jump as the source of the heavy-tailedness. It

would be worthwhile to study the observation time point as it relates to the heavy-tailedness.

Furthermore, there are other possible sources of the heavy-tailedness, and it is important to know

what actually causes heavy-tailedness. On the other hand, in this paper, we consider the simple

i.i.d. structure for microstructural noises. However, successfully adjusting the bias term coming

from microstructural noises depends on their structure. In particular, it is difficult to estimate

the cross-sectional dependent structure with the non-synchronization observations. Thus, it is a

worthwhile challenge to develop a robust estimator of the cross-sectional dependent structure of

microstructural noises. We leave these interesting questions for a future study.
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