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Abstract Carter Hill’s numerous contributions (books and articles) in econometrics
stand out especially in pedagogy. An important aspect of his pedagogy is to integrate
“theory and practice” of econometrics, as coined into the titles of his popular books.
The new methodology we propose in this paper is consistent with these contribu-
tions of Carter Hill. In particular, we bring the maximum score regression of Manski
(1975, 1985) to high dimension in theory and show that the “Asymmetric AdaBoost”
provides the algorithmic implementation of the high dimensional maximum score
regression in practice. Recent advances in machine learning research have not only
expanded the horizon of econometrics by providing new methods but also provided
the algorithmic aspects of many of traditional econometrics methods. For example,
Adaptive Boosting (AdaBoost) introduced by Freund and Schapire (1996) has gained
enormous success in binary/discrete classification/prediction. In this paper, we intro-
duce the “Asymmetric AdaBoost” and relate it to the maximum score regression in the
algorithmic perspective. The Asymmetric AdaBoost solves high-dimensional binary
classification/prediction problem with state-dependent loss functions. Asymmetric
AdaBoost produces a nonparametric classifier via minimizing the “asymmetric ex-
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ponential risk” which is a convex surrogate of the non-convex 0-1 risk. The convex
risk function gives a huge computational advantage over non-convex risk functions
of Manski (1975, 1985) especially when the data is high-dimensional. The resulting
nonparametric classifier is more robust than the parametric classifiers whose perfor-
mance depends on the correct specification of the model. We show that the risk of
the classifier that Asymmetric AdaBoost produces approaches the Bayes risk which
is the infimum of risk that can be achieved by all classifiers. Monte Carlo experi-
ments show that the Asymmetric AdaBoost performs better than the commonly used
LASSO-regularized logistic regression when parametric assumption is violated and
sample size is large. We apply the Asymmetric AdaBoost to predict business cycle
turning points as in Ng (2014).

1 Introduction

Data with a large number of variables relative to the sample size, namely high-
dimensional data, are becoming more and more prevalent in empirical economics
as well as statistics and computer science. One of the most successful applications
of high-dimensional data in economics as well as other sciences is to construct em-
pirical models for the forecasting of binary outcomes and making binary decisions.
Examples in forecasting include predicting firm solvency, the legitimacy of credit
card transactions, directional forecasts of financial prices, whether a loan is paid
off or not, or whether an introduced foreign plant species will become invasive or
not. Such forecasts are often translated into decisions which are binary in character,
e.g. the loan is granted or it is not, the student is admitted to the school or not, the
candidate is hired or not hired, the surgery is undertaken or it is not, importation of
a foreign plant species is allowed or not. Various traditional statistical approaches to
binary classification are available in the literature, from discriminant analysis, logit
or probit models to less parametric estimates of the conditional probability model for
the outcome variable such as semiparametric single-index models (Ichimura, 1993;
Klein and Spady, 1993).

Typically, most estimation techniques used for binary classification do not make
use of the loss function implicit in the underlying decision/prediction problem. For
example logit and probit models are estimated to maximize the likelihood of the
model, irrespective of the relative usefulness of true positives or true negatives.
Nonparametric methods seek the best fit for the conditional probability based on the
loss function (typically squared error) rather than the appropriate loss function for
the decision problem. In most applications, the relative costs of making errors, false
negatives and false positives, are rarely balanced in the way that could be used to
motivate these approaches. In detecting credit card fraud, “wasting” resources on
checking that the customer has control over their credit card is perhaps less costly
than failing to do so when their credit card number has been stolen. Elliott and Lieli
(2013) point out that even with local misspecifications that are difficult to detect using
standard specification tests, parametric models of the conditional probability of a
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positive outcome can perform arbitrarily poorly when the loss function is ignored at
the estimation stage. They further propose the “maximum utility estimator” which is
a semiparametric method that requires far less information to attain maximal utility,
and through the utilization of the loss function at the estimation stage has useful
properties given any misspecification. The maximum utility estimator builds upon
and extends results of Manski (1975, 1985).

The goals of this paper are (1) to relate the AdaBoost to a binary choice re-
gression model, (2) to develop the novel asymmetric version of the AdaBoost from
the decision theoretic point of view, and (3) to show how the new method, the
Asymmetric AdaBoost can be useful to implement the traditional maximum score
estimation of binary classification problems when the covariates (regressors) are in
high-dimension.

This paper extends the method of Manski (1975, 1985) and Elliott and Lieli (2013)
to high-dimensional data and model misspecification in the order of predictors. We
consider the prediction of a binary variable 𝑦 ∈ {1,−1}, e.g. 𝑦 = 1 if the economy
is in expansion and 𝑦 = −1 if the economy is in recession. Let 𝐺 (𝑥) be a classifier
of 𝑦. This paper investigates the problem of classification/prediction that minimizes
a weighted (asymmetric) misclassification probability

𝑅𝜏 (𝐺) = E
[
𝜏(𝑥) × 1(𝑦=−1,𝐺 (𝑥 )=1) + (1 − 𝜏(𝑥)) × 1(𝑦=1,𝐺 (𝑥 )=−1)

]
= E𝑥 [𝜏(𝑥) Pr(𝑦 = −1, 𝐺 (𝑥) = 1|𝑥) + (1 − 𝜏(𝑥)) Pr(𝑦 = 1, 𝐺 (𝑥) = −1|𝑥)],

where the first expectation is taken over 𝑦 and 𝑥, and the symbol 1( ·) is the indicator
function which takes the value 1 if the logical conditions inside the parenthesis are
satisfied and takes the value 0 otherwise. 𝜏(𝑥) is a utility-based weight function that
assigns different penalties conditioning on the state variable 𝑦 and characteristics
𝑥 as shown in Section 3. In addition, we allow the characteristics 𝑥 to be high-
dimensional, and both the conditional distribution of 𝑦 given 𝑥 and the functional
form of the classifier 𝐺 (𝑥) to be of unknown forms.

We propose a nonparametric method which minimizes an asymmetric exponen-
tial loss via functional gradient descent and builds a strong (optimal) classifier by
iteratively combining weak classifiers. The resulted strong classifier can encamps a
large class of functions even if the weak classifiers are restricted to a given parametric
form. Moreover, we use component-wise algorithm and select only one predictor at
each iteration to overcome the issue of high-dimensionality.

There are some prediction problems that do not fit the framework examined here. A
forecaster providing forecasts that might be used by a number of different users might
not consider the loss function. For example a weather forecaster providing a forecast
of whether or not it might rain might simply report an estimate of the conditional
probability of rain and let different users interpret the information differently. We
will also rule out feedback of the prediction to the conditional probability of the event
to be predicted, which means that the methods are not appropriate for predictions
of outcomes where there is this type of feedback. Such feedback occurs for example
in predicting success of job training programs, where entry to the program affects
the chance of getting a job. However a myriad of problems are not ruled out,
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where the prediction is not important for the distribution of the outcomes and the
econometrician is willing to elicit a loss function.

The rest of the paper is organized as follows. Section 2 introduces the binary
choice model and the maximum score approach. Section 3 relate the binary clas-
sification problem with decision theory. In Section 4, we look into the problem of
prediction with state-dependent losses and introduce a new “asymmetric exponential
risk” function based on the utility functions. We also propose a new algorithm that
minimizes the “asymmetric exponential risk” and builds up a nonparametric classi-
fier. In Section 5, we examine the finite sample properties of Asymmetric AdaBoost
via Monte Carlo simulations. Section 6 predicts business cycle turning points as in
Ng (2014). Section 7 concludes. All technical derivations and proofs are presented
in the Appendix.

2 Maximum Score Estimation of Binary Choice Regression
Models

In this paper, we consider the binary choice model given by

𝑦 =

{
1 if 𝜙(𝑥) ≥ 𝜖

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(1)

where 𝜙(·) is an unknown function, 𝑥 is a vector of predictors, 𝜖 is a random
disturbance. We assume that observations {𝑥𝑖 , 𝑦𝑖} are independently and identically
distributed. However, we do not require any prior knowledge on the functional form
of 𝜙(·) or the distribution of 𝜖 .

Manski (1975) proposes to obtain a classifier 𝐺 (𝑥) ∈ {1,−1} by maximizing the
“score”

max 𝑆(𝐺) = E [𝑦𝐺 (𝑥)] , (2)

which is called the maximum score approach. Note that

E [𝑦𝐺 (𝑥) |𝑥] = [Pr(𝑦 = 1|𝑥) − Pr(𝑦 = −1|𝑥)] 𝐺 (𝑥). (3)

Hence, 𝐺 (𝑥) should take the same sign as Pr(𝑦 = 1|𝑥) − Pr(𝑦 = −1|𝑥) when (2) is
maximized, i.e.

𝐺∗ (𝑥) =
{

1 Pr(𝑦 = 1|𝑥) > Pr(𝑦 = −1|𝑥)
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(4)

or equivalently,

𝐺∗ (𝑥) =
{

1 Pr(𝑦 = 1|𝑥) > 0.5
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)
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Remark 1. We refer to the problem and the risk function in this section as “sym-
metric” since the optimal decision rule is Pr(𝑦 = 1|𝑥) > 0.5. Similarly, we refer to
the risk functions in Section 4 as “asymmetric” since the the optimal decision rule
is not Pr(𝑦 = 1|𝑥) > 0.5.

Note that the score function (2) is a linear transformation of the misclassification
probability (1) with 𝜏 = 0.5,

𝑆(𝐺) = E[𝑦𝐺 (𝑥)] = −4 × E
[
1
2
× 1(𝐺 (𝑥 )≠𝑦)

]
+ 1 = −4 × 𝑅0.5 (𝐺) + 1. (6)

Hence, the maximum score approach is equivalent to minimizing the symmetric
misclassification probability.
Remark 2. Note that the risk function (1) is often referred to as the 0-1 risk since the
indicator function takes value 1 when the classification is wrong and 0 otherwise.
We would use these names interchangeably with the negative score function used in
the maximum score approach in the rest of the paper.

From (5), the optimal maximum score classifier, also known as the Bayes classifier,
makes classification based on the condition Pr(𝑦 = 1|𝑥) > 0.5. The Bayes classifier
achieves the “Bayes risk”

𝑅∗0.5 = inf
𝐺

𝑅0.5 (𝐺) = Emin
{

1
2

Pr (𝑦 = 1|𝑥) , 1
2

Pr (𝑦 = −1|𝑥)
}
, (7)

where the infimum is taken over all possible (measurable) classifiers.
The maximum score approach yields a classifier that minimizes the misclassifi-

cation probability (1) with 𝜏 = 0.5. It is superior to many other popular methods,
e.g. probit and logit models, in the sense that it does not have to assume that 𝑦 given
𝑥 follows a given distribution. However, there are some limitations: The classifier is
assumed to take the form 𝐺 (𝑥) = sign[𝑥′𝛽], i.e., the optimal classifier is the sign of
a linear function.

3 Decision Theory for Binary Prediction/Classification

In a more general case, it may not be optimal to use Pr(𝑦 = 1|𝑥) > 0.5 as the
threshold. Granger and Pesaran (2000) discuss the idea of using decision theory to
evaluate classification/prediction accuracy in a two-state two-action decision prob-
lem. Assume the payoff matrix is

𝑦 = 1 𝑦 = −1
𝐺 (𝑥) = 1 𝑢1,1 (𝑥) 𝑢1,−1 (𝑥)
𝐺 (𝑥) = −1 𝑢−1,1 (𝑥) 𝑢−1,−1 (𝑥)

(8)

where 𝑢𝑖, 𝑗 (𝑥) is the state dependent utility of making prediction 𝑖 when the realized
value is 𝑗 under circumstances 𝑥. Without loss of generality, we assume that 𝑢1,1 (𝑥)−
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𝑢−1,1 (𝑥) + 𝑢−1,−1 (𝑥) − 𝑢1,−1 (𝑥) = 1. It is natural to also assume that all utilities
are bounded and taking the correct decision 𝑖 corresponding to realized state 𝑗 is
beneficial: 𝜏(𝑥) ≡ 𝑢1,1 (𝑥) −𝑢−1,1 (𝑥) > 0 and 1− 𝜏(𝑥) ≡ 𝑢−1,−1 (𝑥) −𝑢1,−1 (𝑥) > 0.

The optimal classification/prediction is𝐺 (𝑥) = 1 if the expected utility of𝐺 (𝑥) =
1 is greater than 𝐺 (𝑥) = −1:

Pr (𝑦 = 1|𝑥) 𝑢1,1 (𝑥) + Pr (𝑦 = −1|𝑥) 𝑢1,−1 (𝑥)
>Pr (𝑦 = 1|𝑥) 𝑢−1,1 (𝑥) + Pr (𝑦 = −1|𝑥) 𝑢−1,−1 (𝑥) .

Hence, 𝐺 (𝑥) = 1 if

Pr (𝑦 = 1|𝑥) >
(
𝑢−1,−1 (𝑥) − 𝑢1,−1 (𝑥)

)
= 1 − 𝜏 (𝑥) , (9)

is the sufficient condition for 𝐺 (𝑥) = 1 to be the optimal classification/decision.
Setting the losses as negative utilities, the above problem can be written as

minimizing a state-dependent risk function as follows:

𝑅𝜏 (𝐺) = E
(
𝑡 (𝑦, 𝑥) 1(−𝑦𝐺 (𝑥 )>0)

)
, (10)

where

𝑡 (𝑦, 𝑥) =
{
𝜏(𝑥) 𝑦 = 1
1 − 𝜏(𝑥) 𝑦 = −1

(11)

is a non-negative function of outcome variable 𝑦 and characteristics 𝑥. Similarly, we
denote the risk of classification using the optimal decision rule (9)

𝑅∗𝜏 = inf
𝐺

𝑅𝜏 (𝐺 (𝑥)) = E{min[𝑡 (1, 𝑥) Pr(𝑦 = 1|𝑥), 𝑡 (−1, 𝑥) Pr(𝑦 = −1|𝑥)]} (12)

as the Bayes risk which is the minimal risk that can be achieved. The risk function
(10) is essentially the same as the misclassification probability (1) with argument
𝐹 ∈ R instead of 𝐺 ∈ {1,−1}. As we have shown before, the misclassification
probability, namely the 0-1 risk, is a linear transformation of the risk function used
in the maximum score approach.

The optimal classifier

𝐺∗𝜏 (𝑥) =
{

1 Pr(𝑦 = 1|𝑥) > 1 − 𝜏(𝑥)
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(13)

uses the classification rule (9) that is a function of the state-dependent utilities of the
economic agent and achieves the Bayes risk (12).2

2 Manski (1975, 1985) propose the maximum score estimator to solve the above binary classification
problem from minimizing a linear transformation of the score risk

max
𝐺

𝐸 (𝑡 (𝑦, 𝑥 )𝑦𝐺 (𝑥 ) ) . (14)

Elliott and Lieli (2013) also use a similar estimator which they call the maximum utility estimator.
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Remark 3. We refer to the binary classification/prediction problem with state-
dependent losses as asymmetric since the optimal classification rule is Pr(𝑦 =

1|𝑥) > 1− 𝜏(𝑥), i.e. the threshold is 1− 𝜏(𝑥) instead of 0.5 as in the symmetric case.
We note that the traditional maximum score estimation in econometrics would

experience difficulties because of the non-convexity of the loss function and the high
dimensionality of predictors. To resolve these difficulties, we introduce a new method
of Asymmetric AdaBoost which optimizes a convex surrogate of the non-convex loss
function, as we now discuss in the following section.

4 Asymmetric Exponential Loss

The score risk (10) is non-convex which lead to high computation cost especially
when the sample size is large and/or covariates are high-dimensional. In this section,
we introduce a new risk function, namely the asymmetric exponential risk, for solv-
ing binary classification/prediction under state-dependent losses. We also propose a
new algorithm, that we call the Asymmetric AdaBoost, which produces a nonpara-
metric classifier by minimizing the asymmetric exponential risk. Our new algorithm
is computationally efficient and is able to handle binary classification/prediction
problem with high-dimensional covariates.

4.1 Maximum Score

Before we introduce our convex surrogate risk function, we first point out that it is a
common practice to assume that the binary classifier 𝐺 (𝑥) in (2) is taking the sign
of a real valued function, i.e. 𝐺 (𝑥) = sign[𝐹 (𝑥)] where 𝐹 (𝑥) ∈ R. Manski (1975)
assumes that 𝐺 (𝑥) = sign[𝑥′𝛽] where the function 𝐹 (𝑥) = 𝑥′𝛽 is linear in 𝑥. It is
worth noting that we do not impose the linearity assumption or any other parametric
assumption in our method. Hence, the classifier is nonparametric. However, without
loss of generality, we also assume 𝐺 (𝑥) = sign[𝐹 (𝑥)]. Note that this assumption
does not jeopardize the generality of our classifier as long as the inner function 𝐹 (𝑥)
is flexible enough.

Replace 𝐺 (𝑥) with sign[𝐹 (𝑥)], then (10) becomes

𝑅𝜏 (sign[𝐹 (𝑥)]) = E
(
𝑡 (𝑦, 𝑥) 1(−𝑦 sign[𝐹 (𝑥 ) ]>0)

)
= E

(
𝑡 (𝑦, 𝑥) 1(−𝑦𝐹 (𝑥 )>0)

)
, (15)

where

𝑡 (𝑦, 𝑥) =
{
𝜏(𝑥) 𝑦 = 1
1 − 𝜏(𝑥) 𝑦 = −1.

(16)

It is interesting to find that in (15) the latter equality shows the equivalence of using
the score, 𝑦 sign[𝐹 (𝑥)] ∈ {−1, 1} and using which is called the margin in the machine
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learning literature, 𝑦𝐹 (𝑥) ∈ R. From Figure 1, it is easy to see that the risk function
(15) is non-convex since it includes the indicator function 1(−𝑦𝐹 (𝑥 )>0) . The non-
convexity would lead to high computation costs and greatly limit the applicability
of the risk function especially when the sample size is large and/or the data is
high-dimensional.

4.2 Convex Surrogate

Bartlett, Jordan, and McAuliffe (2006) discuss the “convex relaxation” of non-convex
risk functions commonly used in the classification literature. It is possible to use the
exponential function

𝜓(𝑥) = 𝑒−𝑦𝐹 (𝑥 ) , (17)

as used in AdaBoost as a convex surrogate of the non-convex indicator function of
the margin 1(−𝑦𝐹 (𝑥 ) )>0. To solve the non-convex optimization problem, we propose
to use a new risk function, the asymmetric exponential risk,

𝑅𝜓,𝜏 (𝐹) = E
(
𝑡 (𝑦, 𝑥)𝑒−𝑦𝐹 (𝑥 )

)
, (18)

which is a convex surrogate of the score risk (10). Similarly, let us denote the optimal
asymmetric exponential risk as

𝑅∗𝜓,𝜏 = inf
𝐹

𝑅𝜓,𝜏 (𝐹) . (19)

The asymmetric exponential risk replaces the non-convex indicator function in the
risk (10) with the convex exponential function. As shown in Figure 1, the asymmetric
exponential risk (18) is a convex upper bound of the risk (10).

Note that the optimal classifier from minimizing the asymmetric exponential risk
(18) also uses Pr(𝑦 = 1|𝑥) > 1 − 𝜏(𝑥) for the classification rule as in (13). Take the
derivative of

𝑅𝜓,𝜏 (𝐹 (𝑥)) = E
[
E

(
𝑡 (𝑦, 𝑥)𝑒−𝑦𝐹 (𝑥 ) |𝑥

)]
= E

[
𝜏(𝑥) Pr (𝑦 = 1|𝑥) 𝑒−𝐹 (𝑥 ) + (1 − 𝜏(𝑥)) Pr (𝑦 = −1|𝑥) 𝑒𝐹 (𝑥 )

]
.

w.r.t. 𝐹 (𝑥) and making it equal to zero, we obtain

𝜕𝑅𝜓,𝜏 (𝐹 (𝑥))
𝜕𝐹 (𝑥) = −𝜏(𝑥) Pr (𝑦 = 1|𝑥) 𝑒−𝐹 (𝑥 ) + (1 − 𝜏(𝑥)) Pr (𝑦 = −1|𝑥) 𝑒𝐹 (𝑥 ) = 0.

(20)

Hence,

𝐹∗𝜏 (𝑥) =
1
2

log
[

𝜏(𝑥) Pr (𝑦 = 1|𝑥)
(1 − 𝜏(𝑥)) Pr (𝑦 = −1|𝑥)

]
. (21)
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Algorithm 1 Asymmetric AdaBoost
1. Start with weights 𝑤𝑖 = 𝑡 (𝑦𝑖 , 𝑥𝑖 ) , 𝑖 = 1, . . . , 𝑛, and normalize so that

∑𝑁
𝑖=1 𝑤𝑖 = 1.

2. For 𝑚 = 1 to 𝑀

a. Fit the classifier 𝑓𝑚 (𝑥 ) ∈ {−1, 1} using weights 𝑤𝑖 on the training data.
b. Compute 𝑒𝑟𝑟𝑚 = E𝑤 [1𝑦≠ 𝑓𝑚 (𝑥) ], 𝑐𝑚 = log

(
1−𝑒𝑟𝑟𝑚
𝑒𝑟𝑟𝑚

)
.

c. Set 𝑤𝑖 ← 𝑤𝑖 exp[−𝑐𝑚𝑦𝑖 𝑓𝑚 (𝑥𝑖 ) ], 𝑖 = 1, . . . , 𝑛, and normalize so that
∑𝑛

𝑖=1 𝑤𝑖 = 1.

3. Output the classifier from the sign of 𝐹𝑀 (𝑥 ) =
∑𝑀

𝑚=1 𝑐𝑚 𝑓𝑚 (𝑥 ) , sign[𝐹𝑀 (𝑥 ) ].

Moreover, the optimal classifier sign[𝐹∗ (𝑥)] follows the classification rule Pr(𝑦 =

1|𝑥) > 1 − 𝜏(𝑥) as in (13) since 𝜏(𝑥) Pr (𝑦 = 1|𝑥) > (1 − 𝜏(𝑥)) Pr (𝑦 = −1|𝑥) if
Pr(𝑦 = 1|𝑥) > 1 − 𝜏(𝑥).

In fact, the excess misspecification probability, 𝑅𝜏 (sign[𝐹]) − 𝑅∗𝜏 , is bounded
from above by the excess asymmetric exponential risk, 𝑅𝜓,𝜏 (𝐹) − 𝑅∗

𝜓,𝜏
. Hence,

the excess misspecification probability would go to zero as the excess asymmetric
exponential risk goes to zero. Solving the convex surrogate problem 𝑅𝜓,𝜏 would
solve the maximum score problem 𝑅𝜏 that is widely used in decision theory such as
the two-state two-action decision problem mentioned before. Therefore, we replace
the non-convex risk function with a convex surrogate which could be minimized
more efficiently and provide improvement with large samples and high-dimensional
data.

4.3 Asymmetric AdaBoost as Newton-like Optimization

In this section, we introduce a new numerical algorithm that is able to efficiently
solve the convex surrogate problem, which we call the Asymmetric AdaBoost. We
use functional gradient descent to produce a nonparametric classifier. In addition,
our algorithm can handle high-dimensional covariates. The algorithm is shown in
Algorithm 1.

Algorithm 1 builds an additive regression model 𝐹𝑀 (𝑥) via Newton-like updates
for minimizing the asymmetric exponential risk (18). A detailed comparison of the
Asymmetric AdaBoost algorithm and Newton-like minimization via the functional
gradient descent is provided in shown below.

We follow the steps of Friedman et al. (2000) and start with the asymmetric
exponential risk function

𝑅𝜓,𝜏 (𝐹 (𝑥)) = E
(
𝑡 (𝑦, 𝑥) 𝑒−𝑦𝐹 (𝑥 )

)
. (22)

First, we look for the optimal 𝑓𝑚+1 (𝑥) for each iteration. Suppose we have finished
𝑚 iterations, the current classifier is denoted as 𝐹𝑚 (𝑥) =

∑𝑚
𝑠=1 𝑐𝑠 𝑓𝑠 (𝑥). In the next

iteration, we are seeking an update 𝑐𝑚+1 𝑓𝑚+1 (𝑥) for the function fitted in previous
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iterations 𝐹𝑚 (𝑥). The updated classifier would be

𝐹𝑚+1 (𝑥) = 𝐹𝑚 (𝑥) + 𝑐𝑚+1 𝑓𝑚+1 (𝑥) . (23)

The risk for the updated classifier is

𝑅𝜓,𝜏 (𝐹𝑚 (𝑥) + 𝑐𝑚+1 𝑓𝑚+1 (𝑥)) = E
(
𝑡 (𝑦, 𝑥) 𝑒−𝑦 (𝐹𝑚 (𝑥 )+𝑐𝑚+1 𝑓𝑚+1 (𝑥 ) )

)
. (24)

Expand (24) w.r.t. 𝑓𝑚+1 (𝑥)

E
(
𝑡 (𝑦, 𝑥) 𝑒−𝑦 (𝐹𝑚 (𝑥 )+𝑐𝑚+1 𝑓𝑚+1 (𝑥 ) )

)
(25)

≈ E

(
𝑡 (𝑦, 𝑥) 𝑒−𝑦𝐹𝑚 (𝑥 )

(
1 − 𝑦𝑐𝑚+1 𝑓𝑚+1 (𝑥) +

𝑦𝑐2
𝑚+1 𝑓

2
𝑚+1 (𝑥)

2

))
(26)

= E

(
𝑡 (𝑦, 𝑥) 𝑒−𝑦𝐹𝑚 (𝑥 )

(
1 − 𝑦𝑐𝑚+1 𝑓𝑚+1 (𝑥) +

𝑐2
𝑚+1
2

))
, (27)

since 𝑦2 = 𝑓 2
𝑚+1 (𝑥) = 1 holds for all 𝑦 and 𝑓𝑚+1 (𝑥). Only the second term in the

bracket contains 𝑓𝑚+1 (𝑥), so minimizing the above risk function w.r.t. 𝑓𝑚+1 (𝑥) is
equivalent to maximizing the following expectation

max
𝑓

E
(
𝑒−𝑦𝐹𝑚 (𝑥 ) 𝑡 (𝑦, 𝑥) 𝑦 𝑓𝑚+1 (𝑥) |𝑥

)
, (28)

for any 𝑐𝑚+1 > 0. Then we re-write the above maximization as

max
𝑓

E𝑤 (𝑡 (𝑦, 𝑥) 𝑦 𝑓𝑚+1 (𝑥) |𝑥) . (29)

Here the notation E𝑤(·|𝑥) refers to a weighted conditional expectation, where 𝑤 ≡
𝑤(𝑥, 𝑦) ≡ 𝑒−𝑦𝐹𝑚 (𝑥 ) , and

E𝑤 (𝑔(𝑥, 𝑦) |𝑥) :=
E (𝑤(𝑥, 𝑦)𝑔(𝑥, 𝑦) |𝑥)

E (𝑤(𝑥, 𝑦) |𝑥) . (30)

We solve the maximization problem

max
𝑓

E𝑤 (𝑡 (𝑦, 𝑥) 𝑦 𝑓𝑚+1 (𝑥) |𝑥) (31)

= 𝑃𝑤 (𝑦 = 1|𝑥) 𝑡 (1, 𝑥) 𝑓𝑚+1 (𝑥) − 𝑃𝑤 (𝑦 = −1|𝑥) 𝑡 (−1, 𝑥) 𝑓𝑚+1 (𝑥) (32)
= [𝑃𝑤 (𝑦 = 1|𝑥) 𝑡 (1, 𝑥) − 𝑃𝑤 (𝑦 = −1|𝑥) 𝑡 (−1, 𝑥)] 𝑓𝑚+1 (𝑥) , (33)

by taking 𝑓𝑚+1 (𝑥) the same sign as 𝑃𝑤 (𝑦 = 1|𝑥) 𝑡 (1, 𝑥) − 𝑃𝑤 (𝑦 = −1|𝑥) 𝑡 (−1, 𝑥).
Thus,

𝑓𝑚+1 (𝑥) =
{

1, 𝑃𝑤 (𝑦 = 1|𝑥) 𝑡 (1, 𝑥) − 𝑃𝑤 (𝑦 = −1|𝑥) 𝑡 (−1, 𝑥) > 0
−1, otherwise.

(34)
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Next, we look for the optimal learning rate 𝑐𝑚+1 for each iteration. The optimal
learning rate is also related to the weight function 𝑡 (𝑦, 𝑥). The summary of our
findings is shown in Theorem 1.

Theorem 1. The optimal learning rate 𝑐𝑚+1 in Algorithm 1 is

𝑐𝑚+1 =
1
2

log
(

TP × 𝑡 (1, 𝑥) + TN × 𝑡 (−1, 𝑥)
FN × 𝑡 (1, 𝑥) + FP × 𝑡 (−1, 𝑥)

)
=

1
2

log
(

1 − 𝑒𝑟𝑟𝑚+1
𝑒𝑟𝑟𝑚+1

)
, (35)

where 𝑒𝑟𝑟𝑚+1 = E𝑤

(
𝑡 (𝑦, 𝑥) × 1(𝑦≠ 𝑓𝑚+1 (𝑥 ) )

)
, 𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = 1) is the rate

of true positive (TP), 𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = −1) is the rate of true negative (TN),
𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = −1) is the rate of false negative (FN),𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = 1)
is the rate of false positive (FP).

Proof. See Appendix 8.1. ⊓⊔

When choosing the optimal learning rate, Algorithm 1 penalizes False Positive
and False Negative classifications differently according to the weight function 𝑡 (𝑦, 𝑥)
which is related to the utilities as shown in (11). Hence, the classifier produced would
maximize the utilities in the classification problem.
Remark 4. The existing symmetric AdaBoost algorithm starts with 𝑤𝑖 =

1
𝑛

in Step
1 and the optimal learning rate does not penalize 𝐹𝑁 and 𝐹𝑃 differently.

Last, we update the current classifier and get ready for the next iteration. In the
next iteration, we have

𝐹𝑚+1 (𝑥) ← 𝐹𝑚 (𝑥) + 𝑐𝑚+1 𝑓𝑚+1 (𝑥) . (36)

Hence,

𝑤𝑚+1 = 𝑒−𝑦𝐹𝑚+1 (𝑥 ) (37)
= 𝑒−𝑦 (𝐹𝑚 (𝑥 )+𝑐𝑚+1 𝑓𝑚+1 (𝑥 ) ) (38)
= 𝑤𝑚 × 𝑒−𝑐𝑚+1𝑦 𝑓𝑚+1 (𝑥 ) , (39)

is of identical form as the Newton-like functional gradient descent as shown by
Friedman et al. (2000).

4.4 Component-wise Asymmetric AdaBoost

We now provide a version of the Asymmetric AdaBoost which is able to deal with
high-dimensional data which we call the Component-wise Asymmetric AdaBoost.
The algorithm is shown in Algorithm 2.
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Algorithm 2 Component-wise Asymmetric AdaBoost
1. Start with weights 𝑤𝑖 = 𝑡 (𝑦𝑖 , 𝑥𝑖 ) , 𝑖 = 1, . . . , 𝑛, and normalize so that

∑𝑁
𝑖=1 𝑤𝑖 = 1.

2. For 𝑚 = 1 to 𝑀

a. For 𝑗 = 1 to 𝑘 (for each predictor)
i. Fit the classifier 𝑓𝑚𝑗 (𝑥𝑖 𝑗 ) ∈ {−1, 1} using weights 𝑤𝑖 .

ii. Compute 𝑒𝑟𝑟𝑚𝑗 =
∑𝑛

𝑖=1 𝑤𝑖1(𝑦𝑖≠ 𝑓𝑚𝑗 (𝑥𝑖 𝑗 ) ) .

iii. Compute 𝑐𝑚𝑗 =
1
2 log

(
1−𝑒𝑟𝑟𝑚𝑗

𝑒𝑟𝑟𝑚𝑗

)
.

b. Find 𝑗𝑚 = arg min 𝑗

∑
𝑤𝑖𝑒

−𝑐𝑚𝑗 𝑦𝑖 𝑓𝑚𝑗 (𝑥𝑖 𝑗 ) .
c. Set 𝑤𝑖 ← 𝑤𝑖 exp[−𝑐𝑚𝑗 𝑦𝑖 𝑓𝑚𝑗

(
𝑥𝑖 𝑗

)
], 𝑖 = 1, . . . , 𝑛, and normalize so that

∑𝑛
𝑖=1 𝑤𝑖 = 1.

3. Output the classifier from the sign of 𝐹𝑀 (𝑥 ) =
∑𝑀

𝑚=1 𝑐𝑚 𝑓𝑚𝑗𝑚
(𝑥 𝑗𝑚
) , sign[𝐹𝑀 (𝑥 ) ].

Remark 5. For the selection of the number of iterations 𝑀 , a widely used method
in the boosting literature is cross-validation. Here we can divide the whole sample
into several sections, then take turns to use one section as test sample to evaluate
the obtained model while using the other sections as training sample. In the end,
we choose the number of iteration that has the least cross-validation loss. Another
choice is to use information criterion, e.g. AICc. The exponential loss can be linked
with log-likelihood of logistic models as in Ng (2014).

The Component-wise Asymmetric AdaBoost algorithm uses one predictor at a
time to fit a weak classifier 𝑓𝑚𝑗 (𝑥 𝑗 ). In the end, the algorithm produces a strong classi-
fier 𝐹𝑀 (𝑥) by combining all the weak classifiers that uses different predictors. Hence,
the Component-wise Asymmetric AdaBoost overcomes the high-dimensional data
problem by selecting only one predictor in each iteration and combining the weak
classifiers across iterations. Moreover, the resulted strong classifier is a weighted
sum of weak classifiers which is not required to satisfy any parametric assumption.

4.5 Asymmetric AdaBoost is Consistent

As in the previous sections, from the use of a convex risk function, Algorithm
2 is computationally more efficient. Moreover, since the convex exponential risk
(18) is differentiable, Algorithm 2 uses functional gradient descent to minimize the
asymmetric exponential risk which will produce a classifier with larger flexibility.
Next, we show that Algorithm 2 is consistent in the sense that the risk of the classifier
obtained will converge to the optimal asymmetric exponential risk as the sample size
goes to infinity.

Theorem 2. Let the assumptions in Bartlett and Traskin (2007) be satisfied. Then
Algorithm 2 stopped at iteration 𝑀𝑛 = 𝑛1−𝜖 where 𝜖 ∈ (0, 1) returns a sequence of
classifiers 𝐹𝑀𝑛

almost surely satisfying

𝑅𝜓,𝜏

(
sign[𝐹𝑀𝑛

]
)
→ 𝑅∗𝜓,𝜏 as 𝑛→∞. (40)
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Proof. It is a generalization of Bartlett and Traskin (2007) to the asymmetric expo-
nential risk. ⊓⊔

Theorem 2 shows that the classifier produced by Algorithm 2 will minimize the
exponential risk (18). Hence, Asymmetric AdaBoost is consistent in terms that the
risk of the produced classifier is minimized.

In addition, we generalize the convex relaxation result of Bartlett, Jordan, and
McAuliffe (2006) for the asymmetric exponential risk.
Theorem 3. If (40) holds, then lim𝑛→∞ 𝑅𝜏 (sign[𝐹𝑀𝑛

]) = 𝑅∗𝜏 .

Proof. See Appendix 8.2. ⊓⊔

In other words, in addition to minimizing the exponential risk, the classifier
produced by Algorithm 2 will achieve the Bayes risk (12), hence, solve the maximum
score regression. Algorithm 2 is able to solve binary classification/prediction problem
with state-dependent losses while maintaining the computational advantage and the
flexibility of the functional form.

5 Monte Carlo

In this section, we examine the finite sample properties of the Asymmetric AdaBoost
via Monte Carlo simulations and compare its performance with the Logistic Regres-
sion with LASSO-penalty. We consider the binary decision problem in Section 3
with 𝜏(𝑥) = 𝜏.

5.1 DGPs

We construct the following high-dimensional DGPs where 𝑦 follows Bernoulli dis-
tribution and 𝑥 is high-dimensional. All the DGPs satisfy the sparsity assumption
that most of the 𝑥’s are completely irrelevant or have negligible influence on 𝑦.

DGP1 (Linear Logistic Models):

Pr (𝑦 = 1|𝑥) = 1
1 + 𝑒−𝑣 .

Let 𝑥 be a 𝑝 × 1 vector.

𝑣 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + · · · + 𝛽𝑝𝑥𝑝 ,

where

(𝑥1, 𝑥2, . . . , 𝑥𝑝)′ ∼ 𝑁
(
0, 𝐼𝑝

)
, 𝛽 𝑗 = 0.8 𝑗 , 𝑗 = 1, . . . , 𝑝

𝑛 = {100, 1000} , 𝑝 = 100.
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DGP1 is the classical logistic model where the probability of 𝑦 being 1 depends only
on a single index 𝑣 that is linear in 𝑥. This is the underlying model of the Logistic
Regression. Hence, we would expect that Logistic Regression would be the best in
DGP1. We construct DGP1 to give the most disadvantages to Asymmetric AdaBoost
when comparing with Logistic Regression.

DGP2 (Quadratic Logistic Models):

Pr (𝑦 = 1|𝑥) = 1
1 + 𝑒−𝑣 .

Let 𝑥 be a 𝑝 × 1 vector.

𝑣 = 𝛽2 (𝑥2
1 − 𝑥

2
2) + 𝛽3𝑥3 + · · · + 𝛽𝑝𝑥𝑝 ,

where

(𝑥1, 𝑥2, . . . , 𝑥𝑝)′ ∼ 𝑁
(
0, 𝐼𝑝

)
, 𝛽 𝑗 = 0.8 𝑗 , 𝑗 = 2, . . . , 𝑝

𝑛 = {100, 1000} , 𝑝 = 100.

DGP2 is a slight deviation from the classical logistic model in the sense that the single
index 𝑣 in the logistic model is not linear in 𝑥1 and 𝑥2. We take the difference of 𝑥2

1 and
𝑥2

2 so that the expectation of the single index 𝑣 is 0 and the unconditional probability
of 𝑦 = 1 is 0.5, i.e., the data is balanced. We will examine the performance of the
Asymmetric AdaBoost with unbalanced data in DGP4. Note that in the simulations,
we provide the two methods with 𝑥 of only the first order. Since the Asymmetric
AdaBoost does not depend on any parametric assumptions, we would like to check
the robustness of the Asymmetric AdaBoost and the sensitivity of the Logistic
Regression when the model is slightly misspecified.

DGP3 (Cubic Logistic Models):

Pr (𝑦 = 1|𝑥) = 1
1 + 𝑒−𝑣 .

Let 𝑥 be a 𝑝 × 1 vector.
𝑣 = 𝑥3

1 − 4𝑥1,

where

(𝑥1, 𝑥2, . . . , 𝑥𝑝)′ ∼ 𝑁
(
0, 𝐼𝑝

)
, 𝑛 = {100, 1000} , 𝑝 = 100.

In DGP3, we deviate further from the classical logistic model by having the single-
index 𝑣 to be a third-order polynomial of 𝑥1. DGP3 is to test the performance of the
Asymmetric AdaBoost and the Logistic Regression when the parametric assumptions
of the Logistic Regression are invalid.

DGP4 (Circle Model, Mease, Wyner, and Buja (2007)):
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Pr (𝑦 = 1|𝑥) =


1 𝑣 < 8
28−𝑣

20 8 ≤ 𝑣 ≤ 28
0 𝑣 > 28

.

Let 𝑥 be a 𝑝 × 1 vector.
𝑣 =

√︃
𝑥2

1 + 𝑥
2
2

where

𝑥 𝑗 ∼ U [−28, 28] , 𝑗 = 1, . . . , 𝑝
𝑛 = {100, 1000} , 𝑝 = 100.

The probability, Pr(𝑦 = 1|𝑥), in the DGP4 is shown in Figure 2. A major difference
between DGP4 and the other DGPs is that Pr(𝑦 = 1) ≈ 0.1 < 0.5 in DGP4. Hence,
the data is unbalanced, i.e. there are more events of 𝑦 = −1 than 𝑦 = 1. We have this
setup since in many situations we are more interested in predicting an event that is
less common than its complementary, e.g. recessions over expansions.

To construct the training and testing samples, we randomly generate 𝑥 using the
above distribution and calculate Pr (𝑦 = 1|𝑥). To generate the random variable 𝑦

based on 𝑥, we first generate a random variable 𝜖 that follows uniform distribution
between [0, 1]. Next, we compare 𝜖 with Pr (𝑦 = 1|𝑥). There is a probability of
Pr (𝑦 = 1|𝑥) that 𝜖 is smaller than Pr (𝑦 = 1|𝑥) and a probability 1 − Pr (𝑦 = 1|𝑥)
otherwise. Hence, we set

𝑦 =

{
1 Pr (𝑦 = 1|𝑥) > 𝜖

−1 Pr (𝑦 = 1|𝑥) < 𝜖.
(41)

To evaluate the algorithms, first we train our classifier with the training data of
size 𝑛 = {100, 1000}. Then, we use a testing dataset that contains 𝑛′ = 10000 new
observations to test the out-of-sample performance of the methods.

We report the following sample version of the 0-1 risk of the tested methods,

�̂�𝜏,𝑛′ (sign[𝐹]) = 𝜏

𝑛′

∑︁
𝑦𝑖=1

1(𝑦𝑖≠sign[𝐹 (𝑥𝑖 ) ] ) +
(1 − 𝜏)
𝑛′

∑︁
𝑦𝑖=−1

1(𝑦𝑖≠sign[𝐹 (𝑥𝑖 ) ] ) . (42)

We also report the sample Bayes risk as the benchmark for comparison,

�̂�∗𝜏,𝑛′ =
1
𝑛′

𝑛′∑︁
𝑖=1

min {𝜏 Pr (𝑦 = 1|𝑥𝑖) , (1 − 𝜏) Pr (𝑦 = −1|𝑥𝑖)} .

The above procedure is repeated for 1000 times and the average over the 1000
repetitions is reported in the tables.
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5.2 Alternative Method: Asymmetric Logistic Regression

Apart from Asymmetric AdaBoost, we consider the Logistic Regression as an alter-
native method to obtain a classifier of 𝑦. In the alternative method, we use 𝑌 =

𝑦+1
2

for simplification. Because of the high-dimensional construction of our problem, we
minimizes the negative logistic log-likelihood with a LASSO-penalty as below

𝛽 = arg min
𝛽
−

𝑛∑︁
𝑖=1

[
𝑌𝑖 (𝑥𝑖𝛽) − log

(
1 + 𝑒𝑥𝑖𝛽

)]
+ 𝜆 |𝛽 |1 . (43)

In particular, we use the standard glmnet package of Friedman et al. (2010) for the
Logistic Regression. We use the estimated 𝛽 to construct a logistic probability model
for 𝑦. Then, get the classifications by plugging the estimated logistic probability into
the Bayes classifier (13).

5.3 Results

The simulation results are reported in Tables 1 to 4. In Table 1, the DGP1 is a
linear logistic model. In this case, the Logistic Regression has absolute advantage
over Asymmetric AdaBoost both when 𝑛 is small and large. This is expected since
logistic regression has the correct parametric assumption in this case which is in-
feasible in practice. However, even in this case, we see that the advantage of the
Logistic Regression over the Asymmetric AdaBoost is limited and as the sample
size increases, the loss of the Asymmetric AdaBoost converges to the sample Bayes
risk which suggests that the Asymmetric AdaBoost is consistent.

In Table 2, the DGP2 is still the logit model. Hence, the Logistic Regression still
has inherited advantages over the Asymmetric AdaBoost. However, we introduce a
small deviation from DGP1 by letting the single index, 𝑣, in the logistic function be
quadratic in 𝑥1 and 𝑥2. In this case, the logistic regression is partially biased since it
assumes that the single index is a linear function of the covariates. When 𝑛 is small,
we see that the results are neck and neck. The Asymmetric AdaBoost works better
when 𝜏 is close to 0.5 and the logistic regression works better when 𝜏 is away from
0.5. This is expected as our method is nonparametric and nonparametric methods
generally perform worse in the tails when samples in the area are few. Moreover,
Logistic Regression is also not highly biased. Both methods are far behind the Bayes
risk since the Asymmetric AdaBoost without parametric assumption has larger
variance and the logistic regression with wrong parametric assumption is biased.

When the sample size increases, the Asymmetric AdaBoost have smaller variance
and the losses are closer to the sample Bayes risk. The Logistic Regression, on the
other hand, is still biased and has higher losses than the Asymmetric AdaBoost
except in the two far tails. This shows that the Asymmetric AdaBoost that produces
a nonparametric classifier will suffer from higher variance if the sample size is
small. But, as the sample size increases, the Asymmetric AdaBoost will produce an
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unbiased classifier and achieve lower losses than logistic regression which is biased
even if the true model only deviates slightly from the parametric assumptions of the
Logistic Regression.

In Table 3, the DGP3 deviates further from the classical logistic model. The
Asymmetric AdaBoost performs strictly better than the Logistic Regression. When
𝑛 is small, we see that the Asymmetric AdaBoost outperforms the Logistic Regres-
sion except in the two tails (𝜏 = 0.1 and 𝜏 = 0.9) where insufficient samples are
available. This is a general limitation of all nonparametric methods since nonpara-
metric methods. However, the performance of the Asymmetric AdaBoost surpasses
the Logistic Regression in the tails when the sample size become larger. In practice,
when the true DGP is not the logistic model, the Asymmetric AdaBoost is definitely
more reliable.

In Table 4, the DGP4 is unbalanced. The event 𝑦 = 1 is significantly fewer than
𝑦 = −1. We can see that the Asymmetric AdaBoost works better when the minority
of the events is penalized more heavily. The Asymmetric AdaBoost has lower losses
on the right-hand side where 𝑦 = 1 is penalized more heavily, and higher losses on
the left-hand side where 𝑦 = −1 is penalized more heavily. In the unbalanced DGP,
the Logistic Regression only focuses on the event that is the majority. However, the
Asymmetric AdaBoost still tries to model both events. Hence, if one is interested
in predicting the less common event, e.g. recession over expansion, the Asymmetric
AdaBoost will give lower losses as we will see in the application section. Moreover,
as the sample size increases, we see that the Asymmetric AdaBoost converges to
the Bayes risk on both sides and catches up with logistic regression on the left-hand
side.

In summary, the Asymmetric AdaBoost is consistent in the sense that the losses
of the classifier produced converges to the sample Bayes risk as the sample size
increases. Compared with the Logistic Regression, the Asymmetric AdaBoost is
more robust if the true DGP is not the logistic model especially when the sample size
if large. Moreover, the Asymmetric AdaBoost is better than the Logistic Regression
if one is more interested in predicting the less common events, such as recessions
over expansions, when the data is unbalanced.

6 Application

Our empirical application is motivated by Ng (2014), which is one of the first
papers in econometrics which use AdaBoost. We use a similar application to forecast
recession. However, our paper is different from her paper in that our paper developed
a new method of the “Asymmetric AdaBoost”, which incorporates the asymmetry in
the loss function between the false positive and false negative predictions, while Ng
(2014) used the standard symmetric AdaBoost which assumes the same loss for false
positive and false negative. We emphasize that the new method we introduce in this
paper can also have a lot of other interesting applications in economics, for example,
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as mentioned in Section 1, classifying a mountain of credit card transactions as
fraudulent or not.

In this section, we predict the NBER business cycle turning points using both the
Asymmetric AdaBoost and the Logistic Regression with LASSO-penalty. We use the
132 predictors from the data of Jurado, Ludvigson, and Ng (2015). After removing
the observations with missing values and taking the one, two and three lagged values
of each predictor and the dependent variable, the remained sample period ranges from
April 1964 to July 2011 with 568 observations and 399 predictors. We use a rolling
sample scheme and make three-period ahead predictions of economic recessions as
in Ng (2014). We use rolling sample size (𝑛) of 60, 120 and 240. The average losses
from all rolling samples under different degrees of asymmetry

�̂�𝜏,𝑛 (sign[𝐹]) = 𝜏

𝑛′

∑︁
𝑦𝑖=1

1(𝑦𝑖≠sign[𝐹 (𝑥𝑖 ) ] ) +
(1 − 𝜏)
𝑛′

∑︁
𝑦𝑖=−1

1(𝑦𝑖≠sign[𝐹 (𝑥𝑖 ) ] )

where 𝑛′ is the total number of rolling samples are reported in Table 5.
In the application, we see that the Asymmetric AdaBoost has smaller losses than

the Logistic Regression. Both the Asymmetric AdaBoost and the Logistic Regression
are consistent in the sense that the forecasting error decreases as the rolling sample
size increases. Algorithm-wise, we have removed the rolling samples that contain
less than two months of recessions. These samples account for 119, 2, 0 of the total
rolling samples in the cases where the rolling sample sizes are 60, 120 and 240. When
the number of recessions in the rolling sample is less than two, the standard package
for Logistic Regression with LASSO-penalty reports an error and fails to produce the
result(Friedman et al., 2010). More specifically, if there is no recession contained in
the rolling sample, the maximum likelihood of the Logistic Regression would be 0,
i.e., the coefficients of the Logistic Regression would explode to infinity. In addition,
we can not use cross-validation to choose the penalty term 𝜆 for Logistic Regression
since the cross-validation process involves randomly resampling the rolling samples
and frequently results in less than two recessions in the cross-validation samples
even when 𝑛 = 240. Instead, we tried different values of 𝜆 for Logistic Regression
and reported all of them in Table 5. In almost all cases, the Asymmetric AdaBoost
significantly outperforms the Logistic Regression which strongly suggests that the
parametric assumptions of Logistic Regression are invalid in this application.

7 Conclusions

In this paper, we introduce a new Asymmetric AdaBoost algorithm which produces
an additive regression model from maximizing a new risk function, namely the
asymmetric exponential risk function. The new Asymmetric AdaBoost algorithm
is based on the asymmetric exponential risk function, which maps into a binary
decision making problem given a utility function. Furthermore, by carefully estab-
lishing the asymmetry in the risk function in accordance to the binary decision
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making, we show that our Asymmetric AdaBoost algorithm is closely related to the
maximum score regression (Manski 1975, 1985) and the binary prediction literature
in economics (Granger and Pesaran 2000, Lee and Yang 2006, Lahiri and Yang
2012, and Elliot and Lieli 2013), all of which however deal with low-dimensional
predictor space. Asymmetric AdaBoost can handle the maximum score and binary
prediction when the predictors are high-dimensional. Theoretical results show that
Asymmetric AdaBoost will converge to Bayes risk as 𝑛→∞. Simulation and appli-
cation results show that Asymmetric AdaBoost is a competitive approach in binary
classification/prediction.

8 Appendix

8.1 Proof of Theorem 1

After solving 𝑓𝑚+1 (𝑥), we minimize the risk function (24) w.r.t. 𝑐𝑚+1,

𝑐𝑚+1 = arg min
𝑐

𝑅𝜓,𝜏 (𝐹𝑚 (𝑥) + 𝑐 𝑓𝑚+1𝑚+1 (𝑥)) (44)

= arg min
𝑐

E
(
𝑡 (𝑦, 𝑥) 𝑒−𝑦 (𝐹𝑚 (𝑥 )+𝑐𝑚+1 𝑓𝑚+1 (𝑥 ) )

)
(45)

= arg min
𝑐

E𝑤

(
𝑡 (𝑦, 𝑥) 𝑒−𝑦𝑐𝑚+1 𝑓𝑚+1 (𝑥 )

)
(46)

Then

E𝑤

(
𝑡 (𝑦, 𝑥) 𝑒−𝑦𝑐𝑚+1 𝑓𝑚+1 (𝑥 )

)
(47)

= 𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = 1) 𝑡 (1, 𝑥) 𝑒−𝑐𝑚+1

+𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = −1) 𝑡 (−1, 𝑥) 𝑒−𝑐𝑚+1

+𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = −1) 𝑡 (1, 𝑥) 𝑒𝑐𝑚+1

+𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = 1) 𝑡 (−1, 𝑥) 𝑒𝑐𝑚+1 (48)

The first order condition from taking the derivative w.r.t. 𝑐𝑚+1

𝜕𝑅𝜓,𝜏 (𝑐𝑚+1 𝑓𝑚+1 (𝑥))
𝜕𝑐𝑚+1

(49)

= −𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = 1) 𝑡 (1, 𝑥) 𝑒−𝑐𝑚+1

−𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = −1) 𝑡 (−1, 𝑥) 𝑒−𝑐𝑚+1

+𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = −1) 𝑡 (1, 𝑥) 𝑒𝑐𝑚+1

+𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = 1) 𝑡 (−1, 𝑥) 𝑒𝑐𝑚+1 (50)

gives the optimal 𝑐𝑚+1 from solving the following
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𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = 1) 𝑡 (1, 𝑥) 𝑒−𝑐𝑚+1 + 𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = −1) 𝑡 (−1, 𝑥) 𝑒−𝑐𝑚+1

= 𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = −1) 𝑡 (1, 𝑥) 𝑒𝑐𝑚+1 + 𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = 1) 𝑡 (−1, 𝑥) 𝑒𝑐𝑚+1 ,

where𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = 1) is the rate of true positive (TP),𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = −1)
is the rate of true negative (TN), 𝑃𝑤 (𝑦 = 1, 𝑓𝑚+1 (𝑥) = −1) is the rate of false
negative (FN), 𝑃𝑤 (𝑦 = −1, 𝑓𝑚+1 (𝑥) = 1) is the rate of false positive (FP). Hence,
rewriting it as

[TP × 𝑡 (1, 𝑥) + TN × 𝑡 (−1, 𝑥)] 𝑒−𝑐𝑚+1 = [FN × 𝑡 (1, 𝑥) + FP × 𝑡 (−1, 𝑥)] 𝑒𝑐𝑚+1 ,

(51)
we obtain the optimal 𝑐𝑚+1

𝑐𝑚+1 =
1
2

log
(

TP×𝑡 (1, 𝑥) + TN × 𝑡 (−1, 𝑥)
FN × 𝑡 (1, 𝑥) + FP × 𝑡 (−1, 𝑥)

)
=

1
2

log
(

1 − 𝑒𝑟𝑟𝑚+1
𝑒𝑟𝑟𝑚+1

)
, (52)

where 𝑒𝑟𝑟𝑚+1 = E𝑤

(
𝑡 (𝑦, 𝑥) × 1(𝑦≠ 𝑓𝑚+1 (𝑥 ) )

)
. ⊓⊔

8.2 Proof of Theorem 3

Notation. Let

𝑅(𝐺) = E
[
1
2
× 1(𝑦≠𝐺 (𝑥 ) )

]
=

1
2

Pr(𝑦 ≠ 𝐺 (𝑥)), (53)

denote the 0-1 risk when 𝜏 = 1
2 and

𝑅∗ = inf
𝐺

𝑅(𝐺) = Emin
{

1
2

Pr (𝑦 = 1|𝑥) , 1
2

Pr (𝑦 = −1|𝑥)
}
, (54)

be the minimum risk. Let

𝑅𝜓 (𝐹) = E
(

1
2
𝑒−𝑦𝐹 (𝑥 )

)
, (55)

be the exponential risk with 𝑡 (𝑦, 𝑥) = 1
2 and

𝑅∗𝜓 = inf
𝐹

𝑅𝜓 (𝐹) . (56)

Lemma 1 (Bartlett et al., 2006). For every sequence of measurable functions 𝐹𝑚 :
𝜒→ R and every probability distribution on 𝜒 × {±1},

𝑅𝜓 (𝐹𝑚) → 𝑅∗𝜓 implies that 𝑅 (sign[𝐹𝑚]) → 𝑅∗.

Proof. This is a special case of Theorem 1 of Bartlett et al. (2006) for the exponential
risk. ⊓⊔
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Proof of Theorem 1. Let 𝐹∗ = arg min𝐹 𝑅𝜏 (𝐹) be the Bayes classifier. Let P(𝑥, 𝑦)
be the joint density function of 𝑥 and 𝑦, and 𝑃𝑤 (𝑥, 𝑦) = 𝑡 (𝑦,𝑥 ) P (𝑥,𝑦)∫

𝑡 (𝑦,𝑥 ) P (𝑥,𝑦)𝑑𝑦𝑑𝑥 . Then
𝑃𝑤 (𝑥, 𝑦) defines a probability distribution of (𝑥, 𝑦) on 𝜒 × {±1}. By definition,

𝑅𝜓,𝜏 (𝐹𝑖) = E
(
𝑡 (𝑦, 𝑥) 𝑒−𝑦𝐹𝑖

)
=

∫
𝑡 (𝑦, 𝑥) 𝑒−𝑦𝐹𝑖P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥

=

∫
𝑡 (𝑦, 𝑥) P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 ·

∫
𝑒−𝑦𝐹𝑖

𝑡 (𝑦, 𝑥) P (𝑥, 𝑦)∫
𝑡 (𝑦, 𝑥) P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥

𝑑𝑦𝑑𝑥

=

∫
𝑡 (𝑦, 𝑥) P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 ·

∫
𝑒−𝑦𝐹𝑖𝑃𝑤 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥

= 𝐶

∫
𝑒−𝑦𝐹𝑖𝑃𝑤 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥,

where 𝐶 ≡
∫
𝑡 (𝑦, 𝑥) P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 is positive and bounded. Moreover,

𝑅∗𝜓,𝜏 = inf
𝐹𝑖

𝑅𝜓,𝜏 (𝐹𝑖) .

Hence, by Lemma 1,

𝑅𝜓,𝜏 → 𝑅∗𝜓,𝜏 implies that
∫

1(𝑦≠sign[𝐹𝑖 ] )𝑃𝑤 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 →
∫

1(𝑦≠sign[𝐹𝑖 ] )𝑃𝑤 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥.

Rewrite the expression in terms of P (𝑥, 𝑦), we have

1
𝐶

∫
1(𝑦≠sign[𝐹𝑖 ] ) 𝑡 (𝑦, 𝑥) P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 →

1
𝐶

∫
1(𝑦≠sign[𝐹∗ ] ) 𝑡 (𝑦, 𝑥) P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥.

Therefore,

𝑅𝜏 (sign[𝐹𝑖]) =
∫

𝑡 (𝑦, 𝑥) 1(𝑦≠sign[𝐹𝑖 ] )P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 →
∫

𝑡 (𝑦, 𝑥) 1(𝑦≠sign[𝐹∗ ] )P (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 = 𝑅∗𝜏 .

The statement in the theorem is proved. ⊓⊔
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Fig. 1 (Asymmetric) Exponential Loss and 0-1 Loss
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Fig. 2 Conditional Probability of the Circle Model
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Table 1 Linear Logit Model (DGP1)
𝜏 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝑛 = 1000
AdaBoost 0.0544 0.0997 0.1379 0.1602 0.1712 0.1607 0.1372 0.1005 0.0545
LASSO 0.0492 0.0934 0.1266 0.1479 0.1550 0.1482 0.1271 0.0933 0.0493
Bayes Risk 0.0482 0.0885 0.1178 0.1360 0.1419 0.1359 0.1182 0.0886 0.0482

𝑛 = 100
AdaBoost 0.0774 0.1263 0.1728 0.2001 0.2085 0.1981 0.1739 0.1300 0.0773
LASSO 0.0509 0.1026 0.1483 0.1814 0.1973 0.1843 0.1482 0.1015 0.0513
Bayes Risk 0.0482 0.0885 0.1180 0.1357 0.1418 0.1358 0.1179 0.0885 0.0483

Note: The average of the losses of the two methods for predicting 𝑦 are reported in the table. Bayes
Risk is the infeasible optimal risk when the true model is known. 𝜏 shows different degrees of
asymmetry. 𝑛 is the sample size of each training sample.

Table 2 Balanced Quadratic Logit Model (DGP2)
𝜏 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝑛 = 1000
AdaBoost 0.0524 0.0958 0.1330 0.1614 0.1736 0.1570 0.1316 0.0951 0.0516
LASSO 0.0510 0.1021 0.1495 0.1841 0.1949 0.1805 0.1442 0.0977 0.0488
Bayes Risk 0.0469 0.0866 0.1168 0.1358 0.1422 0.1358 0.1170 0.0867 0.0469

𝑛 = 100
AdaBoost 0.0765 0.1304 0.1734 0.2017 0.2121 0.2049 0.1769 0.1335 0.0819
LASSO 0.0501 0.1017 0.1552 0.2076 0.2346 0.2063 0.1541 0.1030 0.0514
Bayes Risk 0.0468 0.0866 0.1168 0.1357 0.1422 0.1358 0.1168 0.0866 0.0469

Note: The average of the losses of the two methods for predicting 𝑦 are reported in the table. Bayes
Risk is the infeasible optimal risk when the true model is known. 𝜏 shows different degrees of
asymmetry. 𝑛 is the sample size of each training sample.

Table 3 Unbalanced Quadratic Logit Model (DGP3)
𝜏 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝑛 = 1000
AdaBoost 0.0442 0.0642 0.0770 0.0837 0.0857 0.0837 0.0771 0.0641 0.0443
LASSO 0.0500 0.0999 0.1499 0.1999 0.2499 0.1998 0.1499 0.1000 0.0500
Bayes Risk 0.0402 0.0609 0.0736 0.0807 0.0830 0.0807 0.0736 0.0609 0.0402

𝑛 = 100
AdaBoost 0.0539 0.0843 0.1148 0.1393 0.1393 0.1392 0.1162 0.0843 0.0535
LASSO 0.0500 0.0999 0.1500 0.2015 0.2498 0.2023 0.1501 0.0999 0.0500
Bayes Risk 0.0403 0.0609 0.0736 0.0807 0.0830 0.0807 0.0737 0.0609 0.0402

Note: The average of the losses of the two methods for predicting 𝑦 are reported in the table. Bayes
Risk is the infeasible optimal risk when the true model is known. 𝜏 shows different degrees of
asymmetry. 𝑛 is the sample size of each training sample.

Table 4 Circle Model (DGP4)
𝜏 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝑛 = 1000
AdaBoost 0.0402 0.0719 0.0835 0.0893 0.0981 0.1041 0.1058 0.0794 0.0443
LASSO 0.0358 0.0715 0.1073 0.1430 0.1792 0.2158 0.1937 0.1283 0.0641
Bayes Risk 0.0276 0.0513 0.0700 0.0833 0.0902 0.0897 0.0814 0.0640 0.0372

𝑛 = 100
AdaBoost 0.0554 0.0841 0.1090 0.1256 0.1353 0.1387 0.1336 0.1189 0.0807
LASSO 0.0358 0.0718 0.1082 0.1451 0.1848 0.2272 0.2049 0.1344 0.0658
Bayes Risk 0.0276 0.0512 0.0700 0.0834 0.0902 0.0897 0.0812 0.0640 0.0372

Note: The average of the losses of the two methods for predicting 𝑦 are reported in the table. Bayes
Risk is the infeasible optimal risk when the true model is known. 𝜏 shows different degrees of
asymmetry. 𝑛 is the sample size of each training sample.
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Table 5 Loss for Predicting Recessions
𝜏 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝑛 = 60 AdaBoost 0.0181 0.0255 0.0318 0.0377 0.0374 0.0405 0.0431 0.0362 0.0348
LASSO (𝜆 = 0.05) 0.0229 0.0350 0.0452 0.0499 0.0514 0.0473 0.0422 0.0365 0.0288
LASSO (𝜆 = 0.1) 0.0216 0.0370 0.0522 0.0535 0.0488 0.0473 0.0458 0.0411 0.0440
LASSO (𝜆 = 1) 0.0211 0.0422 0.0632 0.0843 0.1054 0.1326 0.1707 0.1769 0.1262
LASSO (𝜆 = 5) 0.0211 0.0422 0.0632 0.0843 0.1054 0.1326 0.1707 0.1769 0.1262

𝑛 = 120 AdaBoost 0.0154 0.0245 0.0267 0.0316 0.0334 0.0352 0.0348 0.0276 0.0223
LASSO (𝜆 = 0.05) 0.0182 0.0314 0.0370 0.0381 0.0381 0.1641 0.1269 0.0919 0.0511
LASSO (𝜆 = 0.1) 0.0168 0.0336 0.0469 0.0444 0.0471 0.0457 0.0365 0.0359 0.0332
LASSO (𝜆 = 1) 0.0155 0.0309 0.0464 0.0619 0.0774 0.0928 0.1128 0.1439 0.0659
LASSO (𝜆 = 5) 0.0155 0.0309 0.0464 0.0619 0.0774 0.0928 0.1128 0.1439 0.0659

𝑛 = 240

AdaBoost 0.0115 0.0158 0.0228 0.0237 0.0289 0.0256 0.0271 0.0231 0.0170
LASSO (𝜆 = 0.05) 0.0112 0.0213 0.0295 0.0402 0.0442 0.1121 0.0871 0.0621 0.0378
LASSO (𝜆 = 0.1) 0.0112 0.0225 0.0338 0.0426 0.0472 0.0408 0.0274 0.0274 0.0320
LASSO (𝜆 = 1) 0.0112 0.0225 0.0338 0.0451 0.0564 0.0676 0.0789 0.1500 0.0853
LASSO (𝜆 = 5) 0.0112 0.0225 0.0338 0.0451 0.0564 0.0676 0.0789 0.1500 0.0853

Note: The average losses of the three period ahead prediction on recessions are reported in the
table. 𝜏 shows different degrees of asymmetry.


