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Abstract

In this paper, we develop a novel high-dimensional time-varying coefficient estimation

method, based on high-dimensional Itô diffusion processes. To account for high-dimensional

time-varying coefficients, we first estimate local (or instantaneous) coefficients using a time-

localized Dantzig selection scheme under a sparsity condition, which results in biased local

coefficient estimators due to the regularization. To handle the bias, we propose a debias-

ing scheme, which provides well-performing unbiased local coefficient estimators. With the

unbiased local coefficient estimators, we estimate the integrated coefficient, and to further

account for the sparsity of the coefficient process, we apply thresholding schemes. We call

this Thresholding dEbiased Dantzig (TED). We establish asymptotic properties of the pro-

posed TED estimator. In the empirical analysis, we apply the TED procedure to analyzing

high-dimensional factor models using high-frequency data.
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1 Introduction

To explain various data types, numerous regression-based models have been developed. Especially,

advances in technology provide us big data, which causes the curse of dimensionality problem. To

tackle this problem in the high-dimensional regression, we usually assume the sparsity of variables,

that is, the number of significant coefficients is small. To accommodate the sparsity condition, we

often employ the LASSO procedure (Tibshirani, 1996), SCAD (Fan and Li, 2001), and Dantzig

selector (Candes and Tao, 2007). The works of Belloni et al. (2014); Feng et al. (2020); Yuan and

Lin (2006); Zou (2006) are useful for further reading. There are numerous related papers that can

be found in the above literature. These estimation methods result in sparse coefficients, and under

the sparsity condition, they are consistent estimators (Negahban et al., 2012). Under the diffusion

process, Ciolek et al. (2022) studied the properties of the LASSO estimator of the drift component

and Gaïffas and Matulewicz (2019) proposed the estimation procedure for the drift parameter in

the high-dimensional Ornstein–Uhlenbeck (OU) process.

On the other hand, in high-frequency finance, we often observe that coefficients in the regression

model are time-varying. For example, Andersen et al. (2021) investigated the intra-day variation of

the local coefficients, which are called the market betas, between the individual assets and market

index. To account for the time-varying feature, Mykland and Zhang (2009) computed the market

beta as the aggregation of the market betas estimated over local blocks. To evaluate the coefficients

of multi factor models, Aït-Sahalia et al. (2020) proposed an integrated coefficient approach using

the local coefficient. See also Chen (2018); Oh et al. (2022). We call this high-frequency regression.

Recently, Chen et al. (2023) proposed the high-dimensional market beta estimation procedure with

large dependent variables and almost finite common factors. However, in the field of finance, there

are hundreds of potential factor candidates that explain the cross section of expected stock returns

(Cochrane, 2011; Harvey et al., 2016; Hou et al., 2020; McLean and Pontiff, 2016). Thus, we also
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encounter the curse of dimensionality in high-frequency regressions, so the estimation methods

developed for the finite dimension fail to estimate the coefficients consistently. To overcome this

issue, we can consider the high-dimensional regression methods such as the LASSO (Tibshirani,

1996), Dantzig selector (Candes and Tao, 2007), and SCAD (Fan and Li, 2001). However, the direct

application of these methods cannot explain the time-varying feature of the coefficient process and

may suffer from the model errors. Thus, to fully benefit from the utilization of high-frequency

financial data in the high-dimensional regression, we need to develop methodologies that can handle

both the curse of dimensionality as well as the time-varying coefficients.

In this paper, we introduce a novel high-dimensional high-frequency regression estimation pro-

cedure which can accommodate the sparse and time-varying coefficient processes. To model the

high-frequency data, we employ diffusion processes whose stochastic difference equations have a

time series regression structure. We also assume that the coefficient process βt follows a diffu-

sion process. In this paper, the parameter of interest is the integrated coefficient,
∫ 1

0
βtdt, that

represents the average relationship between variables. To handle the curse of dimensionality, we

assume that the coefficient processes are sparse, and to account for the sparsity of the time-varying

coefficient process, we employ the Dantzig selector procedure (Candes and Tao, 2007). Specifi-

cally, due to the time-varying phenomena, we cannot estimate the integrated coefficient directly,

and so we first estimate the instantaneous (or local) coefficients using the time-localized Dantzig

selector procedure, based on the definition of βt. Then, to mitigate the bias coming from the

regularization of the Dantzig selector, we propose a debiasing scheme and estimate the integrated

coefficient with the debiased Dantzig instantaneous coefficients. With the debiasing scheme, we

can obtain more accurate estimators in terms of the element-wise convergence rate; however, the

estimated integrated coefficient is not sparse. Thus, to accommodate the sparsity, we further reg-

ularize the estimated integrated coefficient. We call this Thresholding dEbiased Dantzig (TED).

We also establish its asymptotic properties.
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The rest of paper is organized as follows. Section 2 introduces the model set-up. Section

3 proposes the TED estimation procedure and establishes its asymptotic properties. In Section

4, we conduct a simulation study to check the finite sample performance of the TED estimation

procedure, and in Section 5, we apply the TED to the high-frequency financial data. The conclusion

is presented in Section 6, and we collect all of the proofs in the supplementary materials.

2 The model set-up

We consider the following non-parametric time series regression diffusion model:

dYt = β⊤
t dXt + dZt, (2.1)

where Yt is a dependent process, Xt is a p-dimensional multivariate covariate process, βt is a

coefficient process, and Zt is a residual process. The p-dimensional covariate process Xt and

residual process Zt satisfy

dXt = µtdt+ σtdBt and dZt = νtdWt,

where µt is a drift process, σt and νt are instantaneous volatility processes, Bt and Wt are p-

dimensional and one-dimensional standard Brownian motions, respectively, and Bt and Wt are

independent. The processes µt, βt, σt, and νt are predictable. To account for the time-varying

coefficient, we further assume that the coefficient βt satisfies the following diffusion process:

dβt = µβ,tdt+ νβ,tdW
β
t , (2.2)
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where µβ,t and νβ,t are predictable, and Wβ
t is p-dimensional standard Brownian motion. To

figure out the average relationship between the covariate and dependent processes, we consider the

integrated coefficient:

Iβ = (Iβi)i=1,...,p =

∫ 1

0

βtdt.

In finance, hundreds of potential factor candidates have been proposed in order to explain the

cross section of expected stock returns (Cochrane, 2011; Harvey et al., 2016; Hou et al., 2020;

McLean and Pontiff, 2016). That is, the dimensionality, p, of the covariate process is large. Thus,

we often run into the curse of dimensionality problem when handling financial data. However, all

of them may not be significant; thus, to account for this, we assume that the coefficient process

βt = (β1t, . . . , βpt)
⊤ satisfies the following sparsity condition:

sup
0≤t≤1

p∑
i=1

|βit|δ ≤ sp and
p∑

i=1

|Iβi|δ ≤ sp a.s., (2.3)

where 00 is defined as 0, δ ∈ [0, 1), and sp is diverging slowly with respect to p, for example, log p.

We investigate asymptotic properties under this general sparsity case. However, in practice, it is

harmless to assume δ = 0. That is, we can assume that several factors are significant, while others

do not affect on the expected returns. We note that with the randomness of the coefficient process,

in general, the sparsity condition (2.3) is satisfied with high probability. However, for simplicity,

we assume that the sparsity condition is satisfied almost surely. The sparsity condition is widely

employed in the high-frequency finance literature (Ciolek et al., 2022; Gaïffas and Matulewicz,

2019; Kim et al., 2016, 2018; Tao et al., 2013; Wang and Zou, 2010).
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3 High-dimensional high-frequency regression

3.1 Estimation procedure

In this section, we propose an estimation procedure for large integrated coefficients. We first fix

some notations. For any given p1 by p2 matrix U = (Uij), let

∥U∥max = max
i,j

|Uij|, ∥U∥1 = max
1≤j≤p2

p1∑
i=1

|Uij|, and ∥U∥∞ = max
1≤i≤p1

p2∑
j=1

|Uij|.

We denote the Frobenius norm of U by ∥U∥F =
√
tr(U⊤U). The matrix spectral norm ∥U∥2 is

the square root of the largest eigenvalue of UU⊤. C’s denote generic constants whose values are

free of n and p and may change from appearance to appearance.

From the model (2.1), the instantaneous coefficient βt satisfies the following equation:

d

dt
[Y,X]t = β⊤

t

d

dt
[X,X]t a.s.,

where [·, ·] denotes the quadratic variation. The coefficient process βt is a function of instantaneous

volatilities of X and Y as follows:

βt = Σ−1
t ΣXY,t a.s., (3.1)

where Σt = σtσ
⊤
t and ΣXY,t =

d
dt
[X, Y ]t. Thus, the instantaneous coefficient can be estimated

by the instantaneous volatility estimators. For the finite dimensional case, the instantaneous

volatility-based estimation procedure works well (Aït-Sahalia et al., 2020). However, this approach

cannot explain the sparse structure (2.3). Furthermore, when the dimensionality of the covariate

X is larger than the sample size, this approach fails to consistently estimate the instantaneous

coefficient. Therefore, the procedure developed for the finite dimension is neither effective nor

efficient. In contrast, the direct application of the high-dimensional regression procedure such as
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the LASSO (Tibshirani, 1996) and Dantzig selector (Candes and Tao, 2007) cannot consistently

estimate the integrated coefficients. Specifically, we can rewrite (2.1) as follows:

dYt = β⊤dXt + (βt − β)⊤ dXt + dZt.

Due to the time-variation of the coefficient process, we have a non-negligible dependent structure

between β⊤dXt and (βt − β)⊤ dXt. This produces a bias for the usual high-dimensional regression

methods. To mitigate the dependency and accommodate the sparse structure of the coefficient

process in (2.3), we employ the time-localized Dantzig selection method as follows. Let ∆n
i A =

Ai∆n − A(i−1)∆n for 1 ≤ i ≤ 1/∆n, where ∆n = 1/n is the distance between adjacent observation

time points. Define

Yi =



∆n
i+1Y

∆n
i+2Y

...

∆n
i+kn

Y


, Xi =



∆n
i+1X

⊤

∆n
i+2X

⊤

...

∆n
i+kn

X⊤


, and Zi =



∆n
i+1Z

∆n
i+2Z

...

∆n
i+kn

Z


,

where kn is the number of observations in each window to calculate the local regression. Then, we

estimate the sparse instantaneous coefficient as follows:

β̂i∆n
= argmin ∥β∥1 s.t.

∥∥∥∥ 1

kn∆n

X⊤
i Xiβ − 1

kn∆n

X⊤
i Yi

∥∥∥∥
max

≤ λn, (3.2)

where λn is a tuning parameter which converges to zero. We specify λn in Theorem 1. With the

appropriate λn, we can show that the proposed Dantzig instantaneous coefficient estimator β̂i∆n

is a consistent estimator (see Theorem 1). To estimate the integrated coefficient Iβ with this

consistent estimator, we usually consider the sum of the instantaneous volatility estimators β̂i∆n
’s.
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However, the Dantzig estimator is biased, so their summation cannot enjoy the law of large number

properties. For example, the error of the sum of the Dantzig instantaneous coefficient estimators is

dominated by the bias terms, and so it has the same convergence rate as that of β̂i∆n
. To reduce

the effect of the bias, we use a debiasing scheme as follows. We first estimate the inverse matrix of

the instantaneous volatility matrix Σi∆n using the constrained ℓ1-minimization for inverse matrix

estimation (CLIME) (Cai et al., 2011). Let Ω̂i∆n be the solution of the following optimization

problem:

min ∥Ω∥1 s.t. ∥ 1

kn∆n

X⊤
i XiΩ− I∥max ≤ τn, (3.3)

where τn is the tuning parameter specified in Theorem 2. With the CLIME estimator, we adjust

the Dantzig instantaneous coefficient estimator as follows:

β̃i∆n
= β̂i∆n

+
1

kn∆n

Ω̂
⊤
i∆n

X⊤
i (Yi −Xiβ̂i∆n

). (3.4)

Then, the debiased Dantzig instantaneous coefficient estimator satisfies

β̃i∆n
− β0,i∆n

=
1

kn∆n

Ω0,i∆n

(
X⊤

i Zi +Ai

)
+Ri a.s.,

where the subscript 0 represents the true parameters, Ai is a martingale difference defined in

(A.9), and Ri is a negligible remaining error term (see Theorem 3). We note that the debiasing

scheme is usually employed to derive asymptotic normality and to conduct the confidence interval

construction or hypothesis test (Javanmard and Montanari, 2018; Van de Geer et al., 2014; Zhang

and Zhang, 2014). However, we adopt the debiasing scheme to improve the integrated coefficient

estimation. Specifically, the debiasing scheme helps enjoy the law of large number property when

averaging the instantaneous coefficient estimators. The integrated coefficient estimator is defined
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by

Îβ =

[1/(kn∆n)]−1∑
i=0

β̃ikn∆n
kn∆n.

As discussed above, the debiasing scheme helps improve the element-wise convergence rate of

the debiased Dantzig integrated coefficient estimator. However, the debiased Dantzig integrated

coefficient estimator does not satisfy the sparsity condition (2.3) due to the bias adjustment. To

accommodate the sparsity of the integrated coefficient, we apply the thresholding scheme as follows:

Ĩβi = s(Îβi)1
(
|Îβi| ≥ hn

)
and Ĩβ =

(
Ĩβi

)
i=1,...,p

,

where 1(·) is an indicator function, the thresholding function s(·) satisfies that |s(x)−x| ≤ hn, and

hn is a thresholding level specified in Theorem 4. Examples of the thresholding function s(x) include

the hard thresholding function s(x) = x and the soft thresholding function s(x) = x − sign(x)hn.

For the empirical study, we employed the hard thresholding function. We call this the Thresholded

dEbiased Dantzig (TED) estimator. We summarize the TED estimation procedure in Algorithm

1.

3.2 Asymptotic results

In this section, we establish the asymptotic properties for the proposed TED estimation procedure.

To investigate the asymptotic properties, we need the following technical conditions.

Assumption 1.

(a) The volatility process Σt = (Σijt)i,j=1,...,p satisfies the following Hölder condition:

|Σijt − Σijs| ≤ C|t− s|1/2 a.s.
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Algorithm 1 TED estimation procedure
Step 1 Estimate the instantaneous coefficient:

β̂i∆n
= argmin ∥β∥1 s.t.

∥∥∥∥ 1

kn∆n

X⊤
i Xiβ − 1

kn∆n

X⊤
i Yi

∥∥∥∥
max

≤ λn,

where λn = Cλsp
√
log p

(√
kn∆n + k

−1/2
n

)
and kn = ckn

1/2 for some large constants Cλ and ck.
Step 2 Estimate the inverse instantaneous volatility matrix:

Ω̂i∆n = argmin ∥Ω∥1 s.t. ∥ 1

kn∆n

X⊤
i XiΩ− I∥max ≤ τn,

where τn = Cτ

√
log p

(√
kn∆n + k

−1/2
n

)
for some large constant Cτ .

Step 3 Debias the Dantzig instantaneous coefficient estimator:

β̃i∆n
= β̂i∆n

+
1

kn∆n

Ω̂
⊤
i∆n

X⊤
i (Yi −Xiβ̂i∆n

).

Step 4 Estimate the integrated coefficient:

Îβ =

[1/(kn∆n)]−1∑
i=0

β̃ikn∆n
kn∆n.

Step 5 Threshold the debiased Dantzig integrated coefficient estimator:

Ĩβi = s(Îβi)1
(
|Îβi| ≥ hn

)
and Ĩβ =

(
Ĩβi

)
i=1,...,p

,

where 1(·) is an indicator function, the thresholding function s(·) satisfies that |s(x)− x| ≤ hn,
hn = Chbn for some constant Ch, and bn is defined in Theorem 3.

(b) µt, µβ,t, βt, νt, Σt, and Σβ,t = νβ,tν
⊤
β,t are almost surely bounded, and ∥Σ−1

t ∥1 ≤ C a.s.

(c) The drift process µβ,t = (µβ,1t, . . . , µβ,pt)
⊤ and the volatility process Σβ,t = (Σβ,ijt)i,j=1,...,p

satisfy the following sparsity condition for δ ∈ [0, 1):

sup
0≤t≤1

p∑
i=1

|µβ,it|δ ≤ sp and sup
0≤t≤1

p∑
i=1

|Σβ,iit|δ/2 ≤ sp a.s.

(d) nc1 ≤ p ≤ c2 exp(n
c3) for some positive constants c1, c2, and c3 < 1/8, and s2p log p∆nkn → 0

as n, p → ∞.
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(e) The inverse matrix of the volatility matrix process, Σ−1
t = Ωt = (ωijt)i,j=1,...,p, satisfies the

following sparsity condition:

sup
0≤t≤1

max
1≤i≤p

p∑
j=1

|ωijt|q ≤ sω,p a.s.,

where q ∈ [0, 1) and sω,p is diverging slowly with respect to p, for example, log p.

Remark 1. To investigate estimators of time-varying processes, we need continuity conditions

such as Assumption 1(a) and the diffusion process structures for Xt, Yt and βt in Section 2. Even

if Assumption 1(a) is replaced by the condition that Σt has a continuous Itô diffusion process

structure with bounded drift and instantaneous volatility processes, we can obtain the same theo-

retical results with up to
√
log p order. For simplicity, we put Assumption 1(a). The boundedness

condition Assumption 1(b) provides sub-Gaussian tails which are often required to investigate

high-dimensional inferences. On the other hand, when we investigate the asymptotic behaviors

of volatility estimators such as their convergence rate, the boundedness condition can be relaxed

to the locally boundedness condition (see Aït-Sahalia and Xiu (2017)). Specifically, Jacod and

Protter (2011) showed in Lemma 4.4.9 that if the asymptotic result, such as stable convergence

in law or convergence in probability, is satisfied under the boundedness condition, it is also sat-

isfied under the locally boundedness condition. Thus, the asymptotic results established in this

paper also hold for the locally boundedness condition. The sparsity condition for the coefficient

process, Assumption 1(c), is the technical condition for investigating the discretization error of

Dantzig instantaneous coefficient estimator β̂i∆n
. Finally, to investigate asymptotic properties of

the CLIME estimator, we need the sparse inverse matrix condition Assumption 1(e) (Cai et al.,

2011). Furthermore, if the smallest eigenvalue of Σt is strictly bigger than zero, the Frobenius

norm of Ωt is bounded by C
√
p. This implies that the inverse matrix, Ωt, is not dense. Since

the strict positiveness of the smallest eigenvalue is the minimum requirement to investigate the
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regression-based models, Assumption 1(e) is reasonable.

In Theorems 1 and 2 below, we establish asymptotic properties for the sparse instantaneous

coefficient and inverse matrix. Note that we use subscript 0 for the true parameters.

Theorem 1. Under Assumption 1(a)–(d), let kn = ckn
c for some constants ck and c ∈ (1/4, 1/2].

For any given positive constant a, choose λn = Cλ,asp
√
log p

(√
kn∆n + k

−1/2
n

)
for some large

constant Cλ,a. Then, we have, for large n,

max
i

∥β̂i∆n
− β0,i∆n

∥max ≤ Cλn and max
i

∥β̂i∆n
− β0,i∆n

∥1 ≤ Cspλ
1−δ
n , (3.5)

with probability greater than 1− p−a.

Theorem 2. Under Assumption 1, let kn = ckn
c for some constants ck and c ∈ (1/4, 1/2]. For

any given positive constant a, choose τn = Cτ,a

√
log p

(√
kn∆n + k

−1/2
n

)
for some large constant

Cτ,a. Then, we have, for large n,

max
i

∥Ω̂i∆n −Ω0,i∆n∥max ≤ Cτn and max
i

∥Ω̂i∆n −Ω0,i∆n∥1 ≤ Csω,pτ
1−q
n , (3.6)

with probability greater than 1− p−a.

Remark 2. Theorems 1 and 2 show that by choosing c = 1/2, the estimators for the instantaneous

coefficient and inverse matrix have element-wise convergence rates of n−1/4 and ℓ1 convergence rates

n−(1−δ)/4 and n−(1−q)/4, respectively, with the log order term and the sparsity level term. We note

that when choosing the sub-interval length kn = ckn
1/2 to estimate the instantaneous processes, we

have the same order convergence rates of the statistical estimation and time-varying instantaneous

process approximation errors. That is, the order n−1/4 is optimal for estimating each element of

the instantaneous process; thus, the convergence rates are optimal up to log order.
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The Dantzig instantaneous coefficient estimator has a near-optimal convergence rate as shown

in Theorem 1. However, as discussed in the previous section, it is a biased estimator, which causes

some non-negligible estimation errors when estimating the integrated coefficient. To tackle this

problem, we employ debiasing schemes with the consistent CLIME estimator as in (3.4), and in

the following theorem, we investigate its asymptotic benefits.

Theorem 3. Under the assumptions in Theorems 1–2, we choose kn = ckn
1/2 for some constant

ck. Then, we have for all i,

β̃i∆n
− β0,i∆n

=
1

kn∆n

Ω0,i∆n

(
X⊤

i Zi +Ai

)
+Ri, (3.7)

where Ai is defined in (A.9) and

max
i

∥Ri∥max ≤ C
{
s2−δ
p (log p/n1/2)(2−δ)/2 + spsω,p(log p/n

1/2)(2−q)/2 + sp(log p)
3/2/n1/2

}
, (3.8)

with probability greater than 1− p−a for any given positive constant a. Furthermore, we have, with

probability greater than 1− p−a for any given positive constant a,

∥Îβ − Iβ0∥max ≤ Cbn, (3.9)

where bn = s2−δ
p (log p/n1/2)(2−δ)/2 + spsω,p(log p/n

1/2)(2−q)/2 + sp(log p)
3/2/n1/2.

Remark 3. The debiased Dantzig instantaneous coefficient is decomposed by the martingale dif-

ference term X⊤
i Zi+Ai and the non-martingale remaining term Ri. The martingale difference term

can enjoy the law of large number property, so the integrated coefficient estimator has a faster con-

vergence rate than the Dantzig instantaneous coefficient estimator. The remaining non-martingale

terms have the same order as those of the martingale terms for the integrated coefficient estimator.
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Unlike the biased Dantzig estimator, the non-martingale remaining terms do not impact on the

integrated coefficient estimator.

Remark 4. Theorem 3 shows the element-wise convergence rate for the debiased Dantzig inte-

grated coefficient. When we have the exact sparse coefficient and inverse matrix processes, that

is, δ = q = 0, the debiased Dantzig integrated coefficient estimator has the convergence rate

sp(sp + sω,p)(log p)
3/2/n1/2. The n1/2 term is related with the sample size, which is known as the

optimal rate. The (log p)3/2 term comes from handling the high-dimensional error bound. Usually,

in high-dimensional literature, we have
√
log p, but the debiased Dantzig integrated coefficient es-

timator has (log p)3/2 due to the handling of the high-dimensional error bounds for estimating two

coefficients, such as the instantaneous coefficient and the integrated coefficient, and bounding the

random processes. Finally, the sp and sω,p terms represent the sparsity levels for the coefficient

and inverse volatility matrix. High-dimensional literature commonly assumes the sparsity level to

be negligible; hence, we have the convergence rate n−1/2 with up to log p order.

Theorem 3 indicates that, using the debiasing scheme, we obtain well-performing input inte-

grated coefficient estimator β̂. As described in Section 3.1, with the input integrated coefficient

estimator β̂, we apply the thresholding scheme to account for the sparsity and obtain the TED

estimator. In the following theorem, we establish the ℓ1 convergence rate of the TED estimator.

Theorem 4. Under the assumptions in Theorems 1–2, let kn = ckn
1/2 for some constant ck. For

any given positive constant a, choose hn = Ch,abn for some constant Ch,a, where bn is defined in

Theorem 3. Then, we have, with probability greater than 1− p−a,

∥Ĩβ − Iβ0∥1 ≤ Cspb
1−δ
n . (3.10)

Theorem 4 shows that the TED estimator is a consistent estimator in terms of the ℓ1 norm

under the sparsity condition (2.3). When estimating the integrated coefficient without the debi-
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asing step, we can obtain the convergence rate sp(sp
√
log pn−1/4)1−δ. The benefit of applying the

debiasing scheme is the difference between bn and sp
√
log pn−1/4. Under the sparsity condition, bn

is n−{2−(δ∨q)}/4 with log p order for δ, q ∈ [0, 1), which is faster than the convergence rate of the

Dantzig integrated coefficient estimator. Therefore, the TED estimator has the faster convergence

rate.

3.3 Extension to jump diffusion processes

In financial practice, we often observe jumps. To reflect this, we can extend the continuous diffusion

process (2.1) to the jump diffusion process as follows:

dYt = dY c
t + dY J

t ,

dY c
t = β⊤

t dX
c
t + dZt, and dY J

t = Jy
t dΛ

y
t , (3.11)

where Y c
t and Xc

t are the continuous part of Yt and Xt, respectively, Jy
t is the jump size, and Λy

t is

the Poisson process with the bounded intensity. The covariate process Xt is

dXt = dXc
t + dXJ

t , dXc
t = µtdt+ σtdBt, and dXJ

t = JtdΛt, (3.12)

where Jt = (J1t, . . . , Jpt)
⊤ is a jump size process and Λt = (Λ1t, . . . ,Λpt)

⊤ is a p-dimensional Poisson

process with bounded intensities. We assume that the Poisson processes Λy
t and Λt are independent

of σt and βt. Under this jump diffusion model, we can still use the proposed estimation procedure,

but we cannot observe the continuous diffusion process. To tackle this problem, we first detect the

jumps from the observed stock log-return data. For example, we use the truncation method as
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follows. Define

Ŷc
i =



∆n
i+1Ŷ

c

∆n
i+2Ŷ

c

...

∆n
i+kn

Ŷ c


and X̂ c

i =



∆n
i+1X̂

c⊤

∆n
i+2X̂

c⊤

...

∆n
i+kn

X̂c⊤


, (3.13)

where 1{·} is an indicator function, kn is the number of observations in each window used to

calculate the local regression,

∆n
i Ŷ

c = ∆n
i Y 1{|∆n

i Y |≤un}, ∆n
i X̂

c =
(
∆n

i Xj 1{|∆n
i Xj |≤vj,n}

)
j=1,...,p

,

and un and vj,n, j = 1, . . . , p, are the truncation levels. We employ un = Cusp
√
log pn−ϱ and

vj,n = Cj,v

√
log pn−ϱ for ϱ ∈ [15/32, 1/2) and some constants Cu and Cj,v, j = 1, . . . , p. In the

numerical study, we adopt the usual choice in the literature (Aït-Sahalia et al., 2020; Aït-Sahalia

and Xiu, 2019). That is, we use

un = 3n−0.47
√
BV Y and vj,n = 3n−0.47

√
BVj, (3.14)

where the bipower variations BV Y =
π

2

∑n
i=2 |∆n

i−1Y | · |∆n
i Y | and BVj =

π

2

∑n
i=2 |∆n

i−1Xj| · |∆n
i Xj|.

Then, to estimate the integrated coefficient Iβ, we employ the estimation method in Section 3.1

using Ŷc
i and X̂ c

i instead of Yi and Xi. We denote the jump-adjusted TED estimator by Ĩβ
c
. In the

following theorem, we investigate the asymptotic property of the jump-adjusted TED estimator.

Theorem 5. Under the models (3.11)–(3.12), let assumptions in Theorem 4 hold. Then, we have,

with probability greater than 1− p−a for any given positive constant a,

∥Ĩβ
c
− Iβ0∥1 ≤ Cspb

1−δ
n . (3.15)
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Theorem 5 shows that the jump-adjusted TED estimator has the same convergence rate ob-

tained in Theorem 4. Therefore, we conclude that the jumps can be detected well and that their

effects can be mitigated.

3.4 Discussion on the tuning parameter selection

To implement the TED estimation procedure, we need to choose the tuning parameters. In this

section, we discuss how to select the tuning parameters for the numerical studies. We first obtain

∆n
i Ŷ

c and ∆n
i X̂

c with the truncation levels defined in (3.14). Then, to handle the scale issue, we

standardize each column of Ŷc
i and X̂ c

i to have a mean of 0 and a variance of 1. The re-scaling

is conducted after obtaining the TED estimator. For the local regression stage (3.2), we choose

kn = [n1/2]. Also, we select

λn = cλn
−1/4 (log p)3/2 , τn = cτn

−1/4
√

log p, and hn = chn
−1/2 (log p)3/2 , (3.16)

where cλ, cτ , and ch are tuning parameters. In the simulation and empirical studies, we choose

cλ ∈ [0.1, 10] that minimizes the corresponding Bayesian information criterion (BIC). Also, we

select cτ ∈ [0.1, 10] by minimizing the following loss function:

tr

[(
1

kn∆n

X̂ c⊤
i X̂ c

i Ω̂i∆n − Ip

)2
]
,

where Ip is the p-dimensional identity matrix. Finally, we choose ch by minimizing the correspond-

ing mean squared prediction error (MSPE), and the result is ch = 0.5. Details can be found in

Section 5.
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4 A simulation study

In this section, we conducted simulations to check the finite sample performance of the proposed

TED estimator. We generated the data with frequency 1/nall and considered the following time

series regression jump diffusion model:

dYt = β⊤
t dX

c
t + dZt + Jy

t dΛ
y
t ,

dXt = dXc
t + dXJ

t , dXc
t = σtdBt, dXJ

t = JtdΛt, dZt = νtdWt,

where Bt and Wt are p-dimensional and one-dimensional independent Brownian motions, respec-

tively, Jt = (J1t, . . . , Jpt)
⊤ and Jy

t are jump sizes, and Λt = (Λ1t, . . . ,Λpt)
⊤ and Λy

t are the Poisson

processes with the intensities (20, . . . , 20)⊤ and 15, respectively. The jump sizes Jit and Jy
t were

independently generated from the Gaussian distribution with a mean of 0 and standard deviation

of 0.05. We set the initial values Xi0 and Y0 to 0, while νt follows the Ornstein–Uhlenbeck process

dνt = 3 (0.12− νt) dt+ 0.03dWν
t ,

where ν0 = 0.15 and Wν
t is one-dimensional independent Brownian motion. The instantaneous

volatility process σt was taken to be a Cholesky decomposition of Σt = (Σijt)1≤i,j≤p, where Σijt =

ξt0.8
|i−j| and ξt satisfies

dξt = 5 (0.3− ξt) dt+ 0.12dWξ
t ,

where ξ0 = 0.5 and Wξ
t is one-dimensional independent Brownian motion. For the coefficient

process βt, we considered the time-varying coefficient and constant coefficient processes, where [sp]

factors are only significant. We first generated the time-varying coefficient process as follows:

dβt = µβ,tdt+ νβ,tdW
β
t ,
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where µβ,t = (µ1,β,t, . . . , µp,β,t)
⊤, νβ,t = (νi,j,β,t)1≤i,j≤p, and Wβ

t is p-dimensional independent

Brownian motion. We set the process (νi,j,β,t)1≤i,j≤[sp]
as ζtI[sp], where I[sp] is the [sp]-dimensional

identity matrix and ζt was generated as follows:

dζt = 3 (0.5− ζt) dt+ 0.2dWζ
t ,

where ζ0 = 0.4 and Wζ
t is one-dimensional independent Brownian motion. For i = 1, . . . , [sp], we

took the initial value βi0 as 1 and µi,β,t = 0.05 for 0 ≤ t ≤ 1. We set βit, i = [sp] + 1, . . . , p, as zero.

In contrast, for the constant coefficient process, we set βit = 1 for i = 1, . . . , [sp] and 0 ≤ t ≤ 1,

while the other βit’s were set to 0. We chose p = 100, sp = log p, nall = 4000, and we varied n

from 1000 to 4000. To implement the TED estimation procedure, we used the hard thresholding

function s (x) = x and employed the tuning parameter selection method discussed in Section 3.4.

For the purposes of comparison, we considered the integrated coefficient estimator proposed by

Aït-Sahalia et al. (2020). We note that, for small p, one can account for the time variation of the

coefficient process. We call this the AKX estimator. Specifically, the AKX estimator is calculated

as follows:

β̂
AKX

i∆n
= (X̂ c⊤

i X̂ c
i )

−1X̂ c⊤
i Ŷc

i and Ĩβ
AKX

=

[1/(Kn∆n)]−1∑
i=0

β̂
AKX

iKn∆n
Kn∆n, (4.1)

where X̂ c
i and Ŷc

i are defined in (3.13) and we used Kn = [n0.47] instead of kn = [n0.5]. For X̂ c⊤
i X̂ c

i

in (4.1), we added 10−4Ip to avoid the singularity coming from the ultra high-dimensionality. We

also employed the LASSO estimator (Tibshirani, 1996), which is able to explain the sparsity of the

high-dimensional coefficient process. However, the LASSO estimator is designed for the constant

coefficient process; thus, it fails to account for the time-varying coefficient process. We estimated
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the LASSO estimator as follows:

Ĩβ
LASSO

= argminβ

{
n−1∑
i=0

(
∆n

i+1Ŷ
c −∆n

i+1X̂
c⊤β

)2

+ λLASSO∥β∥1

}
, (4.2)

where ∆n
i+1Ŷ

c = ∆n
i+1Y 1{|∆n

i+1Y |≤un}, ∆n
i+1X̂

c =
(
∆n

i+1Xj 1{|∆n
i+1Xj |≤vj,n}

)
j=1,...,p

, and the regular-

ization parameter λLASSO ∈ [0.1, 10] was chosen by minimizing the corresponding Bayesian infor-

mation criterion (BIC). We calculated the average estimation errors under the max norm, ℓ1 norm,

and ℓ2 norm by 1000 simulation procedures.
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Figure 1: The log max, ℓ1, and ℓ2 norm error plots of the TED (black dot), AKX (red triangle),
and LASSO (green diamond) estimators for p = 100 and n = 1000, 2000, 4000.

Figure 1 plots the log max, ℓ1, and ℓ2 norm errors of the TED, AKX, and LASSO estimators for
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the time-varying and constant coefficient processes with p = 100 and n = 1000, 2000, 4000. From

Figure 1, we find that the estimation errors of the TED estimator are decreasing as the number of

high-frequency observations increases. For the time-varying coefficient process, the TED estimator

outperforms other estimators. This may be because the proposed TED estimation method can

account for both time variation and the high-dimensionality of the coefficient process, while the

AKX and LASSO estimators fail to explain one of them. When comparing the AKX and LASSO

estimators, the LASSO estimator shows better performance. This may be because the errors from

the curse of dimensionality are much more significant than those from the time-varying coefficient

in this simulation study. For the constant coefficient process, the TED and LASSO estimators

outperform the AKX estimator. This is probably due to the fact that only the AKX estimator

is unable to handle the curse of dimensionality. We note that the error of the TED estimator

decreases faster than that of the LASSO estimator. This may be because the model complexity

of the TED estimator is relatively large. From these results, we can conjecture that the TED

estimator accounts for the time variation and high-dimensionality of the coefficient process and is

robust to the coefficient process structure.

5 An empirical study

We applied the proposed TED estimator to real high-frequency trading data from January 2013 to

December 2019. We took stock price data from the End of Day website (https://eoddata.com/),

firm fundamentals from the Center for Research in Security Prices (CRSP)/Compustat Merged

Database, and futures price data from the FirstRate Data website. For each stock and futures,

we obtained 5-min log-price data using the previous tick scheme (Wang and Zou, 2010; Zhang,

2011), where the half trading days were excluded. We considered the log-prices of the five assets

as the dependent processes. Specifically, we selected Apple Inc. (AAPL), Berkshire Hathaway Inc.
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(BRK.B), General Motors Company (GM), Alphabet Inc. (GOOG), and Exxon Mobil Corporation

(XOM). These firms are the top market value stocks in five global industrial classification stan-

dards (GICS) sectors: information technology, financials, consumer discretionary, communication

services, and energy sectors. For the covariate process, we collected the price data of 54 futures

that represent market macro variables. For example, we selected 20 commodity data, 10 currency

data, 10 interest rate data, and 14 stock market index data. We listed the symbols of 54 futures in

Table B.1 in the supplementary materials. Furthermore, we considered Fama-French five factors in

Fama and French (2015) and the momentum factor in Carhart (1997). We denoted market, value,

size, profitability, investment, and momentum factors by MKT, HML, SMB, RMW, CMA, and

MOM, respectively. We constructed these factors with high-frequency data similar to the scheme

in Aït-Sahalia et al. (2020) as follows. First, we obtained the monthly portfolio constituents for

above six factors with the stocks listed on NYSE, NASDAQ, and AMEX. Specifically, the MKT

is the return of a value-weighted portfolio of whole assets, while the other factors are as follows:

HML = (SH +BH) /2− (SL+BL) /2,

SMB = (SH + SM + SL) /3− (BH +BM +BL) /3,

RMW = (SR +BR) /2− (SW +BW ) /2,

CMA = (SC +BC) /2− (SA+BA) /2,

MOM = (SU +BU) /2− (SD +BD) /2,

where small (S) and big (B) portfolios were classified by the market equity, while high (H), medium

(M), and low (L) portfolios were classified by their ratio of book equity to market equity. Also, we

classified robust (R), neutral (N), and weak (W) portfolios according to their profitability, while

conservative (C), neutral (N), and aggressive (A) portfolios were classified by their investment.

Finally, we classified up (U), flat (F), and down (D) portfolios according to the momentum of the
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return. The details of this process can be found in Aït-Sahalia et al. (2020). Then, we calculated

each portfolio return with a frequency of five minutes using the portfolio weights adjusted at a

five-minute frequency. Specifically, we obtained the return of any portfolios, WRetd,i, for the dth

day and ith time interval as follows:

WRetd,i =

∑Nd

j=1w
j
d,i ×Retjd,i∑Nd

j=1w
j
d,i

,

where Nd is the number of stocks for the portfolio on the day d, the superscript j represents the

jth stock of the portfolio, and wj
d,i is obtained by

wj
d,i = wj

d ×
i−1∏
l=0

(
1 +Retjd,l

)
,

where wj
d is the market capitalization calculated using the close price of the jth stock on the day

d− 1, and Retjd,0 is the overnight return from the (d− 1)th day to the dth day. In sum, we utilized

the five assets and 60 factors for the dependent processes and covariate processes, respectively.

For the choice of the tuning parameter ch, we calculated the mean squared prediction error

(MSPE) from the data in 2013. Specifically, we first defined

Λ(ch) =
1

55

5∑
j=1

11∑
m=1

∥∥∥∥Ĩβm,j
(ch)− Îβ

(m+1),j
∥∥∥∥2

2

,

where Ĩβ
m,j

(ch) is the TED estimator obtained using the tuning parameter ch and Îβ
m,j

is the

debiased Dantzig integrated coefficient estimator for the mth month of 2013 and jth stock. Then,

we selected ch which minimizes Λ(ch) over ch ∈ {l/10 | 0 ≤ l ≤ 5, l ∈ Z}. The result is ch = 0.5.

We note that the stationarity assumption is reasonable for the coefficient process, which justifies

the proposed tuning parameter choice procedure. Then, for each of the five assets, we employed

the TED, AKX, and LASSO estimation procedures to obtain the monthly integrated coefficients.
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The tuning parameters were selected based on Section 3.4 and Section 4. Since the AKX estimator

is designed for the finite dimension, we also employed the AKX-SIX estimator. The AKX-SIX

estimator employs the same estimation method as the AKX estimator except that it only uses

MKT, HML, SMB, RMW, CMA, and MOM as factor candidates. We note that these six factors

are commonly used in finance practice (Asness et al., 2013; Barroso and Santa-Clara, 2015; Carhart,

1997; Fama and French, 2015, 2016). For each estimation procedure, the coefficients for the non-

trading period were estimated to be zero.

Table 1: The annual average in-sample and out-of-sample R2 for the TED, AKX, AKX-SIX, and
LASSO estimators across the five assets.

In-sample R2

Estimator
TED AKX AKX-SIX LASSO

whole period 0.272 0.179 0.053 0.249
2013 0.237 0.163 0.038 0.232
2014 0.246 0.157 0.040 0.217
2015 0.305 0.220 0.067 0.286
2016 0.282 0.197 0.065 0.245
2017 0.211 0.086 0.017 0.180
2018 0.369 0.264 0.094 0.349
2019 0.256 0.170 0.047 0.236

Out-of-sample R2

Estimator
TED AKX AKX-SIX LASSO

whole period 0.266 0.169 0.049 0.243
2014 0.239 0.144 0.034 0.211
2015 0.286 0.203 0.060 0.269
2016 0.267 0.190 0.063 0.240
2017 0.200 0.079 0.015 0.173
2018 0.353 0.234 0.069 0.341
2019 0.251 0.165 0.052 0.226

To investigate the performances of the TED, AKX, AKX-SIX, and LASSO estimators, we first

calculated the monthly in-sample and out-of-sample R2 from the monthly integrated coefficient

estimates. We obtained the out-of-sample R2 using the integrated coefficient estimates from the

previous month. The out-of-sample R2 was calculated from 2014 to 2019 since the tuning param-

eters were selected from the data in 2013. Then, we calculated the annual average R2 over the

five assets and twelve months. Table 1 reports the annual average in-sample and out-of-sample
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R2 for the TED, AKX, AKX-SIX, and LASSO estimators. From Table 1, we can find that the

high-dimensional regression models (TED and LASSO) show better performance than the finite-

dimensional regression model. This may be because as we know, the high-dimensional models can

overcome the curse of dimensionality. When comparing TED and LASSO, the TED estimator

shows the best result for all periods. This is probably due to the fact that only the TED estimator

can account for both the high-dimensionality and time-varying property of the coefficient process.

Now, we investigate the TED estimation results. Figure 2 depicts the monthly integrated

coefficient estimates for the five assets and 60 factors, and Figure 3 plots the nonzero frequency of

monthly integrated coefficients for the five groups, such as the commodity futures group, currency

futures group, interest rate futures group, stock market index futures group, and market factor

group. From Figures 2–3, we find that the value of the integrated coefficient varies over time and

the significant coefficients also change over time. Furthermore, the stock market index futures

group had non-zero integrated coefficient estimates more often than the other futures groups. This

may be because the stock market index futures can partially explain the market factors. This

finding is consistent with the multi-factor models (Asness et al., 2013; Carhart, 1997; Fama and

French, 1992, 2015). On the other hand, there are several individual factors that played a significant

role in most periods. Thus, to investigate the coefficient behavior in greater details, we draw the

integrated coefficients for the five assets and the three most frequent factors illustrated in Figure

4. For example, AAPL has NQ (E-mini Nasdaq-100), YM (E-mini Dow), and ES (E-mini S&P

500); BRK.B has MKT, ES, and YM; GM has MKT, MOM, and EW (E-mini S&P 500 Midcap);

GOOG has NQ, BTP (Euro BTP Long-Bond), and ES; and XOM has MKT, RMW, and MOM.

Among the factors, either the NQ factor or MKT factor is the most frequently significant factor.

Moreover, the coefficient values of the three most frequent factors vary over time, while other

factors are significant only for some periods. From these results, we can infer that the coefficient

processes are sparse and time-varying. Hence, incorporating these features is important to account
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Figure 2: The monthly integrated coefficients from the TED estimation procedure for the five
assets and 60 factors. Each line represents the integrated coefficient estimates for each month.
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Figure 3: The nonzero frequency of the monthly integrated coefficients from the TED estimation
procedure for the five assets and five groups. The five groups are the commodity futures group,
currency futures group, interest rate futures group, stock market index futures group, and market
factor group.
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Figure 4: The integrated coefficients from the TED estimation procedure for the three most frequent
factors among the 60 factors for each of the five assets.
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for market dynamics. The proposed TED procedure can provide a good tool to deal with these

issues when analyzing market dynamics using high-frequency data.

In finance practice, the six factors (Fama-French five factors and the momentum factor) are

most frequently used (Asness et al., 2013; Barroso and Santa-Clara, 2015; Carhart, 1997; Fama and

French, 2015, 2016). Thus, we investigate their integrated coefficient behaviors. Figure 5 depicts

the estimates of the monthly integrated coefficient for MKT, HML, SMB, RMW, CMA, and MOM

with their non-zero frequency. We find that the MKT factor was significant for BRK.B, GM, and

XOM, which may indicate that these firms can be adequately explained by the market movements.

Other market factors are also significant for some periods; thus, these factors can explain expected

stock returns for BRK.B, GM, and XOM. In contrast, for technology companies such as AAPL

and GOOG, the integrated coefficient estimates for the MKT factor are usually small. This may

be because the NQ (E-mini Nasdaq-100) factor played a significant role for the technology stocks

as shown in Figure 4. Furthermore, AAPL and GOOG cannot be satisfactorily explained using the

common six factors. One possible explanation is that, over the last twenty years, the technology

companies have led the U.S. economy, with AAPL and GOOG as the most successful companies

in the same time frame. Thus, these six factors may not work well for the period when we studied

them.

6 Conclusion

In this paper, we proposed a novel Thresholding dEbiased Dantzig (TED) estimation procedure

which can accommodate the sparse and time-varying coefficient process in the high-dimensional

set-up. Specifically, to account for the sparse and time-varying coefficient process, we applied the

Dantzig procedure to the instantaneous coefficient estimator, which results in a biased estimator.

To reduce the bias, we proposed a debiased estimation procedure. We estimated the integrated
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Figure 5: The integrated coefficient estimates from the TED estimation procedure (left) and the
nonzero frequency (right) for the six factors, MKT, HML, SMB, RMW, CMA, and MOM. Each
line (left) represents the integrated coefficient estimates for each month.
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coefficient with this new debiased instantaneous coefficient estimator. We showed that the Dantzig

procedure can handle the sparsity of the instantaneous coefficient and that the debiased scheme

mitigates the errors from the bias of the instantaneous coefficient estimator. To accommodate the

sparsity of the integrated coefficient, we further regularized the coefficient estimator. Finally, we

showed that the proposed TED estimator can obtain the near-optimal convergence rate.

In the empirical study, the TED estimator outperforms other estimators in terms of both in-

sample and out-of-sample R2. Furthermore, we found that the coefficient process is sparse and

time-varying. These findings revealed that, when analyzing the high-dimensional high-frequency

regression, the TED estimator is a useful tool which can handle the curse of dimensionality and

the time-varying coefficient. That is, in practice, the TED procedure makes it possible to analyze

the stock market with relatively short period using high-frequency data.
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