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Abstract

Several novel statistical methods have been developed to estimate large integrated volatil-
ity matrices based on high-frequency financial data. To investigate their asymptotic behaviors,
they require a sub-Gaussian or finite high-order moment assumption for observed log-returns,
which cannot account for the heavy-tail phenomenon of stock-returns. Recently, a robust esti-
mator was developed to handle heavy-tailed distributions with some bounded fourth-moment
assumption. However, we often observe that log-returns have heavier tail distribution than
the finite fourth-moment and that the degrees of heaviness of tails are heterogeneous across
asset and over time. In this paper, to deal with the heterogeneous heavy-tailed distributions,
we develop an adaptive robust integrated volatility estimator that employs pre-averaging
and truncation schemes based on jump-diffusion processes. We call this an adaptive robust
pre-averaging realized volatility (ARP) estimator. We show that the ARP estimator has a
sub-Weibull tail concentration with only finite 2a-th moments for any a > 1. In addition,

we establish matching upper and lower bounds to show that the ARP estimation procedure
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is optimal. To estimate large integrated volatility matrices using the approximate factor
model, the ARP estimator is further regularized using the principal orthogonal complement
thresholding (POET) method. The numerical study is conducted to check the finite sample

performance of the ARP estimator.

Keywords: heterogeneity, tail index, pre-averaging, minimax lower bound, optimality, POET,

factor model

1 Introduction

In modern financial studies and practices, volatility estimation is fundamental in risk management,
performance evaluation, and portfolio allocation. Due to the wide availability of high-frequency
financial data, many well-performing volatility estimation methods have been developed to estimate
integrated volatilities. Examples include two-time scale realized volatility (TSRV) (Zhang et al.,
2005), multi-scale realized volatility (MSRV) (Zhang, 2006, 2011), wavelet estimator (Fan and
Wang, 2007), pre-averaging realized volatility (PRV) (Christensen et al., 2010; Jacod et al., 2009),
kernel realized volatility (KRV) (Barndorff-Nielsen et al., 2008, 2011), quasi-maximum likelihood
estimator (QMLE) (Ait-Sahalia et al., 2010; Xiu, 2010), and the local method of moments (Bibinger
et al.,, 2014). One of the stylized facts of financial data is the existence of price jumps, and
empirical studies have shown that the decomposition of daily variation into its continuous and jump
components can better explain the volatility dynamics (Ait-Sahalia et al., 2012; Andersen et al.,
2007; Barndorff-Nielsen and Shephard, 2006; Corsi et al., 2010; Song et al., 2020). For example,
Fan and Wang (2007) and Zhang et al. (2016) employed the wavelet method to identify the jumps
based on noisy high-frequency data. Mancini (2004) studied a threshold method for jump detection
and presented the order of an optimal threshold, and Davies and Tauchen (2018) further examined
a data-driven threshold method. These estimation methods perform well for a small number
of assets. However, we often encounter a large number of assets in practices such as portfolio
allocation, which results in the curse of dimensionality. To overcome the curse of dimensionality
and obtain an efficient and effective large volatility estimator, we often impose the approximate

factor structure on the volatility matrix (Fan and Kim, 2018; Fan et al., 2013, 2018; Kim and



Fan, 2019). For example, to account for common market factors such as sector, firm size, and
book-to-market ratios, the factor-based high-dimensional 1t6 process is widely employed, and the
idiosyncratic volatility is assumed to be sparse (Ait-Sahalia and Xiu, 2017; Fan et al., 2016a,b; Kim
et al., 2018b; Kong, 2018). The principal orthogonal complement thresholding (POET) method
(Fan et al., 2013) is often employed to estimate these low-rank plus sparse matrices.

The performance of the factor-based large volatility matrix estimator critically depends on
the accuracy of each element of the integrated volatility estimator. Specifically, sub-Weibull tail
concentration for the input volatility matrix estimator is required to investigate its asymptotic
behaviors (Fan et al., 2013; Kim and Fan, 2019; Kong, 2018). However, one stylized fact of
stock-return data is heavy-tailedness, which violates the sub-Gaussian assumption of the stock-
return data. Recently, with a bounded fourth-moment assumption on the microstructural noise,
Fan and Kim (2018) developed a robust estimation method, which can attain sub-Gaussian tail
concentration with the optimal convergence rate. See also Catoni (2012); Minsker (2018). However,
we often observe that the bounded fourth-moment condition is violated. For example, Figure 1
shows the five selected box plots of daily log kurtoses for the 1-minute log-returns of the 200 most
liquid assets on the S&P 500 index, calculated using the previous tick scheme. These five selected
plots correspond to the days with the largest interquartile range (IQR), the 75th, 50th, 25th, and
Oth (smallest) percentile of the IQR among 501 trading days in 2015-2016. From Figure 1, we find
that the log-return data are heavy-tailed and also have heterogeneous degrees of heaviness of tails
across the different assets and days. See also Cont (2001); Mao and Zhang (2018); Massacci (2017).
These facts generate the demand for developing an adaptive robust estimation method that can
handle heterogeneous heavy-tailedness.

In this paper, we develop an adaptive robust integrated volatility estimator based on jump-
diffusion processes contaminated by microstructural noises. We first use the pre-averaging scheme
(Jacod et al., 2009) to adjust the unbalanced order relationship between the microstructural noises
and true log-returns. We then employ the truncation method (Minsker, 2018) using the daily
moment conditions of assets. Specifically, we truncate pre-averaged variables according to their
heavy-tailedness, which allows for adaptive learning merits to be enjoyed. Also, the truncation

method sufficiently mitigates the effect of the jump signal on the pre-averaged variables. We



Box plot

© ----- t=distribution with degrees of freedom 5
o :
i) 8
[ < 4 °
2 I
2 3 I — 8
g | i
™ — 3 8
—5—
~ 3 ——

Day

Figure 1: The box plots for the daily distributions of log kurtoses calculated from 1-min log returns
based on the most liquid 200 stocks on the S&P 500 index. The 5 selected box plots correspond
to 5 days with the largest IQR, the 75th, 50th, 25th, and Oth (smallest) percentile of the IQR
among H01 trading days in 2015-2016, respectively. The red dash marks the kurtosis for the ¢5-
distribution. There are many assets whose 1-minute log-returns have empirical kurtosis larger than
ts-distribution and the numbers depend on the day of the market conditions.

call the proposed estimator the adaptive robust pre-averaging realized volatility (ARP) estimator.
We show that the ARP estimator has sub-Weibull tail concentration, with finite 2a-th moment
assumption for any a > 1. Also, by establishing matching upper and lower bounds for a pre-
averaging estimator class, we show that the proposed estimator can achieve the optimal rate. To
make inferences about large integrated volatility matrices using the ARP estimator, we employ the
factor-based high-dimensional Ito process, which admits a low-rank plus sparse structure for the
volatility matrix. The ARP estimator is further regularized by the POET method, and we also
investigate the theoretical properties of the POET estimator from the ARP estimator. Finally,
we propose an estimation method for the tail index «, resulting a full data-driven procedure, and
investigate its properties.

The rest of the paper is organized as follows. Section 2 provides the model and data structure for
estimating each daily integrated volatility, and Section 3 introduces an adaptive robust integrated
volatility estimation method. Section 4 establishes the concentration property and optimality of the

proposed estimator. In Section 5, with the approximate factor model, we show how to estimate the



large integrated volatility matrix using the proposed estimation procedure. There, we also propose
the tail index estimator and show its concentration property. Section 6 presents a simulation study
to illustrate the finite sample performances of the proposed estimator and applies the estimation
method to the 200 most-liquid assets on the S&P 500. The conclusion is presented in Section 7,

and proofs are collected in the Appendix.

2 The model setup

We first introduce some notations. For any given p; by p, matrix A = (4;;),., <pr1<j<ps’ let

1<j<p2 1<i<p1

Jj=

pP1 p2
IAlr = max > [Ayl,  [|Alle = max > [Ayl, (Al = max [ Ay|.
i=1 =1 ’

The matrix spectral norm ||A|, is the square root of the largest eigenvalue of AAT, and the
Frobenius norm of A is denoted by ||A||r = /tr(ATA). We will use C to denote a generic

positive constant whose value is free of n and p and may vary between appearances.
Let X(t) = (X1(t),..., X,(t))" be the vector of true log-prices for p assets at time ¢. To model

the high-frequency financial data, we often employ the jump-diffusion process as follows:

dX (1)

dXe(t) + J(t)
= p()dt+o'(t)dW, + J(t), (2.1)

where X¢(t) = (X{(t),..., X5(t))" with X(0) = X(0) is the vector of true continuous log-prices
at time ¢, pu(t) = (u1(t), ..., up(t))" is a drift vector, o (t) is a ¢ by p matrix, W, is a ¢ dimensional
independent Brownian motion, and the stochastic processes p(t), X(t), X¢(t), and o (t) are defined
on a filtered probability space (2, F,{F;,t € [0,1]}, P) with filtration F; satisfying the usual
conditions. For the jump part, J(t) = (Ji(t),..., J,(t))" denotes the jump process and each J;(t)

is decomposed as



where

Ja(t) = /0 t / |>1$Ni(daz,ds)

is the sum of the big jumps, N; is a Poisson random measure defined on R x [0, 1] with intensity

measure [;(dx)ds,

Jio(t) = /0 /||<1 z[N;(dz,ds) — I;(dx)ds]

is the compensated sum of small jumps, and N;(dz,ds) — I;(dx)ds is the compensated Poisson
random measure. We assume that J;;(¢) is a compound Poisson process with the bounded intensity
and Jj(t) is an independent Lévy process. For the small jumps, we define the Blumenthal-Gettor

index 7 as

7 =1inf{d > 0, / |z[°Ii(dx) < 0o foralli=1,...,p}.

|z|<1
We note that the Blumenthal-Gettor index m measures the activity of small jumps. We describe
the condition for 7 in Assumption 1. This kind of jump processes is widely used to explain price
jumps (Ait-Sahalia et al., 2020; Andersen et al., 2021; Cont and Mancini, 2007; Li et al., 2017;

Mancini, 2009). The instantaneous volatility matrix of the continuous log-price X¢(t) is

(t) = (v (t))1gi,j§p =o' (t)o(t),
and their quadratic variation is
t t
(XX, = / ~(s)ds = (/ fyij(s)ds>
0 0 1<i,j<p
t
= / o' (s)o(s)ds.
0

The parameter of interest is the integrated volatility matrix of X¢(t),

I' =X X, = /Ol'y(s)ds. (2.2)

Unfortunately, we cannot directly observe the true log-prices X(¢). In fact, observed high-
frequency data are contaminated by microstructural noises. Furthermore, high-frequency data

encounter a non-synchronization problem, in which transactions for multiple assets often arrive



asynchronously. In this regard, we assume that the observed log-price Y;(t;x) obeys the following

model:

Y;(tz’k> = Xz(tz’k) + €i<ti,k> for i = 1, oD, k= O, e, Ny (23)
where ¢;;, is the k-th observation time point of the i-th asset, and for each given i = 1,...,p,
€(tix), k = 0,...,n;, are i.i.d. noises with a mean of zero. We assume that for i,j = 1,...,p,

Ele (t)€; (t)] = m;; and €(¢) is independent of €;(t') for ¢ # t'.

To handle the microstructural noise issue, several estimation methods have been developed
(Ait-Sahalia et al., 2010; Barndorff-Nielsen et al., 2008, 2011; Bibinger et al., 2014; Christensen
et al.; 2010; Fan and Wang, 2007; Jacod et al., 2009; Xiu, 2010; Zhang et al., 2005; Zhang, 2006,
2011). They work well for a finite number of assets and are widely adopted to develop large
volatility matrix estimation procedures (Kim et al., 2018a, 2016; Wang and Zou, 2010). However,
the observed log-prices are heavy-tailed, so these methods cannot lead to the estimators with the
sub-Weibull concentration bound, which is essential for making inferences about the asymptotic
behaviors of the large volatility matrix estimation procedures. To tackle the heavy-tail issue, Fan
and Kim (2018) proposed the robust pre-averaging realized volatility estimation procedure, which
can achieve the sub-Gaussian tail concentration with only the finite fourth-moment condition on
the microstructural noise. However, as shown in Figure 1, the degrees of heaviness of tails of assets’
log-returns is heterogeneous across assets and over time. Furthermore, jumps in the true log-price
process can also cause heavy-tailed distributions. To account for these features, we accommodate
heterogeneous degrees of tail distributions based on the jump-diffusion process contaminated by
microstructural noises. We allow each asset to have its own order of the highest finite absolute

moment (see Assumption 1 in Section 4 for details).

3 Adaptive robust pre-averaging realized volatility estima-
tor

In this section, we introduce an adaptive robust integrated volatility estimation procedure to handle
non-synchronization, price jump, and microstructural noise. To handle the non-synchronization

problem, we consider the generalized sampling time proposed by Ait-Sahalia et al. (2010). We note
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that the generalized sampling time scheme includes synchronization schemes such as previous tick
(Zhang, 2011; Wang and Zou, 2010) and refresh time (Barndorff-Nielsen et al., 2011; Fan et al.,
2012). See also Bibinger et al. (2014); Chen et al. (2020); Fan and Kim (2019); Hayashi and Yoshida
(2005, 2011); Malliavin et al. (2009); Park et al. (2016). We define the generalized sampling time

as follows.

Definition 1. (Ait-Sahalia et al., 2010). A sequence of time points 7 = {7, ..., 7,} is said to be

the generalized sampling time if
(D) 0=m0<m < - <Tpo1 <Tp=1;
(2) there exists at least one observation for each asset between consecutive 7;’s; and
(3) the time intervals, {A; = 7; — 7;,_1;7 = 1,...,n}, satisfy sup; A; EN)

Examples of generalized sampling scheme include the previous tick approach discussed in Zhang
(2011) and the refresh time scheme in Barndorff-Nielsen et al. (2011). For the i-th asset, we
select arbitrary observation, Y;(7; ), between 7,_; and 7. In other words, we choose any 7, €
(Th—1, i) N {tiy, 1 =0,1,... ,n;} fori=1,...,p.

Based on synchronized time, 7, we adopt the pre-averaging method to manage the microstruc-
tural noise (Jacod et al., 2009). For the observed log-returns, Y;(7; x41) — Yi(Tix), i =1,....,p, k =
1,...,n — 1, the variance of the microstructural noise 27; dominates the continuous log-return
volatility f;f“ v:i(t)dt. Therefore, it is difficult to estimate the integrated volatility without
smoothing for denoising. To adjust the order relationship between the noises and continuous log-
returns, we use the following pre-averaged data to suppress the noises (Christensen et al., 2010;

Jacod et al., 2009):

Kn,—1
Zm) = Y- 0 (56 ) Wilruasass) = ¥itrae))  fori=1pb=Ln= Ko (3)
1=0 "

where the weight function g(-) is continuous and piecewise continuously differentiable with a piece-
wise Lipschitz derivative ¢’ and satisfies g(0) = ¢g(1) = 0 and fol{g(t)}th > 0. In this paper, we

choose bandwidth parameter K, as Cxn'/? for some constants C, which yields the optimal rate



n~'/4 for the resulting estimator. Then, the continuous log-returns and noises in Z;(7)’s are of the
same order of magnitude (Fan and Kim, 2018). However, the pre-averaged random variables still
have heterogeneous heavy-tails across assets. Furthermore, there exist jump variations in the pre-
averaged data, which create outliers. To handle these problems, we robustly estimate the volatility
matrix by applying an adaptive truncation method according to the tails of the continuous part of
the data.

We define the quadratic pre-averaged random variables

n— K,
PR,

Qij (1) = Zi(tg)Zij(m,) fori,g=1,....pk=1,...,n—K,, (3.2)

where ¢ = %n Zﬁofl {g (%ﬂ) }2, and let

ZOéiOéj

3.3
a; + (6%} ’ ( )

O./ijZQ/\

where «; is the order of the highest finite moment for the continuous part of Q; (%) (see Assumption
1 in Section 4). We note that the harmonic mean provides that the continuous part of Q;;(7) has
the finite %—th moment (see Proposition 1(a) in the Appendix). Furthermore, since we can
obtain the (Z)ptimjal convergence rate under the finite second moment condition for the continuous
part of ;;(7) (Fan and Kim, 2018) even when it has higher moments, we set «;; < 2. Therefore,

we define «;; as (3.3).

Then, to handle the heterogeneous heavy-tails, we propose the following adaptive truncation

method: .
~ 1 non

T — — B 0. 4

i5,0 (n— Kn)(gij 1;1' wa” {GZJQZJ (1)} (3.4)

where 6;; is a truncation parameter specified in Theorem 1 and implemented by (5.17), and ¥, ()



is a bounded non-decreasing function defined for « € (1, 2] as follows:

(

—log(l —t, +cotd) ifax>t,

—log(l —z+cox®) if0<z<t,
Ve (x) =
log(14+ x4+ cqlz|*) if —t, <2 <0

log(1 — to + catd) if x < —t,,
\

where ¢, = max {(a —1)/a, /(2 — oz)/oc}, and to = (1/acy)” ™Y We note that to obtain the
optimal sub-Weibull tail concentration for the ARP estimator, the inequality — log(1—z+c,|z|*) <
Vo () <log(l + = + ¢olz|¥) is required. Since the term ¢, appears in the upper bound, we need

to choose ¢, as small as possible under the following condition
1+ z+clz|* >0 and —log(l — x + co|z]®) < log(l + = + colx|®)

for all x € R. To satisfy the above inequality and obtain the sharp bound of the concentration
inequality, we choose ¢, = max{(oz —1)/a, \/m}. On the other hand, since f(z) =
1+ 2+ co|z|* has the minimum at z = — (l/aca)l/(afl), to make 1, () non-decreasing, we choose
to = (1/ Ozca)l/ @1 This proposed truncation is also able to mitigate the impact of jumps since
the impact of each jump for the truncated quadratic pre-averaged random variables is bounded
by the truncation level CK,/(n#;;). In this point of view, the proposed approach is different
from the literature that handles the jumps by finding the exact jump locations. For example,
Cont and Mancini (2007) and Mancini (2009) first detected the jump locations and estimated
the integrated volatility only using the time intervals with no jumps. Their theorems rely on
the condition that the increments of the continuous part is bounded. However, in this paper, we
assume that the microstructural noise has the heavy tails, which makes it hard to distinguish the
jumps and outliers from the heavy-tailed microstructural noise. Thus, to handle this issue, we
first determine the truncation parameter according to the moment condition of the microstructural
noises and then control the impact of jumps using the selected truncation parameter. We note

that other truncation methods can also achieve a similar goal (see Fan et al. (2021)). It will be
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shown that the proposed adaptive robust estimator fgﬂ possesses the sub-Weibull concentration
bounds (see Theorem 1). Furthermore, by employing the tick-by-tick overlapping scheme, we can
mitigate the effect of the irregular observation time point, which can cause the inconsistency for
the pre-averaging estimator without the tick-by-tick overlapping (Mykland et al., 2019).

The adaptive robust estimator Te is, however, not a consistent estimator of the true integrated

3,0

because the noises still remain in each Q;;(7;). Indeed, it will be shown that Te

volatility I' )

R
converges to

Tij = Tij + pij, (3.5)

where

n (T =T o l [+1\)° 1
B, S o)

=0

with the covariance of noise 7;; defined in (2.3), and 1(-) is the indicator function. Hence, to

~
[e7

estimate the integrated volatility I';;, we adjust 777, by subtracting an estimator of p;;. For this

purpose, let us first define an adaptive robust estimator, ﬁ?j’g, as

C n—1
Dijo = K0 Z Yoy 105, Qp.ij () } (3.6)
nUP =1
where
1
Qpij (i) = S {Vi(Tiks1) = YilTie) HY) (Te1) = Yi(7in)} (3.7)
fori,7 = 1,...,p,k = 1,...,n — 1, and 0,;; is truncation parameter that will be specified in

Theorem 3. We now define the integrated volatility estimator as follows:

L =T — Do (3.8)

ij ij,0

We call this the adaptive robust pre-averaging realized volatility (ARP) estimator. This provides

a preliminary consistent estimate of fij, which will be further regularized.

11



4 Theoretical properties of the ARP estimator

In this section, we show the concentration property and optimality of the ARP estimator by

establishing matching upper and lower bounds for both fgﬂ and pf; 4. We define

Kn—1
- l
Yi(rig) = Xi(ig) +€lmin),  Zi(m) = Z g (?) Y (Tipri) = Yo(Tipr) )
1=0 "
n— K,

qbKnn Zf(Tk)Z;(Tk), and

c 1 c c c c
pis (k) = SV (Tiprr) = VE(mm) HY (Tin1) = Y7 (70)

fj(Tk) =

where X£(t) is the true continuous log-price process defined in (2.1), and the superscript ¢ represents

the continuous part of the true log-price. Now, to investigate asymptotic properties of /\i‘]‘-’g, we

make the following assumptions.
Assumption 1.

(a) There exist positive constants v, and v., such that

. < .. (1) < .S.
max sup ()] < vy a5, and max s Yii(t) S vy as

(b) The generalized sampling time {7;} is independent of the true log-price related processes de-

fined in (2.1) and the noise €;(t; ). The time intervals, {A\; =17, — 7_1, 1 < j < n}, satisfy

max A; < Cnt a.s.
1<j<n

c) There exist positive constants, vo and oy, ...,c, > 1, such that for all 1 < k <n — K,
Q P

c %)
max B {|Q5(m)] "} < vo.

(d) Fori,j5 =1,...,p, Ele;(tix) € (tiw)] = nij for tix = tjw, €(tix) is independent of €;(t; )

fortiy # tjw, and €;(-) is independent of the true log-price related processes.

12



(e) The Blumenthal-Gettor index m satisfies m € [0,2), and we have

Ii(|z] > ntmed/Bei2am)y oo fori=1,...,p.

Remark 1. For Assumption 1(a), the boundedness condition of the instantaneous volatility pro-
cess v (t) can be relaxed to the locally boundedness condition when we investigate the asymptotic
behaviors of volatility estimators, such as their convergence rate (see Ait-Sahalia and Xiu (2017)).
Specifically, Lemma 4.4.9 in Jacod and Protter (2012) indicates that if the asymptotic result, such
as convergence in probability or stable convergence in law, is satisfied under the boundedness con-
dition, it is also satisfied under the locally boundedness condition. From this point of view, because
we consider a finite time period, it is sufficient to investigate the asymptotic properties under the

boundedness condition. Thus, Assumption 1(a) is not restrictive.

Remark 2. First of all, the finite 2c;-th moment condition for the microstructural noises with
Assumption 1(a),(b),(d) implies Assumption 1(c). It is the finite moment condition, which entails

that the quadratic pre-averaged variable, Q) (1), for the continuous part satisfies

E {|ng(7k) ka} <Cas (4.1)
foralll < i,j <pandl < k < n— K,, where o;; is defined in (3.3) (see Proposition 1(a)
in the Appendiz). To account for the heterogeneous heavy-tailedness, we allow the tail index oy
to vary from 1 to infinity. If o, = 2 for all 1 = 1,...,p, it is the similar setting as that of
Fan and Kim (2018), and the ARP estimator has universal truncation, which we call the universal
robust pre-averaging realized volatility (URP) estimator. The main difficulty in extending the theory
for the URP estimator to that for the ARP estimator is that «;’s may not be integers. Thus,
to obtain the optimal convergence rate, we need to choose appropriate truncation function and
truncation parameters and carefully derive the upper bounds. We note that when «; < 2, the
URP estimator needs to choose the smallest tail index for all tails. This choice cannot provide the
optimal convergence rate for the heterogeneous heavy-tailedness. On the other hand, to implement
the ARP procedure, we need to estimate the tail indices, which may cause some estimation errors.

To overcome this problem, we proposed the novel tail index estimation procedure and show its

13



concentration properties in Section 5.2. To investigale the heterogeneous heavy-tail, we compare

the ARP and URP estimators in the numerical studies.

Remark 3. Assumption 1(e) allows the infinity number of small jumps. However, we additionally

(1-ai)/(dai=20im) Jue to the outliers

need the finite number of jumps whose sizes are bigger than n
coming from the heavy-tailed observations. Specifically, since the microstructural noises have the
heavy tails, QS (1) can have large values that are comparable to the jumps. To handle this issue,
we need the condition I;(|z| > n(l=—w)/Wei=20m))y « o0 We note that if # = 0, Assumption 1(e)

s not required. Furthermore, to investigate asymptotic theorems for the tail index estimation in

Section 5.2, we need the condition m =0 (see Assumption 4(b)).

Remark 4. To obtain the sub- Weibull tail concentration, we technically need some bounded con-
dition for the target parameter, such as Assumption 1(a). However, if we change the parameter of

interest to the sum of conditional expected values as follows:

n—1 Tht1
Trew  — ZE{/ ’Y(t)dt‘fm}
k=0 Tk

and 1mpose the bounded condition for the conditional expected values, namely,

Tk+1 Qg
max max E |:{(T]€+1 —Tk)_l/ %i(t)dt}

1<i<p 0<k<n—1 ™

]:Tk} < v, as.,

we can obtain the same result for the new target parameter I'"Y. Under this condition, the ran-
dom fluctuation of the instantaneous volatility process can be the source of the heavy-tailedness.

Then, the proposed procedure can estimate the new target parameter T with the optimal rate

nl—aij)/ 205

The theorem below shows that fgﬂ has the sub-Weibull tail concentration with a convergence

rate of n(l—ai)/2ei;

Theorem 1. (Upper bound) Under the models (2.1) and (2.3) and Assumption 1, let §~' €

[nc, 6”1/2] for some positive constant ¢ > 0. Take

b K, log (3K2571) Ve
Yo (Oéij — 1) Cal.j SZ(TL — Kn) ’

14



1
n— K,
tion 1(a). Then, we have, for a sufficiently large n,

Zz;f{" Uij (1), and U;j (1) ’s are some positive constants defined in Proposi-

where S;; =

Pr {|A;;.ﬁ ~ Ty < C (n 2 log s ) %} >1-4. (4.2)

Theorem 1 indicates that ﬁ.‘;ﬁ

has the sub-Weibull concentration bound with the convergence
rate of n1=@)/2%;  Specifically, as long as the number of assets, p, satisfies p*? € [n, e”m] for
some positive constant ¢ > 0, we have

Pr{ max |i‘;9 — Tl > Gy (n_1/2 log p) (a_l)/a} <p?

1<i,j<p o

for any constant b > 0 and o = min;<;<, a;, where C is some constant depending on b, which is the
essential condition for investigating inferences of large integrated volatility matrix (see Proposition
1). An interesting finding is that there is a trade-off between the convergence rate n(!~®)/2%4 and
the tail indices a; and «;. This raises the question of whether the upper bound in (4.2) is optimal.

Let ﬁj (Qij (1) ,6) = ﬁj (Qij (1) ..., Qij (Ta—k, ) ,0) be any pre-averaging estimator for T;;
defined in (3.5), which takes the values of pre-averaged variables Q;; (7). k = 1,...,n — K,,
defined in (3.2). The following theorem establishes the lower bound for the maximum con-
centration probability among the class of pre-averaging estimators ﬁj (Qij (Tx) ,0) which satisfy

maxi<i<, E{|Q%(1:)|"} < Cforalll1 <k <n-—K,.

Theorem 2. (Lower bound) Under the assumptions in Theorem 1, let ou; € (1,2) for some 1 <

1,7 < p. Then, we have, for a sufficiently large n,

R min max Pr {’ﬁ] (Q” (Tk) ’5) —_ Tz]’ > C (n71/2 10g 671)(%]'—1)/041-]-} > 57 (43)
Tij (Q” (Tk),(s) QCEE(OQ,...,QP)

where

<0}

Sans ) ={Q° = (Qi(Th))im1,ph=t, ke, - max E{[Qf(7k)

Theorem 2 shows that the lower bound is n(1=®4)/2% which matches the upper bound in

Theorem 1. Thus, the proposed estimator obtains the optimal convergence rate of n(1=®i)/2%
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Remark 5. To handle the microstructural noise, we use the sub-sampling scheme, and the number

12 which is known as the optimal

of non-overlapping quadratic pre-averaged variables Q;j(x) is Cn
choice. That is, we are only able to use n'/? observations to estimate T;j due to the microstructural
noise, which is the cost of managing the microstructural noise. Thus, the optimal convergence
rate is expected to be the square root of the rates of the estimators that are not affected by the

microstructural noise. From this point of view, the convergence rate n'=%3)/2%i is consistent with

the results in Devroye et al. (2016) and Sun et al. (2020).

Recall that the ARP estimator has the following bias adjustment:

(e}

Thus, to establish the concentration inequality for the ARP estimator fij, we need to investigate

Pi;e- To do this, we use the quadratic log-return random variables @, ;;(74) defined in (3.7) and

require the following moment condition.

Assumption 2. There exists a positive constant v, q such that

%%%E{\QZ,MH“’} < VpQ

foralll <k <n-—1.

Remark 6. Assumption 2 indicates that the continuous part of the observed log-return, Y;(7i g+1) —
Y (Tik), has finite 20;;-th moment. We note that Assumption 1(c) is satisfied under Assumption

1(a),(b),(d) and Assumption 2 (see Proposition 2 in the Appendiz).

With this o;;-th moment condition, we establish the concentration inequalities for the ARP

estimator fg; in the following theorem.

Theorem 3. (Upper bound) Under the assumptions in Theorem 1 and Assumption 2, take

P log (66~1) 1/ovj
p (aij - 1) Cayj Sp,ij (n - 1) ’
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o n—1 5 .- . .
where S, ;; = vt Upij (1), and U, ;; (11,) ’s are some positive constants defined in Proposi-

-1
tion 1(b). Then, for a sufficiently large n, we have

Pr{ (7o — pisl < C (n " loga )™V > 1 (4.5)

and

Pr {|f;;. — Ty < C (n~ V2 1log oY) ‘“”‘} >1- 2. (4.6)

Theorem 3 shows that py; , has a sub-Weibull tail concentration bound with a convergence rate
of n(1=@i)/@i; <which is negligible compared to the upper bound in Theorem 1. Thus, the ARP
estimator has a sub-Weibull tail concentration with an optimal convergence rate of n{l=®4)/2 g
shown in Theorems 1-2. Although the upper bound for ,/o\f‘j,@ is dominated by the upper bound
in Theorem 1, it is worth checking whether p¢; , is an optimal estimator. Let pi; (Qp5 (1) ,0) =
Pij (Qpij (11) -+, Qpij (Tn1),0) be any estimator for p;;, possibly depending on §. The following
theorem provides a lower bound for the maximum concentration probability among the class of

estimators p;; (@, (7) , 6) which satisfy maxi<;<, E { ‘Qzu(m)f} <Cforalll<k<n-1.

Theorem 4. (Lower bound) Under the assumptions in Theorem 3, let ou; € (1,2) for some 1 <

1,7 < p. Then, we have, for a sufficiently large n,

min max )Pr {’ﬁw (Qp.ij (1) ,0) — pij| = C (log 5_1/77,) (a”_l)/a”} >4, (4.7)

ﬁ“ (Q/)aij (Tk)76) QgEEp(al,---7ap

where

Ep(Oéh e 704p) = {Q; = ( ;C),ii(Tk))izl,...,p,k:l,...,nfl : Hil%XE {|QZ,¢¢(Tk)

ai} < C}

The upper bound in (4.5) and lower bound in (4.7) match, which implies that pf;, achieves
the optimal rate. In sum, the proposed estimators for T;; and p;; are both optimal in terms of
convergence rate, which implies that the ARP estimator is also optimal in the class of pre-averaging

approaches.
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5 Application to large volatility matrix estimation

In this section, we discuss how to estimate large integrated volatility matrices based on the approx-
imate factor model using the ARP estimator. Specifically, we assume that the integrated volatility

matrix has the following low-rank plus sparse structure:

T
r=0+3=> hquq +3,
k=1
where © is a low-rank volatility matrix with the i-th largest eigenvalue ); > 0 and its associated
eigenvector q;. The low-rank volatility matrix © accounts for the factor effect on the volatility
matrix, and we assume that its rank r is bounded. The sparse volatility matrix ¥ stands for

idiosyncratic risk and satisfies the following sparse condition:

P

{2%);2 |Eij|q(2ii2jj)(l_®/2 S MUSp a.s., (51)
]:

where M, is a positive random variable with E (M?) < oo, ¢ € [0,1), and s, is a deterministic
function of p that grows slowly in p. When 3J;; is bounded from below, and ¢ = 0, s, measures the
maximum number of nonvanishing elements in each row of matrix 3. This low-rank plus sparse
structure is widely adopted for studying large matrix inferences (Ait-Sahalia and Xiu, 2017; Bali,
2003; Bai and Ng, 2002; Fan and Kim, 2018; Fan et al., 2018; Jung et al., 2022; Kim et al., 2018b;
Stock and Watson, 2002).

5.1 Principal orthogonal complement thresholding

To harness the low-rank plus sparse structure, we employ the POET method (Fan et al., 2013)
as follows. We first decompose an input volatility matrix using the ARP estimators in (3.8) as

follows:
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where /):Z is the ¢-th largest eigenvalue of f, and q; is its corresponding eigenvector. Then, using

the first r principal components, we estimate the low-rank volatility matrix © by
© =) Mdxdy -
k=1

To estimate the sparse volatility matrix ¥, we first calculate the input idiosyncratic volatility
matrix estimator ¥ = (i@‘)lgid‘gp = T' — © and employ the adapted thresholding method as

follows:
~ %5 V0, ifi=j L
Y = and X = (Xij)1<ij<p;

55 (Zi)1(15y] > wyy), ifi#

where the thresholding function s;;(-) satisfies that |s;;(x) —z| < w;;, and the adaptive thresholding

level w;; = w, \/ (S V O)(ijj V 0), which corresponds to the correlation thresholding at level
w,. Examples of the thresholding function s;;(z) include the soft thresholding function s;;(z) =
r — sign(z)w;; and the hard thresholding function s;;(z) = x. The tuning parameter w, will
be specified in Proposition 1. In the empirical study, we use the hard thresholding method. We
note that the large volatility matrix estimation method proposed by Kong (2018) first estimates the
instantaneous factor and idiosyncratic volatility matrices by applying principal component analysis
(PCA) to the instantaneous volatility matrices. Then, by aggregating the instantaneous factor and
idiosyncratic volatility matrix estimators, they estimate the integrated factor and idiosyncratic
volatility matrix, respectively. Similarly, we can use the proposed robust estimation procedure to
estimate the instantaneous input volatility matrix. Then, we may obtain similar results.

With the low-rank volatility matrix estimator 0= (@Z’j)lgi,jgp and the sparse volatility matrix

estimator 3 = (iij)lgi’jgp, we estimate the integrated volatility matrix I' by
f‘POET = é + f)

To investigate asymptotic behaviors of high-dimensional statistical inference methods such as the
POET estimator, the sub-Weibull concentration inequality is required and is satisfied by the ARP

estimator, as shown in Theorem 3. Thus, the POET estimator based on the ARP estimators
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can enjoy asymptotic properties similar to those established in Fan and Kim (2018). To study
its asymptotic behaviors, we need the following technical conditions, imposed by Fan and Kim
(2018), but the sub-Weibull concentration rate is different because we consider heterogeneous

heavy-tailedness.
Assumption 3.

(a) Let Dy =min{\; — A\iy1 : 1 <i <71}, (\ +pM,)/Dy < C) a.s., and Dy > Cop a.s. for some
generic constants Cy and Cs, where A\p1q = 0, M, is defined in (5.1), and \; and \; are the

1-th eigenvalues of ® and I', respectively.

(b) For some fized constant Cs3, we have

—maquw<C’3 a.s.,

r 1<i<p 4

where @; = (quj, - .-, Gy;) " 1 the j-th eigenvector of ©.
(¢) The smallest eigenvalue of 3 stays away from zero almost surely.

(d) s,/\/D+ (n_1/2 logp) (@min=1)/min _ o(1), where iy = minj<;<p ;.

Under Assumption 3, we can establish the following proposition, similar to the proof of Theorem
3 in Fan and Kim (2018). Below, we assume a generic input T that satisfies (5.2). In particular,

the ARP estimator satisfies the condition, as shown in Theorem 3.

Proposition 1. Under the model (2.1), let oupmin = minj<;<, o; and assume that the concentration
mequality,

Pr{ max |F1] Z]‘ Z C (n—l/Q logp)(aminl)/amin} S Z)_]_7 (52)

1<4,5<p

Assumption 3, and the sparse condition (5.1) are met. Take w, = Cgf3, for some large fized
constant Cg,, where B, = Mys,/p + (n~'/?logp) (min=1)/min Then, we have, for a sufficiently

large n, with probability greater than 1 — 2p~!,

I — 2|, < CM, 5,87, (5.3)

12 = 2|max < CPBa, (5.4)
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Hf‘POET -Tr<C [plﬂ (nil/Q log p) o e + Mgspﬂ,lfq] ,  and (5:5)

||fPOET - FHmax S Cﬁna (56)

where the relative Frobenius norm ||A||% = p~H|T Y2 AT ~V2||%. Furthermore, suppose that M,s,379 =
o(1). Then, with probability approaching 1, the minimum eigenvalue of 3 is bounded away from 0,

T'poer is non-singular,

IS ==Y, < OM, 5,89, and (5.7)

~—1 _ _
ITpopr — Tl < CM,s,8,7 (5.8)

Remark 7. Unlike Theorem 3 in Fan and Kim (2018), Proposition 1 imposes the sub-Weibull
concentration condition (5.2), which is the optimal rate with only finite 20umin-th moments, as
shown in Theorems 1-4. Note that if 2p® € [nc,enl/g] for some positive constant ¢ > 0, Theorem
3 shows that the ARP estimator satisfies (5.2) for 6 = 1/(2p®). Also, the POET estimator is
consistent in terms of the relative Frobenius norm as long as p = o(n(emin=2)/amin) = That is, the

convergence rate is a function of the minimum tail index cyiy.

In the numerical study, we often observe that prET is singular when the sample size n is
small. To overcome this issue, we add some small value to all of the diagonal entries of T POET-

Specifically, we adjust T ropr by

fPOET = f‘POET + CPOETn71/2Ip (5.9)

for some constant cpopr > 0, where I, is the p dimensional identity matrix. This type of adjustment
is often used when estimating the large inverse matrices (Cai et al., 2011, 2016). We note that the

adjustment (5.9) does not affect the theoretical properties of the POET estimator.
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5.2 Tail index estimation

In this section, we propose an estimation procedure for the tail indices. Specifically, we modify the
Hill’s estimator (Hill, 1975) as follows. Let

6 _ D/ :
H”" = jlog W for 7=1,...,n—2,

(2

where DY > .. > D" are the order statistics of {|Y; (7;2) = Y; (Ti1) |, - -+ [Yi (i) = Vi (Tin_1) |}

Then, the tail index is estimated by

~ Unp,

Q; = ; ; 3

(5.10)

where u,, — 00 is a given sequence such that u,/n — 0 and w is a truncation parameter which will
be determined in Theorem 5. We note that the indicator function is used to handle the jumps in

DY

2

To investigate the theoretical properties of &;, we need the following assumptions.
Assumption 4.

(a) For each 1 < i <p, |&(Ti2) — € (Ti1) |, -, |€ (Tin) — € (Tin—1) | have the cumulative distri-

bution function Fi(x) satisfying
Fz) =1—(¢;/x)*  for x> C (nfuy)" @)

where c¢; s some positive constant.

(b) max o; < C, max ¢; < C, and the Blumenthal-Gettor index m = 0.
1<i<p 1<i<

(c) n* < p for some positive constant k, (logp)2 Sty — 0 asn,p — 0o, and u,, < nl@mat)/Camatl)

where . = max a.
1<i<p

Remark 8. Assumption 4(a) indicates that |e; (7, 1) — € (Tig—1) |, kK = 2,...,n, have the same tail
distribution as the Pareto distribution with a scale parameter ¢; and a shape parameter 2c;, which

has only finite 2c;-th moment. The Pareto distribution is widely used to model the heavy-tailed
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distribution (Chin, 2008; Coronel-Brizio and Hernandez-Montoya, 2005; Dagum, 2014; Nirei and
Aoki, 2016). Since we only require the condition for the tail, Assumption 4(a) is not restrictive.
We note that for appropriate scale parameter c;, the Pareto distribution with the shape parameter
2a; has asymptotically the same tails as the t-distribution with 2c; degrees of freedom. Finally, we
need the condition u, < n(@mextD/Comaxtl) 45 handle the jumps using the threshold method. Since
(max + 1)/ (20max + 1) > 1/2, we can choose u, = C,n'/?, which results in the convergence rate

n~1/* (see Theorem 5). Thus, this condition is not restrictive.

The theorem below shows that &; has the sub-exponential tail concentration with a convergence

rate of ufll/Q.

Theorem 5. Under the models (2.1) and (2.3) and Assumption 4, for any given positive constant
a, choose w = C,, ,logp for some large constant C,, , > 0. Then, for a sufficiently large n, we have,
with probability at least 1 — p~?,

max |&@; — a;| < Cu,/?log p. (5.11)

1<i<p

As discussed above, since (max + 1)/(20max + 1) > 1/2, we can obtain the convergence rate
(5.11) of at least n~/4. In this paper, we choose u, = C,n'/? for some constant C,. This choice is
enough to obtain the theoretical results obtained in Theorem 3, which will be shown in Proposition
2.

Since a; has the estimation error, &; can be bigger than the true tail index «a;. In this case,
the truncation parameters 0;; and 0,; may go to zero and then the heavy-tailedness may not be

handled well. To tackle this obstacle, we adjust a; as follows:
Q; = a; — cen” Slog p, (5.12)

where ¢ is some positive constant and 0 < £ < 1/4. Then, under the assumptions in Theorem 5,

we have

Pr {lrg%};(&i —a;) <0 and max |a; — a;| < COn~¢ logp} >1—-p“ (5.13)

The following proposition shows that with &;, we can obtain the same theoretical results as in

23



Theorem 3.

Proposition 2. Under the assumptions in Theorem 1, Theorem 3, and Theorem 5, let logp < Cn®

for some positive constant w < §. Choose the estimator of o;; as

200005
Qi = 2N = (5.14)
a; + Ozj
Then, for any given positive constant a, we have, with probability at least 1 — p~¢,
Do ~1/2 (aij—1)/evij
T — i) < C (n™*logp) . (5.15)

Proposition 2 indicates that the ARP estimator with @;; also has the optimal convergence rate.
Thus, the POET estimator based on the ARP estimators also satisfies (5.2), and so it can enjoy

the same theoretical results as in Proposition 1.

5.3 Discussion on the tuning parameter selection

To implement the ARP estimation procedure, we need to choose tuning parameters. In this section,
we discuss how to select the tuning parameters for the numerical studies. To obtain ; in (5.10),
we choose

Uy = Cy Lnl/ﬂ and w = ¢, logp,

where ¢, and ¢, are tuning parameters. Since the tail index should be bigger than 1, we adjust «;
as follows:

a; = max{q; — cgn_5 logp, 1.1}, (5.16)

where £ and ¢, are tuning parameters. In the numerical study, we choose ¢, = 2, ¢, =1/3,{ = 0.2,
and ¢ = 0.01. Then, we obtained @;; based on (5.14). For the estimation of 7;; and p;;, we note
that the truncation function 1, (x) truncates the variables around zero, which produces some bias
(Minsker, 2018). We also note that truncating the variables around some other constant does not
affect the asymptotic theoretical results. Thus, to improve the performance of the ARP estimator

in the numerical perspective, we truncate the variables around their median value. Specifically,

let M@Q;; be the median of Q;; (1), k = 1,...,n — K,,, and MQ,;; be the median of Q,;; (74),
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k=1,...,n—1. Then, we estimate T;; and p;; as follows:

n—Ky

~ 1
o = MQi; + = K00, ; Yay; {035 (@i (Te) — MQy5l}
and L
o (n—1) .
Piio = oK. [M Qpij + n=106,, ; Vas; {0p,i5 [Qpyij () — M Qw‘i]}] :

With this scheme, we choose the thresholding level as follows:

1/au;
K, 1
91']' = C — O/\gp (517)
(aij —1) CaijSij (n— K,)
and
| 1/ai;
0
0, = c< _ P ) , (5.18)
(aij - 1) Caijsp7ij(n - 1)

1

i }, Spij = 1 >y {\Qm‘j (Te) = MQpij

~ 1 n— Qi
where S;; = — . {’Qij (7k) — MQy; J }’

and c is a tuning parameter. In the simulation study, we choose ¢ as 0.5. For the empirical study,

we choose ¢ that minimizes the corresponding mean squared prediction error (MSPE) for the in-
sample period. Details can be found in Section 6.2. In 9, (z), ¢, is determined by @;;, that is,
Cay; = max{(aij —1)/aij, /(2 — aij)/aij}. In the pre-averaging stage, we choose K, = |n'/?]
and g(x) = z A (1 — z). Finally, we select cpopr = 3median {)\1 (fPOET> e Ap (f‘pOET> },

where \; (f‘ PO ET) is the ¢-th largest eigenvalue of r POET-

6 Numerical study

6.1 A simulation study

To check the finite sample performance of the ARP estimator, we conducted a simulation study. We
considered the jump diffusion process and generated the data with frequency 1/n%. We used the
heterogeneous heavy-tail process (heavy-tail process 1), a homogeneous heavy-tail process (heavy-
tail process 2), and a sub-Gaussian process. We generated the non-synchronized observation time

points and employed the refresh time scheme. Specifically, we considered the following true log-
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price process:

dX(t) = p(t)dt +9" () dW; + o' (t)dW, + L(t)dN(t),

where p(t) = (0.02,...,0.02)", W; and W, are r and p dimensional independent Brownian mo-
tions, respectively, ¥(t) and o (t) are r by r and p by p matrices, respectively, L(t) is the jump size,
and N(t) is the p dimensional Poisson process with the intensity I(¢). To generate two heavy-tail
processes, we used a setting similar to those in Wang and Zou (2010) and Fan and Kim (2018).
Specifically, let o(t) be the Cholesky decomposition of ¢(t) = (;;(t))1<ij<p- The diagonal elements
of ¢(t) come from four different processes: geometric Ornstein-Uhlenbeck processes, the sum of
two CIR processes (Cox et al., 1985; Barndorff-Nielsen, 2002), the volatility process in Nelson’s
GARCH diffusion limit model (Wang, 2002), and the two-factor log-linear stochastic volatility pro-
cess (Huang and Tauchen, 2005) with leverage effect. Details can be found in Wang and Zou (2010).
To control the tail behaviors of the instantaneous volatility matrix ¢(¢), we used the t-distribution

as follows:

Gi(t) = (1 + [tar.l) <alte),

where for [ = 1,...,n% ty4,, are the i.i.d. t-distributions with degrees of freedom df;, t; = I/n,
and ¢;(t;) were generated by the four processes listed above. To account for the heterogeneous
heavy-tailed distribution (heavy-tail process 1), df; were generated from the unif(3, 4), whereas,
for the homogeneous heavy-tailed distribution (heavy-tail process 2), we set df; = 5. To obtain the

sparse instantaneous volatility matrix ¢(t), we generated its off-diagonal elements as follows:

Gij(t) = {F&(tl)}‘i_jl Gi(t)si;(t), 1<i#j<np,

where the process k(t) is given by

zult) _q
e2

t) = ————
w(f) ezt 41’

p
Wiy = V0.96W?, — 02> Wi/ /p,
=1

du(t) = 0.03{0.64 — u(t)}dt + 0.118u(t)dW,,,

and W9

1,k =1,...,p, are one dimensional Brownian motions independent of the Brownian motions

W; and W,. The low-rank instantaneous volatility matrix 9 (t)9(t) is BT {99/ (¢)} "9/ (t)B, where
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S0l >

generated similar to o(t). Specifically, 9/ (t) is the Cholesky decomposition of ¢/(¢), and the

diagonal elements of ¢/(t) at time #; were

i) = {1+ |t } o,

where tgfhl,l =1,...,n%, are the i.i.d. t-distributions with degrees of freedom df;, and i’j: (t),l =
1,...,n% were generated from the geometric Ornstein-Uhlenbeck processes. The off-diagonal
elements of ¢/ (t) were set as zero. For the jump part, we chose I(t) = (25,...,25)", and the jump
size L;(t) was obtained from independent t-distribution with degrees of freedom df; and standard
deviation 0.154/ fol v:i(t)dt. We also generated a sub-Gaussian process similarly to the heavy-tail
process, except that t-distribution terms were set as standard normal distribution terms.

To generate the observation time points, we first obtained (n®! + 1) sampling time points,
ty =k/n k=0,...,n% Based on these points, we generated non-synchronized data similar to
the scheme in Ait-Sahalia et al. (2010), as follows. First, p random proportions w;,i = 1,...,p,
were independently generated from the unif(0.8, 1). Second, we set each t) as the observation
time point of the i-th asset if the independent Bernoulli random variable with parameter w; had a
value of 1. Third, the noise-contaminated high-frequency observations Y;(t; ;) were generated from
the model (2.3). Specifically, the noise ¢;(¢; ;) was obtained from independent ¢-distribution with
degrees of freedom df; and standard deviation 0.054/ fol ~i(t)dt. We chose p = 200 and r = 3, and
we varied n from 1000 to 4000. We employed the refresh time scheme to obtain synchronized
data.

To investigate the effect of the adaptiveness of the proposed ARP procedure, we introduce a
universal robust pre-averaging realized volatility (URP) estimator, which uses the same estimation
procedure as the ARP estimator with a;; = 2 for all 1 < 4,5 < p. That is, the URP estimator
truncates the pre-averaged variables with the universal tail index level. Also, we employed the

robust pre-averaging realized volatility (RPRV) estimator (Fan and Kim, 2018), which can handle
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the bounded fourth moment condition as the URP estimator. Specifically, we first obtained

n e (n—KnJrl

j'\’ifj{PRV = arg InIiIl Z ghz‘j ¢K Zl(Tk)Zj(Tk)]. {|Z1(T]€)‘ < Ui,n} 1 {’Z](Tk>’ < ’Ujm} — .Z') ,
k=0 "

where h;; is the truncation parameter, K, = Lnl/zj, ¢}, is the Huber loss

2h|z| —h?  if|z| > h
n(z) =
z? if |z < h,

and v, = ¢;,n" "2

is a thresholding level for some constant ¢;,. We chose ¢;, as 7 times the
sample standard deviation for the pre-averaged variables n'/*Z; (7). We note that the thresholding

for Z;(11,) is used to handle the jumps. Then, we obtained

n—1

Y = argmin b, (Yi(7) = Yi(m)]* /2 - )
k=0

where h, ; is the truncation parameter. With TRPRV and NRPRV we calculated the RPRV estimator
m, p 1) 77

as follows:

sy _— n— Kn +1 N . .
F%PRV — EI}PRV . qu C EPRV]_(Z — ,])

In the numerical study, we chose

- K,+1 /I;z b, i
hij — (n + ) J and hn 0= M’
K, logp ’ 2logp

where the asymptotic variance estimators /l;ij and /b\nu can be obtained by (4.9) and (5.2) in Fan and

Kim (2018). We also employed the jump adjusted pre-averaging realized volatility matrix (PRVM)

estimator (Ait-Sahalia and Xiu, 2016; Christensen et al., 2010; Jacod et al., 2009) as follows:

n—K,

B = o S {200 2 - 570 () b LUZ (] < 0} 1112, (0] < 03
" k=1
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where

Y, (m) = g: [{g (Kin) —g (llgnl) }2

X (Yi(Ter1) = Yi(Trri-1)) (V5 (o) — Yi(Thri-1) |

V;,n is defined the same as in the case of the RPRV estimator, K,, = [n'/?|, and g (v) = 2 A (1 — z).
Thus, we calculated the input volatility matrix using the adaptive robust pre-averaging realized
volatility matrix (ARPM), universal robust pre-averaging realized volatility matrix (URPM), ro-
bust pre-averaging realized volatility matrix (RPRVM), and jump adjusted pre-averaging realized
volatility matrix (PRVM) estimators. We used the tuning parameters discussed in Section 5.3.
We note that the PRVM estimator cannot account for the heavy-tail and that the URPM and
RPRVM estimators cannot explain the heterogeneity of different degrees of the heaviness of tail
distributions.

To make the estimates positive semi-definite, we projected the volatility matrix estimators onto
the positive semi-definite cone in the spectral norm. To calculate the POET estimators, we used
the hard thresholding scheme and selected the thresholding level by minimizing the corresponding
Frobenius norm. Then, we adjusted the POET estimators using the identity matrix to avoid the
singularity for the finite sample as described in (5.9). The average estimation errors under the
Frobenius norm, relative Frobenius norm, || - ||p, f2-norm (spectral norm), and maximum norm
were computed based on 1000 simulations. The average numbers of synchronized time points with
the refresh time scheme were 300.5, 599.8, 1199.7 for n® = 1000, 2000, 4000, respectively.

Table 1: The mean squared errors (MSEs) of estimators for «;; given n® = 1000, 2000, 4000.

MSE
Tail type \ n 1000 2000 4000
Heterogeneous 0.056 0.039 0.028
Homogeneous 0.119 0.054 0.019

Table 1 reports the mean squared errors (MSEs) of estimators for ;; against the sample size n®

for two heavy-tail processes. For the heterogeneous heavy-tail process, 2a;’s were generated from
the unif(3, 4), and 2a;=>5 for the homogeneous heavy-tail process. We calculated «;; using (5.14)

in Section 5.2. From Table 1, we can find that for the heterogeneous and homogeneous heavy-tail
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processes, the MSE decreases as the sample size n®! increases. We also find that the MSEs for the
heterogenous case are much smaller than the homogeneous case when n® = 1000, 2000 but larger

when nai

= 4000. This is because for the homogeneous case, the true « is 2.5, while, according to
the proposed procedure and RPRVM, the maximum possible « is 2. Thus, we calculated the MSEs
with @ = 2. When n® is small, there were relatively many estimates smaller than 2. In contrast,
when n is large (n%" = 4000), most of estimates were greater than 2. Finally, we note that, for
the sub-Gaussian process, more than 99 percent of «;; was estimated to be 2 for n = 4000 (this
is regarded as correctly estimated, due to the sub-Gaussianity of the truncated average). These
results indicate that the proposed tail index estimator works well.

Figure 2 plots the Frobenius, relative Frobenius, spectral, and max norm errors against the
sample size n® for the POET estimators from the ARPM, URPM, RPRVM, and PRVM estima-
tors. Figure 3 depicts the spectral norm errors against the sample size n®! for the inverse POET
estimators with the ARPM, URPM, RPRVM, and PRVM estimators. As expected, the ARPM
estimator outperforms other estimators for the heterogeneous heavy-tail process. For the homoge-
neous heavy-tail and sub-Gaussian processes, the ARPM, URPM, and RPRVM estimators perform
similarly and outperform the PRVM estimator. One possible explanation of the poor performance
of the PRVM estimator in the Gaussian noise case is that the true return process contains heavy
distributions over time; hence, robust methods outperform. In sum, the ARPM estimator is robust
to the heterogeneity of the heaviness of tails and adapts to the homogeneity of the heaviness of

tails.

6.2 An empirical study

In this section, we applied the proposed ARP estimator to the high-frequency trading data of
200 assets, collected from January 2015 to December 2016 (501 trading days). The 200 largest-
volume stocks were selected from the S&P 500, and the data was obtained from the Wharton Data
Service (WRDS) system. Days with half trading hours were excluded. Figure 4 plots the daily
synchronized sample sizes from the refresh time scheme for the 200 assets. As seen in Figure 4,
sampling frequency higher than 1 minute can lead to the nonexistence of the observation between

some consecutive sample points. Hence, we employed 1-min log-return data with the previous
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Figure 2: The Frobenius, relative Frobenius, spectral, and max norm error plots (corresponding
to four rows) of the POET estimators with the ARPM (black dot), URPM (red cross), RPRVM
(green diamond), and PRVM (blue triangle) estimators for p = 200 and n®! = 1000, 2000, 4000.

tick scheme to mitigate the potential heterogeneity from observed time intervals and the irregular
observation time errors (Mykland et al., 2019).

To measure the heterogeneous heavy-tailedness over time, we estimated the tail indices using
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Figure 3: The spectral norm error plots of the inverse POET estimators with ARPM (black dot),
URPM (red cross), RPRVM (green diamond), and PRVM (blue triangle) estimators for p = 200
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Figure 4: The number of daily synchronized samples from the refresh time scheme for 200 assets over
251 days in 2016. The blue dash and red solid lines indicate the numbers of possible observations
for 30-sec and 1-min log-returns in each trading day, which are 780 and 390, respectively.

a; proposed in (5.16). Figure 5 shows the box plots of daily estimated tail indices @; of 200 assets
for each of five selected days in 2015-2016: from the day with the largest IQR to the day with
the smallest IQR among 501 days. It provides stark evidence that the tail indices of observed
log-returns are heterogeneous over time, which matches the daily kurtoses result in Figure 1. This
supports the heterogeneous heavy-tail assumption.

To apply POET estimation procedures, we first needed to determine the rank r. We calculated
501 daily integrated volatility matrices using the ARPM estimation procedure with ¢=0.5, which
is used in the simulation study. Figure 6 shows the scree plot, drawn using the eigenvalues from

the sum of 501 ARPM estimates. As seen in Figure 6, the possible values of the rank r are 1, 2,
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Figure 5: The box plots of the distributions of the daily estimated tail indices a; for the 200 most
liquid stocks among the S&P 500 index in 2015-2016. Day (a) has the largest IQR, and days
(b)—(e) have the 75th, 50th, 25th, and Oth (minimum) percentile of the IQR among 501 trading
days in 2015-2016, respectively.

and 3; hence, we conducted the empirical study for » = 1,2,3. However, we reported the results
only for r = 3 since the empirical results are similar for » = 1,2,3 and choosing r = 3 gives the
best overall performance. We note that the errors caused by the underestimation of the number of

factors is more severe than that caused by the overestimation (Fan et al., 2013).
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Figure 6: The scree plot of eigenvalues of the sum of 501 ARPM estimates.

To estimate the sparse volatility matrix 3, we used the Global Industry Classification Standard
(GICS) (Fan et al., 2016a). Specifically, the covariance matrix for idiosyncratic components for the

different sectors are set to zero, and those for the same sector are maintained. This corresponds to
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hard-thresholding using the sector information. To make the estimates positive semi-definite, we
projected the POET estimators onto the positive semi-definite cone in the spectral norm. Then,
we adjusted the POET estimators with the identity matrix to prevent the singularity as described
in (5.9).
To choose the tuning parameter ¢ in the empirical study, we first defined
ARFPN (o) = = SR ) - B R,
d=1

where fdARPM(c) and f‘gRVM are the POET estimator from the ARPM estimator with tuning
parameter ¢ and POET estimator from the PRVM estimator for the d-th day, respectively. Then,
we selected ¢ by minimizing AARPM(c) over ¢ € (0,1). We chose the in-sample period as day 1 to
day 150 and obtained ¢ = 0.35 for the ARP estimator. We note that stationarity is a reasonable

assumption on volatility in financial time series, which motivates the above tuning parameter

selection procedure. Similarly, for the URPM estimator, we defined
1 <~ ~URPM ~PRVM
URPM
AU ) = =S I e ) - TR,
d=1

~URPM
where I (c,a) is the POET estimator from the URPM estimator with tuning parameter c¢

AVRPM (¢ ) over

and universal tail index « for the d-th day. We selected ¢ and o by minimizing
c€ (0,1) and v € [1.1,2]. The selected parameters are ¢ = 0.75 and « = 2.

To check the performance of the proposed ARP estimation procedure, we first investigated the
mean squared prediction error (MSPE) for the POET estimators defined by

d2

~ 1 ~1 ~PRVM
MSPE(l') = —— r -T 2 6.1
0) = g —gw1 2 T~ T I (6.1)
=day

where (dy — dy + 1) is the number of days in the out-of-sample period,



f‘d can be POET estimators from the ARPM, URPM, RPRVM, and PRVM estimators for the
d-th day, and [ is the averaging length. We used [ = 1,5, 10, and set the out-of-sample period as
day 161 to day 501. Then, we split the out-of-sample period into two parts. The two periods are
denoted by period 1 (day 161 to day 331) and period2 (day 332 to day 501). We note that since the
PRVM estimator is not robust, the MSPE in (6.1) may not be a perfect measure. Table 2 reports
the MSPE results for the POET estimators from the inputs of the ARPM, URPM, RPRVM, and
PRVM estimators for [ = 1,5, 10. We find that the ARPM estimator outperforms other estimators
for all periods and averaging lengths. This may be because the proposed ARPM estimator can
help deal with heterogeneous heavy-tailed distributions and incorporating the heterogeneous heavy-

tailedness helps account for the volatility dynamics.

Table 2: The MSPEs of the POET estimators from the ARPM, URPM, RPRVM, and PRVM
estimators for the three averaging lengths (whole period: day 161 to day 501, period 1: day 161 to
day 331, period 2: day 332 to day 501).

MSPE x10*
Estimator

ARPM URPM RPRVM PRVM

1 day whole period 6.501 7.106 6.664 9.748
period 1 11.632 12.807 11.955 17.533

period 2 1.339 1.371 1.343 1.916

5 day whole period 6.555 7.083 6.604 7.044
period 1 11.778 12.736 11.851 12.659

period 2 1.300 1.397 1.326 1.395

10 day whole period 6.875 7.360 6.939 7.080
period 1 12.428 13.281 12.522 12.811

period 2 1.290 1.404 1.324 1.316

To check the out-of-sample performance, we applied the ARPM, URPM, RPRVM, and PRVM

estimators to the following minimum variance portfolio allocation problem:

~l
minw ' Tyw, subject to w'J =1 and |wl||, < co, (6.2)

where J = (1,..., 1)T € RP, the gross exposure constraint ¢y was changed from 1 to 6,



and f‘d could be the POET estimators from the ARPM, URPM, RPRVM, and PRVM estimators
for the d-th day. To calculate the out-of-sample risks, we constructed the portfolios at the beginning
of each trading day using the stock weights (6.2), calculated using the data from the previous [
days. We then held this for one day and calculated the realized volatility using the 10-min portfolio
log-returns. The average of their square root was used for out-of-sample risk. We used [ = 1, 5, 10,
and tested the performances for the whole period (day 161 to day 501), period 1 (day 161 to day
331), and period 2 (day 332 to day 501).

Figure 7 depicts the out-of-sample risks of the portfolios constructed by the POET estimators
from the ARPM, URPM, RPRVM, and PRVM estimators for [ = 1,5,10. We can find that the
averaged volatility matrix predictors (I = 5,10) perform slightly better than the one-day (I = 1)
volatility matrix predictors. One possible explanation is that the market is volatile and the one-day
volatility is too volatile to be used as a predictor. When comparing the estimation procedures, the
ARPM estimator shows a stable result and performs the best overall. This result lends further
support to our claim that the heavy-tailed distributions of observed log-returns are heterogeneous,
as shown in Figure 1 and Figure 5, and that the proposed ARP estimation procedure can account

for the heterogeneity of the degrees of heaviness of tail distributions.

7 Conclusion

In this paper, we develop the adaptive robust pre-averaging realized volatility (ARP) estimation
method to handle the heterogeneous heavy-tailed distributions of stock-returns. To account for
the heterogeneity of the heavy-tailedness from microstructural noises and price jumps, the ARP
estimator truncates quadratic pre-averaged random variables according to daily tail indices. We
demonstrate that the proposed ARP estimator achieves sub-Weibull tail concentration with the
optimal convergence rate by showing that its upper bound matches its lower bound. To estimate
large integrated volatility matrices, the ARP estimator is further regularized using the POET
procedure, and the asymptotic properties of the POET estimator from the ARP estimator are also
investigated. In the empirical study, for the purpose of portfolio allocation, the POET estimator

based on the ARP estimator performs best overall. These findings suggest that when it comes to
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Figure 7: The out-of-sample risks of the optimal portfolios constructed using the POET estimators
from the ARPM (black dot), URPM (red cross), RPRVM (green diamond), and PRVM (blue
triangle) estimators for the three averaging lengths (whole period: day 161 to day 501, period 1:
day 161 to day 331, period 2: day 332 to day 501).

estimating the integrated volatility matrices, the proposed ARP estimation procedure helps handle
the heterogeneous tail distributions of observed log-returns.
The non-synchronization could be another source of the heavy-tailedness, and the heterogeneity

of time intervals can cause some heterogeneous variation. However, in this paper, we do not focus
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on this issue and mainly consider the noise and jump as the source of the heavy-tailedness. It
would be worthwhile to study the observation time point as it relates to the heavy-tailedness.
Furthermore, there are other possible sources of the heavy-tailedness, and it is important to know
what actually causes heavy-tailedness. On the other hand, in this paper, we consider the simple
i.i.d. structure for microstructural noises. However, successfully adjusting the bias term coming
from microstructural noises depends on their structure. In particular, it is difficult to estimate
the cross-sectional dependent structure with the non-synchronization observations. Thus, it is a
worthwhile challenge to develop a robust estimator of the cross-sectional dependent structure of

microstructural noises. We leave these interesting questions for a future study.
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