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Abstract

This paper introduces a novel Itô diffusion process for both factor and idiosyncratic volatil-

ity matrices whose eigenvalues follow the vector auto-regressive (VAR) model. We call it the

factor and idiosyncratic VAR-Itô (FIVAR-Itô) model. The FIVAR-Itô model accounts for

the dynamics of the factor and idiosyncratic volatilities and includes many parameters. In

addition, many empirical studies have shown that high-frequency stock returns and volatil-

ities often exhibit heavy tails. To handle these two problems simultaneously, we propose a

penalized optimization procedure with a truncation scheme for parameter estimation. We

apply the proposed parameter estimation procedure to predicting large volatility matrices

and establish its asymptotic properties.
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1 Introduction

Volatility analysis for high-frequency financial data is a vibrant research area in financial econo-

metrics and statistics. With the wide availability of high-frequency financial data, several well-

performing non-parametric estimation methods have been developed to estimate integrated volatil-

ities (Aı̈t-Sahalia et al., 2010; Barndorff-Nielsen et al., 2008, 2011a; Bibinger et al., 2014; Chris-

tensen et al., 2010; Fan and Kim, 2018; Fan and Wang, 2007; Jacod et al., 2009; Shin et al., 2023;

Xiu, 2010; Zhang et al., 2005; Zhang, 2006, 2011). With these non-parametric (daily) realized

volatility estimators, parametric models have been developed to account for volatility dynamics

over time. Examples include the realized volatility-based modeling approaches (Andersen et al.,

2003), the heterogeneous auto-regressive (HAR) models (Corsi, 2009), the realized GARCH models

(Hansen et al., 2012), the high-frequency-based volatility (HEAVY) models (Shephard and Shep-

pard, 2010), and the unified GARCH-Itô models (Kim and Wang, 2016; Song et al., 2021). Their

empirical studies showed that incorporating high-frequency information, such as realized volatility,

helps capture the volatility dynamics for a finite number of assets. However, in financial practice,

we often need to handle a large number of assets, which leads to an excessive number of param-

eters for typical sample sizes. To overcome this problem, the approximate factor model structure

is often imposed on volatility matrices (Fan et al., 2013). For example, high-dimensional factor-

based Itô processes are widely utilized with the sparsity assumption on the idiosyncratic volatility

(Aı̈t-Sahalia and Xiu, 2017; Fan et al., 2016; Kim et al., 2018; Kong, 2018). Recently, Kim and

Fan (2019) developed the factor GARCH-Itô model, based on the high-dimensional factor-based

Itô processes. The factor GARCH-Itô model assumes that the eigenvalue sequence of the latent

factor volatility matrices admits some unified GARCH-Itô model structure (Kim and Wang, 2016)

so that the dynamics of the volatility can be explained by the factors. See also Hetland et al. (2023)

for the low-dimensional low-frequency setting and Kim et al. (2022, 2023) for the high-dimensional

high-frequency setting. We note that when employing the approximate factor model structure, the
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existing literature does not model the idiosyncratic volatility and assumes that the idiosyncratic

volatility process is martingale.

However, several empirical studies indicate that idiosyncratic volatility also has a dynamic

structure, and it comprises a large proportion of the total volatility (Barigozzi and Hallin, 2016;

Connor et al., 2006; Herskovic et al., 2016). To provide evidence of the existence of the dynamics

in the idiosyncratic process for the high-frequency financial returns, we estimated the 200 daily

eigenvalues of the idiosyncratic volatility matrix based on the top 200 large trading volume stocks

in the S&P 500 index. The estimation procedure will be described in Section 4.2 and Section

5.2. Figure 1 depicts the distribution of the first-order auto-correlations of the 200 time series of

200 daily estimated eigenvalues as well as the ACF plots for the time series of daily eigenvalue

estimates of the 1st, 50th, 150th, and 200th eigenvalues. We note that other eigenvalues also have

similar time series structures. Figure 1 shows that the lag-1 autocorrelations are quite strong,

which supports a dynamic structure in the eigenvalue processes of the idiosyncratic volatility. In

addition, these estimated eigenvalues exhibit fairly long memories, with significant autocorrelation

of lags of about 1 to 4 weeks. Thus, simultaneously modeling the idiosyncratic volatility as well

as the factor volatility is important to capture volatility dynamics. On the other hand, since the
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Figure 1: The box plot of the first-order auto-correlations for the time series of 200 daily estimated
eigenvalues of the idiosyncratic volatility matrix and the ACF plots for the time series of the 1st,
50th, 150th, and 200th eigenvalues.

dimension of the idiosyncratic volatility is large, modeling the factor and idiosyncratic volatilities

simultaneously results in the problem of over-parameterization. To address this issue, the sparsity

of model parameters is often imposed, and high-dimensional estimation procedures, such as LASSO
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(Tibshirani, 1996) and SCAD (Fan and Li, 2001), which are usually developed under a sub-Gaussian

tail condition, are employed. However, this sub-Gaussian assumption is at odds with the empirical

observations that the financial market exhibits heavy tails. For example, Figure 2 shows the boxplot

of the 200 log kurtoses for the daily jump adjusted pre-averaging volatility estimators (Aı̈t-Sahalia

and Xiu, 2016; Christensen et al., 2010; Jacod et al., 2009) for 997 trading days in the period

2016–2019. The daily jump adjusted pre-averaging volatility estimators are estimated using 1-min

log-returns of the most liquid 200 assets in the S&P 500 index. Detailed estimation procedure is

presented in (A.1) in the Appendix. From Figure 2, we can see that the volatility processes have

heavy-tailed distributions. See also Cont (2001); Fan and Kim (2018); Mao and Zhang (2018); Shin

et al. (2023). Thus, the high-dimensional estimation procedure developed under the sub-Gaussian

tail condition is inappropriate. These stylized features lead to the demands for developing a

diffusion process for both factor and idiosyncratic volatilities with heavy-tailed observations.

2 3 4 5 6 7

Box plot

Log kurtosis

t−distribution with degrees of freedom 5

Figure 2: The boxplot of the 200 log kurtoses obtained from the daily jump adjusted pre-averaging
volatility estimators for 997 trading days in the period 2016–2019. The daily jump adjusted pre-
averaging volatility estimators are estimated using 1-min log-returns of the most liquid 200 assets
in the S&P 500 index. The red dash represents the kurtosis of the t5-distribution.

In this paper, we introduce a novel Itô diffusion process to account for the dynamics in the factor

and idiosyncratic volatilities, based on the VAR model with heavy-tailed innovations. Specifically,

it is assumed that the eigenvectors of the latent factor and idiosyncratic volatility matrices do not
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vary over a time period. In contrast, we allow the eigenvalues to evolve with time and impose

a parametric dynamic structure. In particular, the instantaneous eigenvalue processes of the la-

tent factor and idiosyncratic instantaneous volatility matrices are continuous with respect to time

and have a VAR structure at integer time points so that it is a form of some interpolation of

the VAR structure. This structure makes the integrated eigenvalues have the VAR structure, and

thus, the dynamics of the volatility can be explained by both the factor and idiosyncratic com-

ponents. We call it the factor and idiosyncratic VAR-Itô (FIVAR-Itô) model. When it comes to

estimating model parameters, the high dimensionality of the idiosyncratic volatility matrix causes

over-parameterization. Furthermore, we allow the heavy-tailedness based on the bounded cϵ-th

moment condition for cϵ > 4. It is assumed that the model parameters are sparse so that an

ℓ1-penalty, such as LASSO, can be employed. The usual ℓ1-penalty method does not work under

the heavy-tailedness (Sun et al., 2020) and a Huber loss is employed to address this issue (Huber,

1964). We show that the proposed estimation procedure has robustness with the desirable conver-

gence rate. We also propose a procedure for large volatility matrix prediction and investigate its

asymptotic properties.

The rest of the paper is organized as follows. Section 2 introduces the FIVAR-Itô model,

based on the high-dimensional factor-based Itô diffusion process, and investigates its properties.

Section 3 proposes the robust parameter estimation method for a high-dimensional VAR model

with heavy-tailedness and establishes its concentration properties. In Section 4, we apply the

proposed estimator to large volatility matrix prediction. In Section 5, we conduct a simulation

study to check the finite sample performance of the proposed estimator and apply the estimation

method to high-frequency trading data. The conclusion is presented in Section 6, and the technical

proofs are deferred to the Appendix.

Before closing this section, let us introduce some notations. For a given p1 × p2 matrix M =

(Mij), let

∥M∥1 = max
1≤j≤p2

p1∑
i=1

|Mij|, ∥M∥∞ = max
1≤i≤p1

p2∑
j=1

|Mij|, ∥M∥max = max
i,j

|Mij|.

Note that ∥ · ∥max is not a matrix norm in general, but can be interpreted as a vector norm. The
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matrix spectral norm ∥M∥2 is the square root of the largest eigenvalue of MM⊤ and the Frobenius

norm of M is denoted by ∥M∥F =
√
tr(M⊤M). When M is a square matrix, the spectral radius

ρ(M) is the largest value of the absolute eigenvalues of M. For any vector x = (x1, . . . , xp)
⊤ ∈ Rp

and q ≥ 1, the ℓq norm ∥x∥q = (
∑p

i=1 |xi|
q)

1/q
. For any vectors x,y ∈ Rp, we set ⟨x,y⟩ = x⊤y. For

a function f : Rp → R, its gradient vector is denoted by ∇f ∈ Rp as long as it exists. We denote

∥Z∥Lq
= {E (|Z|q)}1/q for a random variable Z ∈ R and q ≥ 1. The half-vectorization, vech (M),

of the matrix M is the column vector obtained by vectorizing only the lower triangular part of M.

Also, tr (M) is the trace of M and det (M) is the determinant of M. Diag (M) denotes the square

diagonal matrix with the elements of the main diagonal of M. C’s denote generic positive constants

whose values are free of other parameters and may change from appearance to appearance.

2 FIVAR-Itô model

Let X(t) = (X1(t), . . . , Xp(t))
⊤ be the vector of true log-prices of p assets at time t. To account

for the cross-sectional dependence in financial asset prices, we employ the following factor-based

jump-diffusion model:

dX(t) = µ(t)dt+B(t)df(t) + du(t) + J(t)dΛ(t), (2.1)

where µ(t) ∈ Rp is a drift vector, B(t) ∈ Rp×r is an unknown factor loading matrix, f(t) ∈ Rr

is a latent factor process, and u(t) ∈ Rp is an idiosyncratic process. For the jump part, J(t) =

(J1(t), . . . , Jp(t))
⊤ is a jump size vector, and Λ(t) = (Λ1(t), . . . ,Λp(t))

⊤ is a p-dimensional Poisson

process with an intensity I(t) = (I1(t), . . . , Ip(t))
⊤. It is assumed that the factor and idiosyncratic

processes f(t) and u(t) follow the continuous-time diffusion models:

df(t) = ϑ⊤(t)dW(t) and du(t) = Φ⊤(t)dW∗(t),

where ϑ(t) and Φ(t) are r by r and p by p instantaneous volatility matrices, respectively, and

W(t) andW∗(t) are r-dimensional and p-dimensional independent Brownian motions, respectively.
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Stochastic processes X(t), µ(t), B(t), f(t), u(t), ϑ(t), and Φ(t) are defined on a filtered probability

space (Ω,F , {Ft, t ∈ [0,∞)}, P ) with filtration Ft satisfying the usual conditions, that is, the

filtered probability space (Ω,F , {Ft, t ∈ [0,∞)}, P ) is complete and the filtration Ft is right-

continuous. The instantaneous volatility matrix of the log-price X(t) is

γ(t) = (γij(t))1≤i,j≤p = B(t)ϑ⊤(t)ϑ(t)B⊤(t) +Φ⊤(t)Φ(t), (2.2)

and the integrated volatility for the dth day is

Γd = (Γd,ij)i,j=1,...,p =

∫ d

d−1

γ(t)dt = Ψd +Σd,

where Ψd =
∫ d

d−1
B(t)ϑ⊤(t)ϑ(t)B⊤(t)dt and Σd =

∫ d

d−1
Φ⊤(t)Φ(t)dt for d ∈ N.

Let qF
t,1, . . . ,q

F
t,r and λt,1 (θ1) , . . . , λt,r (θr) be the eigenvectors and eigenvalues of the instanta-

neous factor volatility matrixB(t)ϑ⊤(t)ϑ(t)B⊤(t)/p, respectively, and qI
t,1, . . . ,q

I
t,p and λt,r+1 (θr+1) ,

. . . , λt,p+r (θp+r) be the eigenvectors and eigenvalues of the instantaneous idiosyncratic volatility

matrix Φ⊤(t)Φ(t), respectively. We note that in the high-dimensional factor model, the eigenval-

ues of the factor volatility matrix are usually assumed to diverge at the order of the dimension p.

Therefore, to match the sizes of the factor and idiosyncratic parts, we divide the factor part by

p. In this paper, to distinguish notations for the factor and idiosyncratic parts, we use subscript

and superscript of F and I to their associated quantities, respectively. In the latent factor model,

to identify the latent factor loading matrix and factors, it is often assumed that the latent factor

loading matrix is orthonormal and the latent factors have a diagonal covariance matrix, which

implies that the eigenvectors and eigenvalues are related to the factor loading matrix and factors,

respectively (Aı̈t-Sahalia and Xiu, 2017; Fan et al., 2013; Kim and Fan, 2019). In this paper,

we also consider the eigenvalues as the latent factor and idiosyncratic associated variables. It is

assumed that the eigenvectors, qF
t,i, i = 1, . . . , r, are constant over time, that is, qF

t,i = qF
i for

i = 1, . . . , r and t ∈ [0,∞). Also, it is assumed that qI
t,i = qI

i for i = 1, . . . , p and t ∈ [0,∞).

We note that the constant assumption can be relaxed to the constant eigenvectors for each day.

However, Kim and Fan (2019) shows that the estimation procedures with time-invariant eigenvec-
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tors perform better. In light of this, it is assumed that the eigenvectors are constant over time,

and hence the volatility dynamics are driven by those of the eigenvalues. Thus, to capture the

volatility dynamics, we model the latent factor and idiosyncratic variables by the following factor

and idiosyncratic VAR-Itô (FIVAR-Itô) model.

Definition 1. We call a log-price vector X(t), t ∈ [0,∞), to follow a FIVAR(h)-Itô model if its

associated values satisfy for i = 1, . . . , p+ r and t ∈ [0,∞),

λt,i (θi) = (⌈t⌉ − t)λ⌈t−1⌉,i (θi) +

p+r∑
j=1

ζ1,i,j

{∫ t

⌈t−1⌉
λs,j (θj) ds

}
+ (⌈t⌉ − t)

∫ t

⌈t−1⌉
Jλ,i(s)dΛ̃λ,i(s)

+(t− ⌈t⌉+ 1)

(
ai +

h∑
k=2

p+r∑
j=1

ζk,i,j

{∫ ⌈t⌉−k+1

⌈t⌉−k

λs,j (θj) ds

})
+ (⌈t⌉ − t)Z2

i,t,

where θi = (ζk,i,j)1≤k≤h,1≤j≤p+r is the model parameter, ⌈t⌉ is a ceiling function, which is the

smallest integer greater than or equal to t, Jλ,i(t) is a jump size process, Λ̃λ,i(t) is a compensated

Poisson process, and Zi,t =
∫ t

⌈t−1⌉ zi,tdWi,t, where Wi,t is a standard Brownian motion and zi,t is a

continuous process over each integer time interval.

In the proposed FIVAR-Itô model, the instantaneous eigenvalues at the integer time points

(time unit is usually day) satisfy the VAR(h)-type structure as follows:

λd,i (θi) = ai +
h∑

k=1

p+r∑
j=1

ζk,i,j

{∫ d−k+1

d−k

λt,j (θj) dt

}
. (2.3)

Thus, under the FIVAR-Itô model, the instantaneous eigenvalue process is an interpolation of

the VAR structure. By introducing the jump process for the instantaneous eigenvalue process,

we can account for the co-jumps with the return process (Bandi and Reno, 2016; Bibinger and

Winkelmann, 2018; Jacod et al., 2017a; Jacod and Todorov, 2010). We note that to guarantee the

positiveness of the eigenvalue process, we need some lower bound condition for the jump process,

such as Jλ,i(t)Λ̃λ,i(t) ≥ −c a.s. for any t and some positive constant c that is related with the

lower bound of the continuous part of the instantaneous eigenvalue process (e.g., ai). The random

fluctuation is modeled by Z2
i,t, which is included in integrated eigenvalues. Thus, the volatility

process is not deterministic. Furthermore, we model the heavy-tailedness by the heavy-tailed
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random fluctuation Z2
i,t.

The following proposition investigates the low-frequency time series structure of the integrated

eigenvalues, which will be used for statistical inferences.

Proposition 1. Let ζk = (ζk,i,j)1≤i,j≤p+r for all 1 ≤ k ≤ h, det(ζ1) ̸= 0, and the spectral radius of

ζ1, ρ(ζ1) < 1. Then, we have the following iterative relations for the FIVAR(h)-Itô model:

ξd = ν +
h∑

k=1

Akξd−k + ϵd a.s., (2.4)

where ξd = (ξd,1, . . . , ξd,p+r)
⊤ =

∫ d

d−1
λt (θ) dt, λt (θ) = (λt,1 (θ1) , . . . ,λt,p+r (θp+r))

⊤, and the

specific forms of Ak’s, ν, and ϵd are defined in (A.2) in the Appendix.

Proposition 1 shows that the daily integrated eigenvalues ξd follow the VAR model. We note

that ν is the the vector of the intercepts, (a1, . . . , ap+r)
⊤ of instantaneous eigenvalues in (2.3) and

the expected value,
(
E
[
z21,t
]
, . . . ,E

[
z2p+r,t

])⊤
, of the random fluctuations, and the coefficient, ζ1,

of the first AR order in (2.3) coming from handling the iterative relationship of the integrated

eigenvalue. The coefficients Ak’s are determined by the coefficients, ζk’s, of the instantaneous

eigenvalue in (2.3). It is worth noting that we cannot specify all interpolation parameters in the

instantaneous process because some quantities, such as (a1, . . . , ap+r)
⊤ and the expected value of

the random fluctuations, are not uniquely defined. Unlike the factor GARCH-Itô model (Kim and

Fan, 2019), the FIVAR-Itô model considers not only the factor component but also the idiosyncratic

component. In the empirical study, we find that the idiosyncratic eigenvalues have a time series

structure, and incorporating the idiosyncratic dynamics helps capture the volatility dynamics.

Details can be found in Section 5. We note that the proposed model is not the unique way to

explain the observed auto-correlation structure in the empirical study (see Bollerslev et al. (2016);

Cipollini et al. (2021); Hansen and Lunde (2014)). That is, the FIVAR-Itô model is one of the

possible solutions, and we find its empirical benefits. However, incorporating the idiosyncratic

component causes high-dimensionality. Furthermore, to account for the heavy-tailedness, we allow

that the martingale noise ϵd has heavy tails. That is, when it comes to statistical inferences for the

proposed FIVAR-Itô model, we face two problems: the heavy-tailedness and over-parameterization.
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In the following section, we propose an estimation procedure which can handle the heavy-tailedness

and high dimensionality.

Remark 1. In this paper, we propose a prediction procedure for integrated volatility matrices based

on the VAR model structure of daily integrated eigenvalues. On the other hand, the intraday dy-

namic structure of the eigenvalues is not used for the prediction procedure. Specifically, since we use

only the VAR model structure for the interday prediction procedure, the intraday dynamic structure

does not affect the prediction method as long as the integrated eigenvalues follow the proposed VAR

model. That is, the intraday dynamics in Definition 1 are proposed to show the existence of the

continuous eigenvalue process that satisfies the VAR model structure of the integrated eigenvalue

process. This enables us to accommodate both a continuous-time Itô process and a discrete-time

VAR model and to conduct a simulation study based on high-frequency simulated data. It is inter-

esting and important to develop a unified model that can explain interday and intraday dynamics

simultaneously. We leave this for a future study.

Remark 2. In this paper, we assume that the rank r is constant over time. However, it may

be more realistic to allow the rank r to vary over time. To handle the time-varying rank r, we

can consider a state heterogeneous structure of the volatility process as in Chun and Kim (2022).

For example, we can assume that the number of common factors is the same under the same state.

Then, we need to extend the one-dimensional case in Chun and Kim (2022) to the high-dimensional

case. However, the extension to the high-dimensional case is not straightforward. Thus, we leave

this for a future study.

3 Estimation procedure for the heavy-tailed VAR model

In this section, we propose a robust parameter estimation method for the high-dimensional VAR

model in (2.4), where ϵd = (ϵd,1, . . . , ϵd,p+r)
⊤ is i.i.d. innovation at time d with E(ϵd) = 0p+r,

which is independent of ξd−l for all l ∈ N. Our idea is basically to robustly fit this model for each

component. Let β =
(
ν A1 · · · Ah

)
and we denote βi by the ith row of β. To overcome the

curse of dimensionality, the sparsity of βi is assumed: the number of nonzero elements in each βi
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is bounded by a small number sβ ≥ 1. In contrast, for the factor-related parameter, the factor

model usually assumes that the idiosyncratic variables do not affect the factor variable. To reflect

this prior, Ak,i,j = 0 for k = 1, . . . , h, i = 1, . . . , r, j = r + 1, . . . , p + r is assumed. That is, the

factor-related coefficients βi’s, i = 1, . . . , r, have the specific sparse structure. We denote the true

model parameter by β0 and its ith row by βi0. It is worth mentioning that the sparsity implies

the Granger non-causality between the related variables. In practice, we do not know the number,

r, of latent factors and AR lag h. In this section, it is assumed that r and h are given, and we will

discuss how to choose them in Section 5.1.

To accommodate the sparsity structure, we often employ the penalized regression model, such

as LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001). When analyzing data with the

LASSO procedure, we need some sub-Gaussian tail conditions. However, as shown in Figure 2, the

volatilities often exhibit heavy tails in financial applications. To tackle this heavy-tailedness, we

often employ a robustification method (Catoni, 2012; Fan et al., 2017; Minsker, 2018; Sun et al.,

2020). In this paper, we employ the Huber loss lτ (Huber, 1964)

lτ (x) = x2/2I(|x| ≤ τ) + (τ |x| − τ 2/2)I(|x| > τ),

where τ > 0 is the robustification parameter, and the truncation (Winsorization) method

ψϖ (x) = xI(|x| ≤ ϖ) + sign(x)ϖI(|x| > ϖ),

where ϖ > 0 is a truncation parameter. We denote ψϖ (x) = (ψϖ (x1) , . . . , ψϖ (xp1))
⊤ for any

vector x = (x1, . . . , xp1)
⊤ ∈ Rp1 .

By combining the truncation and ℓ1-regularization methods, we can simultaneously deal with

robustness and the curse of dimensionality. Specifically, we estimate the true sparse coefficient βi0

as follows:

β̂i = arg min
βi∈Rh(p+r)+1

LI,i
τ,ϖ(βi) + ηI ∥βi∥1 for i = r + 1, . . . , p+ r, (3.1)
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where ηI > 0 is the regularization parameter, the empirical loss function is

LI,i
τ,ϖ(βi) = (n− h)−1

n∑
d=h+1

lτI

(
ξ̂d,i − ⟨ψϖI

(ξ̂
I

d−1),βi⟩
)
, (3.2)

n is the number of days in the sample, ξ̂
I

d =
(
1, ξ̂

⊤
d , . . . , ξ̂

⊤
d−h+1

)⊤
, and ξ̂d =

(
ξ̂d,1, . . . , ξ̂d,p+r

)⊤
is a non-parametric estimator for ξd. Note that in (3.2), the Huber loss lτI is used to handle the

heavy-tailedness of ϵd and the truncation function ψϖ is used to guard against the tail of ξd. In

contrast, since the sparsity structure of the coefficients for the factor part is known, it is a low-

dimensional problem. We do not need the ℓ1 penalty term. However, we still need the truncation

parts to handle the heavy-tailedness as follows:

β̂i = arg min
βi∈Rhr+1

LF,i
τ,ϖ(βi) for i = 1, . . . , r, (3.3)

where

LF,i
τ,ϖ(βi) = (n− h)−1

n∑
d=h+1

lτF

(
ξ̂d,i − ⟨ψϖF

(ξ̂
F

d−1),βi⟩
)
, (3.4)

ξ̂
F

d is an (hr + 1) by 1 vector obtained by stacking 1 and the first r elements of each ξ̂d−k, k =

0, . . . , h − 1. We note that, in financial practice, we cannot observe the true price or volatility

process, so we employ the non-parametric estimator ξ̂d of ξd. We discuss the non-parametric

estimators in Section 4.

We investigate the theoretical properties of β̂ under the following assumptions.

Assumption 1.

(a) The process (ξ̃d)d=1,2,... is strictly stationary and the spectral radius of Ã, ρ(Ã), is less than

1, where ξ̃d and Ã are the vectorization of ξd and its corresponding coefficient matrix defined

in (A.3) in the Appendix, respectively.

(b) The number of nonzero elements in each βi0 is bounded by a number sβ.

(c) ϵd,i and ξd,i satisfy max1≤i≤p+r E(|ϵd,i|cϵ) < ∞ and max1≤i≤p+r E(|ξd,i|cϵ) < ∞ for some con-

stant cϵ > 4.
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(d) The process (ξ̃d)d=1,2,... is α-mixing and the α-mixing coefficients satisfy α(k) = O
(
φk
)
for

some φ ∈ (0, 1).

(e) The non-parametric estimator ξ̂d satisfies

max
1≤d≤n

max
1≤i≤r

∣∣∣ξ̂d,i − ξd,i

∣∣∣ ≤ bFm,n,p and max
1≤d≤n

max
r+1≤i≤p+r

∣∣∣ξ̂d,i − ξd,i

∣∣∣ ≤ bIm,n,p a.s.,

where m represents the number of observations for estimating ξd,i, and b
F
m,n,p and bIm,n,p con-

verge to zero as m, n, and p increase.

(f) There exists a constant κ > 0 such that the following inequality holds for some DF ≥

(hr + 1) ηF/κ and 1 ≤ i ≤ r, where the bound of ηF is given in Theorem 1:

inf{w⊤∇2LF,i
τ,ϖ(βi)w : ∥w∥2 = 1, ∥βi − βi0∥1 ≤ DF} ≥ κ.

(g) Define the ℓ1-cone Wi =
{
w ∈ Rhp+1 :

∥∥wSc
i

∥∥
1
≤ 3 ∥wSi

∥1
}
, where wSc

i
is the subvector

obtained by stacking {wj : j ∈ Sc
i }, wSi

is the subvector obtained by stacking {wj : j ∈ Si},

and Si = {j : j-th element of βi0 ̸= 0}. Then, there exists a constant κ > 0 such that the

following inequality holds for some DI ≥ 48sβηI/κ and 1 ≤ i ≤ p, where the bound of ηI is

given in Theorem 1:

inf{w⊤∇2LI,i
τ,ϖ(βi)w : w ∈ Wi, ∥w∥2 = 1, ∥βi − βi0∥1 ≤ DI} ≥ κ.

Remark 3. Assumption 1(a) is the strictly stationary and stable conditions for the VAR(1) rep-

resentation of the model (2.4). Assumption 1(c) allows the heavy-tailedness in the VAR model.

Since we consider the high-dimensional VAR model, we need the moment condition for ξd,i, such as

max1≤i≤p+r E(|ξd,i|cϵ) <∞. However, under Assumption 1(a)–(b), the condition max1≤i≤p+r E(|ϵd,i|cϵ) <

∞ implies the condition max1≤i≤p+r E(|ξd,i|cϵ) < ∞ when sβ is bounded by some positive constant

(see Lemma 1 in the Appendix). We note that we do not impose the bounded sβ throughout the

paper; thus, we need the moment condition for ξd,i. Assumption 1(d) is required to handle the
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dependency in the VAR model. Under Assumption 1(a), Assumption 1(d) holds if the process

(ξ̃d)d=1,2,... is geometric ergodic (see Proposition 2 in Liebscher (2005) and Fact 5 in the online

Appendix of Wong et al. (2020)). We note that the geometric ergodicity can be obtained under

the mild condition on ϵd (see Example 3 in Wong et al. (2020)). Assumption 1(e) represents the

concentration property of the non-parametric estimator ξ̂d. In Section 4, we propose a method for

constructing ξ̂d and show its associated inequality holds with high probability. Assumptions 1(f)–(g)

are the eigenvalue conditions for the Hessian matrices ∇2LF,i
τ,ϖ(βi) and ∇2LI,i

τ,ϖ(βi), respectively.

This is called the localized restricted eigenvalue (LRE) condition (Fan et al., 2018; Sun et al.,

2020), which implies strictly positive restricted eigenvalues over a local neighborhood.

The following theorem provides the convergence rate of β̂i defined in (3.1) and (3.3).

Theorem 1. Under the model (2.4), Assumption 1, n ≥ 3, δ ≥ 1,
√
nδ + (τF +ϖF ) (log n)

2 δ =

O (n), and ηF ≥ C[bFm,n,p+ τ
−2
F +ϖ−2

F + τFϖF (logn)2δ+
√
nδ

n
], we have, for i = 1, . . . , r, with probability

at least 1− 4hre−δ, ∥∥∥β̂i − βi0

∥∥∥
2
≤ (hr + 1)1/2 ηF

κ
. (3.5)

Furthermore, we assume that sβ
√
nδ+(τI +ϖI) (log n)

2 δ = O (n) and ηI ≥ C[sβ
(
bFm,n,p + bIm,n,p

)
+

s3βτ
−2
I + sβϖ

−2
I +

τIϖI(logn)
2δ+sβ

√
nδ

n
]. Then, we have, for i = r+1, . . . , p+ r, with probability at least

1− 4h (p+ r) e−δ, ∥∥∥β̂i − βi0

∥∥∥
2
≤

12s
1/2
β ηI

κ
. (3.6)

Remark 4. Theorem 1 shows the convergence rates for the general setting of the low-dimensional

and high-dimensional VAR models, where the covariates are not observable and observations are

heavy-tailed. Specifically, bFm,n,p and bIm,n,p in ηF and ηI are the costs to estimate the true co-

variates. When ξd is directly observable, bFm,n,p and bIm,n,p become zero. Take δ = 2 log p, τF =

ϖF = C (n/ log p)1/4, ηF = C (log n)2
√

log p/n, τI = Csβ (n/ log p)
1/4, ϖI = C (n/ log p)1/4, and

ηI = Csβ (log n)
2
√

log p/n. Then, β̂i for the factor and idiosyncratic parts have a near-optimal

convergence rate of (log n)2
√
log p/n and s

3/2
β (log n)2

√
log p/n, respectively (Sun et al., 2020).

The additional (log n)2 term comes from handling the dependency in the process (ξd)d=1,2,.... When

comparing to the optimal rate for the high-dimensional case, established in Sun et al. (2020), we
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have the additional sβ (log n)
2. Usually, the sparsity level is small; thus, the proposed method does

not lose significant efficiency, even for the dependent and heavy-tailed case.

Remark 5. In addition to obtaining concentration inequalities for the model parameter estimation

method, obtaining confidence intervals for the model parameters is also important. To do this, we

need to adjust the bias of the proposed estimator and to obtain a debiased estimator. This bias is

coming from Huber loss, truncation, high-dimensional observation error, and ℓ1 regularization. It

is a demanding task to simultaneously handle them. We leave this issue for a future study.

4 Large volatility matrix prediction

4.1 A model set-up

In this section, using the estimation procedure in Section 3, we discuss how to predict the large

volatility matrix, based on the FIVAR-Itô model. Given the observations of n days, the parameter

of interest is the conditional expected volatility matrix E (Γn+1|Fn). Recall that the integrated

volatility matrix Γd has the following low-rank plus sparse structure:

Γd = Ψd +Σd = p
r∑

i=1

ξd,iq
F
i

(
qF
i

)⊤
+

p∑
i=1

ξd,i+rq
I
i

(
qI
i

)⊤
a.s.,

where pξd,i’s are the i-th largest eigenvalues of Ψd for i = 1, . . . , r and ξd,i+r’s are the i-th largest

eigenvalues of Σd for i = 1, . . . , p. It is assumed that the rank, r, of Ψd is bounded and the

idiosyncratic volatility matrix Σd = (Σd,ij)i,j=1,...,p satisfies the following sparse condition:

max
1≤d≤n

max
1≤i≤p

p∑
j=1

|Σd,ij|Υ(Σd,iiΣd,jj)
(1−Υ)/2 ≤MIsI a.s., (4.1)

whereMI is a bounded positive random variable, Υ ∈ [0, 1), and sI is a deterministic function of p,

which grows slowly in p. This low-rank plus sparse structure is widely employed when analyzing the

large matrices (Aı̈t-Sahalia and Xiu, 2017; Bai and Ng, 2002; Fan and Kim, 2018; Fan et al., 2013;

Kim et al., 2018; Stock and Watson, 2002; Shin et al., 2023). We note that when we directly use the
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total volatility without decomposition, we cannot explain the sparse structure of the eigenvectors

of the idiosyncratic volatility matrices. This may introduce a lot of parameters and lead to higher

complexity.

Unfortunately, the true log-price X(t) cannot be directly observed since the high-frequency data

are contaminated by microstructure noise. To account for this, it is assumed that the observed

log-price Yi(tk) has the following additive noise structure:

Yi(td,k) = Xi(td,k) + ei(td,k) for i = 1, . . . , p, d = 1, . . . , n, k = 0, . . . ,m, (4.2)

where d − 1 = td,0 < · · · < td,m = d, and the microstructure noise ei(td,k) is a stationary random

variable with mean zero. The empirical studies have shown that the microstructure noise is se-

rial dependent and endogenous (Aı̈t-Sahalia et al., 2011; Hansen and Lunde, 2006b; Jacod et al.,

2017b; Li and Linton, 2022; Ubukata and Oya, 2009). Fortunately, as long as non-parametric in-

tegrated volatility matrix estimators satisfy (4.3) presented below, the dependent structure of the

microstructure noise does not affect the main results of this paper. There are several estimation

procedures that are robust to dependent structures of the microstructure noise (Barndorff-Nielsen

et al., 2011b; Jacod et al., 2017b; Kim et al., 2016; Li and Linton, 2020). Similarly, the assump-

tions on the jumps do not affect the main results of this paper as long as (4.3) holds. There are

also several estimation methods which can handle jumps when estimating integrated volatilities

(Aı̈t-Sahalia and Xiu, 2016; Shin et al., 2023). Thus, we only require condition (4.3). On the

other hand, for simplicity, the observation time points are assumed to be synchronized and equally

spaced: td,k − td,k−1 = m−1 for d = 1, . . . , n and k = 1, . . . ,m.

Remark 6. In this paper, we mainly focus on the parametric structure of the volatility process,

so it is assumed that the observation time points are synchronized and equally spaced for simplic-

ity. The conditions for the observation time points can be relaxed to the non-synchronized and

unequally spaced conditions by using generalized sampling time (Aı̈t-Sahalia et al., 2010), refresh

time (Barndorff-Nielsen et al., 2011a), and previous tick (Andersen et al., 2003; Barndorff-Nielsen

et al., 2011a; Zhang, 2011) schemes. See also Bibinger et al. (2014); Fan and Kim (2019); Park

et al. (2016).
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4.2 Large volatility matrix prediction

To predict the large volatility matrix, we first employ a non-parametric integrated volatility matrix

estimator Γ̂d, which is robust to jumps and dependent structures of the microstructure noise (Aı̈t-

Sahalia and Xiu, 2016; Barndorff-Nielsen et al., 2011b; Bibinger and Winkelmann, 2015; Jacod

et al., 2009; Kim et al., 2016; Koike, 2016; Li and Linton, 2020; Shin et al., 2023). Based on the non-

parametric estimator Γ̂d, we estimate the eigenvectors and eigenvalues of factor and idiosyncratic

volatility matrices as follows. For estimating the ‘daily’ integrated eigenvalues ξd on the factor

volatility matrix Ψd, based on the assumption of time-invariance of eigenvectors, we calculate

r eigenvectors q̂F
1 , . . . , q̂

F
r of the average of the recent ℓ days’ non-parametric realized volatility

matrix estimators, 1
ℓ

∑n
d=n−ℓ+1 Γ̂d, where ℓ is the window length for the eigenvector estimation,

and obtain the estimators of time-dependent eigenvalues ξ̂d,i =
(
q̂F
i

)⊤
Γ̂dq̂

F
i /p for d = 1, . . . , n and

i = 1, . . . , r. This provides a part of inputs for (3.2) and (3.4).

To provide the rest of the inputs, namely ξ̂d,i for i > r for the idiosyncratic volatility matrix Σd,

we apply the principal orthogonal complement thresholding (POET) method (Fan et al., 2013) as

follows. First, we decompose the input volatility matrix

Γ̂d =

p∑
k=1

ξ̄d,kq̄d,kq̄
⊤
d,k,

where ξ̄d,k is the k-th largest eigenvalue of Γ̂d and q̄d,k is its corresponding eigenvector. We then ob-

tain the input idiosyncratic volatility matrix estimator Σ̄d = (Σ̄d,ij)1≤i,j≤p = Γ̂d−
∑r

k=1 ξ̄d,kq̄d,kq̄
⊤
d,k

and apply the adaptive thresholding method to Σ̄d by computing

Σ̂d,ij =


Σ̄d,ij ∨ 0 if i = j

gij(Σ̄d,ij)1(|Σ̄d,ij| ≥ υij) if i ̸= j

and Σ̂d = (Σ̂d,ij)1≤i,j≤p,

where the thresholding function gij(·) satisfies |gij(x) − x| ≤ υij, and the adaptive thresholding

level υij = υm
√
(Σ̄d,ii ∨ 0)(Σ̄d,jj ∨ 0). For example, we often utilize the soft thresholding function

gij(x) = x− sign(x)υij and the hard thresholding function gij(x) = x. The thresholding parameter

υm will be specified in Proposition 2. With the idiosyncratic volatility matrix estimator Σ̂d, we
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calculate p eigenvectors, q̂I
1, . . . , q̂

I
p, of 1

ℓ

∑n
d=n−ℓ+1 Σ̂d and obtain ξ̂d,i+r =

(
q̂I
i

)⊤
Σ̂dq̂

I
i for d =

1, . . . , n and i = 1, . . . , p. Again, we here use the time-invariant assumption of the eigenvectors.

With these inputs, we can estimate the true model parameter β0 using the VAR model pa-

rameter estimation procedure in Section 3 and calculate the predicted eigenvalue estimator by

ξ̂n+1 =
(
ξ̂n+1,1, . . . , ξ̂n+1,p+r

)⊤
= ν̂ +

∑h
k=1 Âkξ̂n+1−k using (2.4). Finally, we estimate the condi-

tional expected volatility matrix by

Γ̃n+1 = Ψ̂n+1 + Σ̂n+1 = p
r∑

i=1

ξ̂n+1,iq̂
F
i

(
q̂F
i

)⊤
+

p∑
i=1

ξ̂n+1,i+rq̂
I
i

(
q̂I
i

)⊤
.

We describe the estimation procedure in Algorithm 1 in the Appendix.

Remark 7. To estimate the eigenvectors, the constant eigenvector over time is assumed, and the

window length, ℓ, for the eigenvector estimation can be from 1 to n. In the empirical study, we

investigate the effect of the eigenvector estimation methods, and we find that the volatility matrix

estimator with the previous 22-day observations (one month) shows the best performance. This

shows that the averaging step helps mitigate volatile fluctuations in the volatility process, and by

using the recent 22-day instead of the longer period, such as the whole period, we can explain

the effect of the eigenvector dynamics. On the other hand, in high-frequency finance literature,

the intraday time-varying patterns are often observed (Andersen et al., 2019, 2021; Kong et al.,

2021). We also conducted hypothesis tests for the constant eigenvector, and the constant eigen-

vector hypothesis is often rejected (see Section A.2). Thus, it is more natural to assume intraday

time-varying eigenvectors. However, under this condition, we need to calculate a lot of local eigen-

values and eigenvectors and accumulate the local estimators. Furthermore, the intraday dynamic

structure of the volatility process becomes more complex since we need to consider two different

dynamic structures. This complexity may cause large estimation errors and the possibility of over-

parameterization. Thus, it is a demanding task to develop a parametric model that can explain

the intraday and interday dynamics simultaneously and obtain robust prediction performance. We

leave this for a future study.

We investigate the theoretical properties of the POET estimator under the following assump-
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tions. These conditions are often used when analyzing the asymptotic behaviors of the POET

estimator (Fan and Kim, 2018; Shin et al., 2023).

Assumption 2.

(a) For some fixed constant C1, we have
p
r
max1≤i≤p

∑r
j=1 q

2
ij ≤ C1 a.s., where qj = (q1j, . . . , qpj)

⊤

is the jth eigenvector of Ψd.

(b) For d = 1, . . . , n, let Dd,ξ = min{ξd,i − ξd,i+1, i = 1, . . . , r − 1}, Dd,ξ and ξd,r ≥ C2 a.s., and

ξd,1 ≤ C3 a.s. for some generic positive constants C2 and C3.

(c) For d = 1, . . . , n, ξd,r+1 is bounded by some positive constant and ξd,p+r stays away from zero

almost surely.

(d) sI/
√
p+

√
log p/m1/2 = o(1).

The following proposition derives the concentration properties of the POET estimator.

Proposition 2. Under the FIVAR(h)-Itô model, suppose that the concentration inequality,

Pr

{
max
1≤d≤n

max
1≤i,j≤p

∣∣∣Γ̂d,ij − Γd,ij

∣∣∣ ≥ C

√
log (pn ∨m)

m1/2

}
≤ p−1, (4.3)

Assumption 2, and the sparsity condition (4.1) are met. Take υm = CϖHm for some large fixed

constant Cϖ, where Hm = sI/p+
√
log (pn ∨m) /m1/2. Then, we have, for a sufficiently large m,

with probability at least 1− p−1,

max
1≤d≤n

max
1≤i≤r

∣∣∣ξ̂d,i − ξd,i

∣∣∣ ≤ CHm, (4.4)

max
1≤d≤n

max
r+1≤i≤p+r

∣∣∣ξ̂d,i − ξd,i

∣∣∣ ≤ CsIH
1−Υ
m , (4.5)

max
1≤d≤n

∥Σ̂d −Σd∥2 ≤ CsIH
1−Υ
m , and (4.6)

max
1≤d≤n

∥Σ̂d −Σd∥max ≤ CHm. (4.7)

Remark 8. Under the locally boundedness condition of the instantaneous volatility process with

the heavy-tailed observations, we can obtain the same asymptotic results (Fan and Kim, 2018; Shin
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et al., 2023). For example, continuous adapted processes are locally bounded, and more generally,

left-continuous adapted processes are almost surely locally bounded on every finite time interval. The

proposed FIVAR-Itô model is continuous; thus, the locally bounded condition is satisfied. Thus, the

concentration tail condition (4.3) is not restrictive.

The concentration inequalities (4.4)–(4.5) show that Assumption 1(e) is satisfied with high

probability. For example, we have bFm,n,p = CHm and bIm,n,p = CsIH
1−Υ
m . Using Theorem 1, we can

derive the following result.

Theorem 2. Under the assumptions in Proposition 2 and Assumption 1 (except for Assumption

1(e)), let n ≥ 3, sβ
√
n log p + sβn

1/4 (log n)2 (log p)3/4 = O (n), τF = ϖF = C (n/ log p)1/4, τI =

Csβ (n/ log p)
1/4, and ϖI = C (n/ log p)1/4. Suppose that Assumption 1(f)–(g) hold with ηF =

C
{
Hm + (log n)2

√
log p/n

}
and ηI = C

{
sβsIH

1−Υ
m + sβ (log n)

2
√
log p/n

}
. Then, we have,

for a sufficiently large m, with probability at least 1− 2p−1,

max
1≤i≤r

∥∥∥β̂i − βi0

∥∥∥
2
≤ C

{
Hm + (log n)2

√
log p/n

}
, and (4.8)

max
r+1≤i≤p+r

∥∥∥β̂i − βi0

∥∥∥
2
≤ C

{
s
3/2
β sIH

1−Υ
m + s

3/2
β (log n)2

√
log p/n

}
. (4.9)

Remark 9. Theorem 2 shows that the low-dimensional factor VAR has the convergence rate sI/p+√
log (pn ∨m) /m1/2+(log n)2

√
log p/n. The sI/p term is the cost to identify the latent factor, and

the m−1/4 term comes from estimating the integrated volatility matrix. Finally, the n−1/2 term is

the usual convergence rate of estimating model parameters in low-frequency time series. In contrast,

the high-dimensional factor VAR has the convergence rate s
3/2
β sIH

1−Υ
m +s

3/2
β (log n)2

√
log p/n. The

first term, s
3/2
β sIH

1−Υ
m , is the cost to estimate the latent idiosyncratic volatility matrix with the noisy

high-frequency data. The second term, s
3/2
β (log n)2

√
log p/n, is the convergence rate of the sparse

high-dimensional regression. We note that the (log n)2 term is the cost of handling the dependency

in the eigenvalue process.

With the results in Theorem 2, we investigate the theoretical properties of the future volatility

matrix estimator Γ̃n+1. To study the future idiosyncratic volatility matrix estimator Σ̂n+1, we need

the additional condition for the eigen-gap as follows.
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Assumption 3. For some χ ∈ (0, 1) and i = r+1, . . . , p+r−1, we have C4χ
i ≤ ξd,i−ξd,i+1 ≤ C5χ

i

for some positive constants C4 and C5.

Remark 10. To have the bounded eigenvalues for the idiosyncratic volatility matrices such as

Assumption 2(c), we cannot have that all eigen-gaps are some positive constants. Specifically,

several eigen-gaps can be constant, but most of them may need to converge to zero. To check the

behavior of the eigen-gaps, we draw the plot of the eigen-gaps of the idiosyncratic volatility matrix

using high-frequency trading data (see Figure 7 in the Appendix). We find that the eigen-gaps have

an exponentially decaying pattern. Thus, to account for this, we impose Assumption 3. We note

that, even if the finite number of ξd,i’s do not satisfy this condition, we can obtain the same results

in Theorem 3.

The following theorem establishes the convergence rates of the future volatility matrix estimator.

Theorem 3. Under the assumptions in Theorem 2 and Assumption 3, we have with probability at

least 1− 2p−1,

max
1≤i≤r

∣∣∣ξ̂n+1,i − E (ξn+1,i|Fn)
∣∣∣ ≤ C

[
Hm + (log n)2

√
log p/n

]
, (4.10)

max
r+1≤i≤p+r

∣∣∣ξ̂n+1,i − E (ξn+1,i|Fn)
∣∣∣ ≤ C

[
s2βsIH

1−Υ
m + s2β (log n)

2
√
log p/n

]
, (4.11)

∥Γ̃n+1 − E (Γn+1|Fn) ∥Γ∗ ≤ C
[
p1/2H2

m + p1/2 log p (log n)4 /n

+s2βsIH
1−Υ
m + s2β (log n)

2
√
log p/n

]
, (4.12)

where the relative Frobenius norm ∥M∥2Γ∗ = p−1∥Γ∗−1/2MΓ∗−1/2∥2F and Γ∗ = E (Γn+1|Fn).

Remark 11. The relative Frobenius norm is used in Theorem 3 since the top eigenvalues of Γ∗

are diverging (see Fan et al. (2008)). Theorem 3 indicates that the proposed estimator Γ̃n+1 is

consistent as long as p = o(m ∧ n2) in terms of the relative Frobenius norm. Its convergence

rate is similar to that of Kim and Fan (2019) except for the additional terms, p1/2 log p (log n)4 /n

and s2β (log n)
2
√

log p/n, which come from handling the VAR model structure in the factor and

idiosyncratic volatility matrices, respectively.
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4.3 Discussion on the tuning parameter selection

To implement the proposed robust estimation method, we need to choose the tuning parameters.

In this section, we discuss how to select the tuning parameters in (3.1)–(3.4). For the factor part,

let σF =
√∑r

i=1

∑n
d=1 ξ̂

2
d,i/ (nr). We choose

ϖF = cF,1σF

(
n

log p

)1/4

and τF = cF,2σF

(
n

log p

)1/4

, (4.13)

where cF,1 and cF,2 are tuning parameters. For the idiosyncratic part, we first standardize the

variables, ξ̂d,i, i = 1, . . . , p+ r, to have mean zero and variance 1. Then, we choose

ϖI = cI,1

(
n

log p

)1/4

, τI = cI,2

(
n

log p

)1/4

, and ηI = cη

(
log p

n

)1/2

, (4.14)

where cI,1, cI,2, and cη are tuning parameters. We select cη ∈ [0.1, 10] by minimizing the corre-

sponding Bayesian information criterion (BIC). In the simulation and empirical studies, we choose

cF,1 = 4, cF,2 = 1/4, cI,1 = 4, and cI,2 = 4. These choices are based on the empirical study (Section

5.2). Specifically, we choose cF,1, cF,2, cI,1, and cI,2 which minimize the corresponding mean squared

prediction error (MSPE). Details can be found in Section 5.2.

5 Numerical study

5.1 A simulation study

In this section, we conducted simulations to validate the finite sample performance of the proposed

estimation methods. We generated the data for n days with frequency 1/mall on each day and

let td,j = d − 1 + j/mall for d = 1, . . . , n and j = 0, . . . ,mall. We considered the jump-diffusion

process with the FIVAR(h)-Itô model in Definition 1 and generated heavy-tailed and sub-Gaussian

processes. The specific simulation setup is described in Appendix A.1. The noise-contaminated

high-frequency data were generated from model (4.2), where the noise ei(ti,k) was obtained from

the independent Gaussian distribution with mean zero and standard deviation 0.01
√∫ 1

0
γii(t)dt.
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This choice is inspired by Wang and Zou (2010) who found that the relative noise level is typically

around 1% for the stock index for high-frequency trading data. We first generated the data for

500 days, and we varied n from 100 to 500. For each n, we obtained the data from the last n days

among the 500 days.

To estimate the integrated volatility matrix Γd = (Γd,ij)i,j=1,...,p, we utilized the jump adjusted

pre-averaging volatility matrix (PAVM) estimator (Aı̈t-Sahalia and Xiu, 2016; Christensen et al.,

2010; Jacod et al., 2009) defined in (A.1) in the Appendix. Then, we estimated the conditional

expected volatility matrix E (Γn+1|Fn), based on the estimation procedure in Section 4.2. Specif-

ically, we first projected Γ̂d onto the positive semi-definite cone in the spectral norm to make it

positive semi-definite. Since the eigenvectors are constant over time, we estimated them using the

n period observations. To determine the rank r, we employed the procedure in Aı̈t-Sahalia and

Xiu (2017) as follows:

r̂ = arg min
1≤j≤rmax

n∑
d=1

[
p−1ξ̄d,j + j × c1

{√
log p/m1/2 + p−1 log p

}c2]
− 1, (5.1)

where ξ̄d,j is the j-th largest eigenvalue of PAVM, rmax = 30, c1 = 0.02 × ξ̄d,30, and c2 = 0.5.

For the POET estimation procedure, we employed the soft thresholding scheme and selected the

thresholding level that minimizes the corresponding Frobenius norm. When estimating βi0’s, we

used the tuning parameter selection method discussed in Section 4.3. To select the lag h, we utilized

the Bayesian information criterion (BIC). We calculated the future volatility matrix estimator with

β̂i and call it the Huber-LASSO (H-LASSO) estimator.

For comparison, we employ the ordinary least squares (OLS) and LASSO estimators as follows.

The OLS estimator only considers the dynamics of the factor volatility matrix and obtains β̂i,

i = 1, . . . , r̂, using the OLS method. The OLS estimator predicts the future idiosyncratic volatility

matrix by the average of the previous 22-day’s idiosyncratic volatility matrices to smooth random

fluctuations. On the other hand, the LASSO estimator considers the dynamics in both factor and

idiosyncratic volatility matrices. The LASSO estimator uses the same estimation procedure as the

H-LASSO estimator, except for the truncation method. That is, the OLS estimator can explain

only the dynamics from the factor component, while the LASSO estimator can account for the
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dynamics from both the factor and idiosyncratic components. However, they cannot account for

the heavy-tailedness. We also investigated the previous day’s PAVM estimator from the POET

procedure as the non-parametric benchmark. We call it the POET-PAVM. We calculated the

average estimation errors under the Frobenius norm, the max norm, the relative Frobenius norm

(see Theorem 3 for the definition), and the spectral norm by 500 iterations. Note that we conducted

one-day-ahead forecasts for each of 500 iterations.

We first checked the performance of the methods for model parameter estimation. The param-

eter of interest is the true parameter matrix β0. Table 1 reports the Frobenius, max, and spectral

norm errors of the LASSO and H-LASSO estimators, with n = 100, 200, 500 andm = 250, 500, 2000.

We note that for both heavy-tailed and sub-Gaussian processes, the number of factors r and lag h

are estimated without errors for all n and m. The reason is that the data generation process has

a large eigen-gap between the factor and idiosyncratic volatility matrices and a strong time series

structure. From Table 1, we find that the estimation errors of the proposed H-LASSO estimator are

usually decreasing as the number of low-frequency or high-frequency observations increases. The

exception is the max norm error for n = 500 and m = 2000, while the overall error performances,

such as Frobenius and spectral norm errors, always decrease as n or m increases. An explanation is

that bigger outliers for heavy tails are more frequently observed as the high-frequency observation

increases. For example, when m is small, the relative frequency of outliers may be low due to the

smoothing effect from the subsampling. Furthermore, the max norm measure is highly affected by

the outlier. When comparing two estimation methods, the H-LASSO estimator performs better

than the LASSO estimator for both heavy-tailed and sub-Gaussian processes. One possible expla-

nation for this is that, even if the process is generated by the sub-Gaussian variables, the log-prices

process can still have some heavy tails. The truncation method can reduce the variance of the

estimator, which is larger than that of the increase in estimation bias, even for the sub-Gaussian

case. From this result, we find the benefit of handling the heavy-tailedness. These results support

the theoretical findings in Section 3.

One of the main objectives of this paper is to predict future volatility. Therefore, we checked the

performance of predicting future volatility. Figures 3 and 4 plot the log Frobenius, max, relative
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Table 1: The Frobenius, max, and spectral norm errors of the LASSO and H-LASSO estimators
with n = 100, 200, 500 and m = 250, 500, 2000.

Frobenius Max Spectral
Tail n m LASSO H-LASSO LASSO H-LASSO LASSO H-LASSO
Heavy 100 250 0.805 0.647 0.460 0.286 0.586 0.396

500 0.752 0.584 0.462 0.283 0.569 0.365
2000 0.727 0.559 0.461 0.280 0.554 0.346

200 250 0.708 0.595 0.378 0.236 0.477 0.335
500 0.657 0.530 0.381 0.230 0.459 0.294
2000 0.640 0.510 0.379 0.222 0.447 0.278

500 250 0.604 0.561 0.250 0.187 0.352 0.300
500 0.543 0.494 0.248 0.181 0.312 0.235
2000 0.534 0.475 0.255 0.179 0.309 0.222

Sub-Gaussian 100 250 0.835 0.711 0.482 0.350 0.620 0.467
500 0.782 0.646 0.491 0.344 0.608 0.443
2000 0.758 0.612 0.482 0.325 0.589 0.415

200 250 0.709 0.637 0.361 0.274 0.472 0.374
500 0.647 0.569 0.353 0.265 0.448 0.343
2000 0.621 0.544 0.347 0.256 0.427 0.326

500 250 0.613 0.583 0.249 0.204 0.349 0.307
500 0.546 0.513 0.243 0.194 0.314 0.262
2000 0.528 0.492 0.249 0.197 0.307 0.250

Frobenius, and spectral norm errors of the future volatility matrix estimators with n = 100, 200, 500

and m = 250, 500, 2000 for the heavy-tailed and sub-Gaussian processes. From Figures 3 and 4,

we find that the parametric estimation methods show better performance than the non-parametric

POET-PAVM estimator. When comparing the OLS and LASSO estimators, the LASSO estimator

performs better than the OLS estimator in terms of the relative Frobenius norm. One possible

explanation for this is that the OLS estimator can partially explain the volatility dynamics via

the factor component, but fails to explain the whole dynamics. On the other hand, the Frobenius

and spectral norm errors are similar for the OLS and LASSO estimators. This may be because

they are highly affected by the errors in estimating large eigenvalues, such as the eigenvalues of the

factor volatility matrix. Furthermore, the max norm error is also similar for the OLS and LASSO

estimators. This may be because the OLS estimator does not have as many outliers as the LASSO

estimator since the OLS estimator uses the average of the previous 22-day’s idiosyncratic volatility

matrices. Finally, the H-LASSO estimator shows the best performance for the heavy-tailed and
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sub-Gaussian processes. These results are consistent with our notion that the H-LASSO estimator

is robust to the heavy-tailedness, and it can explain the dynamics from the factor and idiosyncratic

components.

5.2 An empirical study

We applied the proposed FIVAR(h)-Itô model to real high-frequency trading data for 200 assets

from January 2016 to December 2019 (997 trading days). The top 200 large trading volume

stocks among the S&P 500 were selected from the Wharton Data Service (WRDS) system. The

trading volumes were calculated using the data from years 2015 to 2020. To synchronize the

high-frequency data, we used the previous tick scheme (Andersen et al., 2003; Barndorff-Nielsen

et al., 2011a; Zhang, 2011) with equal distance intervals, which helps mitigate the errors from the

irregularity of the observation times. When applying the refresh time scheme for the 200 assets,

we find that the average number of daily synchronized samples is 593.49, which corresponds to

39.42-sec sampling frequency. Hence, we chose 1-min sampling frequency to enjoy the benefit of

large samples, which corresponds to m = 390. We excluded days with half trading hours. The

data of year 2020 was excluded to avoid the effects of extreme market conditions. Specifically,

we performed the structural break test for the eigenvalue process in Section A.3 and found the

non-stationarity when including 2020 data. We note that approximately 10 CPU cores with 2 GHz

and 200 GB of RAM are required to conduct the whole empirical study within 3 days.

To apply the proposed estimation procedures, we first calculated 997 daily integrated volatility

matrices using the jump adjusted pre-averaging volatility matrix (PAVM) estimator in (A.1). We

chose K as 19 and ci,u as 7 times the sample standard deviation of the pre-averaged variables

m1/4Ȳi (td,k). We projected the daily PAVM estimators onto the positive semi-definite cone in the

spectral norm to make them positive semi-definite. In the empirical study, to predict the future

volatility matrix, we employed the rolloing window scheme with the in-sample period n = 251. For

each in-sample period, we estimated the rank r based on the rank estimation procedure in (5.1)

with n = 251.

To estimate the idiosyncratic volatility matrix Σd, we utilized the hard thresholding scheme
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Figure 3: The log Frobenius, max, relative Frobenius, and spectral norm error plots of the POET-
PAVM, OLS, LASSO, and H-LASSO estimators for the conditional expected integrated volatility
matrix estimation with the heavy-tailed process, given n = 100, 200, 500 and m = 250, 500, 2000.
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Figure 4: The log Frobenius, max, relative Frobenius, and spectral norm error plots of the POET-
PAVM, OLS, LASSO, and H-LASSO estimators for the conditional expected integrated volatility
matrix estimation with the sub-Gaussian process, given n = 100, 200, 500 and m = 250, 500, 2000.
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based on the Global Industry Classification Standard (GICS) proposed by Fan et al. (2016). Specif-

ically, the idiosyncratic components for the different sectors were set to zero, and we maintained

those for the same sector. This corresponds to the hard-thresholding scheme with the sector infor-

mation.

To choose the tuning parameters ℓ, cF,1, cF,2, cI,1, and cI,2, we defined

ΛF (ℓ, cF,1, cF,2) =
1

T

T∑
d=1

∥Ψ̂H-LASSO
d (ℓ, cF,1, cF,2)− Ψ̂POET

d+1 ∥2F ,

ΛI(ℓ, cI,1, cI,2) =
1

T

T∑
d=1

∥Σ̂H-LASSO
d (ℓ, cI,1, cI,2)− Σ̂POET

d+1 ∥2F ,

where Ψ̂H-LASSO
d (ℓ, cF,1, cF,2) is the factor volatility matrix forecast from the H-LASSO estimator

with the tuning parameters ℓ, cF,1, and cF,2 for the d-th day, and Σ̂H-LASSO
d (ℓ, cI,1, cI,2) is the idiosyn-

cratic volatility matrix forecast from the H-LASSO estimator with the tuning parameters ℓ, cI,1,

and cI,2 for the d-th day. Also, Ψ̂POET
d and Σ̂POET

d are the factor and idiosyncratic volatility matrix

estimators from the POET-PAVM estimator for the d-th day, respectively. Then, we selected ℓ, cF,1,

and cF,2 by minimizing ΛF (ℓ, cF,1, cF,2) over ℓ ∈ {1, 5, 22, 251} and cF,1, cF,2 ∈ {1/4, 1/2, 1, 2, 4} .

Similarly, we chose ℓ, cI,1, and cI,2 by minimizing ΛI(ℓ, cI,1, cI,2) over ℓ ∈ {1, 5, 22, 251} and

cI,1, cI,2 ∈ {1/4, 1/2, 1, 2, 4} . For the choice of tuning parameters, we chose the in-sample period

as n = 251 and out-of-sample period as day 252 to day 500 (year 2017). The selected parameters

are ℓ = 22, cF,1 = 4, cF,2 = 1/4, cI,1 = 4, and cI,2 = 4. We note that ℓ = 22 was chosen for both

ΛF (ℓ, cF,1, cF,2) and ΛI(ℓ, cI,1, cI,2). We also note that the stationarity of the volatility process is a

reasonable assumption, which justifies the above tuning parameter choice procedure. To determine

the lag h, we applied the Bayesian information criterion (BIC) to the VAR model. It leads to

h = 1 for all in-sample period. Then, we estimated the conditional expected volatility matrix

E (Γn+1|Fn) with the POET-PAVM, OLS, LASSO, and H-LASSO estimators.

For a comparison, we employed the DCC-NL estimator (De Nard et al., 2021; Engle et al., 2019;

Ledoit and Wolf, 2015, 2022), which employs the nonlinear shrinkage estimator and the dynamic

conditional correlation (DCC) model (Engle, 2002). Specifically, let ∆Yd = (∆Y1,d, . . . ,∆Yp,d)
⊤

and ∆Yi,d be the daily return for the i-th asset and d-th day. To obtain the DCC-NL estimator,
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we first employed the following GARCH(1, 1) model:

U2
i,d = ai + b1,i∆Y

2
i,d−1 + b2,iU

2
i,d−1,

where the conditional variance U2
i,d = var (∆Yi,d|Fd−1). Based on the GARCH model, we calculated

the conditional variance for the next day, U2
i,n+1, and obtained the devolatilized returns

∆Ys
d = (∆Y1,d/U1,d, . . . ,∆Yp,d/Up,d)

⊤ .

With this devolatilized return series {∆Ys
d}, we obtained cov (∆Ys

d) based on the nonlinear shrink-

age. Then, we applied the DCC model with cov
(
∆Ys

i,d

)
being used for correlation targeting, and

calculated the conditional correlation matrix for the next day,Rn+1 = corr (∆Yn+1|Fn) . Finally, we

estimated the conditional covariance matrix for the next day, cov (∆Yn+1|Fn), as Un+1Rn+1Un+1,

where Un+1 = Diag (U1,n+1, . . . , Up,n+1). Detailed estimation procedure can be found in Engle

et al. (2019). We also employed the HAR-DRD model (Oh and Patton, 2016) based on the POET-

PAVM estimator. Specifically, we first decomposed the POET-PAVM estimator for the d-th day,

Γ̂
POET

d =
(
Γ̂POET
d,ij

)
1≤i,j≤p

, into

Γ̂
POET

d =
√

DdRd

√
Dd,

whereDd = (Dd,ij)1≤i,j≤p = Diag
(
Γ̂POET
d,11 , . . . , Γ̂POET

d,pp

)
is the diagonal matrix of realized volatilities

and Rd is the realized correlation matrix. Then, we applied the following HAR model to each

realized volatility:

Dd+1,ii = ai + b
(day)
i Dd,ii + b

(week)
i

1

5

4∑
j=0

Dd−j,ii + b
(month)
i

1

22

21∑
j=0

Dd−j,ii + ed+1,i, i = 1, . . . , p.

We then obtained the conditional realized volatilities for the next day. To ensure that the volatility

forecasts are positive, we set their lower bound as 10−7. For the realized correlations, we applied

the following HAR-type model:

vech (Rd+1) = vech
(
R̄d

)
(1− a− b− c) + a · vech (Rd)
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+b · 1
5

4∑
j=0

vech (Rd−j) + c · 1

22

21∑
j=0

vech (Rd−j) + ed+1,

where R̄d = 1
d

∑d
j=1 Rj and (a, b, c) ∈ R3. Then, we forecast the next day’s volatility matrix

based on the conditional realized volatilities and correlations. We call it the HAR-DRD estimator.

To predict the future volatility matrix, we also employed the rolling window scheme with the in-

sample period of 251 days for the DCC-NL and HAR-DRD models. We note that for all estimators,

including the HAR-DRD estimator, the logarithm of the realized volatility is not used to check the

effect of modeling idiosyncratic volatilities in linear modeling approaches. In fact, there are some

cases in which the logarithm improves the performance of the volatility estimators. However, it

is difficult to model the log-volatility in the high-dimensional high-frequency set-up. For example,

Kim (2022) introduced the exponential GARCH-Itô volatility model for the one-dimensional case,

but the extension to the high-dimensional case is not straightforward. We leave this issue for a

future study. We note that all estimators except the DCC-NL estimator use the POET-PAVM

estimator as an input. Since the DCC-NL estimator uses the daily total returns, only the DCC-NL

estimator forecasts the total volatility. Thus, we adjusted the jump component in the following

applications. To do this, we obtained the jump volatility matrix estimator by subtracting the jump

adjusted PAVM estimator from the PAVM estimator. The PAVM estimator can be obtained by

setting the truncation parameters as infinity in (A.1).

To investigate the performance of the future volatility matrix estimators, we employed the

high-frequency data from 2017 to 2019. We chose the in-sample period as n = 251 (one year), and

we used three different out-of-sample periods: 2018 and 2019 (period 1), 2018 only (period 2), and

2019 only (period 3). For the period 1, we calculated the average number of non-zero elements

in β̂i excluding the intercept term over i = 4, . . . , 203. The results are 2.790 and 2.857 for the

H-LASSO and LASSO estimators, respectively.

To check the performance of the proposed estimation procedures, we first investigated the

following mean squared prediction error (MSPE) and QLIKE (Bollerslev et al., 2018; Laurent
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et al., 2013):

MSPE(Γ̃) =
1

T

T∑
d=1

∥Γ̃d − Γ̂
POET

d ∥2F ,

QLIKE(Γ̃) =
1

T

T∑
d=1

log
(
det
(
Γ̃d

))
+ tr

(
Γ̃

−1

d Γ̂
POET

d

)
, (5.2)

where T is the number of days in the out-of-sample period, Γ̃d is one of the future volatility matrix

forecasts from the POET-PAVM, OLS, LASSO, H-LASSO, DCC-NL, and HAR-DRD estimators

for the d-th day of the out-of-sample period, and Γ̂
POET

d is the POET-PAVM estimator for the d-th

day, which is a proxy of the ground truth. For the DCC-NL estimator, we subtracted the next day’s

jump volatility matrix estimator, which helps improve the performance of the DCC-NL estimator.

We note that MSPE is a form of the mean squared error that is one of the robust loss functions for

volatility comparisons (Hansen and Lunde, 2006a; Patton, 2011; Patton and Sheppard, 2009). Also,

QLIKE is robust to the presence of noise in the volatility proxy (Hansen and Lunde, 2006a; Laurent

et al., 2013; Patton, 2011; Patton and Sheppard, 2009). Table 2 reports the MSPE and QLIKE

results of the POET-PAVM, OLS, LASSO, H-LASSO, DCC-NL, and HAR-DRD estimators for

three out-of-sample periods. We find that the H-LASSO estimator shows good performance in

terms of both MSPE and QLIKE. We note that the LASSO and H-LASSO estimators have similar

performance in terms of the QLIKE. This may be because the QLIKE is highly affected by the

small eigenvalue estimation, and the small eigenvalues are less affected by the heavy-tailedness.

On the other hand, the HAR-DRD estimator shows the best performance in terms of MSPE, but

it did not perform well for the QLIKE loss. These results show the proposed H-LASSO estimator

can help explain the dynamics of the idiosyncratic volatility matrix under the sparsity condition

and the heavy-tailedness of the financial data.

To investigate the out-of-sample portfolio allocation performance, we applied the proposed

estimators to the following minimum variance portfolio allocation problem:

min
ω
ω⊤Γ̃dω, subject to ω⊤J = 1 and ∥ω∥1 ≤ c0,
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Table 2: The MSPE and QLIKE of the POET-PAVM, OLS, LASSO, H-LASSO, DCC-NL, and
HAR-DRD estimators (period 1, from 2018 to 2019; period 2, 2018; period 3, 2019).

POET-PAVM OLS LASSO H-LASSO DCC-NL HAR-DRD
Period 1 MSPE ×104 3.401 3.056 3.058 2.597 3.002 2.583

QLIKE ×10−3 -1.050 -1.660 -1.670 -1.669 -1.641 -1.530

Period 2 MSPE ×104 4.522 4.512 4.516 3.682 4.243 3.748
QLIKE ×10−3 -1.017 -1.638 -1.643 -1.643 -1.615 -1.390

Period 3 MSPE ×104 2.275 1.594 1.594 1.507 1.756 1.413
QLIKE ×10−3 -1.082 -1.681 -1.696 -1.696 -1.666 -1.670
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Figure 5: The out-of-sample risks of the minimum variance portfolios constructed by the POET-
PAVM, OLS, LASSO, H-LASSO, DCC-NL, and HAR-DRD estimators.

where J = (1, . . . , 1)⊤ ∈ Rp, c0 is the gross exposure constraint that changed from 1 to 3, and Γ̃d is

one of the future volatility matrix estimators from POET-PAVM, OLS, LASSO, H-LASSO, DCC-

NL, and HAR-DRD. Specifically, for all estimators except the DCC-NL estimator, we added the

previous day’s jump volatility matrix estimator to obtain Γ̃d. To obtain the out-of-sample risks,

we constructed the portfolios at the beginning of each trading day, based on the stock weights

calculated using each future volatility matrix estimator. The portfolios were maintained for one

day, and we calculated the realized volatility using the 10-min portfolio log-returns to mitigate

the microstructural noise effect. We measured the out-of-sample risk using the average of their

square root for each out-of-sample period. Figure 5 depicts the out-of-sample risks of the port-
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folios constructed using the POET-PAVM, OLS, LASSO, H-LASSO, DCC-NL, and HAR-DRD

estimators. From Figure 5, we find that the POET-PAVM and DCC-NL estimators become unsta-

ble as the gross exposure constraint increases. This may be because the POET-PAVM estimator

cannot explain the dynamics of the volatility process, and the DCC-NL estimator only uses the

low-frequency information. On the other hand, the H-LASSO estimator has a stable result and

has the smallest risk overall. These results indicate that considering both dynamic structures in

idiosyncratic volatility and heavy-tailedness in financial data helps account for the dynamics of

large volatility matrix processes.

6 Conclusion

In this paper, we develop a novel factor and idiosyncratic VAR-Itô (FIVAR-Itô) model to account

for the dynamic structure of the large volatility matrix, which has the low-rank plus sparse struc-

ture. Under the FIVAR-Itô model, we show that the daily eigenvalues of the factor and idiosyncratic

volatility matrices have the VAR model structure. To further allow the heavy-tailedness in finan-

cial data, we use the bounded moment condition for the VAR model. Then, we propose a robust

estimation procedure for the VAR model parameters, which employs the truncation method and

ℓ1-penalty to deal with the heavy-tailedness and explore the sparsity. We show that it can handle

the heavy-tailedness, observation error, and high dimensionality with a desirable convergence rate.

We also propose the large volatility prediction procedure and investigate its asymptotic properties.

In the empirical study, in terms of the prediction error and portfolio allocation, the proposed

estimator shows the best performance overall except for the MSPE measurement. We note that

for MSPE, H-LASSO shows the second-best performance. It reveals that, when predicting large

volatility matrices, the proposed estimation method helps handle the heavy-tailedness of financial

data and explain the dynamic structure of factor and idiosyncratic volatility matrices. On the other

hand, one of the key assumptions in the proposed model is the sparsity condition of the model

parameters. Thus, it would be interesting to construct a test procedure for the sparsity condition.

To do this, we may need to debias the biased H-LASSO estimator and to derive its asymptotic

distribution under the sparsity hypothesis. This is a theoretically demanding task. It would
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be interesting and important to develop a tuning parameter choice procedure that has rigorous

theoretical properties and works well in practice. However, developing a tuning parameter selection

procedure that works well from both practical and theoretical perspectives may be challenging. We

leave these topics for future studies.
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A Appendix

A.1 A simulation setup

We considered the following jump diffusion process with the FIVAR(h)-Itô model in Definition 1:

dX(t) = QFλ
1/2
F (t)dW(t) +QIλ

1/2
I (t)W∗(t) + J(t)dΛ(t),

λt,i (θi) = (⌈t⌉ − t)λ⌈t−1⌉,i (θi) +

p+r∑
j=1

ζ1,i,j

{∫ t

⌈t−1⌉
λs,j (θj) ds

}
+ (⌈t⌉ − t)

∫ t

⌈t−1⌉
Jλ,i(s)dΛ̃λ,i(s)

+(t− ⌈t⌉+ 1)

(
ai +

h∑
k=2

p+r∑
j=1

ζk,i,j

{∫ ⌈t⌉−k+1

⌈t⌉−k

λs,j (θj) ds

})
+ (⌈t⌉ − t)Z2

i,t,

where λF (t) = Diag(pλt,1(θ1), ..., pλt,r(θr)), λI(t) = Diag(λt,r+1(θr+1), ..., λt,p+r(θp+r)), and W(t)

and W∗(t) are r-dimensional and p-dimensional independent Brownian motions, respectively,

J(t) = (J1(t), . . . , Jp(t))
⊤ is the jump size vector, and Λ(t) = (Λ1(t), . . . ,Λp(t))

⊤ is the Poisson

process with intensity I(t) = (5, . . . , 5)⊤. The jump size Ji(t) was obtained from the independent

Gaussian distribution with mean zero and standard deviation 0.05
√∫ 1

0
γii(t)dt. For t ∈ [d− 1, d),

i = 1, . . . , p + r, and d = 1, . . . , n, we set Jλ,i(t) = Jλ,i(d − 1), and Jλ,i(d)’s were generated from

independent unif(−ai/100, ai/100). Also, the compensated Poisson process Λ̃λ,i(t) has the intensity

Iλ,i(t) = (10, . . . , 10)⊤. To obtain the eigenvector matrix for the factor part, QF , we first generated

the symmetric p by p matrix whose elements were obtained from i.i.d. unif(0, 1). Then, we chose

its first r eigenvectors as QF . We chose the eigenvector matrix for the idiosyncratic part, QI , as

the p-dimensional identity matrix. For t ∈ [d − 1, d), i = 1, . . . , p + r, and d = 1, . . . , n, we set

zi,t = zi,d−1. Let v1 = 0.6, vi = 0.3 for i = 2, . . . , r, and vi = 0.1 for i = r + 1, . . . , p + r. For

the heavy-tailed process, zi,d’s were obtained from vi times independent t-distribution with degrees

of freedom 9, while for the sub-Gaussian process, zi,d’s were generated from vi times independent

unif(−2, 2). We chose p = 200, r = 3, h = 1, mall = 2000, and we varied m from 250 to 2000.

The model parameters are chosen as follows. We set a1 = 0.8, a2 = a3 = 0.6, ai = (14− i)/10 for

41



4 ≤ i ≤ 13, ai = 0.1 for 14 ≤ i ≤ 203,

(ζ1,i,j)1≤i,j≤3 =


0.5 0.15 0

0 0.45 0.1

0 0 0.4

 , (ζ1,i,j)2k≤i,j≤2k+1 =

0.19− 0.02k 0.02

0.02 0.18− 0.02k



for 2 ≤ k ≤ 6, and (ζ1,i,j)14≤i,j≤203 as 0.05 times 190-dimensional identity matrix. Other elements

of (ζ1,i,j) were set as zero. We took X(0) = (0, . . . , 0)⊤ and λ0,i(θi) = E(λ1,i(θi)).

We calculated the jump adjusted pre-averaging volatility matrix (PAVM) estimator (Aı̈t-Sahalia

and Xiu, 2016; Christensen et al., 2010; Jacod et al., 2009) as follows:

Γ̂d,ij =
1

ψK

m−K+1∑
k=1

{
Ȳi (td,k) Ȳj (td,k)−

1

2
Ŷi,j (td,k)

}
1
{∣∣Ȳi (td,k)∣∣ ≤ ui,m

}
1
{∣∣Ȳj (td,k)∣∣ ≤ uj,m

}
,

(A.1)

where

Ȳi (td,k) =
K−1∑
l=1

g

(
l

K

)
(Yi(td,k+l)− Yi(td,k+l−1)) ,

Ŷi,j (td,k) =
K∑
l=1

[{
g

(
l

K

)
− g

(
l − 1

K

)}2

× (Yi(td,k+l−1)− Yi(td,k+l−2)) (Yj(td,k+l−1)− Yj(td,k+l−2))

]
,

ψ =
∫ 1

0
g (t)2 dt, 1 {·} is an indicator function, and ui,m = ci,um

−0.235 is a truncation param-

eter for some constant ci,u. We chose the bandwidth parameter K = ⌊m1/2⌋, weight function

g (x) = x∧ (1− x), and ci,u as 7 times the sample standard deviation for the pre-averaged variables

m1/4Ȳi (td,k).

A.2 Empirical study for the constant eigenvector hypothesis

In this section, we conducted a hypothesis test for the constant eigenvector assumption based on

the procedure in Fan et al. (2024). For each day, we first splited the return data into two groups

42



as follows:

∆Y
(1)
1 , . . . ,∆Y

(1)
T1
, and ∆Y

(2)
1 , . . . ,∆Y

(2)
T2
,

where ∆Y
(j)
i =

(
∆Y

(j)
1,i , . . . ,∆Y

(j)
p,i

)⊤
, ∆Y

(j)
k,i is the i-th return for the k-th asset and j-th group,

and T1 and T2 are the numbers of returns for each group. With these return data, we obtained the

sample covariance matrices as follows:

Γ̂
(j)

=
1

Tj

Tj∑
i=1

∆Y
(j)
i (∆Y

(j)
i )⊤ for j = 1, 2.

Then, we decomposed the above sample covariance matrices and obtained eigenvalue and eigenvec-

tor estimates for the two groups. With these estimates, we conducted the hypothesis test for the

constancy of the eigenvector process. The null hypothesis is that the eigenvectors of the two groups

are the same. Detailed test procedure is presented in Section 4.3 in Fan et al. (2024). The tests

were conducted for three principal eigenvectors over 1498 days from 2015 to 2020. In this paper,

to mitigate the effect of noises, we used 5-min log-returns and chose T1 = T2 = 38. As shown in

Figure 6, we found that the constant eigenvector hypothesis is often rejected at 5% significance

level.

A.3 Empirical study for the structural break test

In this section, we conducted the structural break test for the eigenvalue process based on the

procedure in Bai and Perron (2003). Specifically, we considered the following linear regression

model with L breaks:

1 = bkξ̂
⊤
d + ed, d = dk−1 + 1, . . . , dk, k = 1, . . . , L+ 1,

where k denotes the segment index, bk is the regression coefficient for the k-th segment, ξ̂d =(
ξ̂d,1, . . . , ξ̂d,p+r

)⊤
is a non-parametric integrated eigenvalue estimator for ξd whose estimation

procedure is presented in Section 4, ed is a error term for the d-th day, d0 = 0, and dL+1 represents

the end date of the data. The dependent variable was set as 1 to investigate the break in the mean
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Figure 6: The box plots of the p-values for the constant eigenvector hypothesis for three principal
eigenvectors over 1498 days from 2015 to 2020. We used 5-min log-returns of the top 200 large
trading volume assets in the S&P 500 index. The red dash represents the 5% significance level.

of the eigenvalue process. For each L = 1, . . . , 5, we estimated the breakpoints, dk, k = 1, . . . , L,

by minimizing the residual sum of squares (RSS). Then, we chose L ∈ {0, . . . , 5} that minimizes

the corresponding Bayesian information criterion (BIC). Details can be found in Bai and Perron

(2003). The result is L = 1 with the breakpoint d1=1035 that corresponds to March 10, 2020.

This may be due to the covid sell-off in 2020. Thus, in the empirical study, we excluded the year

2020 to avoid the non-stationarity. We note that the proposed FIVAR-Itô model is based on the

stationary condition and it is hard to apply the parametric model to the non-stationary period.
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A.4 Proof of Proposition 1

Proof of Proposition 1. For non-negative integer l ∈ N0, let

R(l) = (R1(l), . . . , Rp+r(l))
⊤ with Ri(l) =

∫ d

d−1

(d− t)l

l!
λt,i (θi) dt

and R(0) is the quantity that we would like to obtain. Using the Itô’s lemma and (2.3), we have

Ri(l) =
ai

(l + 2)!
+
λd−1,i (θi)

l!(l + 2)
+

p+r∑
j=1

ζ1,i,j

∫ d

d−1

(d− t)l+1

(l + 1)!
λt,j (θj) dt

+
h∑

k=2

p+r∑
j=1

ζk,i,j
(l + 2)!

∫ d−k+1

d−k

λt,j (θj) dt+

∫ d

d−1

(d− t)l+2

l! (l + 2)
z2i,tdt

+

∫ d

d−1

(d− t)l+2

l!(l + 2)
Jλ,i(t)dΛ̃λ,i(t) + 2

∫ d

d−1

(d− t)l+2

l! (l + 2)

∫ t

d−1

zi,sdWi,szi,tdWi,t

=
ai

(l + 1)!
+

h−1∑
k=1

p+r∑
j=1

(
ζk,i,j

l! (l + 2)
+
ζk+1,i,j

(l + 2)!

)∫ d−k

d−k−1

λt,j (θj) dt

+

p+r∑
j=1

ζh,i,j
l! (l + 2)

∫ d−h

d−h−1

λt,j (θj) dt+

∫ d

d−1

(d− t)l+2

l! (l + 2)
z2i,tdt

+2

∫ d

d−1

(d− t)l+2

l! (l + 2)

∫ t

d−1

zi,sdWi,szi,tdWi,t +

∫ d

d−1

(d− t)l+2

l!(l + 2)
Jλ,i(t)dΛ̃λ,i(t)

+

p+r∑
j=1

ζ1,i,jRj(l + 1) a.s.

Thus, we have

R(l) =
a

(l + 1)!
+

h−1∑
k=1

(
ζk

l! (l + 2)
+

ζk+1

(l + 2)!

)∫ d−k

d−k−1

λt (θ) dt+
ζh

l! (l + 2)

∫ d−h

d−h−1

λt (θ) dt

+

[∫ d

d−1

(d− t)l+2

l! (l + 2)
z2i,tdt+

∫ d

d−1

(d− t)l+2

l!(l + 2)
Jλ,i(t)dΛ̃λ,i(t)

+2

∫ d

d−1

(d− t)l+2

l! (l + 2)

∫ t

d−1

zi,sdWi,szi,tdWi,t

]⊤
i=1,...,p+r

+ζ1R(l + 1) a.s.,
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where a = (a1, . . . , ap+r)
⊤. Define

π1 =
∞∑
l=0

ζl
1

(l + 1)!
= ζ−1

1

(
eζ1 − Ip+r

)
and π2 =

∞∑
l=0

ζl
1

(l + 2)!
= ζ−2

1 (eζ1 − Ip+r − ζ1),

where Ip+r is the (p + r)-dimensional identity matrix and eζ1 =
∑∞

l=0 ζ
l
1/l!. Then, iterativing the

above formula, we have

R(0) =

∫ d

d−1

λt (θ) dt

= π1a+
h−1∑
k=1

(
(π1 − π2)ζk + π2ζk+1

) ∫ d−k

d−k−1

λt (θ) dt+ (π1 − π2)ζh

∫ d−h

d−h−1

λt (θ) dt

+
∞∑
l=0

ζl
1

[∫ d

d−1

(d− t)l+2

l! (l + 2)
z2i,tdt+

∫ d

d−1

(d− t)l+2

l!(l + 2)
Jλ,i(t)dΛ̃λ,i(t)

+2

∫ d

d−1

(d− t)l+2

l! (l + 2)

∫ t

d−1

zi,sdWi,szi,tdWi,t

]⊤
i=1,...,p+r

= ν +
h∑

k=1

Akξd−k + ϵd a.s.,

where

Ak = ((π1 − π2)ζk + π2ζk+1) for 1 ≤ k ≤ h− 1,

Ah = (π1 − π2)ζh,

ν = π1a+
∞∑
l=0

ζl
1

[∫ d

d−1

(
(d− t)l+2

(l + 1)!
− (d− t)l+2

(l + 2)!

)
E
[
z2i,t
]
dt

]⊤
i=1,...,p+r

, and

ϵd =
∞∑
l=0

ζl
1

[∫ d

d−1

(
(d− t)l+2

(l + 1)!
− (d− t)l+2

(l + 2)!

)(
z2i,t − E

[
z2i,t
])
dt+

∫ d

d−1

(d− t)l+1

(l + 1)!
Jλ,i(t)dΛ̃λ,i(t)

+2

∫ d

d−1

(
(d− t)l+2

(l + 1)!
− (d− t)l+2

(l + 2)!

)∫ t

d−1

zi,sdWi,szi,tdWi,t

]⊤
i=1,...,p+r

. (A.2)

■
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A.5 Proof of Theorem 1

We note that the model (2.4) can be written in a VAR(1) form as follows:

ξ̃d = ν̃ + Ãξ̃d−1 + ϵ̃d,

where

ξ̃d =



ξd

ξd−1

...

ξd−h+1


h(p+r)×1

, ν̃ =



ν

0

...

0


h(p+r)×1

,

Ã =



A1 A2 · · · Ah−1 Ah

Ip+r 0 0 0 0

0 Ip+r 0 0

...
. . .

...
...

0 0 · · · Ip+r 0


h(p+r)×h(p+r)

, ϵ̃d =



ϵd

0

...

0


h(p+r)×1

. (A.3)

Lemma 1. Under the model (2.4) and Assumption 1(a)–(b), suppose that sβ is bounded by some

positive constant and max1≤i≤p+r E(|ϵd,i|cϵ) <∞. Then, we have max1≤i≤p+r E(|ξd,i|cϵ) <∞.

Proof of Lemma 1. Since ρ(Ã) < 1, by Gelfand’s formula, we have

lim
l→∞

∥∥∥Ãl
∥∥∥1/l
∞

= ρ(Ã) < 1.

Thus, there exists a positive integer k such that
∥∥∥Ãk

∥∥∥
∞
< 1. Note that for any fixed matrix

M ∈ Rp1×p2 and multivariate random variable x ∈ Rp2 , we have

sup
j≤p1

∥(Mx)j∥Lcϵ
≤ ∥M∥∞ sup

j≤p1

∥(x)j∥Lcϵ
,
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where for any vector x, (x)j is the j-th element of x. Hence, by the fact that

ξ̃d = Ãkξ̃d−k +
k∑

i=1

Ãk−i (ν̃ + ϵ̃d−k+i) ,

we have

sup
j≤h(p+r)

∥∥∥∥(ξ̃d)
j

∥∥∥∥
Lcϵ

≤
∥∥∥Ãk

∥∥∥
∞

sup
j≤h(p+r)

∥∥∥∥(ξ̃d−k

)
j

∥∥∥∥
Lcϵ

+
k∑

i=1

∥∥∥Ãk−i
∥∥∥
∞

sup
j≤h(p+r)

∥∥∥(ν̃ + ϵ̃d−k+i)j

∥∥∥
Lcϵ

.

Then, we have

sup
j≤h(p+r)

∥∥∥∥(ξ̃d)
j

∥∥∥∥
Lcϵ

≤
supj≤h(p+r)

∥∥∥(ν̃ + ϵ̃d)j

∥∥∥
Lcϵ

1−
∥∥∥Ãk

∥∥∥
∞

(
k∑

i=1

∥∥∥Ãk−i
∥∥∥
∞

)
≤ C, (A.4)

where the first inequality is from the stationarity and the last inequality is due to the boundedness

of sβ. ■

Proposition 3. Under the assumptions in Theorem 1, we have for i ∈ {1, . . . , r}, with probability

at least 1− 3(hr + 1)e−δ, ∥∥∇LF,i
τ,ϖ(βi0)

∥∥
∞ ≤ ηF/2. (A.5)

Also, we have for i ∈ {r + 1, . . . , p+ r}, with probability at least 1− 3 (h (p+ r) + 1) e−δ,

∥∥∇LI,i
τ,ϖ(βi0)

∥∥
∞ ≤ ηI/2. (A.6)

Proof of Proposition 3. For the simplicity, we assume that h = 1 and omit the intercept

term ν. Due to the similarity, we only provide the arguments for
∥∥∇LI,i

τ,ϖ(βi0)
∥∥
∞. Note that

ξ̂
I

d = (ξ̂d,1, . . . , ξ̂d,p+r)
⊤. For each 1 ≤ j ≤ p+ r, we have

∣∣∇jLI,i
τ,ϖ(βi0)

∣∣ = ∣∣∣∣∣∂LI,i
τ,ϖ(βi0)

∂βj

∣∣∣∣∣ ≤ (I)j + (II)j, (A.7)
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where

(I)j =
1

n− 1

∣∣∣∣∣
n∑

d=2

ψτI

(
ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
)
ψϖI

(ξd−1,j)

∣∣∣∣∣ ,

(II)j =
1

n− 1

∣∣∣∣∣
n∑

d=2

[
ψτI

(
ξ̂d,i − ⟨ψϖI

(ξ̂
I

d−1),βi0⟩
)
ψϖI

(
ξ̂d−1,j

)
−ψτI

(
ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
)
ψϖI

(ξd−1,j)

]∣∣∣∣∣.
We first consider (I)j. Let yd = (yd,1, . . . , yd,p+r)

⊤, yd,k be the k-th element of ξd −ψϖI
(ξd) for k ∈

Si, and yd,k = 0 for k ∈ Sc
i , where Si is defined in Assumption 1(g). Also, let ϵ′d,i = ϵd,i+⟨yd−1,βi0⟩.

Then, we have

(I)j =
1

n− 1

∣∣∣∣∣
n∑

d=2

ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)

∣∣∣∣∣ ≤ (I)
(1)
j + (I)

(2)
j ,

where

(I)
(1)
j =

1

n− 1

n∑
d=2

∣∣E{ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)
}∣∣ ,

(I)
(2)
j =

1

n− 1

∣∣∣∣∣
n∑

d=2

[
ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)− E
{
ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)
}]∣∣∣∣∣ .

For (I)
(1)
j , we have

E
{
ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)
}
= E {⟨yd−1,βi0⟩ψϖI

(ξd−1,j)} − E
{[
ϵ′d,i − ψτI

(
ϵ′d,i
)]
ψϖI

(ξd−1,j)
}
.

Let v3 = max1≤k≤p+r E(|ϵd,k|3), K2 = max1≤k≤p+r E(|ξd,k|2), and K4 = max1≤k≤p+r E(|ξd,k|4). Since

|yd−1,k| ≤ |ξd−1,k| 1 (|ξd−1,k| > ϖI) ≤ ϖ−2
I |ξd−1,k|3 a.s.

for k ∈ {1, . . . , p+ r} and

∣∣ϵ′d,i − ψτI

(
ϵ′d,i
)∣∣ ≤ ∣∣ϵ′d,i∣∣ 1 (∣∣ϵ′d,i∣∣ > τI

)
≤ τ−2

I

∣∣ϵ′d,i∣∣3 a.s.,
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we have

∣∣E{ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)
}∣∣

≤ |E {⟨yd−1,βi0⟩ψϖI
(ξd−1,j)}|+ τ−2

I E
{∣∣ϵ′d,i∣∣3 |ψϖI

(ξd−1,j)|
}

≤ ∥βi0∥1K4ϖ
−2
I + τ−2

I E
{∣∣ϵ′d,i∣∣3 |ψϖI

(ξd−1,j)|
}

≤ ∥βi0∥2K4s
1/2
β ϖ−2

I + 4τ−2
I

[
E
{
|ϵd,i|3 |ψϖI

(ξd−1,j)|
}
+ ∥βi0∥

3
2 E
{
∥yd−1∥32 |ψϖI

(ξd−1,j)|
}]

≤ ∥βi0∥2K4s
1/2
β ϖ−2

I + 4τ−2
I

{
v3K

1/2
2 + ∥βi0∥

3
2K4s

3/2
β

}
. (A.8)

Thus, we have

(I)
(1)
j ≤ C

(
sβϖ

−2
I + s3βτ

−2
I

)
. (A.9)

For (I)
(2)
j , note that the process (ξ̃d)d=1,2,... is geometrically α-mixing and ϵ̃d = ξ̃d − Ãξ̃d−1.

Since each ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)−E
[
ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)
]
is a measurable function of ξ̃d and ξ̃d−1,{

ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)− E
[
ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)
]}

is also geometrically α-mixing with the coeffi-

cients satisfying Assumption 1(d). Therefore, by applying Theorem 2 in Merlevède et al. (2009),

we have, for t ≥ 0,

Pr
{
(I)

(2)
j ≥ t

}
≤ exp

{
− Cn2t2

V 2n+ τ 2Iϖ
2
I + tτIϖIn (log n)

2

}
, (A.10)

where

V 2 = Var
[
ψτI

(
ϵ′2,i
)
ψϖI

(ξ1,j)
]
+ 2

∞∑
d=3

∣∣Cov [ψτI

(
ϵ′2,i
)
ψϖI

(ξ1,j) , ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j)
]∣∣ .

Since the cϵ
2
-th moment of ψτI

(
ϵ′d,i
)
ψϖI

(ξd−1,j) is bounded by Cs
cϵ/2
β , by the inequality (2.2) in

Davydov (1968), we have

V 2 ≤ Cs2β

∞∑
k=1

φ[1−(4/cϵ)]k ≤ Cs2β, (A.11)

which implies

Pr

{
(I)

(2)
j ≤ C

(
τIϖI (log n)

2 δ + sβ
√
nδ

n

)}
≥ 1− e−δ. (A.12)
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Combining (A.9) and (A.12), we obtain that with probability at least 1− (p+ r) e−δ,

max
1≤j≤p+r

(I)j ≤ C

(
s3βτ

−2
I + sβϖ

−2
I +

τIϖI (log n)
2 δ + sβ

√
nδ

n

)
. (A.13)

Now, consider (II)j. Note that for any x, y ∈ R,

|ψϖI
(x)− ψϖI

(y)| ≤ |x− y| .

Hence, by Assumption 1(e), we have

∣∣∣ψτI

(
ξ̂d,i − ⟨ψϖI

(ξ̂
I

d−1),βi0⟩
)
− ψτI

(
ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
)∣∣∣

≤
∣∣∣ξ̂d,i − ξd,i − ⟨ψϖI

(ξ̂
I

d−1)− ψϖI
(ξd−1),βi0⟩

∣∣∣
≤ C

(
bFm,n,p + sβb

I
m,n,p

)
a.s.

Thus, by using the fact that

|x1y1 − x2y2| ≤ |(x1 − x2) (y1 − y2)|+ |(x1 − x2) y2|+ |x2 (y1 − y2)|

for any x1, x2, y1, y2 ∈ R, we have

(II)j ≤ C
[ (
bFm,n,p + sβb

I
m,n,p

)
max

(
bFm,n,p, b

I
m,n,p

)
+
bFm,n,p + sβb

I
m,n,p

n− 1

n∑
d=2

{|ψϖI
(ξd−1,j)|}

+
max

(
bFm,n,p, b

I
m,n,p

)
n− 1

n∑
d=2

{∣∣ψτI

(
ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
)∣∣} ]

≤ C
[ (
bFm,n,p + sβb

I
m,n,p

)
max

(
bFm,n,p, b

I
m,n,p

)
+
(
bFm,n,p + sβb

I
m,n,p

){
(II)

(1)
j + (II)

(2)
j

}
+max

(
bFm,n,p, b

I
m,n,p

){
(II)

(3)
j + (II)

(4)
j

}]
, (A.14)
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where

(II)
(1)
j =

1

n− 1

∣∣∣∣∣
n∑

d=2

[
|ψϖI

(ξd−1,j)| − E |ψϖI
(ξd−1,j)|

]∣∣∣∣∣ ,
(II)

(2)
j =

1

n− 1

n∑
d=2

E |ψϖI
(ξd−1,j)| ,

(II)
(3)
j =

1

n− 1

∣∣∣∣∣
n∑

d=2

[ ∣∣ψτI

(
ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
)∣∣− E

∣∣ψτI

(
ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
)∣∣ ]∣∣∣∣∣,

(II)
(4)
j =

1

n− 1

n∑
d=2

E
∣∣ψτI

(
ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
)∣∣ .

Consider (II)
(1)
j and (II)

(3)
j . Similar to the proofs of (I)

(2)
j , we can show

Pr

{
(II)

(1)
j ≤ C

(
ϖI (log n)

2 δ + sβ
√
nδ

n

)}
≥ 1− e−δ (A.15)

and

Pr

{
(II)

(3)
j ≤ C

(
τI (log n)

2 δ + sβ
√
nδ

n

)}
≥ 1− e−δ. (A.16)

Also, we have

(II)
(2)
j ≤ C and (II)

(4)
j ≤ 1

n− 1

n∑
d=2

E
∣∣ξd,i − ⟨ψϖI

(ξd−1),βi0⟩
∣∣ ≤ Csβ. (A.17)

By (A.14)–(A.17), we have

Pr

{
max

1≤j≤p+r
(II)j ≤ Csβ

(
bFm,n,p + bIm,n,p

)}
≥ 1− 2 (p+ r) e−δ. (A.18)

Combining (A.7), (A.13), and (A.18), we obtain that with probability at least 1− 3 (p+ r) e−δ,

∥∥∇LI,i
τ,ϖ(βi0)

∥∥
∞ ≤ C

[
sβ
(
bFm,n,p + bIm,n,p

)
+ s3βτ

−2
I

+sβϖ
−2
I +

τIϖI (log n)
2 δ + sβ

√
nδ

n

]
. (A.19)
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Proof of Theorem 1. By Proposition 3, we prove the statements under (A.5) and (A.6).

First, we consider
∥∥∥β̂i − βi0

∥∥∥
2
for i ∈ {1, . . . , r}. Suppose that

∥∥∥β̂i − βi0

∥∥∥
2
>

(hr + 1)1/2 ηF
κ

. (A.20)

By the optimality of β̂i and the integral form of the Taylor expansion, we have

0 ≥ LF,i
τ,ϖ(β̂i)− LF,i

τ,ϖ(βi0)

= ⟨∇LF,i
τ,ϖ(βi0), β̂i − βi0⟩

+

∫ 1

0

(1− t) (β̂i − βi0)
⊤∇2LF,i

τ,ϖ(βi0 + t(β̂i − βi0))(β̂i − βi0)dt. (A.21)

Since
∥∥∇LF,i

τ,ϖ(βi0)
∥∥
∞ ≤ ηF/2, we have

∣∣∣⟨∇LF,i
τ,ϖ(βi0), β̂i − βi0⟩

∣∣∣ ≤
∥∥∇LF,i

τ,ϖ(βi0)
∥∥
∞

∥∥∥β̂i − βi0

∥∥∥
1

≤ (hr + 1)1/2ηF
2

∥∥∥β̂i − βi0

∥∥∥
2
. (A.22)

By (A.20), we have

z =
(hr + 1)1/2ηF

κ
∥∥∥β̂i − βi0

∥∥∥
2

< 1.

Then, for any 0 ≤ t ≤ z, we have

∥∥∥[βi0 + t(β̂i − βi0)]− βi0

∥∥∥
1
≤ t(hr + 1)1/2

∥∥∥β̂i − βi0

∥∥∥
2
≤ (hr + 1)ηF

κ
.

Hence, we have

∫ 1

0

(1− t) (β̂i − βi0)
⊤∇2LF,i

τ,ϖ(βi0 + t(β̂i − βi0))(β̂i − βi0)dt

≥
∫ z

0

(1− t)κ
∥∥∥β̂i − βi0

∥∥∥2
2
dt

= (hr + 1)1/2ηF

∥∥∥β̂i − βi0

∥∥∥
2
− (hr + 1)η2F

2κ
, (A.23)
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where the first inequality is due to Assumption 1(g). Combining (A.21)–(A.23), we have

0 ≥
(hr + 1)1/2ηF

∥∥∥β̂i − βi0

∥∥∥
2

2
− (hr + 1)η2F

2κ
,

which contradicts to (A.20). Thus, (3.5) is showed.

Now, consider
∥∥∥β̂i − βi0

∥∥∥
2
for i ∈ {r + 1, . . . , p+ r}. By Proposition 1 in Fan et al. (2019) and

Proposition 3, we can show (3.6). ■

A.6 Proof of Theorem 3.

Proof of Proposition 2. Similar to the proofs of Theorem 3 in Fan and Kim (2018), we can

show (4.6) and (4.7) under the event

E =

{
max
1≤d≤n

max
1≤i,j≤p

∣∣∣Γ̂d,ij − Γd,ij

∣∣∣ ≤ C
√

log (pn ∨m) /m1/2

}
.

By Weyl’s theorem, (4.6) implies (4.5). Thus, it is enough to show (4.4) under the event E.

Without loss of generality, we assume that sign
(
⟨q̂F

i ,q
F
i ⟩
)
= 1 for i = 1, . . . , r. We have for each

d ∈ {1, . . . , n} and i ∈ {1, . . . , r},

∣∣∣ξ̂d,i − ξd,i

∣∣∣
≤ p−1

∣∣∣ (qF
i

)⊤ (
Γ̂d − Γd

)
qF
i

∣∣∣+ p−1
∣∣∣ (q̂F

i

)⊤
Γ̂dq̂

F
i −

(
qF
i

)⊤
Γ̂dq

F
i

∣∣∣+ p−1
∣∣∣ (qF

i

)⊤
Γdq

F
i − ξd,i

∣∣∣
= (I) + (II) + (III). (A.24)

For (I), we have

(I) ≤ p−1
∥∥∥Γ̂d − Γd

∥∥∥
F
≤ C

√
log (pn ∨m) /m1/2. (A.25)

For (II), we have

∥∥qF
i − q̂F

i

∥∥
2

≤ Cp−1

∥∥∥∥∥
n∑

k=n−ℓ+1

(
Γ̂k −Ψk

)
/ℓ

∥∥∥∥∥
2

≤ Cp−1ℓ−1

n∑
k=n−ℓ+1

(∥∥∥Γ̂k − Γk

∥∥∥
F
+ ∥Σk∥1

)
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≤ C

(√
log (pn ∨m) /m1/2 + p−1 max

1≤i≤p

p∑
j=1

|Σd,ij|Υ(Σd,iiΣd,jj)
(1−Υ)/2

)
≤ C

(√
log (pn ∨m) /m1/2 + sI/p

)
,

where the first inequality is by Theorem 2 in Yu et al. (2015). Hence, we have

(II)

≤ p−1
∣∣∣ (qF

i − q̂F
i

)⊤
Γ̂d

(
qF
i − q̂F

i

) ∣∣∣+ p−1
∣∣∣ (qF

i − q̂F
i

)⊤
Γ̂dq

F
i

∣∣∣+ p−1
∣∣∣ (qF

i

)⊤
Γ̂d

(
qF
i − q̂F

i

) ∣∣∣
≤ p−1

∥∥Γ̂d

∥∥
F

∥∥qF
i − q̂F

i

∥∥2
2
+ 2p−1

∥∥Γ̂d

∥∥
F

∥∥qF
i − q̂F

i

∥∥
2

≤ C
√

log (pn ∨m) /m1/2. (A.26)

For (III), we have

(III) = p−1
(
qF
i

)⊤
Σdq

F
i ≤ p−1

∥∥Σd

∥∥
2
≤ p−1

∥∥Σd

∥∥
∞ ≤ p−1 max

1≤i≤p

p∑
j=1

|Σd,ij|Υ(Σd,iiΣd,jj)
(1−Υ)/2

≤ CsI/p. (A.27)

Combining (A.24)–(A.27), we have

∣∣∣ξ̂d,i − ξd,i

∣∣∣ ≤ C

(√
log (pn ∨m) /m1/2 + sI/p

)
,

which completes the proof. ■

Proof of Theorem 3. We show the statements (4.10)–(4.12) under (A.5)–(A.6) and (4.4)–

(4.9). For simplicity, we assume that h = 1 and omit the intercept term ν. Note that β̂i =(
Â1,i1, . . . , Â1,ir

)⊤
for 1 ≤ i ≤ r and β̂i =

(
Â1,i1, . . . , Â1,i(p+r)

)⊤
for r + 1 ≤ i ≤ p + r. First, we

consider (4.10). By (4.4) and (4.8), we have for any 1 ≤ i ≤ r,

∣∣∣ξ̂n+1,i − E (ξn+1,i|Fn)
∣∣∣ =

∣∣∣∣∣
r∑

j=1

(
Â1,ij ξ̂n,j − A1,ijξn,j

)∣∣∣∣∣
≤

r∑
j=1

[ ∣∣∣(Â1,ij − A1,ij

)(
ξ̂n,j − ξn,j

)∣∣∣
+
∣∣∣A1,ij

(
ξ̂n,j − ξn,j

)∣∣∣+ ∣∣∣(Â1,ij − A1,ij

)
ξn,j

∣∣∣ ]
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≤ C
[
Hm + (log n)2

√
log p/n

]
.

Consider (4.11). Similar to the proofs of Proposition 1 in Fan et al. (2019), we can show

β̂i − βi0 ∈ Wi for any r + 1 ≤ i ≤ p+ r, where Wi is defined in Assumption 1(g). Thus, we have

max
r+1≤i≤p+r

p+r∑
j=1

∣∣∣Â1,ij − A1,ij

∣∣∣ ≤ max
r+1≤i≤p+r

4
∑
j∈Si

∣∣∣Â1,ij − A1,ij

∣∣∣
≤ C

{
s2βsIH

1−Υ
m + s2β (log n)

2
√
log p/n

}
,

where the last inequality is due to the Cauchy–Schwarz inequality and (4.9). Then, by (4.5), we

have, for any r + 1 ≤ i ≤ p+ r,

∣∣∣ξ̂n+1,i − E (ξn+1,i|Fn)
∣∣∣ =

∣∣∣∣∣
p+r∑
j=1

(
Â1,ij ξ̂n,j − A1,ijξn,j

)∣∣∣∣∣
≤

p+r∑
j=1

[ ∣∣∣(Â1,ij − A1,ij

)(
ξ̂n,j − ξn,j

)∣∣∣
+
∣∣∣A1,ij

(
ξ̂n,j − ξn,j

)∣∣∣+ ∣∣∣(Â1,ij − A1,ij

)
ξn,j

∣∣∣ ]
≤ C

[
s2βsIH

1−Υ
m + s2β (log n)

2
√

log p/n
]
.

For (4.12), we have

∥Γ̃n+1 − E (Γn+1|Fn) ∥Γ∗ ≤ ∥Ψ̂n+1 − E (Ψn+1|Fn) ∥Γ∗

+∥Σ̂n+1 − E (Σn+1|Fn) ∥Γ∗

= (I) + (II) . (A.28)

Consider (I). We have

∥∥∥Ψ̂n+1 − E (Ψn+1|Fn)
∥∥∥
F

= p

∥∥∥∥∥
r∑

i=1

{
ξ̂n+1,iq̂

F
i

(
q̂F
i

)⊤ − E (ξn+1,i|Fn)q
F
i

(
qF
i

)⊤}∥∥∥∥∥
F

≤ p

[∥∥∥∥∥
r∑

i=1

{
ξ̂n+1,i − E (ξn+1,i|Fn)

}
q̂F
i

(
q̂F
i

)⊤∥∥∥∥∥
F

+

∥∥∥∥∥
r∑

i=1

E (ξn+1,i|Fn)
{
q̂F
i

(
q̂F
i

)⊤ − qF
i

(
qF
i

)⊤}∥∥∥∥∥
F

]
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≤ p

[
r∑

i=1

∣∣∣ξ̂n+1,i − E (ξn+1,i|Fn)
∣∣∣ ∥∥∥q̂F

i

(
q̂F
i

)⊤∥∥∥
F

+
r∑

i=1

E (ξn+1,i|Fn)
∥∥∥{q̂F

i

(
q̂F
i

)⊤ − qF
i

(
qF
i

)⊤}∥∥∥
F

]

≤ Cp

[
Hm + (log n)2

√
log p/n+

r∑
i=1

∥∥∥q̂F
i

(
q̂F
i

)⊤ − qF
i

(
qF
i

)⊤∥∥∥
F

]
,

where the last inequality is due to (4.10). For the last term, by Theorem 2 in Yu et al. (2015), we

have

∥∥∥q̂F
i

(
q̂F
i

)⊤ − qF
i

(
qF
i

)⊤∥∥∥
F

≤ Cp−1

∥∥∥∥∥
n∑

d=n−ℓ+1

(
Γ̂d −Ψd

)
/ℓ

∥∥∥∥∥
2

≤ Cp−1ℓ−1

n∑
d=n−ℓ+1

(∥∥∥Γ̂d − Γd

∥∥∥
F
+ ∥Σd∥1

)
≤ C

(√
log (pn ∨m) /m1/2 + sI/p

)
.

Thus, we have ∥∥∥Ψ̂n+1 − E (Ψn+1|Fn)
∥∥∥
F
≤ Cp

[
Hm + (log n)2

√
log p/n

]
.

Then, similar to the proofs of Theorem 4.1 in Fan and Kim (2018), we can show

(I) ≤ C

[{
p−3/2 + p−1ξ̂n+1,1

}∥∥∥Ψ̂n+1 − E (Ψn+1|Fn)
∥∥∥
F

+p−3/2ξ̂n+1,1

∥∥∥Ψ̂n+1 − E (Ψn+1|Fn)
∥∥∥2
F

]
≤ C

[
Hm + p1/2H2

m + (log n)2
√

log p/n+ p1/2 log p (log n)4 /n
]
. (A.29)

Consider (II). We have

(II)2 ≤ p−1
∥∥∥{Σ̂n+1 − E (Σn+1|Fn)

}
Γ−1

∥∥∥2
F

≤ p−1
∥∥∥Σ̂n+1 − E (Σn+1|Fn)

∥∥∥2
F

∥∥Γ−1
∥∥2
2

≤ p−1
∥∥∥Σ̂n+1 − E (Σn+1|Fn)

∥∥∥2
F

= p−1

∥∥∥∥∥
p∑

i=1

{
ξ̂n+1,i+rq̂

I
i

(
q̂I
i

)⊤ − E (ξn+1,i+r|Fn)q
I
i

(
qI
i

)⊤}∥∥∥∥∥
2

F
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≤ Cp−1

[∥∥∥∥∥
p∑

i=1

{
ξ̂n+1,i+r − E (ξn+1,i+r|Fn)

}
q̂I
i

(
q̂I
i

)⊤∥∥∥∥∥
2

F

+

∥∥∥∥∥
p∑

i=1

E (ξn+1,i+r|Fn)
{
q̂I
i

(
q̂I
i

)⊤ − qI
i

(
qI
i

)⊤}∥∥∥∥∥
2

F

]
= (III) + (IV ) . (A.30)

For (III), we have

(III)

= Cp−1

p∑
i=1

p∑
j=1

tr
(
{ξ̂n+1,i+r − E (ξn+1,i+r|Fn)}{ξ̂n+1,j+r − E (ξn+1,j+r|Fn)}q̂I

i

(
q̂I
i

)⊤
q̂I
j

(
q̂I
j

)⊤)
= Cp−1

p∑
i=1

tr
(
{ξ̂n+1,i+r − E (ξn+1,i+r|Fn)}2q̂I

i

(
q̂I
i

)⊤)
= Cp−1

p∑
i=1

{ξ̂n+1,i+r − E (ξn+1,i+r|Fn)}2

≤ C
(
s2βsIH

1−Υ
m + s2β (log n)

2
√

log p/n
)2
, (A.31)

where the last inequality is due to (4.11). For (IV ), we have

(IV )

= Cp−1

∥∥∥∥∥
p∑

i=1

{E (ξn+1,i+r|Fn)− E (ξn+1,p+r|Fn)}
{
q̂I
i

(
q̂I
i

)⊤ − qI
i

(
qI
i

)⊤}∥∥∥∥∥
2

F

≤ Cp−1

p∑
i=1

tr

[
{E (ξn+1,i+r|Fn)− E (ξn+1,p+r|Fn)}2

{
q̂I
i

(
q̂I
i

)⊤ − qI
i

(
qI
i

)⊤}2
]

+Cp−1

p−1∑
i=1

p∑
j=i+1

tr

[
{E (ξn+1,i+r|Fn)− E (ξn+1,p+r|Fn)} {E (ξn+1,j+r|Fn)− E (ξn+1,p+r|Fn)}

×
{
q̂I
i

(
q̂I
i

)⊤ − qI
i

(
qI
i

)⊤}{
q̂I
j

(
q̂I
j

)⊤ − qI
j

(
qI
j

)⊤}]

≤ Cp−1

p∑
i=1

{E (ξn+1,i+r|Fn)− E (ξn+1,p+r|Fn)}2
∥∥∥q̂I

i

(
q̂I
i

)⊤ − qI
i

(
qI
i

)⊤∥∥∥2
F
,

where the first equality is due to the fact that
∑p

i=1 q̂
I
i

(
q̂I
i

)⊤
=
∑p

i=1 q
I
i

(
qI
i

)⊤
and the last in-

equality is from the positiveness of E (ξn+1,i+r|Fn) − E (ξn+1,p+r|Fn) for 1 ≤ i ≤ p − 1 and (A.32)
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below. For i ̸= j, we have

tr

[{
q̂I
i

(
q̂I
i

)⊤ − qI
i

(
qI
i

)⊤}{
q̂I
j

(
q̂I
j

)⊤ − qI
j

(
qI
j

)⊤}]

= −tr

[
q̂I
i

(
q̂I
i

)⊤
qI
j

(
qI
j

)⊤
+ qI

i

(
qI
i

)⊤
q̂I
j

(
q̂I
j

)⊤ ]

= −tr

[ (
q̂I
i

)⊤
qI
j

(
qI
j

)⊤
q̂I
i +

(
qI
i

)⊤
q̂I
j

(
q̂I
j

)⊤
qI
i

]

= −tr

[{(
q̂I
i

)⊤
qI
j

}2

+
{(

qI
i

)⊤
q̂I
j

}2
]
≤ 0. (A.32)

Thus, we have

(IV ) ≤ Cp−1

p∑
i=1

χ2(i+r)
∥∥∥q̂I

i

(
q̂I
i

)⊤ − qI
i

(
qI
i

)⊤∥∥∥2
F

≤ Cp−1

p∑
i=1

χ2(i+r)

∥∥∥∥∥
n∑

d=n−ℓ+1

(
Σ̂d −Σd

)
/ℓ

∥∥∥∥∥
2

2

/χ2(i+r)

≤ Cs2IH
2−2Υ
m , (A.33)

where the first inequality is due to Assumption 3, the second inequality is from Theorem 2 in Yu

et al. (2015), and the last inequality is due to (4.6). By (A.30), (A.31), and (A.33), we have

(II) ≤ C
(
s2βsIH

1−Υ
m + s2β (log n)

2
√

log p/n
)
. (A.34)

Combining (A.28), (A.29), and (A.34), we have

∥Γ̃n+1 − E (Γn+1|Fn) ∥Γ∗ ≤ C
[
p1/2H2

m + p1/2 log p (log n)4 /n

+s2βsIH
1−Υ
m + s2β (log n)

2
√
log p/n

]
. (A.35)
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A.7 Miscellaneous materials

Algorithm 1 Parameter estimation procedure

Step 1 Decompose the input volatility matrix:

Γ̂d =

p∑
k=1

ξ̄d,kq̄d,kq̄
⊤
d,k,

where ξ̄d,k is the k-th largest eigenvalue of Γ̂d and q̄d,k is its corresponding eigenvector.

Step 2 (factor components) Calculate r eigenvectors, q̂F
1 , . . . , q̂

F
r , of

1
ℓ

∑n
d=n−l+1 Γ̂d and obtain

the eigenvalues ξ̂d,i =
(
q̂F
i

)⊤
Γ̂dq̂

F
i /p for d = 1, . . . , n and i = 1, . . . , r.

Step 3 Obtain the input idiosyncratic volatility matrix estimator:

Σ̄d = (Σ̄d,ij)1≤i,j≤p = Γ̂d −
r∑

k=1

ξ̄d,kq̄d,kq̄
⊤
d,k.

Step 4 Threshold the input idiosyncratic volatility matrix estimator:

Σ̂d,ij =

{
Σ̄d,ij ∨ 0 if i = j

gij(Σ̄d,ij)1(|Σ̄d,ij| ≥ υij) if i ̸= j
and Σ̂d = (Σ̂d,ij)1≤i,j≤p,

where gij(·) satisfies |gij(x)− x| ≤ υij, and υij = υm
√

(Σ̄d,ii ∨ 0)(Σ̄d,jj ∨ 0).

Step 5 (idiosyncratic components) Calculate p eigenvectors, q̂I
1, . . . , q̂

I
p, of

1
ℓ

∑n
d=n−l+1 Σ̂d and

obtain ξ̂d,i+r =
(
q̂I
i

)⊤
Σ̂dq̂

I
i for d = 1, . . . , n and i = 1, . . . , p.

Step 6 Estimate the factor coefficient:

β̂i = arg min
βi∈Rhr+1

LF,i
τ,ϖ(βi) for i = 1, . . . , r,

where LF,i
τ,ϖ(βi) is defined in (3.4).

Step 7 Estimate the idiosyncratic coefficient:

β̂i = arg min
βi∈Rh(p+r)+1

LI,i
τ,ϖ(βi) + ηI ∥βi∥1 for i = r + 1, . . . , p+ r,

where ηI > 0 is the regularization parameter, and LI,i
τ,ϖ(βi) is defined in (3.2).

Step 8 Calculate the future eigenvalue and conditional expected volatility matrix:

ξ̂n+1 =
(
ξ̂n+1,1, . . . , ξ̂n+1,p+r

)⊤
= ν̂ +

h∑
k=1

Âkξ̂n+1−k and

Γ̃n+1 = Ψ̂n+1 + Σ̂n+1 = p
r∑

i=1

ξ̂n+1,iq̂
F
i

(
q̂F
i

)⊤
+

p∑
i=1

ξ̂n+1,i+rq̂
I
i

(
q̂I
i

)⊤
.
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Figure 7: The plot of the first 100 differences between the consecutive eigenvalues of the average
of 997 idiosyncratic volatility matrix estimators. We estimated the rank r based on the rank
estimation procedure in (5.1) with n = 997. The result is r̂ = 4. We used 1-min log-returns of the
top 200 large trading volume stocks among the S&P 500 from January 2016 to December 2019.
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