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Abstract

In this paper, we develop a novel high-dimensional coefficient estimation procedure based

on high-frequency data. Unlike usual high-dimensional regression procedure such as LASSO,

we additionally handle the heavy-tailedness of high-frequency observations as well as time

variations of coefficient processes. Specifically, we employ Huber loss and truncation scheme

to handle heavy-tailed observations, while ℓ1-regularization is adopted to overcome the curse

of dimensionality. To account for the time-varying coefficient, we estimate local coefficients

which are biased due to the ℓ1-regularization. Thus, when estimating integrated coefficients,

we propose a debiasing scheme to enjoy the law of large number property and employ a

thresholding scheme to further accommodate the sparsity of the coefficients. We call this

Robust thrEsholding Debiased LASSO (RED-LASSO) estimator. We show that the RED-

LASSO estimator can achieve a near-optimal convergence rate. In the empirical study, we

apply the RED-LASSO procedure to the high-dimensional integrated coefficient estimation

using high-frequency trading data.
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1 Introduction

With the wide availability of high-frequency financial data, researchers have developed financial

models that can incorporate high-frequency data, and the empirical studies have shown that these

models better account for market dynamics. For example, auto-regressive-type models have been

introduced based on high-frequency-based measures, such as realized volatility and realized beta

estimators (Andersen et al., 2006; Corsi, 2009; Engle and Gallo, 2006; Hansen et al., 2012; Kim

and Wang, 2016; Kim and Fan, 2019; Shephard and Sheppard, 2010; Song et al., 2021). Empirical

studies have demonstrated that capturing the auto-regressive structures of high-frequency measures

helps explain financial market dynamics. On the other hand, we often employ the realized volatility

estimators when analyzing regression models, such as the Capital Asset Pricing Model (CAPM)

(Lintner, 1965; Sharpe, 1964) and multi-factor models (Fama and French, 1992). For example,

market beta can be estimated by a ratio of the realized covariance between assets and systematic

factors to the realized variance of the systematic factors (Barndorff-Nielsen and Shephard, 2004).

See Andersen et al. (2006); Mykland and Zhang (2009); Reiß et al. (2015) for the related litera-

tures. Li et al. (2017) derived the asymptotic efficiency bound for betas in a linear continuous-time

regression model. Furthermore, to handle the time-varying feature of beta process (Ferson and

Harvey, 1999; Kalnina, 2022; Reiß et al., 2015), Aı̈t-Sahalia et al. (2020) employed time-localized

regressions for the multi-factor models. Chen (2018) introduced the general nonparametric infer-

ence for nonlinear volatility functionals of general multivariate Itô semimartingales. These models

and estimation methods have shown that incorporating high-frequency data helps better account

for the beta dynamics in the finite dimensional set-up.

In modern financial studies and practices, researchers have found a large number of factor

candidates (Bali et al., 2011; Campbell et al., 2008; Cochrane, 2011; Harvey et al., 2016; Hou

et al., 2020; McLean and Pontiff, 2016). Thus, we often encounter the curse of dimensionality, and
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the beta estimation methods designed for the finite dimension are neither efficient nor effective.

To handle the high-dimensionality, we often employ LASSO (Tibshirani, 1996), SCAD (Fan and

Li, 2001), and the Dantzig selector (Candes and Tao, 2007) under the sparsity condition of model

parameters. However, direct application of these methods cannot handle the time-varying feature

of beta processes. Recently, Kim and Shin (2022) developed a Thresholded dEbiased Dantzig

(TED) estimator that can handle the high-dimensionality and time variation of beta processes.

Specifically, they employed the Dantzig selector (Candes and Tao, 2007) for each time window

and estimated the integrated beta with the debiasing and truncation schemes. They established

the asymptotic properties of the TED estimator under the sub-Gaussianity assumption on the

high-frequency log-return data. However, we often observe that the high-frequency financial data

exhibit heavy tails (Cont, 2001; Fan and Kim, 2018; Mao and Zhang, 2018; Shin et al., 2023). Under

the heavy-tailedness assumption, the existing estimation methods, including the TED estimator

(Kim and Shin, 2022), cannot consistently estimate the time-varying betas. These facts lead to the

demand for developing methodologies that can simultaneously handle heavy-tailed observations,

the curse of dimensionality, and time-varying beta processes.

In this paper, we develop a robust integrated beta estimator based on high-dimensional re-

gression jump-diffusion processes. To handle the high-dimensionality and time-varying beta, we

assume that the beta processes are sparse and follow a continuous diffusion process. To account

for the heavy-tailedness of financial data, we assume that the residual process and jump size pro-

cesses satisfy the finite γth moment condition for γ > 2. That is, we assume that the sources

of the heavy-tailedness are the residual process and jump. We first estimate the instantaneous

betas as follows. We employ the ℓ1-penalty, Huber loss, and truncation method to manage the

curse of dimensionality, heavy-tailedness of the residual process, and jumps, respectively. We show

that the proposed instantaneous beta estimator has the desirable convergence rate. However, the

instantaneous beta estimator has non-negligible biases coming from the Huber loss and ℓ1-penalty.
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Thus, to estimate the integrated beta using the instantaneous beta estimators, we need to mitigate

the biases. Since the biases are heavy-tailed, the existing debiasing scheme cannot efficiently adjust

the biases. To tackle this problem, we propose a novel debiasing scheme and obtain an integrated

beta estimator. We show that the debiased integrated beta estimator has a near-optimal conver-

gence rate and outperforms the simple integration of the instantaneous beta estimators without a

debiasing scheme. However, due to the bias adjustment, the debiased integrated beta estimator is

not sparse; thus, we further regularize it to accommodate the sparsity. We call this the Robust

thrEsholding Debiased LASSO (RED-LASSO) estimator. We also show that the RED-LASSO

estimator has a near-optimal convergence rate.

The rest of paper is organized as follows. Section 2 introduces the high-dimensional regression

jump-diffusion process. Section 3 proposes the RED-LASSO estimator and establishes its asymp-

totic properties. In Section 4, we conduct a simulation study to check the finite sample performance

of the proposed estimation method. In Section 5, we apply the proposed estimation procedure to

high-frequency financial data. The conclusion is presented in Section 6, and all of the proofs are

collected in the Appendix.

2 The model set-up

We first fix some notations. For any given p1 by p2 matrix A = (Aij), let

∥A∥1 = max
1≤j≤p2

p1∑
i=1

|Aij|, ∥A∥∞ = max
1≤i≤p1

p2∑
j=1

|Aij|, and ∥A∥max = max
i,j

|Aij|.

The Frobenius norm of A is denoted by ∥A∥F =
√
tr(A⊤A) and the matrix spectral norm ∥A∥2

is the square root of the largest eigenvalue of AA⊤. We will use C’s to denote generic constants

whose values are free of n and p and may change from appearance to appearance.
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Let Y (t) andX(t) = (X1(t), . . . , Xp(t))
⊤ be the dependent process and p-dimensional multivari-

ate covariate process, respectively. We employ the following non-parametric time-series regression

jump-diffusion model:

dY (t) = dY c(t) + dY J(t),

dY c(t) = β⊤(t)dXc(t) + dZc(t), and dY J(t) = Jy(t)dΛy(t), (2.1)

where Y c(t) and Xc(t) =
(
Xc

1(t), . . . , X
c
p(t)
)⊤

are the continuous parts of Y (t) and X(t), respec-

tively, Y J(t) is the jump part of Y (t), Jy(t) is a jump size, Λy(t) is a Poisson process with a

bounded intensity process, β(t) = (β1(t), . . . , βp(t))
⊤ is a coefficient process, and Zc(t) is a residual

process. We note that the subscript c represents the continuous part of the process. The covariate

process X(t) and residual process Zc(t) satisfy

dX(t) = dXc(t) + dXJ(t), dXc(t) = µ(t)dt+ σ(t)dB(t),

dXJ(t) = J(t)dΛ(t), and dZc(t) = ν(t)dW (t), (2.2)

where XJ(t) is the jump part of X(t), J(t) = (J1(t), . . . , Jp(t))
⊤ is a jump size process, Λ(t) is a

p-dimensional Poisson process with bounded intensity processes, σ(t) is a p by q matrix, and B(t)

and W (t) are q-dimensional and one-dimensional independent Brownian motions, respectively.

The stochastic processes µ(t), β(t), σ(t), and ν(t) are defined on a filtered probability space

(Ω,F , {Ft, t ∈ [0, 1]}, P ) with filtration Ft satisfying the usual conditions, such as adapted and

càdlàg process. We assume that the coefficient β(t) satisfies the following diffusion model:

dβ(t) = µβ(t)dt+ νβ(t)dWβ(t),

where νβ(t) is a p by r matrix, Wβ(t) is a r-dimensional independent Brownian motion, and µβ(t)
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and νβ(t) are predictable. The main interest of this paper is to investigate the latent regression

diffusion process. In this point of view, the jump part can be considered as noises, and we discuss

how to overcome this in the following section. The parameter of interest is the integrated beta:

Iβ = (Iβi)i=1,...,p =

∫ 1

0

β(t)dt.

The integrated beta can be considered as the average of spot betas. That is, the integrated beta

presents the average effect of the increment of the covariate process. When the beta process is

constant, the integrated beta is the same as the usual beta in the regression model.

In the regression-based financial models, there are hundreds of potential factor candidates (Bali

et al., 2011; Campbell et al., 2008; Cochrane, 2011; Harvey et al., 2016; Hou et al., 2020; McLean

and Pontiff, 2016). To account for this, we allow the dimension p can be large; thus, we need

to handle the curse of dimensionality. To do this, we assume that the coefficient beta process

β(t) = (β1(t), . . . , βp(t))
⊤ satisfies the following sparsity condition:

sup
0≤t≤1

p∑
i=1

|βi(t)|δ ≤ sp and

p∑
i=1

|Iβi|δ ≤ sp a.s., (2.3)

where δ ∈ [0, 1), sp is diverging slowly in p, and 00 is defined as 0. This general sparsity condition

includes the exact sparsity condition, i.e., δ = 0. We note that the exact sparsity condition implies

that only several factors are significant, while most factors do not affect the dependent process.

Thus, intuitively, we assume that the relatively small number of factors are significant. We note

that since the beta process is an Itô diffusion process, in general, the boundedness in the sparsity

condition (2.3) is satisfied with high probability. However, for simplicity, we assume the almost

sure boundedness.
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3 Robust high-dimensional high-frequency regression

3.1 Integrated beta estimation procedure

In this section, we propose a robust integrated beta estimation procedure for the high-dimensional

regression diffusion model defined in (2.1)–(2.2). Recently, with the sub-Gaussian assumption, Kim

and Shin (2022) proposed the integrated beta estimator that can handle the curse of dimensionality

and time-varying beta. However, empirical studies have demonstrated that the stock log-return

data often exhibit heavy-tails (Cont, 2001; Fan and Kim, 2018; Mao and Zhang, 2018; Shin et al.,

2023). To account for this, we impose the finite moment condition for the residual process, Zc(t),

and jump sizes, Jy(t) and J(t) (see Assumption 1). Then, we propose a robust estimation procedure.

We first estimate the instantaneous betas. To do this, we employ the local regression as follows.

For any process g(t) and ∆n = 1/n, let ∆n
i g = g(i∆n)− g((i− 1)∆n) for 1 ≤ i ≤ 1/∆n. Define

Yi =



∆n
i+1Y

∆n
i+2Y

...

∆n
i+kn

Y


, Zi =



∆n
i+1Z

c

∆n
i+2Z

c

...

∆n
i+kn

Zc


,

Xi =



∆n
i+1X̂

c⊤

∆n
i+2X̂

c⊤

...

∆n
i+kn

X̂c⊤


, and ∆n

i X̂
c =



∆n
iX1 1{|∆n

i X1|≤v1,n}

∆n
iX2 1{|∆n

i X2|≤v2,n}

...

∆n
iXp 1{|∆n

i Xp|≤vp,n}


,

where kn is the number of observations for each local regression, 1{·} is an indicator function, and

vj,n, j = 1, . . . , p, are the threshold levels. We use vj,n = Cj,v

√
log pn−1/2 for some large constants
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Cj,v, j = 1, . . . , p. In the numerical study, we choose

vj,n = 3
√
BVjn

−1/2, (3.1)

where the bipower variation BVj =
π

2

∑n
i=2 |∆n

i−1Xj| · |∆n
iXj|. This choice of vj,n is similar to the

usual choice in the literatures (Aı̈t-Sahalia et al., 2020; Aı̈t-Sahalia and Xiu, 2019). We note that

the thresholding can detect the jumps in the covariate process X(t) and mitigate their impact on

beta estimators. On the other hand, the thresholding is not used for the dependent process Y (t)

since the robustification method outlined in (3.3) and (3.5) can handle both heavy-tailedness of the

residual process Zc(t) and jumps in the dependent process Y (t). Meanwhile, when calculating local

regressions, we need to handle the curse of dimensionality and heavy-tailedness. To overcome high-

dimensionality, we often employ the penalized regression procedure under the sparsity assumption.

For example, we often use the LASSO (Tibshirani, 1996) and Dantzig (Candes and Tao, 2007)

estimators with the sub-Gaussian conditions. However, these estimators cannot handle the heavy-

tailed observations, and furthermore, they are not consistent. To tackle this issue, we use the

following Huber loss lτ (Huber, 1964):

lτ (x) =


x2/2 if |x| ≤ τ

τ |x| − τ 2/2 if |x| > τ,

where τ > 0 is the robustification parameter. We denote lτ (x) = (lτ (x1) , . . . , lτ (xp1))
⊤ for any

vector x = (x1, . . . , xp1)
⊤ ∈ Rp1 . The Huber loss lτ mitigates the effect of outliers coming from

the heavy-tailedness of the residual process Zc(t) and jump size process Jy(t). Thus, by employing

the truncation, Huber loss, and ℓ1-regularization, we can simultaneously deal with the three issues

of the jumps, heavy-tailedness, and curse of dimensionality. Specifically, we propose the following
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instantaneous beta estimator at time i∆n:

β̂i∆n
= arg min

β∈Rp
Lτ,i(β) + η ∥β∥1 , (3.2)

where η > 0 is the regularization parameter, and the empirical loss function is

Lτ,i(β) = ∥lτ (Yi −Xiβ) /kn∥1 . (3.3)

In Theorem 1, we show that the proposed instantaneous beta estimator β̂i∆n
is consistent with

appropriate τ and η. Then, we can estimate the integrated beta using the integration of β̂i∆n
’s.

However, their integration cannot enjoy the law of large number properties since each β̂i∆n
is

biased due to the regularization term. That is, the error of their integration is dominated by the

bias terms, which leads to the same convergence rate as that of β̂i∆n
. Thus, to reduce the effect

of the bias and obtain faster convergence rate, we propose a debiasing scheme as follows. First,

we estimate the inverse instantaneous volatility matrix at time i∆n, Ω(i∆n) = Σ−1(i∆n), where

Σ(t) = σ(t)σ⊤(t). Specifically, we use the following constrained ℓ1-minimization for inverse matrix

estimation (CLIME) (Cai et al., 2011):

Ω̂i∆n = argmin ∥Ω∥1 s.t. ∥ 1

kn∆n

X⊤
i XiΩ− I∥max ≤ λ, (3.4)

where λ is the tuning parameter, which will be specified in Theorem 2. With the inverse volatility

matrix estimator Ω̂i∆n , we usually adjust the instantaneous beta estimator β̂i∆n
as follows:

β̃
′
i∆n

= β̂i∆n
+

1

kn∆n

Ω̂
⊤
i∆n

X⊤
i

(
Yi −Xiβ̂i∆n

)
.
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This debiasing scheme performs well under the sub-Gaussian assumption (Javanmard and Monta-

nari, 2014, 2018; Kim and Shin, 2022; Van de Geer et al., 2014). However, ∆n
i Z

c has only finite γth

moment for γ > 2; thus, the debiased instantaneous beta estimator has the heavy-tails. To handle

this issue, we employ the Winsorization method as follows. Define the truncation (Winsorization)

function

ψϖ (x) =


x if |x| ≤ ϖ

sign(x)ϖ if |x| > ϖ,

where ϖ > 0 is a truncation parameter and denote ψϖ (x) = (ψϖ (x1) , . . . , ψϖ (xp1))
⊤ for any

vector x = (x1, . . . , xp1)
⊤ ∈ Rp1 . Using this truncation function, we adjust β̂i∆n

as

β̃i∆n
= β̂i∆n

+ ψϖ

(
1

kn∆n

Ω̂
⊤
i∆n

X⊤
(i+kn)

(
Y(i+kn) −X(i+kn)β̂i∆n

))
, (3.5)

where the truncation parameter ϖ will be specified in Theorem 2. We note that for the debiasing

step, we use the non-overlapping window for X and Y , which helps enjoy the martingale property.

Specifically, since β0((i+kn)∆n)− β̂i∆n
is measurable at time (i+kn)∆n, we can handle the noises

from X(i+kn) and Y(i+kn) using the martingale convergence theorem. We also note that the purpose

of the debiasing is to enjoy the law of large number property when obtaining the integrated beta

estimator. Usually, the debiasing scheme is employed to obtain the asymptotic normality, which

enables the hypothesis test or confidence interval construction (Javanmard and Montanari, 2014,

2018; Van de Geer et al., 2014; Zhang and Zhang, 2014). However, in this paper, we do not focus on

this issue and mainly focus on the integrated beta estimation. Then, the integrated beta estimator

is defined as follows:

Îβ =

[1/(kn∆n)]−2∑
i=0

β̃ikn∆n
kn∆n. (3.6)
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The debiased LASSO integrated beta estimator Îβ can achieve a faster convergence rate than the

simple integration of the instantaneous beta estimators. However, due to the bias adjustment term,

it cannot account for the sparsity structure of the integrated beta. To accommodate the sparsity,

we employ the following thresholding scheme:

Ĩβi = s(Îβi)1
(
|Îβi| ≥ hn

)
and Ĩβ =

(
Ĩβi

)
i=1,...,p

,

where the thresholding function s(·) satisfies |s(x)−x| ≤ hn and hn is a thresholding level, which will

be specified in Theorem 3. For example, we can employ the hard thresholding function s(x) = x

or soft thresholding function s(x) = x − sign(x)hn. In the empirical study, we used the hard

thresholding function s(x) = x. We call this the Robust thrEsholding Debiased LASSO (RED-

LASSO) estimator. We describe the RED-LASSO estimation procedure in Algorithm 1.
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Algorithm 1 RED-LASSO estimation procedure

Step 1 Obtain the instantaneous beta estimator:

β̂i∆n
= arg min

β∈Rp
∥lτ (Yi −Xiβ) /kn∥1 + η ∥β∥1 ,

where τ = Cτn
−1/4(log p)−3/4, η = Cη

[
spn

−5/4
√
log p+n−5/4(log p)3/4

]
, and kn = ckn

1/2 for some

large constants Cτ , Cη, and ck.
Step 2 Obtain the inverse instantaneous volatility matrix estimator:

Ω̂i∆n = argmin ∥Ω∥1 s.t. ∥ 1

kn∆n

X⊤
i XiΩ− I∥max ≤ λ,

where λ = Cλn
−1/4

√
log p for some large constant Cλ.

Step 3 Debias the instantaneous beta estimator:

β̃i∆n
= β̂i∆n

+ ψϖ

(
1

kn∆n

Ω̂
⊤
i∆n

X⊤
(i+kn)

(
Y(i+kn) −X(i+kn)β̂i∆n

))
,

where ϖ = Cϖs
2−δ
p nδ/4(log p)(1−3δ)/4 for some large constant Cϖ.

Step 4 Obtain the integrated beta estimator:

Îβ =

[1/(kn∆n)]−2∑
i=0

β̃ikn∆n
kn∆n.

Step 5 Threshold the integrated beta estimator:

Ĩβi = s(Îβi)1
(
|Îβi| ≥ hn

)
and Ĩβ =

(
Ĩβi

)
i=1,...,p

,

where s(·) satisfies |s(x) − x| ≤ hn, hn = Chbn for some large constant Ch, and bn is defined in
Theorem 2.

3.2 Theoretical results

In this section, we investigate asymptotic properties of the proposed RED-LASSO estimation

procedure. To investigate the theoretical properties, we make the following assumptions.

Assumption 1.

(a) The residual process Zc(t) and jump size processes, Jy(t) and J(t) = (J1(t), . . . , Jp(t))
⊤,
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satisfy, for some γ > 2,

max
1≤i≤n

E
{
|∆n

i Z
c|γ
∣∣∣F(i−1)∆n

}
≤ Cn−γ/2,

sup
0≤t≤1

E{|Jy(t)|γ} ≤ C, and sup
0≤t≤1

max
1≤i≤p

E{|Ji(t)|γ} ≤ C a.s.

(b) The processes µ(t), µβ(t), β(t), Σ(t), and Σβ(t) = νβ(t)ν
⊤
β (t) are almost surely entry-wise

bounded, and ∥Σ−1(t)∥1 ≤ C a.s.

(c) The processes µβ(t) = (µβ,1(t), . . . , µβ,p(t))
⊤ and Σβ(t) = (Σβ,ij(t))i,j=1,...,p satisfy the follow-

ing sparsity condition for δ ∈ [0, 1):

sup
0≤t≤1

p∑
i=1

|µβ,i(t)|δ ≤ sp and sup
0≤t≤1

p∑
i=1

|Σβ,ii(t)|δ/2 ≤ sp a.s.

(d) nc1 ≤ p ≤ c2 exp(n
c3) for some positive constants c1, c2, and c3 < 1/6, and s2p log p∆nkn → 0

as n, p→ ∞.

(e) Define Wt =
{
w ∈ Rp :

∥∥wSc
t

∥∥
1
≤ 3 ∥wSt∥1 + 4

∥∥(β0(t))Sc
t

∥∥
1

}
, where wSc

t
is the subvector

obtained by stacking {wj : j ∈ Sc
t }, wSt is the subvector obtained by stacking {wj : j ∈ St},

(β0(t))Sc
t
is the subvector obtained by stacking {(β0(t))j : j ∈ Sc

t }, and St = {j : jth element

of |β0(t)| > nη}. Then, there exists a positive constant κ such that the following inequality

holds for some D = (8 + 48/κ)sp(nη)
1−δ and 0 ≤ i ≤ n− kn, where the specific value of η is

given in Theorem 1:

inf{w⊤∇2Lτ,i(β)w : w ∈ Wi∆n , ∥w∥2 = 1, ∥β − β0(i∆n)∥1 ≤ D} ≥ κ/n.
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(f) The volatility process Σ(t) = (Σij(t))i,j=1,...,p satisfies the following condition:

|Σij(t)− Σij(s)| ≤ C
√

|t− s| log p a.s.

Remark 1. Assumption 1(a) is the finite moment condition, which implies that the dependent

process Y (t), covariate process X(t), and residual process Zc(t) have heavy-tails. We note that

the moment condition for Zc(t) is satisfied when ∆n
i Z

c is an independent random variable and

E {|∆n
i Z

c|γ} ≤ Cn−γ/2, or sup0≤t≤1 supt≤s≤1 E
{
|ν(s)|γ

∣∣∣Ft

}
≤ C a.s. The latter condition can be

satisfied when ν(t) consists of the bounded continuous process and independent jump process.

The boundedness condition Assumption 1(b) implies the sub-Gaussianity for the continuous part

of the covariate process, Xc(t), and target parameter, β(t), which are often required to inves-

tigate high-dimensional inferences. However, the boundedness condition can be relaxed to the

locally boundedness condition by Lemma 4.4.9 in Jacod and Protter (2011). Specifically, if the

asymptotic result, such as stable convergence in law or convergence in probability, is satisfied un-

der the boundedness condition, it is also satisfied under the locally boundedness condition. On

the other hand, for the continuous-time regression model, we usually assume that the smallest

eigenvalue of Σ(t) is bounded from below, which implies that the largest eigenvalue of Σ−1(t) is

bounded. In this point of view, the condition ∥Σ−1(t)∥1 ≤ C a.s. is not restrictive. Even if this

condition is replaced by the sparsity condition sup0≤t≤1max1≤i≤p

∑p
j=1 |ωij(t)|q ≤ sω,p a.s., where

Σ−1(t) = (ωij(t))i,j=1,...,p, and q ∈ [0, 1) and sω,p are the sparsity related variables, the difference in

theoretical results is up to sω,p order. Assumption 1(c) is the sparsity condition for the beta pro-

cess, which is required to investigate the discretization error when estimating instantaneous betas.

Assumption 1(e) is the eigenvalue condition for the Hessian matrix ∇2Lτ,i(β), which is called the

localized restricted eigenvalue (LRE) condition (Fan et al., 2018; Sun et al., 2020). This implies

strictly positive restricted eigenvalues over a local neighborhood. We note that nη converges to
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zero for the choice of η in Theorems 1–2. When the coefficient process β(t) satisfies the exact

sparsity condition, i.e., δ = 0, Wt is replaced by a ℓ1-cone
{
w ∈ Rp :

∥∥wSc
t

∥∥
1
≤ 3 ∥wSt∥1

}
, where

St = {j : jth element of β0(t) ̸= 0}. Finally, we need the continuity condition Assumption 1(f) to

investigate asymptotic behaviors of the CLIME estimator. We note that this condition is obtained

with high probability when Σ(t) follows a continuous Itô diffusion process with bounded drift and

instantaneous volatility processes.

The following theorem derives the asymptotic properties of instantaneous beta estimator β̂i∆n
.

Note that the subscript 0 represents the true parameters.

Theorem 1. Under Assumption 1(a)–(e), let kn = ckn
c for some constants ck and c ∈ [3/8, 3/4].

For any given positive constant a, choose τ = Cτ,a

√
kn∆n(log p)

−3/4 and η = Cη,a

[
spn

−3/2
√
kn log p

+n−1k
−1/2
n (log p)3/4

]
for some large constants Cτ,a and Cη,a. Then, we have, for large n,

max
i

∥β̂i∆n
− β0(i∆n)∥1 ≤ Csp(nη)

1−δ and max
i

∥β̂i∆n
− β0(i∆n)∥2 ≤ C

√
sp(nη)

1−δ/2, (3.7)

with probability greater than 1− p−a.

Remark 2. Theorem 1 shows the ℓ1 and ℓ2 norm error bounds of the instantaneous beta esti-

mator. We note that as kn increases, the statistical estimation error decreases and time variation

approximation error increases. To achieve the optimality, we choose c = 1/2, which implies that

these two errors have the same convergence rate. Then, the instantaneous beta estimator has the

ℓ1 convergence rate of n
−(1−δ)/4 and ℓ2 convergence rate of n

−(2−δ)/8 with the log order and sparsity

level terms.

To estimate the integrated beta, we can use the integration of the instantaneous beta estimators.

However, as discussed in Section 3.1, it cannot enjoy the law of large number property due to

the heavy-tailed biases. To tackle this problem, we employ the robust debiasing method (3.5)
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and obtain the debiased LASSO integrated beta estimator Îβ in (3.6). The following theorem

establishes the asymptotic behaviors of Îβ.

Theorem 2. Under the assumptions in Theorem 1 and Assumption 1(f), choose kn = ckn
1/2

for some constant ck. For any given positive constant a, let λ = Cλ,an
−1/4

√
log p and ϖ =

Cϖs
2−δ
p nδ/4(log p)(1−3δ)/4 for some constants Cλ,a and Cϖ. Then, we have, with probability greater

than 1− p−a,

∥Îβ − Iβ0∥max ≤ Cbn, (3.8)

where bn = s2−δ
p n(−2+δ)/4(log p)(5−3δ)/4 + spn

−1/2 (log p)3/2.

Remark 3. Theorem 2 shows the max norm error bound of the debiased LASSO integrated beta

estimator. When the beta process satisfies the exact sparsity condition, i.e., δ = 0, the debiased

LASSO integrated beta estimator has the convergence rate of s2pn
−1/2 (log p)5/4+ spn

−1/2 (log p)3/2,

while we have a slower convergence rate of s2pn
−1/4

√
log p + spn

−1/4 (log p)3/4 without a debiasing

scheme. The n1/2 term is the optimal convergence rate of estimating model parameters given n

observations. For the log order term, the usual optimal rate is
√
log p in high dimensional inferences.

However, we have (log p)3/2 term since the additional log p term comes from bounding the time-

varying processes, such as the target process β(t). In sum, the debiased LASSO integrated beta

estimator has the optimal converence rate with up to log p and sp orders.

Theorem 2 reveals that the debiased LASSO integrated beta estimator performs better than the

integration of the instantaneous beta estimators. Finally, to account for the sparsity structure, we

threshold the debiased LASSO integrated beta estimator and obtain the RED-LASSO estimator.

Theorem 3 establishes the ℓ1 convergence rate of the RED-LASSO estimator.

Theorem 3. Under the assumptions in Theorem 2, for any given positive constant a, choose
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hn = Ch,abn for some constant Ch,a. Then, we have, with probability greater than 1− p−a,

∥Ĩβ − Iβ0∥1 ≤ Cspb
1−δ
n . (3.9)

Theorem 3 shows that the proposed RED-LASSO estimator is consistent in terms of the ℓ1

norm. We note that under the sub-Gaussian assumption on the log-return data, Kim and Shin

(2022) proposed the integrated beta estimator that has the ℓ1 convergence rate of spa
1−δ
n , where

an = s2−δ
p n(−2+δ)/4(log p)(2−δ)/2 + spsω,pn

(−2+q)/4(log p)(2−q)/2 + spn
−1/2 (log p)3/2, and sω,p and q

are the sparsity related terms for the inverse volatility matrix. Thus, the cost of handling the

heavy-tailedness is at most log p order.

3.3 Discussion on the tuning parameter selection

In this section, we discuss how to choose the tuning parameters to implement the RED-LASSO

estimation procedure. We first obtain the variables ∆n
i X̂

c
j , j = 1, . . . , p, based on the threshold

level (3.1). Then, to handle the scale problem, we standardize the variables ∆n
i Y and ∆n

i X̂
c
j ,

j = 1, . . . , p, to have a zero mean and unit variance. The re-scaling is employed after obtaining the

RED-LASSO estimator. In the local regression stage (3.2), we select kn = [n1/2]. Also, we choose

τ = cτn
−1/4 (log p)−3/4 , η = cηn

−5/4 (log p)3/4 ,

λ = cλn
−1/4

√
log p, ϖ = cϖ (log p)1/4 , and hn = chn

−1/2 (log p)3/2 , (3.10)

where cτ , cη, cλ, cϖ, and ch are tuning parameters. For the simulation and empirical studies, we

choose cτ , cϖ, and ch that minimize the corresponding mean squared prediction error (MSPE). The

results are cτ = 16, cϖ = 1/64, and ch = 1/4. Details can be found in Section 5. Also, we select

cη ∈ [0.1, 10], which minimizes the corresponding Bayesian information criterion (BIC). Finally, we
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choose cλ ∈ [0.1, 10] that minimizes the following loss function:

tr

[(
1

kn∆n

X⊤
i XiΩ̂i∆n − Ip

)2
]
,

where Ip is the p-dimensional identity matrix.

4 A simulation study

To check the finite sample performance of the proposed RED-LASSO estimator, we conducted

simulations. Based on the models (2.1)–(2.2), we generated the data using the heavy-tail and

sub-Gaussian processes with frequency 1/nall. Specifically, we employed the following time-series

regression jump-diffusion model:

dY (t) = β⊤(t)dXc(t) + dZc(t) + Jy(t)dΛy(t), dX(t) = dXc(t) + dXJ(t),

dXc(t) = σ(t)dB(t), dXJ(t) = J(t)dΛ(t), and dZc(t) = ν(t)dW (t),

where the jump sizes Ji(t) and J
y(t) were obtained from 0.1 times i.i.d. t-distribution with degrees

of freedom df , and Λ(t) = (Λ1(t), . . . ,Λp(t))
⊤ and Λy(t) were generated by Poisson processes with

the intensities (20, . . . , 20)⊤ and 10, respectively. We chose df as 2 and ∞ for the heavy-tailed and

sub-Gaussian processes, respectively. The initial values of X(t) and Y (t) were set as zero, and we

generated ν(t) as follows:

ν(tl) = (1 + 0.5 |tdf,l|) ν ′(tl),

where tdf,l, l = 1, . . . , nall, are the i.i.d. t-distributions with degrees of freedom df , and ν ′(tl),

l = 1, . . . , nall, were generated from the following Ornstein-Uhlenbeck process:

dν ′(t) = 3 (0.4− ν ′(t)) dt+ 0.12dWν(t),
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where ν ′(0) = 0.5 and Wν(t) is an independent Brownian motion. We note that the process ν(t)

is not realistic. However, to investigate the effect of the heavy-tailedness of the return process,

the structure of ν(t) is imposed. To generate the volatility process σ(t), we first generated the

Ornstein-Uhlenbeck process u(t) as follows:

du(t) = 5 (0.45− u(t)) dt+ 0.2dWu(t),

where u(0) = 1 and Wu(t) is an independent Brownian motion. Then, we took σ(t) as a Cholesky

decomposition of Σ(t) = (Σij(t))1≤i,j≤p, where Σij(t) = u(t)0.8|i−j|. To generate the coefficient

β(t), we considered the exact sparse process, i.e., βi(t) = 0 for [sp] + 1 ≤ i ≤ p. Specifically, we

generated β(t) as follows:

dβ(t) = µβ(t)dt+ νβ(t)dWβ(t),

where µβ(t) = (µ1,β(t), . . . , µp,β(t))
⊤, νβ(t) = (νi,j,β(t))1≤i,j≤p, and Wβ(t) is a p-dimensional in-

dependent Brownian motion. For 1 ≤ i ≤ [sp], the initial value βi(0) = 1 and µi,β(t) = 0.1 for

0 ≤ t ≤ 1. The process (νi,j,β(t))1≤i,j≤[sp]
was taken to be ξ(t)I[sp], where I[sp] is the [sp]-dimensional

identity matrix and ξ(t) follows the Ornstein-Uhlenbeck process:

dξ(t) = 3 (0.3− ξ(t)) dt+ 0.1dWξ(t),

where ξ(0) = 0.15 and Wξ(t) is an independent Brownian motion. We chose p = 100, sp = log p,

nall = 4000, and we varied n from 1000 to 4000. When implementing the RED-LASSO estimation

procedure, the tuning parameters were selected as discussed in Section 3.3.

To investigate the effect of the robustification of the RED-LASSO estimator, we employed a

thrEsholding Debiased LASSO (ED-LASSO) estimator. The ED-LASSO estimator uses the same

estimation procedure as the RED-LASSO estimator with τ = ϖ = ∞. Since the ED-LASSO
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estimator does not employ the Huber loss and Winsorization method, the jump adjustment for the

dependent process Y (t) is needed. Thus, we used Y ′
i instead of Yi for the ED-LASSO estimator,

where

Y ′
i =



∆n
i+1Ŷ

c

∆n
i+2Ŷ

c

...

∆n
i+kn

Ŷ c


and ∆n

i Ŷ
c = ∆n

i Y 1{|∆n
i Y |≤un}. (4.1)

In the simulation and empirical studies, we choose un = 3
√
BV Y n−1/2, where the bipower varia-

tion BV Y =
π

2

∑n
i=2 |∆n

i−1Y | · |∆n
i Y |. We note that the ED-LASSO estimator can enjoy the same

theoretical properties as the RED-LASSO estimator under the sub-Gaussian process, but it cannot

explain the heavy-tailed process. As a benchmark, we also considered the LASSO estimator (Tib-

shirani, 1996), which cannot account for any of the heavy-tailed distribution or the time-varying

beta process. Specifically, we employed the LASSO estimator as follows:

Ĩβ
LASSO

= argminβ

{
n∑

i=1

(
∆n

i Ŷ
c −∆n

i X̂
c⊤β

)2
+ ηLASSO∥β∥1

}
, (4.2)

where the regularization parameter ηLASSO ∈ [0.1, 10] was selected by minimizing the corresponding

Bayesian information criterion (BIC). The average estimation errors under the max norm, ℓ1 norm,

and ℓ2 norm were computed by 1000 simulations.

Figure 1 plots the log max, ℓ1, and ℓ2 norm errors of the RED-LASSO, ED-LASSO, and LASSO

estimators with n = 1000, 2000, 4000 for the heavy-tail and sub-Gaussian processes. From Figure 1,

we can find that the estimation errors of the RED-LASSO estimator decrease as the sample size n

increases. As expected, the RED-LASSO estimator performed the best for the heavy-tail process.

This may be because the RED-LASSO estimator can explain the heavy-tailedness while other
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Figure 1: The log max, ℓ1, and ℓ2 norm error plots (corresponding to three columns) of the RED-
LASSO (black dot), ED-LASSO (red triangle), and LASSO (green diamond) estimators for p = 100
and n = 1000, 2000, 4000.

estimators cannot. For the sub-Gaussian process, the RED-LASSO and ED-LASSO estimators

showed better performance than the LASSO estimator. This is because the LASSO estimator

cannot account for the time variation of the beta process. We note that, even for the sub-Gaussian

process, the RED-LASSO estimator showed better performance than the ED-LASSO estimator.

One possible explanation for this is that the true return process can have some extreme values over

time even if the sub-Gaussian random variables are used. From this result, we can conjecture that

the RED-LASSO estimator is robust to the heavy-tailedness of the log-return process.
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5 An empirical study

In this section, we applied the proposed RED-LASSO estimator to high-frequency trading data

from January 2013 to December 2019. We took stock price data, futures price data, and firm

fundamentals from the End of Day website, FirstRate Data website, and Center for Research

in Security Prices (CRSP)/Compustat Merged Database, respectively. We obtained 5-min log-

price data with the previous tick scheme (Wang and Zou, 2010; Zhang, 2011) and processed the

data similar to the procedure in Kim and Shin (2022). The days with half trading hours were

not included. For the dependent process, we collected the log-price data of the following five

assets: Apple Inc. (AAPL), Berkshire Hathaway Inc. (BRK.B), General Motors Company (GM),

Alphabet Inc. (GOOG), and Exxon Mobil Corporation (XOM). These firms have the top market

values in their global industry classification standard (GICS) sectors. For the covariate process,

we first obtained the log-prices of 54 futures, which are often used as the market macro variables.

For example, we selected 20 commodity data, 10 currency data, 10 interest rate data, and 14 stock

market index data. The specific list is presented in Table 4 in the Appendix. Then, we constructed

Fama-French five factors (Fama and French, 2015) and the momentum factor (Carhart, 1997) with

the assets listed on NYSE, NASDAQ, and AMEX, which are widely used in the stock market

analysis. We note that the MKT, HML, SMB, RMW, CMA, and MOM represent the market,

value, size, profitability, investment, and momentum factors, respectively. First, we calculated

MKT as the return of a value-weighted portfolio of whole assets. Then, we obtained other factors

as follows:

HML = (SH +BH) /2− (SL+BL) /2,

SMB = (SH + SM + SL) /3− (BH +BM +BL) /3,

RMW = (SR +BR) /2− (SW +BW ) /2,
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CMA = (SC +BC) /2− (SA+BA) /2,

MOM = (SU +BU) /2− (SD +BD) /2,

where small (S) and big (B) portfolios represent the small and big market equities, respectively,

while we classified high (H), medium (M), and low (L) portfolios according to their ratio of book

equity to market equity. On the other hand, robust (R), neutral (N), and weak (W) portfolios were

classified by their profitability, while we obtained conservative (C), neutral (N), and aggressive

(A) portfolios using their investment data. Also, up (U), flat (F), and down (D) portfolios were

classified by their momentum of the return. The portfolio constituents were updated monthly, and,

with 5-min frequency, we obtained the portfolio return as follows:

WRetd,i =

∑Nd

j=1w
j
d,i ×Retjd,i∑Nd

j=1w
j
d,i

,

where WRetd,i is the portfolio return for the dth day and ith time interval, Nd is the number of

portfolio components on the dth day, the superscript j is used to represent the jth stock of the

portfolio, and wj
d,i is calculated by

wj
d,i = wj

d ×
i−1∏
l=0

(
1 +Retjd,l

)
,

where wj
d is the market capitalization of the jth stock at the market close time on the day d− 1,

and Retjd,0 represents the overnight return from the day (d− 1) to day d. To sum up, the five assets

and 60 factors were used for the dependent and covariate processes, respectively. The details of

the data processing can be found in Aı̈t-Sahalia et al. (2020) and Kim and Shin (2022).

To determine the tuning parameters cτ , cϖ, and ch, we employed the mean squared prediction
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error (MSPE) with the data in 2013. For the choice of cτ , we defined

Λ(cτ ) =
1

60

5∑
s=1

12∑
j=1

[1/(kn∆n)]−2∑
i=0

∥∥∥β̂j,s

i∆n
(cτ )− β̂

j,s

(i+1)∆n
(∞)

∥∥∥2
2
,

where β̂
j,s

i∆n
(cτ ) is the instantaneous beta estimator at time i∆n with the tuning parameter cτ

for the jth month in 2013 and sth stock. Then, we selected cτ by minimizing Λ(cτ ) over cτ ∈{
2l | 0 ≤ l ≤ 10, l ∈ Z

}
. Based on the selected cτ , we defined

Λ(cϖ) =
1

60

5∑
s=1

12∑
j=1

[1/(kn∆n)]−2∑
i=0

∥∥∥β̃j,s

i∆n
(cϖ)− β̂

j,s

(i+1)∆n

∥∥∥2
2
,

where β̃
j,s

i∆n
(cϖ) is the debiased instantaneous beta estimator at time i∆n with the tuning parameter

cϖ for the jth month in 2013 and sth stock. We chose cϖ which minimizes Λ(cϖ) over cϖ ∈{
2l | −10 ≤ l ≤ 0, l ∈ Z

}
. Finally, with the selected cτ and cϖ, we defined

Λ(ch) =
1

55

5∑
s=1

11∑
j=1

∥∥∥∥Ĩβj,s
(ch)− Îβ

(j+1),s
∥∥∥∥2
2

,

where Ĩβ
j,s

(ch) is the RED-LASSO estimator with the tuning parameter ch and Îβ
j,s

is the debiased

integrated beta estimator for the jth month in 2013 and sth stock. Then, we selected ch by

minimizing Λ(ch) over ch ∈
{
2l | −5 ≤ l ≤ 5, l ∈ Z

}
. The results are cτ = 16, cϖ = 1/64, and

ch = 1/4. We note that the stationarity assumption for the beta process is reasonable, which

motivates and justifies the above tuning parameter selection procedure. Then, using the RED-

LASSO, ED-LASSO, and LASSO estimation procedures, we obtained the monthly integrated betas

for each of the five assets. The tuning parameters were selected based on Section 3.3 and Section

4. For the non-trading period, we set the beta estimates as zero.

We first compare the performances of the RED-LASSO, ED-LASSO, and LASSO estimators.
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Table 1: The average in-sample and out-of-sample R2 of the RED-LASSO, ED-LASSO, and LASSO
estimators over the five assets.

In-sample R2

Estimator
RED-LASSO ED-LASSO LASSO

whole period 0.261 0.196 0.220
2013 0.254 0.151 0.202
2014 0.233 0.201 0.187
2015 0.282 0.272 0.257
2016 0.267 0.085 0.214
2017 0.206 0.137 0.158
2018 0.339 0.335 0.315
2019 0.247 0.191 0.208

Out-of-sample R2

Estimator
RED-LASSO ED-LASSO LASSO

whole period 0.248 0.167 0.216
2014 0.214 0.136 0.181
2015 0.270 0.234 0.245
2016 0.248 0.082 0.210
2017 0.194 0.094 0.152
2018 0.329 0.281 0.304
2019 0.231 0.173 0.202

To do this, we calculated the monthly in-sample and out-of-sample R2 with the monthly integrated

beta estimates. The out-of-sample R2 was calculated using the integrated betas from the previous

month, and it was obtained excluding the year 2013 since the tuning parameters were chosen based

on the data in 2013. For each year, we calculated the average R2 across the five assets and twelve

months. Table 1 shows the average in-sample and out-of-sample R2 of the RED-LASSO, ED-

LASSO, and LASSO estimators. As seen in Table 1, the RED-LASSO estimator shows the best

performance for all periods. This may be because only the RED-LASSO estimator can handle both

the heavy-tailed distribution of the return process and time-varying property of the beta process.

Table 2 shows the non-zero frequency of the RED-LASSO, ED-LASSO, and LASSO estimators

for the five assets and 60 factors over 84 months. Table 3 shows the monthly average of non-zero

frequency over factors and time for the RED-LASSO, ED-LASSO, and LASSO estimators for the

five assets. As seen in Tables 2 and 3, the RED-LASSO estimator can better account for the

sparsity of the integrated betas than the ED-LASSO and LASSO estimators. From this result, we
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Table 2: The number of non-zero monthly integrated beta estimates from the RED-LASSO (RED),
ED-LASSO (ED), and LASSO estimators for the five assets and 60 factors over 84 months.

Type Symbol AAPL BRK.B GM GOOG XOM
RED ED LASSO RED ED LASSO RED ED LASSO RED ED LASSO RED ED LASSO

Commodity CA 0 20 0 0 22 0 0 27 0 1 28 0 0 29 0
CL 0 15 0 0 15 2 1 21 1 1 15 0 11 34 48
GC 1 17 0 2 11 0 4 25 0 2 15 0 0 25 1
HG 1 16 0 1 23 0 1 19 1 4 18 0 3 16 4
HO 0 12 0 0 20 0 3 12 1 0 7 0 2 14 42
ML 0 20 0 0 15 0 0 22 0 1 17 0 0 12 1
NG 2 8 0 0 9 0 1 10 0 0 3 0 0 6 1
OJ 1 11 0 0 9 0 0 15 0 0 23 0 1 15 0
PA 0 9 0 1 7 0 1 11 0 1 13 0 0 11 1
PL 2 7 0 1 14 0 0 22 0 2 14 0 0 15 1
RB 1 9 0 2 15 0 2 14 1 0 17 0 2 12 36
RM 0 15 0 0 14 0 0 15 0 0 12 0 0 10 0
RS 0 9 0 0 10 0 0 7 0 0 7 0 0 6 0
SI 0 18 0 1 16 0 3 13 0 2 18 0 0 17 1
ZC 0 21 0 1 19 0 3 26 0 0 16 0 0 16 0
ZL 1 19 0 1 15 0 0 20 0 2 15 0 0 19 1
ZM 1 13 0 1 17 0 1 19 0 1 19 0 2 14 0
ZO 0 10 0 0 16 0 1 16 0 1 19 0 1 16 0
ZR 0 12 0 0 14 0 0 12 0 0 16 0 0 17 0
ZW 1 15 0 0 13 0 0 16 0 3 23 0 0 12 0

Currency A6 1 15 0 2 23 1 1 24 2 1 17 0 1 11 6
AD 0 20 0 2 13 0 2 14 2 3 11 0 4 18 13
B6 0 19 0 0 17 0 4 23 0 1 20 0 1 21 0
BR 0 6 0 0 14 0 0 10 0 0 13 0 1 11 1
DX 3 25 1 0 15 0 1 26 0 0 16 0 1 16 1
E1 1 15 0 2 17 0 2 22 0 1 18 0 0 14 0
E6 1 16 0 0 26 0 0 25 0 0 15 0 1 17 0
J1 2 18 2 2 18 9 3 23 5 1 20 1 3 23 3
RP 0 15 0 0 11 0 1 24 0 0 14 0 0 21 0
RU 0 7 0 0 9 0 0 9 0 0 11 0 1 8 1

Interest rate BTP 0 39 0 1 33 0 2 44 0 0 30 0 0 30 0
ED 0 2 0 0 4 0 0 10 0 0 3 0 0 7 0
G 0 46 0 2 47 0 2 39 1 1 41 0 1 44 0
GG 0 27 0 0 19 2 2 27 1 3 20 0 0 27 0
HR 0 9 0 2 14 0 1 14 0 3 16 0 0 17 0
US 1 15 1 0 9 5 3 21 1 1 14 0 3 15 1
ZF 1 14 0 2 12 4 0 19 1 0 10 0 3 14 0
ZN 0 10 1 0 13 4 1 13 2 1 13 0 2 15 0
ZQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ZT 1 14 1 0 9 0 0 8 2 1 10 0 0 3 0

Stock market index DY 3 34 18 0 38 26 3 40 18 3 30 10 3 43 25
ES 53 45 81 71 71 84 14 36 67 64 54 81 30 35 76
EW 8 42 18 20 35 56 28 49 58 6 46 13 6 43 41
FX 1 25 9 2 35 19 3 27 20 1 26 5 0 21 27
MME 18 25 28 8 24 33 12 29 26 26 34 23 8 25 51
MX 1 35 17 1 24 32 3 30 24 4 25 7 1 27 38
NQ 84 84 84 14 40 37 8 40 36 84 84 84 13 51 21
RTY 9 26 27 4 28 27 14 34 48 5 39 24 3 29 22
VX 14 34 29 14 24 37 5 20 21 21 30 23 5 15 29
X 3 26 11 6 26 32 7 30 26 4 27 5 12 43 58
XAE 0 19 0 1 17 1 2 22 5 0 20 0 66 71 57
XAF 1 17 3 39 50 35 4 27 12 2 16 0 1 18 11
XAI 2 23 2 2 24 4 1 18 5 0 15 0 2 17 6
YM 43 60 62 67 60 84 13 31 56 6 27 50 55 63 84

Six factors HML 9 23 0 28 37 12 26 50 9 22 38 1 23 45 42
SMB 8 30 0 65 68 19 10 29 1 5 22 0 57 63 19
RMW 2 13 0 25 44 7 37 51 4 8 24 0 59 65 49
CMA 2 18 2 5 24 0 11 35 4 18 32 5 45 56 39
MOM 6 30 2 29 46 11 40 54 23 22 37 5 63 72 39
MKT 13 51 32 84 83 84 82 82 83 19 35 32 84 84 84

can conjecture that the proposed RED-LASSO provides more sparse beta estimates, which is the

important property in practice. Furthermore, as discussed above, the RED-LASSO estimator shows
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Table 3: The monthly average of non-zero frequency over 60 factors and 84 months for the RED-
LASSO, ED-LASSO, and LASSO estimators for the five assets.

AAPL BRK.B GM GOOG XOM
RED ED LASSO RED ED LASSO RED ED LASSO RED ED LASSO RED ED LASSO

Non-zero frequency 3.595 15.095 5.130 6.083 16.845 7.940 4.392 17.511 6.750 4.261 15.333 4.392 6.904 18.261 11.678

the best performance in terms of R2 in Table 1. That is, the RED-LASSO estimator can explain

the market dynamics well with a simpler model. We note that for the RED-LASSO estimates, the

stock market index futures factors had non-zero integrated betas more often than the other futures

factors. This result is consistent with the multi-factor models (Asness et al., 2013; Carhart, 1997;

Fama and French, 1992, 2015) since the market factors can be partially explained by the stock

market index futures factors.

Now, we investigate the result of the RED-LASSO estimator. Figure 2 shows the monthly

integrated betas from the RED-LASSO estimator for the five assets and 60 factors. Figure 3

depicts the non-zero frequency of the RED-LASSO estimator for the five groups, consisting of the

commodity futures group, currency futures group, interest rate futures group, stock market index

futures group, and market factor group. From Figures 2 and 3, we see that integrated betas change

over time, and only a small number of factors had non-zero integrated betas in most periods. To

investigate time-series of the significant betas, we plotted the integrated beta estimates for the

three factors that most frequently had non-zero integrated betas in Figure 4. The AAPL has NQ

(E-mini Nasdaq 100), ES (E-mini S&P 500), and YM (E-mini Dow); BRK.B has MKT, ES, and

YM; GM has MKT, MOM, and RMW; GOOG has NQ, ES, and MME (MSCI Emerging Markets

Index); and XOM has MKT, XAE (E-mini Energy Select Sector), and MOM. In sum, either the

NQ factor or MKT factor most frequently had non-zero integrated betas, while the other factors

had non-zero integrated betas only for some time periods.

When modeling regression-based financial models, we often employ the six factors, MKT, HML,

SMB, RMW, CMA, and MOM (Asness et al., 2013; Carhart, 1997; Fama and French, 2015, 2016).

To investigate their beta behaviors in more detail, we plotted the integrated betas with the RED-
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Figure 2: The monthly integrated betas from the RED-LASSO estimator for the five assets and
60 factors. Each line connects the 60 integrated beta estimates for each month.
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Figure 3: The nonzero frequency of the monthly integrated betas from the RED-LASSO estimator
for the five assets and five groups. The five groups consist of the commodity futures group, currency
futures group, interest rate futures group, stock market index futures group, and market factor
group.
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Figure 4: The monthly integrated betas from the RED-LASSO estimator for the three factors that
most frequently had non-zero integrated betas among the 60 factors for each of the five assets.
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Figure 5: The monthly integrated betas from the RED-LASSO and ED-LASSO estimators for
MKT, HML, SMB, RMW, CMA, and MOM over 84 months. Each line connects the six integrated
beta estimates for each month.
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LASSO and ED-LASSO estimators for these six factors in Figure 5. As expected, the MKT factor

played a significant role for BRK.B, GM, and XOM; however, the six factors had zero integrated

betas in most periods for the AAPL and GOOG. This may be because technology companies, such

as AAPL and GOOG, have recently shown outstanding performance in the U.S. market; thus, the

NQ (E-mini Nasdaq-100) factor can explain their movements well, as shown in Figure 4. We note

that the results of the two other estimators are similar, but the RED-LASSO estimator has the

more stable result. Thus, we can conjecture that considering both heavy-tailed distribution and

time variation of beta process helps better explain the beta dynamics.

6 Conclusion

In this paper, we developed a novel RED-LASSO estimation procedure that can handle the heavy-

tailedness of financial data and account for the time variation and sparsity of the high-dimensional

beta process. To estimate the instantaneous beta, we propose a robust estimator that employs the

Huber loss, truncation method, and ℓ1-penalty. We demonstrated that the proposed instantaneous

beta estimator can handle the heavy-tailedness and the curse of dimensionality with a desirable

convergence rate. To handle the heavy-tailed bias coming from the Huber loss and ℓ1-penalty, we

developed a robust debiasing scheme and propose an integrated beta estimator. We showed that

the proposed debiasing method sufficiently mitigates the effect of the bias, and the integrated beta

estimator can enjoy the law of large number property. Then, the debiased integrated beta estimator

is further regularized to account for the sparsity of the integrated beta. We demonstrated that the

proposed RED-LASSO estimator can achieve the near-optimal convergence rate.

In the empirical study, the RED-LASSO estimation procedure shows the best performance in

terms of R2 and the sparsity of the beta estimates. It suggests that when estimating integrated

beta in the high-dimensional high-frequency set-up, the RED-LASSO estimation method helps
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account for the features of the time-varying beta process and heavy-tailed distributions of observed

log-returns. On the other hand, we did not consider microstructure noises. The microstructure

noise could be another source of the heavy tails and accommodating them leads to an application

for higher frequency observations. However, if we impose the microstructure noise structure on

the regression diffusion model, we have an unbalanced order relationship between the noise and

regression variables, which ruins the usual regression structure. Hence, it is difficult to apply the

existing estimation methods. It would be interesting and important to develop a robust estimation

method that can handle microstructure noises. We leave this issue for a future study.
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A Appendix

A.1 Proof of Theorem 1

Without loss of generality, it is enough to show the statement for fixed i. For simplicity, we denote

β0(i∆n) by β0 = (β10, . . . , βp0)
⊤.

Proposition 1. Under the assumptions in Theorem 1, we have

∥∇Lτ,i(β0)∥max ≤ η/2, (A.1)

with probability greater than 1− p−a for any given positive constant a.

Proof of Proposition 1. Define

Yc
i =



∆n
i+1Y

c

∆n
i+2Y

c

...

∆n
i+kn

Y c


, X c
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∆n
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c⊤
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i+2X

c⊤

...

∆n
i+kn

Xc⊤


, and X̃i =
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⊤dXc(t)

...∫ (i+kn)∆n
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⊤dXc(t)


.

We have

(Yc
i )k =

∫ (i+k)∆n

(i+k−1)∆n

β⊤(t)dXc(t) +

∫ (i+k)∆n
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= β⊤
0 ∆
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c +
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=
(
X c

i β0 + Zi + X̃i

)
k
.

Thus, for 1 ≤ j ≤ p, we have

|∇jLτ,i(β0)| =
∣∣∣∣∂Lτ,i(β0)

∂βj

∣∣∣∣ ≤ (I)j + (II)j, (A.2)
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where
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First, we consider (I)j. By the boundedness condition Assumption 1(b), we can show, with prob-

ability at least 1− p−2−a,

sup
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for some positive constant CX . Then, we have
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For (I)
(1)
j , by (A.3), we have
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Consider the first term. Similar to the proofs of Theorem 1 (Kim and Shin, 2022), we can show,

for any constant b ≥ 1,

Pr

{
sup

1≤h≤kn

E
{
|X̃ih|b

∣∣∣F(i+h−1)∆n

}
≤
(
Csp∆n

√
bkn log p

)b}
≥ 1− p−2−a and

sup
1≤h≤kn

E
{
|∆n

i+hX
c
j |b
∣∣∣F(i+h−1)∆n

}
≤ (C∆nb)

b/2 a.s. (A.6)

Then, by the Cauchy–Schwarz inequality, we have, with probability at least 1− p−2−a,

sup
1≤h≤kn

∣∣∣E{X̃ih∆
n
i+hX

c
j1
(
|∆n

i+hX
c
j | ≤ CX

√
log pn−1/2

) ∣∣∣F(i+h−1)∆n

}∣∣∣
≤ sup

1≤h≤kn

√
E
{
|X̃ih|2

∣∣∣F(i+h−1)∆n

}
sup

1≤h≤kn

√
E
{
|∆n

i+hX
c
j |2
∣∣∣F(i+h−1)∆n

}
≤ Csp∆

3/2
n

√
kn log p.

Also, for 1 ≤ h ≤ kn, we have

E
{
Zih∆

n
i+hX

c
j1
(
|∆n

i+hX
c
j | ≤ CX

√
log pn−1/2

) ∣∣∣F(i+h−1)∆n

}
= 0.

Thus, we have, with probability at least 1− p−2−a,

sup
1≤h≤kn

∣∣∣E{(Zih + X̃ih

)
∆n

i+hX
c
j1
(
|∆n

i+hX
c
j | ≤ CX

√
log pn−1/2

) ∣∣∣F(i+h−1)∆n

}∣∣∣
≤ Csp∆

3/2
n

√
kn log p. (A.7)

Consider the second term. By (A.6) and Hölder’s inequality, we have, with probability at least

1− p−2−a,

sup
1≤h≤kn

E
{
|Zih + X̃ih|γ

∣∣∣F(i+h−1)∆n

}
≤ Cn−γ/2. (A.8)
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Then, using the fact that

∣∣∣ψτ

(
Zih + X̃ih

)
−
(
Zih + X̃ih

)∣∣∣ ≤
∣∣∣Zih + X̃ih

∣∣∣1(∣∣∣Zih + X̃ih

∣∣∣ > τ
)

≤ τ−1
∣∣∣Zih + X̃ih

∣∣∣2 a.s.,

we have, with probability at least 1− p−2−a,

sup
1≤h≤kn

∣∣∣E{f(h)− (Zih + X̃ih

)
∆n

i+hX
c
j1
(
|∆n

i+hX
c
j | ≤ CX

√
log pn−1/2

) ∣∣∣F(i+h−1)∆n

}∣∣∣
≤ τ−1 sup

1≤h≤kn

E
{
|Zih + X̃ih|2|∆n

i+hX
c
j |
∣∣∣F(i+h−1)∆n

}
≤ τ−1 sup

1≤h≤kn

(
E
{
|Zih + X̃ih|γ

∣∣∣F(i+h−1)∆n

})2/γ (
E
{
|∆n

i+hX
c
j |γ/(γ−2)

∣∣∣F(i+h−1)∆n

})(γ−2)/γ

≤ Cτ−1n−3/2, (A.9)

where the second inequality is due to the Hölder’s inequality and the last inequality is from (A.6)

and (A.8). By (A.7) and (A.9), we have

Pr
{
(I)

(2)
j ≤ C

(
sp∆

3/2
n

√
kn log p+ τ−1n−3/2

)}
≥ 1− 2p−2−a. (A.10)

For (I)
(3)
j , by (2.1) in Freedman (1975), we have

Pr

{
(I)

(3)
j ≥ s and

kn∑
h=1

E
{
(f(h))2

∣∣∣F(i+h−1)∆n

}
≤ Cn−2kn

}
≤ 2 exp

{
−Ck2ns2

/(
τ
√
log pn−1/2kns+ n−2kn

)}
. (A.11)

Also, by (A.6) and (A.8), we have, with probability at least 1− p−2−a,

sup
1≤h≤kn

∣∣∣E{(f(h))2∣∣∣F(i+h−1)∆n

}∣∣∣
≤ sup

1≤h≤kn

E
{
|Zih + X̃ih|2|∆n

i+hX
c
j |2
∣∣∣F(i+h−1)∆n

}
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≤
(

sup
1≤h≤kn

E
{
|Zih + X̃ih|γ

∣∣∣F(i+h−1)∆n

})2/γ (
sup

1≤h≤kn

E
{
|∆n

i+hX
c
j |2γ/(γ−2)

∣∣∣F(i+h−1)∆n

})(γ−2)/γ

≤ Cn−2,

where the second inequality is due to the Hölder’s inequality. Thus, we have

Pr
{
(I)

(3)
j ≤ C

(
τn−1/2k−1

n (log p)3/2 + n−1k−1/2
n

√
log p

)}
≥ 1− 2p−2−a. (A.12)

By (A.4), (A.5), (A.10), and (A.12), we have, with probability at least 1− 5p−1−a,

max
1≤j≤p

(I)j ≤ C
[
sp∆

3/2
n

√
kn log p+ τ−1n−3/2 + τn−1/2k−1

n (log p)3/2
]
. (A.13)

Consider (II)j. For some large constant C > 0, define

Q1 = {max
i,j

|∆n
iX

c
j | ≤ C

√
log pn−1/2},

Q2 = {max
i,j

∫ (i+kn)∆n

i∆n

dΛj(t) ≤ C log p} ∩ {max
i

∫ (i+kn)∆n

i∆n

dΛy(t) ≤ C log p},

Q3 = {max
i,j

kn∑
k=1

1{|∆n
i+kXj |>vj,n} ≤ C log p}.

By (A.3), we have

Pr (Q1) ≥ 1− p−2−a.

By the boundedness of the intensity process, we have

Pr (Q2) ≥ 1− p−2−a.
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Under the event Q1 ∩Q2, we have, for large n,

max
i,j

kn∑
k=1

1{|∆n
i+kXj |>vj,n} ≤ max

i,j

∫ (i+kn)∆n

i∆n

dΛj(t) ≤ C log p.

Thus, we have

Pr (Q1 ∩Q2 ∩Q3) ≥ 1− 2p−2−a. (A.14)

We note that, for any x1, x2, y1, y2 ∈ R,

|x1y1 − x2y2| ≤ |(x1 − x2) (y1 − y2)|+ |(x1 − x2) y2|+ |x2 (y1 − y2)| .

Hence, under the event Q1 ∩Q2 ∩Q3, we have

(II)j

≤ 1

kn

kn∑
h=1

[∣∣∣ψτ

(
∆n

i+hY − ⟨∆n
i+hX̂

c,β0⟩
)
− ψτ

(
∆n

i+hY
c − ⟨∆n

i+hX
c,β0⟩

)∣∣∣ ∣∣∣∆n
i+hX̂

c
j −∆n

i+hX
c
j

∣∣∣
+
∣∣∣ψτ

(
∆n

i+hY − ⟨∆n
i+hX̂

c,β0⟩
)
− ψτ

(
∆n

i+hY
c − ⟨∆n

i+hX
c,β0⟩

)∣∣∣ ∣∣∆n
i+hX

c
j

∣∣
+
∣∣ψτ

(
∆n

i+hY
c − ⟨∆n

i+hX
c,β0⟩

)∣∣ ∣∣∣∆n
i+hX̂

c
j −∆n

i+hX
c
j

∣∣∣]

≤ C

kn

kn∑
h=1

[
τ
∣∣∣∆n

i+hX̂
c
j −∆n

i+hX
c
j

∣∣∣
+
√

log pn−1/2
∣∣∣ψτ

(
∆n

i+hY − ⟨∆n
i+hX̂

c,β0⟩
)
− ψτ

(
∆n

i+hY
c − ⟨∆n

i+hX
c,β0⟩

)∣∣∣]

≤ C

{
τn−1(log p)3/2 + τn−1(log p)3/2 + k−1

n

√
log pn−1/2

kn∑
h=1

∣∣∣⟨∆n
i+hX̂

c −∆i+hX
c,β0⟩

∣∣∣}
≤ C

{
τn−1(log p)3/2 + spn

−3/2(log p)2
}

a.s.,

which implies

Pr

(
max
1≤j≤p

(II)j ≤ C
{
τn−1(log p)3/2 + spn

−3/2(log p)2
})

≥ 1− 2p−1−a. (A.15)
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Combining (A.2), (A.13), and (A.15), we have, with probability greater than 1− p−a,

∥∇Lτ,i(β0)∥∞ ≤ C
[
sp∆

3/2
n

√
kn log p+ τ−1n−3/2 + τn−1/2k−1

n (log p)3/2
]
. (A.16)

■

Proof of Theorem 1. By Proposition 1, it is enough to show the statement under (A.1).

First, we investigate β̂i∆n
− β0. Since

Lτ,i(β̂i∆n
) + η∥β̂i∆n

∥1 ≤ Lτ,i(β0) + η ∥β0∥1 ,

we have

η
(
∥β0∥1 − ∥β̂i∆n

∥1
)

≥ Lτ,i(β̂i∆n
)− Lτ,i(β0)

≥ ⟨∇Lτ,i(β0), β̂i∆n
− β0⟩

≥ −η∥β̂i∆n
− β0∥1/2.

Then, we have

∥(β̂i∆n
− β0)Si∆n

∥1 + ∥(β̂i∆n
− β0)Sc

i∆n
∥1

= ∥β̂i∆n
− β0∥1

≥ 2
(
∥β̂i∆n

∥1 − ∥β0∥1
)

= 2
(
∥(β̂i∆n

)Sc
i∆n

∥1 + ∥(β̂i∆n
)Si∆n

∥1 − ∥(β0)Si∆n
∥1 − ∥(β0)Sc

i∆n
∥1
)

≥ 2
(
∥(β̂i∆n

− β0)Sc
i∆n

∥1 − ∥(β̂i∆n
− β0)Si∆n

∥1 − 2∥(β0)Sc
i∆n

∥1
)
.

Thus, we have

β̂i∆n
− β0 ∈ Wi∆n , (A.17)
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where Wi∆n is defined in Assumption 1(e).

Now, we investigate ∥β̂i∆n
− β0∥1 and ∥β̂i∆n

− β0∥2. By (2.3), we have

(nη)δ|Si∆n| ≤ sp and ∥(β0)Sc
i∆n

∥1 ≤ Σj∈Sc
i∆n

|(β0)j|δ|(β0)j|1−δ ≤ sp(nη)
1−δ. (A.18)

Thus, by (A.17)–(A.18), we have

∥β̂i∆n
− β0∥1 ≤ 4∥(β̂i∆n

− β0)Si∆n
∥1 + 4∥(β0)Sc

i∆n
∥1

≤ 4
√
sp(nη)

−δ/2∥β̂i∆n
− β0∥2 + 4sp(nη)

1−δ, (A.19)

where the second inequality is due to the Cauchy–Schwarz inequality. Suppose that

∥β̂i∆n
− β0∥2 > (1 + 12/κ)

√
sp(nη)

1−δ/2. (A.20)

Then, we have

∥β̂i∆n
− β0∥1 <

8κ+ 48

κ+ 12

√
sp(nη)

−δ/2∥β̂i∆n
− β0∥2. (A.21)

From the optimality of β̂i∆n
and the integral form of the Taylor expansion, we have

0 ≥ Lτ,i(β̂i∆n
)− Lτ,i(β0) + η

(
∥β̂i∆n

∥1 − ∥β0∥1
)

= η
(
∥β̂i∆n

∥1 − ∥β0∥1
)
+ ⟨∇Lτ,i(β0), β̂i∆n

− β0⟩

+

∫ 1

0

(1− t) (β̂i∆n
− β0)

⊤∇2Lτ,i(β0 + t(β̂i∆n
− β0))(β̂i∆n

− β0)dt. (A.22)

For the first and second terms, we have

η
(
∥β̂i∆n

∥1 − ∥β0∥1
)
+ ⟨∇Lτ,i(β0), β̂i∆n

− β0⟩

≥ −η∥β̂i∆n
− β0∥1 − ∥∇Lτ,i(β0)∥max∥β̂i∆n

− β0∥1
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≥ −12κ+ 72

κ+ 12

√
spn

−δ/2η1−δ/2∥β̂i∆n
− β0∥2, (A.23)

where the second inequality is due to (A.21). For the last term, let

z =
(κ+ 12)(nη)δ/2D

(8κ+ 48)
√
sp∥β̂i∆n

− β0∥2
< 1.

Then, for any 0 ≤ t ≤ z, we have

∥β0 + t(β̂i∆n
− β0)− β0∥1 ≤ z∥β̂i∆n

− β0∥1 ≤ D,

where the last inequality is due to (A.21). Thus, by Assumption 1(e), we have

∫ 1

0

(1− t) (β̂i∆n
− β0)

⊤∇2Lτ,i(β0 + t(β̂i∆n
− β0))(β̂i∆n

− β0)dt

≥
∫ z

0

(1− t)κn−1∥β̂i∆n
− β0∥22dt

= (κ+ 12)
√
spn

−δ/2η1−δ/2∥β̂i∆n
− β0∥2 −

(κ+ 12)2

2κ
spn

1−δη2−δ. (A.24)

Combining (A.22)–(A.24), we have

(κ+ 12)2

2κ
spn

1−δη2−δ ≥ κ2 + 12κ+ 72

κ+ 12

√
spn

−δ/2η1−δ/2∥β̂i∆n
− β0∥2,

which implies

∥β̂i∆n
− β0∥2 ≤

(κ+ 12)2

2(κ2 + 12κ+ 72)

κ+ 12

κ

√
sp(nη)

1−δ/2

≤ (1 + 12/κ)
√
sp(nη)

1−δ/2.

This contradicts to (A.20), thus, we obtain the ℓ2 norm error bound. Then, by (A.19), we can
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show the ℓ1 norm error bound. ■

A.2 Proof of Theorem 2

Proof of Theorem 2. We first investigate β̂i∆n
and Ω̂i∆n . By (2.3), (3.7), and Assumption 1(c),

we can show, with probability at least 1− p−2−a,

sup
0≤i≤n−kn

∥β̂i∆n
− β0((i+ kn)∆n)∥1 ≤ Csp

(
spn

−1/4 (log p)3/4
)1−δ

and

sup
0≤i≤n−kn

∥β̂i∆n
∥1 ≤ Csp. (A.25)

For Ω̂i∆n , similar to the proofs of Theorem 1 (Kim and Shin, 2022), we can show, with probability

at least 1− p−2−a,

sup
0≤i≤n−kn

∥ 1

kn∆n

X⊤
i XiΩ0(i∆n)− I∥max ≤ λ. (A.26)

Thus, we have, with probability at least 1− p−2−a,

sup
0≤i≤n−kn

∥Ω̂i∆n∥1 ≤ C. (A.27)

Consider β̃i∆n
. For each 1 ≤ m ≤ p, there exists standard Brownian motion W ∗

m(t) such that

dβm(t) = µβ,m(t)dt+
√
Σβ,mm(t)dW

∗
m(t).

Then, by the proofs of Theorem 1 (Kim and Shin, 2022), we have

1

kn∆n

X c⊤
i X̃i =

1

kn∆n

Ai +Ri,
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where

Ai =

(
p∑

m=1

∫ (i+kn)∆n

i∆n

∫ t

i∆n

√
Σβ,mm(s)dW

∗
m(s)Σjm(t)dt

)
j=1,...,p

and

Pr

{
sup

0≤i≤n−kn

∥Ri∥max ≤ Cspn
−1/2 (log p)3/2

}
≥ 1− p−2−a.

Note that

Pr

{
sup

0≤i≤n−kn

∥∥∥X̃i

∥∥∥
max

≤ Cspn
−3/4 log p

}
≥ 1− p−2−a.

Hence, similar to the proofs of (A.15), we can show

1

kn∆n

X⊤
i X̃i =

1

kn∆n

Ai +R
′

i,

where

Pr

{
sup

0≤i≤n−kn

∥R′

i∥max ≤ Cspn
−1/2 (log p)3/2

}
≥ 1− p−1−a. (A.28)

Let

β̃
(2)

i∆n
= β̂i∆n

+ ψϖ

(
1

kn∆n

Ω̂
⊤
i∆n

X⊤
(i+kn)

(
Yc

(i+kn) −X(i+kn)β̂i∆n

))
,

β̃
(3)

i∆n
= β̂i∆n

+ ψϖ

(
1

kn∆n

Ω̂
⊤
i∆n

X⊤
(i+kn)

[
X c

(i+kn)β0((i+ kn)∆n)−X(i+kn)β̂i∆n

]
+ Bi+kn

)
,

β̃
(4)

i∆n
= β̂i∆n

+ ψϖ

(
1

kn∆n

Ω̂
⊤
i∆n

X c⊤
(i+kn)X

c
(i+kn)

[
β0((i+ kn)∆n)− β̂i∆n

]
+ Bi+kn

)
,

β̃
(5)

i∆n
= β̂i∆n

+ ψϖ

(
β0((i+ kn)∆n)− β̂i∆n

+ Bi+kn

)
,

where

Bi =
1

kn∆n

Ω̂
⊤
(i−kn)∆n

(
X⊤

i Zi +Ai

)
.
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Then, we have

∥Îβ − Iβ0∥max ≤

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

(
β̃ikn∆n

− β̃
(2)

ikn∆n

)
kn∆n

∥∥∥∥∥∥
max

+

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

(
β̃

(2)

ikn∆n
− β̃

(3)

ikn∆n

)
kn∆n

∥∥∥∥∥∥
max

+

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

(
β̃

(3)

ikn∆n
− β̃

(4)

ikn∆n

)
kn∆n

∥∥∥∥∥∥
max

+

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

(
β̃

(4)

ikn∆n
− β̃

(5)

ikn∆n

)
kn∆n

∥∥∥∥∥∥
max

+

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

(
β̃

(5)

ikn∆n
− β0((i+ 1)kn∆n)

)
kn∆n

∥∥∥∥∥∥
max

+

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

∫ (i+1)kn∆n

ikn∆n

(β0((i+ 1)kn∆n)− β0(t)) dt

∥∥∥∥∥∥
max

+

∥∥∥∥∫ 1

([1/(kn∆n)]−1)kn∆n

β0(t)dt

∥∥∥∥
max

= (I) + (II) + (III) + (IV ) + (V ) + (V I) + (V II). (A.29)

Consider (I). By the boundedness of the intensity, we can show Pr
{∫ 1

0
dΛy(t) ≤ C log p

}
≥

1− p−1−a. Thus, we have

Pr
{
(I) ≤ Cs2−δ

p n(−2+δ)/4(log p)(5−3δ)/4
}
≥ 1− p−1−a. (A.30)

For (II), by (A.27)–(A.28), we have, with probability at least 1− 2p−1−a,

(II) ≤ sup
0≤i≤n−2kn

∥∥∥∥Ω̂⊤
i∆n

(
1

kn∆n

X⊤
i+knX̃i+kn − 1

kn∆n

Ai+kn

)∥∥∥∥
max

≤ Cspn
−1/2 (log p)3/2 . (A.31)

Consider (III). Similar to the proofs of (A.20) in Kim and Shin (2022), we can show, with
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probability at least 1− p−1−a,

(III) ≤
[1/(kn∆n)]−2∑

i=0

∥∥∥Ω̂⊤
i∆n

(
X⊤

(i+kn)X
c
(i+kn) −X c⊤

(i+kn)X
c
(i+kn)

)
β0((i+ kn)∆n)

∥∥∥
max

+

[1/(kn∆n)]−2∑
i=0

∥∥∥Ω̂⊤
i∆n

(
X⊤

(i+kn)X(i+kn) −X c⊤
(i+kn)X

c
(i+kn)

)
β̂i∆n

∥∥∥
max

≤ Cspn
−3/4

√
log p. (A.32)

Consider (IV ). By Assumption 1(b) and (f), we can show, with probability at least 1− p−1−a,

sup
0≤i≤n−kn

∥∥∥∥Σ0(i∆n)−
1

kn∆n

X c⊤
i X c

i

∥∥∥∥
max

≤ sup
0≤i≤n−kn

∥∥∥∥∥Σ0(i∆n)−
1

kn∆n

∫ (i+kn)∆n

i∆n

Σ0(t)dt

∥∥∥∥∥
max

+ sup
0≤i≤n−kn

∥∥∥∥∥ 1

kn∆n

∫ (i+kn)∆n

i∆n

Σ0(t)dt−
1

kn∆n

X c⊤
i X c

i

∥∥∥∥∥
max

≤ Cn−1/4
√

log p.

Thus, by Assumption 1(f), we can show, with probability at least 1− p−1−a,

sup
0≤i≤n−kn

∥∥∥∥ 1

kn∆n

(
X c⊤

(i+kn)X
c
(i+kn) −X c⊤

i X c
i

)∥∥∥∥
max

≤ Cn−1/4
√

log p.

Then, by (A.14), (A.25), and (A.27), we have, with probability at least 1− p−1−a,

(IV ) ≤ sup
0≤i≤n−2kn

∥∥∥∥ 1

kn∆n

Ω̂
⊤
i∆n

X c⊤
(i+kn)X

c
(i+kn) − I

∥∥∥∥
max

× sup
0≤i≤n−2kn

∥∥∥β0((i+ kn)∆n)− β̂i∆n

∥∥∥
1

≤ sup
0≤i≤n−2kn

[∥∥∥∥ 1

kn∆n

Ω̂
⊤
i∆n

(
X c⊤

(i+kn)X
c
(i+kn) −X c⊤

i X c
i

)∥∥∥∥
max

+

∥∥∥∥ 1

kn∆n

Ω̂
⊤
i∆n

(
X c⊤

i X c
i −X⊤

i Xi

)∥∥∥∥
max

+

∥∥∥∥ 1

kn∆n

Ω̂
⊤
i∆n

X⊤
i Xi − I

∥∥∥∥
max

]
×Csp

(
spn

−1/4 (log p)3/4
)1−δ

≤ C
(
n−1/4

√
log p+ n−1/2(log p)2 + λ

)
× sp

(
spn

−1/4 (log p)3/4
)1−δ
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≤ Cs2−δ
p n(−2+δ)/4(log p)(5−3δ)/4. (A.33)

For (V ), let g(i) = β0((i+ kn)∆n)− β̂i∆n
+ Bi+kn . We have

(V ) ≤

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

[
ψϖ (g(ikn))− E

{
ψϖ (g(ikn))

∣∣∣F(i+1)kn∆n

}]
kn∆n

∥∥∥∥∥∥
max

+

∥∥∥∥∥∥
[1/(kn∆n)]−2∑

i=0

[
E
{
ψϖ (g(ikn))

∣∣∣F(i+1)kn∆n

}
− β0((i+ 1)kn∆n) + β̂ikn∆n

]
kn∆n

∥∥∥∥∥∥
max

=
∥∥(V )(1)

∥∥
max

+
∥∥(V )(2)

∥∥
max

.

For the first term, by the boundedness of the intensity process and (A.27), we can show, with

probability at least 1− p−2−a,

sup
kn≤i≤n−kn

sup
1≤j≤p

E
{
B2
ij

∣∣∣Fi∆n

}
≤ Cs2pn

−1/2.

Thus, from (A.25), we have, with probability at least 1− 2p−2−a,

sup
0≤i≤n−2kn

sup
1≤j≤p

E
[
|(g(i))j|2

∣∣∣F(i+kn)∆n

]
≤ Cs2p

(
spn

−1/4 (log p)3/4
)2−2δ

.

Then, by (2.1) in Freedman (1975), we have, for 1 ≤ j ≤ p,

Pr

[
(V )

(1)
j ≥ s and

[1/(kn∆n)]−2∑
i=0

E
[
| (g(ikn))j |

2
∣∣∣F(i+1)kn∆n

]
≤ Cs2pn

1/2
(
spn

−1/4 (log p)3/4
)2−2δ

]
≤ 2 exp

{
−Cns2

/(
n1/2ϖs+ s4−2δ

p nδ/2 (log p)(3−3δ)/2
)}

,

which implies

Pr

[∥∥(V )(1)
∥∥
max

≤ Cs2−δ
p n(−2+δ)/4(log p)(5−3δ)/4

]
≥ 1− 3p−1−a.
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For the second term, we have, with probability at least 1− 2p−2−a,

∥∥(V )(2)
∥∥
max

≤ sup
0≤i≤[1/(kn∆n)]−2

sup
1≤j≤p

∣∣∣∣E{[ψϖ (g(ikn))]j

∣∣∣F(i+1)kn∆n

}
−
[
β0((i+ 1)kn∆n)− β̂ikn∆n

]
j

∣∣∣∣
= sup

0≤i≤[1/(kn∆n)]−2

sup
1≤j≤p

∣∣∣E{[ψϖ (g(ikn))− g(ikn)]j

∣∣∣F(i+1)kn∆n

}∣∣∣
≤ sup

0≤i≤[1/(kn∆n)]−2

sup
1≤j≤p

E
{∣∣∣[g(ikn)]j∣∣∣1(∣∣∣[g(ikn)]j∣∣∣ > ϖ

) ∣∣∣F(i+1)kn∆n

}
≤ sup

0≤i≤[1/(kn∆n)]−2

sup
1≤j≤p

E
{∣∣∣[g(ikn)]j∣∣∣2 /ϖ∣∣∣F(i+1)kn∆n

}
≤ Cs2−δ

p n(−2+δ)/4(log p)(5−3δ)/4.

Thus, we have

Pr
{
(V ) ≤ Cs2−δ

p n(−2+δ)/4(log p)(5−3δ)/4
}
≥ 1− 4p−1−a. (A.34)

Consider (V I). By the sub-Gaussianity of the beta process, we can show, with probability at least

1− p−1−a,

(V I) ≤ C
√

log p/n. (A.35)

For (V II), by Assumption 1(b), we have

(V II) ≤ Cn−1/2 a.s. (A.36)

Combining (A.29)–(A.36), we have, with probability greater than 1− p−a,

∥Îβ − Iβ0∥max ≤ C
[
s2−δ
p n(−2+δ)/4(log p)(5−3δ)/4 + spn

−1/2 (log p)3/2
]
. (A.37)

■
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A.3 Proof of Theorem 3

Proof of Theorem 3. By (3.8), there exists hn such that, with probability greater than 1− p−a,

∥Îβ − Iβ0∥max ≤ hn/2.

Thus, it is enough to show the statement under the event {∥Îβ − Iβ0∥max ≤ hn/2}. Similar to the

proofs of Theorem 1 (Kim and Shin, 2022), we can show

∥Ĩβ − Iβ0∥1 ≤ Csph
1−δ
n .

■
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Table 4: The symbols of 54 futures in Section 5.

Type Symbol Description
Commodity CA Cocoa

CL Crude Oil WTI
GC Gold
HG Copper
HO NY Harbor ULSD (Heating Oil)
ML Milling Wheat
NG Henry Hub Natural Gas
OJ Orange Juice
PA Palladium
PL Platinum
RB RBOB Gasoline
RM Robusta Coffee
RS Canola
SI Silver
ZC Corn
ZL Soybean Oil
ZM Soybean Meal
ZO Oats
ZR Rough Rice
ZW Wheat

Currency A6 Australian Dollar
AD Canadian Dollar
B6 British Pound
BR Brazilian Real
DX US Dollar Index
E1 Swiss Franc
E6 Euro FX
J1 Japanese Yen
RP Euro/British Pound
RU Russian Ruble

Interest rate BTP Euro BTP Long-Bond
ED Eurodollar
G 10-Year Long Gilt
GG Euro Bund
HR Euro Bobl
US 30-Year US Treasury Bond
ZF 5-Year US Treasury Note
ZN 10-Year US Treasury Note
ZQ 30-Day Fed Funds
ZT 2-Year US Treasury Note

Stock market index DY DAX
ES E-mini S&P 500
EW E-mini S&P 500 Midcap
FX Euro Stoxx 50
MME MSCI Emerging Markets Index
MX CAC 40
NQ E-mini Nasdaq 100
RTY E-mini Russell 2000
VX VIX
X FTSE 100
XAE E-mini Energy Select Sector
XAF E-mini Financial Select Sector
XAI E-mini Industrial Select Sector
YM E-mini Dow
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