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Abstract
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1 Introduction

A search for the best forecast combination has been an important on-going research

question in economics. Clemen (1989) pointed out that combining forecasts is “practical,

economical and useful. Many empirical tests have demonstrated the value of composite

forecasting. We no longer need to justify that methodology”. However, as demonstrated by

Diebold and Shin (2019), there are still some unresolved issues. Despite the findings based

on the theoretical grounds, equal-weighted forecasts have proved surprisingly difficult to

beat. Many methodologies that seek for the best forecast combination use equal weights as

a benchmark: for instance, Diebold and Shin (2019) develop “partially egalitarian LASSO”.

The success of equal weights is partly due to the fact that the forecasters use the same

set of public information to make forecasts, hence, they tend to make common errors. For

example, in the European Central Bank’s Survey of Professional Forecasters (ECB SPF) of

Euro-area real GDP growth, the forecasters tend to jointly understate or overstate GDP

growth. This stylized fact is illustrated in Figure 1 that shows quarterly forecasts of Euro-

area real GDP growth produced by the ECB SPF from 1999Q3 to 2024Q1. Therefore,

we stipulate that the forecast errors include common and idiosyncratic components, which

allows the forecast errors to move together due to the common error component. Our paper

provides a simple framework to learn from analysing forecast errors: we separate unique

errors from the common errors to improve the accuracy of the combined forecast.

Dating back to Bates and Granger (1969), the well-known expression for the optimal

forecast combination weights requires an estimator of inverse covariance (precision) matrix.

Precision matrix represents a network of interacting entities, such as corporations or genes.

When the data is Gaussian, the sparsity in the precision matrix encodes the conditional
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independence graph - two variables are conditionally independent given the rest if and only

if the entry corresponding to these variables in the precision matrix is equal to zero. Graph-

ical models are a powerful tool to directly estimate precision matrix, avoiding the step of

obtaining an estimator of covariance matrix to be inverted. Prominent examples of graphi-

cal models include Graphical LASSO (GL, Friedman et al. (2008)) and nodewise regression

(Meinshausen and Bühlmann (2006)). Despite using different strategies for estimating pre-

cision matrix, all graphical models assume that precision matrix is sparse: many entries of

precision matrix are zero, which is a necessary condition to consistently estimate inverse

covariance. Our paper demonstrates that such assumption contradicts the stylized fact that

experts tend to make common errors and hence the forecast errors move together through

common factors. Lee and Seregina (2024) show that graphical models fail to recover the en-

tries of a nonsparse precision matrix under the factor structure and propose Factor Graphical

LASSO (FGL) that combines the benefits of graphical models and factor models.

At the same time, the network of experts changes over time, that is, the relationships

between forecasts produced by different experts or models can change either smoothly or

abruptly (e.g., as a response to an unexpected policy shock, or in the times of economic

downturns). Such changes give rise to different regimes and it is important to account for

changes in optimal forecast combination weights induced by structural breaks (Corradi and

Swanson (2014)). The co-movement of forecasters in Figure 1 changes over time, and is

especially strong in certain periods, such as during crises. It is reasonable to expect that

during such periods the network of forecasters will change. This change could come from

two sources: (i) the change in the co-movement between forecasters, and (ii) the change in

idiosyncratic behavior of forecasters in the periods of increased uncertainty. This paper aug-

ments Lee and Seregina (2024) and develops a framework to generalize network inference in
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the presence of structural breaks. As a first extension, to capture the change that comes from

common movements, we model structural changes in factor loadings. As a second extension,

to capture the change that comes from idiosyncratic movements, we model structural changes

in the precision matrix of the idiosyncratic component after removing common factors. To

model structural changes in factor loadings, we use a kernel that weighs recent observations

more than distant ones, and we give weight 1 to post-break observations, and weight γ to

pre-break observations. To model structural changes in idiosyncratic precision matrix, we

augment GL with a penalty that enforces temporal constancy and controls the strengths of

resemblance between two neighboring precision estimators. We consider two definitions of

regimes: a regime defined by a time break, and a regime determined by a state variable. The

time and location of a break is allowed to be unknown and is estimated using the framework

used in Bai et al. (2020) and Bai (2010). We estimate regime-dependent precision matrix for

forecast combination using both pre- and post-break data when forecast errors are driven

by common factors. We call the proposed algorithm Regime-Dependent Factor Graphical

LASSO (RD-FGL) and develop its scalable implementation using the Alternating Direction

Method of Multipliers (ADMM).

Our paper makes several contributions. First, we allow the forecast errors to be highly

correlated due to the common component which is motivated by the stylized fact that the

forecasters tend to jointly understate or overstate the predicted series of interest. Second, to

tackle changing relationships between forecasts produced by different experts or models as a

response to unstable environments, we develop a framework to generalize network inference in

the presence of structural breaks. We propose Regime-Dependent Factor Graphical LASSO

(RD-FGL) that models structural changes in factor loadings and idiosyncratic precision

matrix. We develop scalable implementation of RD-FGL using ADMM to estimate regime-

3



dependent forecast combination weights. Third, two empirical applications to forecasting

macroeconomic series using the data of the ECB SPF and Federal Reserve Economic Data

monthly database (FRED-MD, McCracken and Ng (2016)) shows that incorporating (i)

factor structure in the forecast errors together with (ii) sparsity in the precision matrix of

the idiosyncratic components and (iii) regime-dependent combination weights improves the

performance of a combined forecast over forecast combinations using equal weights.

The paper is structured as follows. Section 2 studies the approximate factor model for

the forecast errors, reviews FGL and contains theoretical results on the consistency of the

FGL estimator for forecast combinations. Section 3 introduces Regime-Dependent graphical

model and discusses its implementation using ADMM. Section 4 studies an empirical appli-

cation to combining ECB SPF forecasts. Section 5 presents another empirical application

to FRED-MD. Section 6 concludes.

Notation. For the convenience of the reader, we summarize the notation to be used

throughout the paper. Let Sp denote the set of all p × p symmetric matrices. For any

matrix C, its (i, j)-th element is denoted as cij. Given a vector u ∈ Rd and a parameter

a ∈ [1,∞), let ∥u∥a denote ℓa-norm. Given a matrix U ∈ Sp, let λmax(U) ≡ λ1(U) ≥

λ2(U) ≥ . . . ≥ λmin(U) ≡ λp(U) be the eigenvalues of U. Given a matrix U ∈ Rp×p and

parameters a, b ∈ [1,∞), let |||U|||a,b ≡ max∥y∥a=1∥Uy∥b denote the induced matrix-operator

norm. The special cases are |||U|||1 ≡ max1≤j≤p
∑p

i=1|uij| for the ℓ1/ℓ1-operator norm; the

operator norm (ℓ2-matrix norm) |||U|||22 ≡ λmax(UU′) is equal to the maximal singular value

of U. Finally, ∥U∥max ≡ maxi,j|uij| denotes the element-wise maximum.
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2 Approximate Factor Models for Forecast Errors

We are interested in finding the combination of forecasts which yields the best out-

of-sample performance in terms of the mean-squared forecast error. We claim that the

forecasters use the same set of public information to make forecasts and, hence, they tend

to make common errors. Figure 1 illustrates this statement: it shows quarterly forecasts

of Euro-area real GDP growth produced by the ECB SPF from 1999Q3 to 2024Q1. As

described in Diebold and Shin (2019), the ECB SPF forecasts are solicited for two quarters

ahead of the latest available outcome. Forecasters tend to jointly understate or overstate

GDP growth, meaning that their forecast errors include common and idiosyncratic parts.

Therefore, we can model the tendency of the forecast errors to move together via factor

decomposition. Figures F.1-F.2 in Supplemental Appendix F provide similar stylized facts

for inflation and unemployment rate.

Suppose we have p competing forecasts of the univariate series yt, t = 1, . . . , T and ẽt =

(ẽ1t, . . . , ẽpt)
′ ∼ N (mt,Σ) is a p× 1 vector of forecast errors. Note that we allow bias mt in

the forecast errors, which is allowed to be time-varying. Assume that the generating process

for the forecast errors follows a q-factor model: ẽt = mt +Bft + εt, where ft = (f1t, . . . , fqt)
′

are the common factors of the forecast errors for p models, B is a p × q matrix of factor

loadings, and εt is the idiosyncratic component that cannot be explained by the common

factors. Define demeaned forecast errors as et ≡ ẽt −mt such that:

et︸︷︷︸
p×1

= B ft︸︷︷︸
q×1

+ εt, t = 1, . . . , T, (2.1)

Unobservable factors, ft, and loadings, B, are estimated by the principal component

analysis (PCA), studied in Bai and Ng (2002); Stock and Watson (2002), and the estimators
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Figure 1: The European Central Bank’s (ECB) Survey of Professional Forecasters
(SPF). Each circle denotes the forecast of each professional forecaster in the SPF for the
quarterly 2-quarters-ahead forecasts of Euro-area real GDP growth, year-on-year percentage
change. Actual series is the blue line. Source: European Central Bank.

are denoted as f̂t and B̂.

We use the following notations: E [εtε
′
t] = Σε, E [ftf

′
t] = Σf , and E [ete

′
t] = Σ = BΣfB

′+

Σε. Let Θ = Σ−1, Θε = Σ−1
ε and Θf = Σ−1

f be the precision matrices of forecast errors,

idiosyncratic and common components respectively.

Given a sample of the estimated residuals {ε̂t = et − B̂f̂t}Tt=1 and the estimated factors

{f̂t}Tt=1, let Σ̂ε = (1/T )
∑T

t=1 ε̂tε̂
′
t and Σ̂f = (1/T )

∑T
t=1 f̂tf̂

′
t be the sample counterparts of

the covariance matrices.

Moving forward to the forecast combination exercise, suppose we have p competing fore-
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casts, ŷt = (ŷ1,t, . . . , ŷp,t)
′, of the variable yt, t = 1, . . . , T . The forecast combination is

defined as ŷct = w′ŷt, where w is a p × 1 vector of weights. Define a measure of risk

MSFE(w,Σ) = w′Σw. As shown in Bates and Granger (1969), the optimal forecast combi-

nation minimizes the MSFE of the combined forecast error:

min
w

MSFE = min
w

E
[
w′ete

′

tw
]
= min

w
w′Σw, s.t. w′ιp = 1, (2.2)

where ιp is a p× 1 vector of ones. The solution to (2.2) yields a p× 1 vector of the optimal

forecast combination weights1:

w =
Θιp
ι′pΘιp

. (2.3)

If the true precision matrix is known, the equation (2.3) guarantees to yield the optimal

forecast combination. In reality, one has to estimate Θ. As pointed out by Smith and

Wallis (2009) and Claeskens et al. (2016), when the estimation uncertainty of the weights

is taken into account, there is no guarantee that the “optimal” forecast combination will be

better than the equal weights or even improve the individual forecasts. Define a = ι′pΘιp/p

and â = ι′pΘ̂ιp/p. We can write
∣∣∣MSFE(ŵ,Σ̂)
MSFE(w,Σ)

− 1
∣∣∣ =

∣∣∣ â−1

a−1 − 1
∣∣∣ = |a−â|

|â| and ∥ŵ −w∥1 =[
(aΘ̂ιp)− (aΘιp) + (aΘιp)− (âΘιp)

]
/p · (âa). Therefore, in order to control the estimation

uncertainty in the MSFE and combination weights, one needs to obtain a consistent estimator

of the precision matrix Θ.

Graphical models such as Graphical Lasso (Friedman et al. (2008), Appendix A) are

natural candidates for estimating a high-dimensional precision metrix. Lee and Seregina

(2024) introduce Factor Graphical LASSO (FGL) that bridges graphical models and factor

1Our paper focuses on unconditional combination weights as in Bates and Granger (1969). Gibbs and
Vasnev (2024) consider forecast combination weights conditioned on the information set available at time t.
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models to estimate precision matrix in the presence of common factors (Appendix B). First,

they use the Weighted Graphical Lasso penalty:

Θ̂ε,τ = arg min
Θε=Θ′

ε

tr(WεΘε)− log det(Θε) + τ
∑
i ̸=j

γ̂ε,iiγ̂ε,jj|θε,ij|, (2.4)

initialized with Wε = Σ̂ε + τI, where γ̂ε,ii is the (i, i)-th element of Γ̂2
ε ≡ diag(Wε). The

subscript τ in Θ̂ε,τ means that the solution of the optimization problem in (2.4) will depend

upon the choice of the tuning parameter τ . In order to simplify notation, we will omit the

subscript τ .

Second, they use Sherman-Morrison-Woodbury formula to estimate the precision of fore-

cast errors:

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε. (2.5)

Θ̂ is then used to estimate the forecast combination weights ŵ = Θ̂ιp/ι
′
pΘ̂ιp. This

approach allows to extract the benefits of modelling common movements in forecast errors,

captured by a factor model, and the benefits of using many competing forecasting models

that give rise to a high-dimensional precision matrix, captured by a graphical model2.

The asymptotic properties of FGL were studied in Lee and Seregina (2024), below we

briefly list the main assumptions and extend their result to the context of optimal forecast

combination.

2Note that we allow negative weights. As pointed out by Radchenko et al. (2023), negative weights emerge
when highly correlated forecasts with similar variances are combined. In this situation, the estimated weights
have large variances, and trimming is usually applied to reduce the variance of the estimated weights. This
problem arises due to unstable inverse covariance matrix in the case of highly correlated forecast errors. Our
paper explicitly models the high correlations in forecast errors using a factor model and uses the estimates to
get total precision matrix. Sections 2 and 3 prove that the resulting precision matrix estimator and forecast
combination weights are consistent; Supplemental Appendix E verifies consistency by simulations and shows
that the estimators are robust to various data generating processes.
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Let A ∈ Sp. Define the following set for j = 1, . . . , p:

Dj(A) ≡ {i : Aij ̸= 0, i ̸= j}, dj(A) ≡ card(Dj(A)), d(A) ≡ max
j=1,...,p

dj(A), (2.6)

where dj(A) is the number of edges adjacent to the vertex j (i.e., the degree of vertex j), and

d(A) measures the maximum vertex degree. Define S(A) ≡
⋃p
j=1Dj(A) to be the overall off-

diagonal sparsity pattern, and s(A) ≡
∑p

j=1 dj(A) is the overall number of edges contained

in the graph.

(A.1) (Spiked covariance model) (i) As p→ ∞, λ1(Σ) > λ2(Σ) > . . . > λq(Σ) ≫ λq+1(Σ) ≥

. . . ≥ λp(Σ) > 0, where λj(Σ) = O(p) for j ≤ q, while the non-spiked eigenvalues are

bounded, that is, c0 ≤ λj(Σ) ≤ C0, j > q for constants c0, C0 > 0. (ii) ι′pΘιp/p ≥ c,

where c is a positive constant.

(A.2) (Pervasive factors) There exists a positive definite q × q matrix B̆ such that∣∣∣∣∣∣∣∣∣p−1B′B− B̆
∣∣∣∣∣∣∣∣∣

2
→ 0 and λmin(B̆)−1 = O(1) as p→ ∞.

We also impose strong mixing condition. Let F0
−∞ and F∞

T denote the σ-algebras that are

generated by {(ft, εt) : t ≤ 0} and {(ft, εt) : t ≥ T} respectively. Define the mixing coefficient

α(T ) = supA∈F0
−∞,B∈F∞

T
|PrAPrB − PrAB|.

(A.3) (Strong mixing) There exists r3 > 0 such that 3r−1
1 + 1.5r−1

2 + 3r−1
3 > 1, and C > 0

satisfying, for all T ∈ Z+, α(T ) ≤ exp(−CT r3).

LetΛq = diag(λ1, . . . , λq) be a matrix of q leading eigenvalues ofΣ, andVq = (v1, . . . ,vq)

is a p × q matrix of their corresponding leading eigenvectors. Define Σ̂, Λ̂q, V̂q to be the

estimators of Σ,Λq,Vq. We further let Λ̂q = diag(λ̂1, . . . , λ̂q) and V̂q = (v̂1, . . . , v̂q) to be

constructed by the first q leading empirical eigenvalues and the corresponding eigenvectors
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of Σ̂ and B̂B̂′ = V̂qΛ̂qV̂
′
q. Similarly to Fan et al. (2018), we require the following bounds

on the componentwise maximums of the estimators:

(B.1)
∥∥∥Σ̂−Σ

∥∥∥
max

= OP (
√

log p/T ),

(B.2)
∥∥∥(Λ̂q −Λq)Λ

−1
q

∥∥∥
max

= OP (
√

log p/T ),

(B.3)
∥∥∥V̂q −Vq

∥∥∥
max

= OP (
√
log p/(Tp)).

Assumptions (B.1)-(B.3) are needed in order to ensure that the first q principal components

are approximately the same as the columns of the factor loadings. The estimator Σ̂ can be

thought of as any “pilot” estimator that satisfies (B.1). For sub-Gaussian distributions,

sample covariance matrix, its eigenvectors and eigenvalues satisfy (B.1)-(B.3).

In addition, the following structural assumption on the model is imposed:

(C.1) ∥Σ∥max = O(1) and ∥B∥max = O(1).

To study the properties of the combination weights and MSFE, we use the convergence

properties of precision matrix produced by Algorithm B.2 established in Lee and Seregina

(2024). Let ωT ≡
√

log p/T+1/
√
p. Also, let s(Θε) = OP (sT ) for some sequence sT ∈ (0,∞)

and d(Θε) = OP (dT ) for some sequence dT ∈ (0,∞). The deterministic sequences sT and

dT will control the sparsity Θε for FGL. Note that dT can be smaller than or equal to sT .

Let ϱT be a sequence of positive-valued random variables such that ϱ−1
T ωT

P−→ 0 and

ϱTdT sT
P−→ 0, with τ ≍ ωT (where τ is the tuning parameter for the FGL in (B.1)). Lee and

Seregina (2024) show that under the Assumptions (A.1)-(A.3), (B.1)-(B.3) and (C.1),∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1
= OP (ϱTdT sT ) = oP (1) and

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

2
= OP (ϱT sT ) = oP (1) for FGL.

Theorem 1 summarizes consistency results for the combination weights and the resulted

MSFE.
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Theorem 1. Assume (A.1)-(A.3), (B.1)-(B.3), and (C.1) hold. FGL consistently es-

timates forecast combination weights and MSFE(ŵ, Σ̂):

(i) If ϱTd
2
T sT

P−→ 0, ∥ŵ −w∥1 = OP

(
ϱTd

2
T sT

)
= oP (1).

(ii) If ϱTdT sT
P−→ 0,

∣∣∣MSFE(ŵ,Σ̂)
MSFE(w,Σ)

− 1
∣∣∣ = OP (ϱTdT sT ) = oP (1).

The proof of Theorem 1 can be found in Appendix C3. Note that the rate of convergence

for MSFE is faster than the combination weight rate. In contrast to the classical graphical

model in Algorithm A.1, the convergence properties of which were examined by Janková

and van de Geer (2018) among others, the rates in Theorem 1 depend on the sparsity of Θε

rather than of Θ. This means that instead of assuming that many partial correlations of

forecast errors et are negligible, which is not realistic under the factor structure, we impose a

milder restriction requiring many partial correlations of εt to be negligible once the common

components have been taken into account.

3 RD-FGL for Forecast Errors

We augment the framework in Section 2 to account for regime switching by modelling

the change in precision matrix due to N structural breaks. Macroeconomic and financial

datasets typically span a long time period, hence, the assumptions of time-invariant factor

loadings and constant idiosyncratic precision matrix are restrictive (Corradi and Swanson

(2014)). Define nj ≡ tj− tj−1 to be the sample between the j-th and (j−1)-th break points,

where j = 1, . . . , N + 1,
∑N+1

j=1 nj = T , t0 = 0, N ≤ T . Also, let et(λ) = λT−tet be down-

weighted observations, where 0 < λ ≤ 1 is the down-weighting coefficient. As suggested in

3As shown in extensive simulations conducted by Lee and Seregina (2024), FGL is robust to elliptical
distributions. The assumptions (A.1)-(A.3), (B.1)-(B.3), and (C.1) are general enough to accommodate
distributions with heavier tails.

11



Chudik et al. (2024) and Pesaran et al. (2013), down-weighting is beneficial for forecasting

since it additionally weighs recent observations more than very distant ones.

3.1 Regime-Dependent Factor Loadings

As a first extension to FGL, we model structural changes in factor loadings using a

framework similar to Su and Wang (2017). For now assume a single known break N = 1

which occurs at T1. Write equation (2.1) as:

eit(λ) = b′
i︸︷︷︸

1×q

ft︸︷︷︸
q×1

+ εit, t = 1, . . . , T, i = 1, . . . , p. (3.1)

To estimate {bi}pi=1 and {ft}Tt=1, we can consider the following weighted least squares prob-

lem:

min
{bi}pi=1,{ft}Tt=1

(pT )−1

p∑
i=1

T∑
t=1

[
eit(λ)− b′

ift
]2
Kγt, (3.2)

subject to certain identification restrictions to be specified later on. Here, Kγt = γ1 [t ≤ T1]+

1 [t > T1] is a discrete kernel as in Li et al. (2013) with γ ∈ [0, 1]. Since more recent

information is usually more relevant to forecasting, such kernel-weight estimator gives weight

1 to post-break observations and weight γ to pre-break observations.

Define the T × p matrices E(λ, γ) =
(
e1(λ, γ), . . . , ep(λ, γ)

)
, E(λ, γ) =(

ε1(λ, γ), . . . , εp(λ, γ)
)
, where ei(λ, γ) =

(
K

1/2
γ1 ei1(λ), . . . , K

1/2
γT eiT (λ)

)′
and εi(λ, γ) =(

K
1/2
γ1 εi1(λ), . . . , K

1/2
γT εiT (λ)

)′
. Also, let F(λ, γ) =

(
K

1/2
γ1 f1(λ), . . . , K

1/2
γT fT (λ)

)′
be a T × q

matrix collecting factors. In matrix notation, the transformed model in (3.1) can be written

as E(λ, γ) = F(λ, γ)B′+E(λ, γ), where B = (b1, . . . ,bp)
′ is a p×q matrix of factor loadings.

As shown in Su and Wang (2017) for the continuous kernel, the minimization problem
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in (3.2) reduces to:

min
F(λ,γ),B

tr

[(
E(λ, γ)− F(λ, γ)B′

)(
E(λ, γ)− F(λ, γ)B′

)′]
(3.3)

s.t. F′(λ, γ)F(λ, γ)/T = Iq and B′B = diagonal matrix.

The problem in (3.3) is the conventional PCA problem. The estimated factor matrix

F̂(λ, γ) =
(
K

1/2
γ1 f̂1(λ), . . . , K

1/2
γT f̂T (λ)

)′
is

√
T times eigenvectors corresponding to the

q largest eigenvalues of E(λ, γ)E′(λ, γ), arranged in descending order, and B̂′(λ, γ) =

(F̂(λ, γ)F̂′(λ, γ))−1F̂′(λ, γ)E(λ, γ) = F̂′(λ, γ)E(λ, γ)/T are the estimators of the correspond-

ing time-varying factor loadings, where B̂(λ, γ) = (b̂1(λ, γ), . . . , b̂p(λ, γ))
′ is p× q.

Since the estimator F̂(λ, γ) is only consistent up to a rotation, we use a two-

stage estimation procedure to obtain a consistent estimator (Su and Wang (2017)).

Based on the consistent estimators of bi’s obtained from the first stage, consistent es-

timators of ft(λ, γ) can be obtained by considering the following least squares prob-

lem f̂t(λ, γ) = argminft

∑p
i=1

[
eit(λ) − b̂

′
i(λ, γ)ft

]2
which yields the solution f̂t(λ, γ) =(∑p

i=1 b̂i(λ, γ)b̂
′
i(λ, γ)

)−1(∑p
i=1 b̂i(λ, γ)eit(λ)

)
.

Remark 1. As in Su and Wang (2017), we assume that E [ftf
′
t] is homogeneous over t. This

assumption is not restrictive, since if E [ftf
′
t] = Σf,t, we can rewrite the common component as

b′
ift =

(
Σ

−1/2
f Σ

1/2
f,t bi

)′
Σ

1/2
f Σ

−1/2
f,t ft = b∗′

i f
∗′
t , where b∗

i = Σ
−1/2
f Σ

1/2
f,t bi, and f∗t = Σ

1/2
f Σ

−1/2
f,t ft

satisfies E
[
f∗t f

∗′
t

]
= Σf for each t.

To choose the optimal tuning parameters λ and γ in (3.2), we use the cross-validation
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and solve the following minimization problem:

min
γ,λ

CV(γ, λ) =
1

p(T − T1)

p∑
i=1

T∑
s=T1+1

[
eis(λ)− b̂

′(−s)
i (λ, γ)f̂ (−s)s (λ, γ)

]2
, (3.4)

where b̂
(−s)
i (λ, γ) and f̂

(−s)
s (λ, γ) are estimated by leaving the s-th time series observation

out of the PCA procedure.

Remark 2. The procedure for estimating regime-dependent factor loadings can be easily

extended to the case when the number of breaks is greater than 1 (N > 1). The kernel in

(3.2) would be adjusted accordingly Kγjt = γj1 [t ≤ Tj]+1 [t > TN ], where j = 1, . . . , N +1.

To estimate {γj}N+1
j=1 we use cross-validation as in (3.4) consequently applied to each two

periods separated by a break.

3.2 Regime-Dependent Idiosyncratic Precision Matrix

As a second extension to FGL, we model structural changes in the precision matrix of the

idiosyncratic component. Let Σε,j and Σj be covariance matrices of idiosyncratic part and

forecast errors in regime j. Define the corresponding precision matrices to be Θε,j ≡ Σ−1
ε,j

and Θj ≡ Σ−1
j . Similarly to the previous subsection, we assume Σfj = Σf for all regimes j.

Let Σ̂ε,j =
1
nj

∑nj

k=1 ε̂j,k(λ)ε̂j,k(λ)
′. To model dynamics in {Θε,j}N+1

j=1 we use the following

optimization problem:

min
{Θε,j}N+1

j=1

N+1∑
j=1

nj

[
tr
(
Σ̂ε,jΘε,j

)
− log detΘε,j

]
+ α∥Θε,j∥od,1 + β

N+1∑
j=2

ψ(Θε,j −Θε,j−1), (3.5)

where the penalty for the off-diagonal (od) elements is ∥Θε,j∥od,1 =
∑

l ̸=q γ̂ε,ll,j γ̂ε,qq,j|θε,lq,j|,

γ̂ε,ll,j is the (l, l)-th element of Γ̂2
ε,j ≡ diag(Σ̂ε,j) and θε,lq,j is the lq-th element of matrix Θε,j.
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Figure 2 visualizes dynamics of the precision matrix.

t1

tr
(
Σ̂ε,1Θε,1

)
− log detΘε,1

+ α∥Θε,1∥od,1

βψ(Θε,2 −Θε,1)
t2

tr
(
Σ̂ε,2Θε,2

)
− log detΘε,2

+ α∥Θε,2∥od,1

βψ(Θε,3 −Θε,2) βψ(Θε,N+1 −Θε,N )
tN+1

tr
(
Σ̂ε,N+1Θε,N+1

)
− log detΘε,N+1

+ α
∥∥Θε,N+1

∥∥
od,1

Figure 2: Change of precision matrix over time: β is the penalty that enforces temporal
consistency and ψ is a convex penalty function.

The optimization problem in (3.5) has two tuning parameters: α, which determines

the sparsity level of the network, and β, which controls the strength of resemblance be-

tween two neighboring precision estimators. In simulations and the empirical applica-

tion we use the following procedure for tuning α and β: first, we set a grid of values

(α, β) ∈ {0, 0.25, 0.5, 1, 10, 30}. Second, we use the first 2/3 of the training data to esti-

mate forecast combination weights and jointly tune α and β in the remaining 1/3 to yield

the smallest value of the objective function, which is chosen to be either |||·|||2-loss of precision

matrix or MSFE for simulations in Supplemental Appendix E and the empirical application.

Note that when β = 0, the optimization in (3.5) reduces to estimating Θε,i using Algorithm

B.2 in each regime separately. Naturally, this incorporates the case when the structural

break is strong and only the post-break data is used for producing forecast combination

weights. When β is large, there are weak structural breaks in Θε,j, and Θε,j’s are estimated

by using the data across different regimes. Sections 4 and 5 provide more discussion on this

in the context of our empirical application.

The smoothing function ψ(·) in (3.5) can be LASSO (ψ(·) =
∑

l,q|·|), Group LASSO

(ψ(·) =
∑

q∥·q∥2), or Ridge (ψ(·) =
∑

l,q(·lq)2). LASSO penalty encourages small changes in

the precision matrix over time: when the lq-th element changes at two consecutive times, the
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penalty forces the rest of the elements of the precision to remain the same. Group LASSO

penalty allows the entire graph to restructure at some time points. This penalty is useful for

anomaly detection, since it can identify structural changes in the network structure. Ridge

penalty allows the network to change smoothly over time. This penalty is less strict than the

LASSO penalty: instead of encouraging the graphs to be exactly the same, it allows smooth

transitions.

To estimate (3.5) we use the ADMM algorithm described in details in the Online Sup-

plement S1. Once Θε,i is estimated, we combine estimated factors, loadings and precision

matrix of the idiosyncratic components using the Sherman-Morrison-Woodbury formula to

estimate the final precision matrix of forecast errors and use it to compute optimal forecast

combination weights. We call the aforementioned procedure RD-FGL and summarize it in

Algorithm 1.

Algorithm 1 RD-FGL

1: Estimate {bi}pi=1 and {ft(λ, γj)}Tt=1 in (3.1) using the weighted least squares problem in

(3.2). Get Σ̂f , Θ̂f and ε̂t(λ, γj) = et(λ)− B̂(λ, γj)f̂t(λ, γj).

2: Solve (3.5) using ADMM to get Θ̂ε,j.

3: Use Θ̂ε,j, Θ̂f and B̂(λ, γj) from Steps 1-2 to get Θ̂j(λ, γj) = Θ̂ε,j − Θ̂ε,jB̂(λ, γj)[Θ̂f +

B̂′(λ, γj)Θ̂ε,jB̂(λ, γj)]
−1B̂′(λ, γj)Θ̂ε,j.

4: Use Θ̂j(λ, γj) to get forecast combination weights ŵj(λ, γj) =
Θ̂j(λ,γj)ιp

ι′pΘ̂j(λ,γj)ιp
.

We develop a scalable implementation of (3.5) for the RD-FGL in Algorithm 1 through

ADMM, which is extensively discussed in the Online Supplement S1. ADMM is a dis-

tributed convex optimization approach (Parikh and Boyd (2014)) that allows us to split the

optimization problem in (3.5) into a series of subproblems. As pointed out in Hallac et al.
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(2017), the scalability of ADMM comes from the improved runtime: to estimate a p× p ma-

trix, the cost per iteration of ADMM is O(p3) (which is the cost of an eigendecomposition of

the Θ step in the Online Supplement S1). In contrast, the runtime of general interior-point

methods is O(p6) (Mohan et al. (2014)).

Remark 3. Let us comment on the theoretical properties of RD-FGL. First, as shown in Su

and Wang (2017), introducing time-varying factors does not change the main assumptions

(A.1)-(A.3) on the errors, factors, factor loadings, and their interactions. This is because, as

shown in (3.3), the formulation with time-varying loadings can be reduced to the conventional

PCA problem. Additional assumption that we need to impose is that E [ftf
′
t] is homogeneous

over t. As discussed in Subsection 4.1, this assumption is not restrictive. Second, we assume

that the number of factors, q, and the number of forecasts, p, are not affected by the structural

changes in loadings or idiosyncratic precision matrix. Allowing p and q to change is a

straightforward extension and is left for future research. Third, assumptions (B.1)-(B.3)

and assumption (C.1) are required to hold for each regime j = 1, . . . , N + 1. Finally,

we allow s(Θε,j) = OP (snj
) and d(Θε,j) = OP (dnj

) to change for j = 1, . . . , N + 1. Let

ωnj
≡
√

log p/nj + 1/
√
p. As long as ϱ−1

nj
ωnj

P−→ 0 and ϱnj
dnj

snj

P−→ 0 for each j, RD-FGL

achieves the same rate as FGL in each regime:

(i) If ϱnj
d2nj

snj

P−→ 0, RD-FGL consistently estimates forecast combination weights

ŵj(λ, γj) in Algorithm 1: ∥ŵj(λ, γj)−wj∥1 = OP

(
ϱnj

d2nj
snj

)
= oP (1).

(ii) If ϱnj
dnj

snj

P−→ 0, FGL consistently estimates MSFE(wj,Σj):
∣∣∣MSFE(ŵj(λ,γj),Σ̂j)

MSFE(wj ,Σj)
− 1
∣∣∣ =

OP (ϱnj
dnj

snj
) = oP (1).
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3.3 Unknown Break Time and Number of Breaks

The previous two subsections assumed that the number and location of breaks are known.

We now relax these assumptions. First, assume that the number of breaks in factor loadings,

NB, and the number of breaks in idiosyncratic precision, NΘ, are known and NB = NΘ = 1,

but their locations are unknown and might differ from each other.

To estimate the location of the break in factor loadings, we adapt the procedure in Bai

et al. (2020). For a given break point in loadings, T1, define the sum of squared residuals

(SSR) as in (3.2):

SSR(T1) = (pT )−1

p∑
i=1

T∑
t=1

[
eit(λ)− b′

itft
]2
Kγt, (3.6)

where Kγt = γ1 [t ≤ T1] + 1 [t > T1] is a discrete kernel. The estimated break date is given

by T̂1 = argmin1≤T1≤T−1 SSR(T1).

To estimate the location of the break in Θε we use the procedure similar to Bai (2010).

Define t1 to be a break point in Θε. Recall, nj = tj − tj−1, where j = 1, 2. Note that the

number of observations in each regime depends on t1: n1 = t1 − t0 and n2 = t2 − t1. For a

given break point in idiosyncratic precision t1, define the following objective function as in

(3.5):

L(t1) =
2∑
j=1

nj

[
tr
(
Σ̂ε,jΘε,j

)
− log detΘε,j

]
+ α∥Θε,j∥od,1 + βψ(Θε,2 −Θε,1). (3.7)

The estimated break date is given by t̂1 = argmin1≤t1≤T−1 L(t1).

When the number of breaks in either loadings is known and greater than 1 (NB > 1)

and/or NΘ > 1, we can use the one-at-a-time approach as in Bai (2010): the objective

functions are identical to (3.6) and (3.7). The breaks are estimated sequentially. Once the
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first break is obtained, we split the sample at the estimated break point, resulting in two

subsamples. A single break point in each subsample is estimated, but only one that achieves

the smallest objective function ((3.6) or (3.7)) is retained. If the number of breaks is equal

to two, the procedure is stopped. Otherwise, we continue splitting into subsamples until all

breaks are estimated.

If the number of breaks is unknown, we proceed as suggested in Bai (2010): in the

aforementioned one-at-a-time approach apply the test for existence of break point (Bai and

Perron (2003)) to each subsample before estimating a break point.

We refer an interested reader to Supplemental Appendix E that provides extensive simula-

tion results examining the performance of RD-FGL. To summarize the findings: we confirm

that RD-FGL consistently estimates precision matrix, forecast combination weights, and

MSFE. The results are robust to different strengths of common factors, presence of multiple

breaks, and varying break magnitude.

Remark 4. Defining regimes by a time break assumed that a regime cannot be revisited

again. However, in the context of co-movements across forecasters, the co-movement might

be especially strong in certain periods (e.g., around a crisis). To incorporate a possibility

of revisiting a regime, we define St to be a set that determines a regime. Define Kγ,t =

γ1 [t ∈ St] + 1 [t /∈ St] with γ ∈ R. Some examples of St are discussed in the two empirical

applications in Sections 4 and 5. The weighted least squares problem in (3.2) remains

unchanged, only the kernel function is modified.

For precision matrix, let NΘ = 1, which corresponds to two states, nj are the observations

that belong to t ∈ St (which will be denoted as Regime j = 1), and t /∈ St (Regime j = 2),∑2
j=1 nj = T , t0 = 0. Define Σ̂ε,j =

1
nj

∑nj

k=1 ε̂j,k(λ)ε̂j,k(λ)
′. Then (3.5) remains unchanged,
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only the way how regimes are defined changes.

Similarly to subsection 3.1 (as noted in Remark 2), the aforementioned setup can be easily

extended to include more than 2 regimes.

4 Application to Combining ECB SPF Forecasts

We use quarterly forecasts on the expected rates of inflation, real GDP growth and unem-

ployment rate in the Euro area published by the ECB. The raw data records 119 forecasters

in total, but the panel is highly unbalanced with many missing values due to entry and

exit in the long span. To obtain most qualified forecasters we proceed as follows: first, we

filter out irregular respondents if they missed more than 45% of the observations; second,

we use a random forest imputation algorithm (Stekhoven (2022); Stekhoven and Buhlmann

(2012)) to interpolate the remaining missing values. We consider the forecasts of three main

economic indicators: (1) Real GDP growth defined as the year-on-year (YoY) percentage

change of real GDP, based on standardized European System of National and Regional Ac-

counts definition. The time period under consideration is 1999:Q3-2024Q1 (which yields the

total number of observations equal to 99), the final number of forecasters is p = 57, and the

prediction horizon is 2-quarters ahead. (2) Inflation which is defined as the YoY percentage

change of the Harmonised Index of Consumer Prices (HICP) published by Eurostat. The

time period under consideration is 2000:Q1-2024Q2 (which yields the total number of obser-

vations equal to 98), the final number of forecasters is p = 59, and the prediction horizon

is 2-quarters ahead. (3) Unemployment rate which refers to Eurostat’s definition and it is

calculated as percentage of the labor force. The time period under consideration is 2000:Q1-

2024Q2 (which yields the total number of observations equal to 98), the final number of
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forecasters is p = 46, and the prediction horizon is 2-quarters ahead.

We consider three choices of the training sample: R ∈ {30, 40, 50}, the estimation win-

dow is rolled over the test sample to update the estimates at each point of time. We first

estimate time-varying mean of the forecast errors mt using AR(1). We use the estimated

m̂t to demean forecast errors. After that we estimate a factor model. The optimal num-

ber of factors in the forecast errors (denoted as q in equation (2.1)) is chosen using the

standard data-driven method that uses the information criterion IC1 described in Bai and

Ng (2002). In the majority of the cases the optimal number of factors was estimated to

be equal to 1 or 2. To explore the benefits of using FGL and RD-FGL for forecast error

quantification, we consider several alternative estimators of covariance/precision matrix of

the idiosyncratic component in equation (2.5): (1) linear shrinkage estimator of covariance

developed by Ledoit and Wolf (2004) further referred to as Factor LW (FLW); (2) nonlin-

ear shrinkage estimator of covariance by Ledoit and Wolf (2017) (Factor NLW or FNLW);

(3) POET (Fan et al. (2013)); (4) constrained ℓ1-minimization for inverse matrix estimator,

CLIME (Cai et al. (2011)) (Factor CLIME or FCLIME); (5) nodewise regression developed

by Meinshausen and Bühlmann (2006) (Factor MB or FMB). To examine the benefits of

imposing sparsity on Θε we also include the factor model without sparsity assumption on

the idiosyncratic error precision matrix (referred to as Not Sparse) – this corresponds to

imposing τ = 0 in (B.1). To examine the benefits of using factor structure4, we include

several counterparts of the aforementioned models that directly estimate precision of the

forecast errors without estimating factors and loadings: GL, LW, NLW, CLIME, and MB.

We also include a univariate AR(1) model of the target series, which is the model that is not

based on the combinations of forecasters. For RD-FGL, since different specifications of the

4As an alternative to PCA, Boot and Nibbering (2019) use random subspace methods.
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smoothing function ψ(·) were shown to perform similarly in the simulations, we only keep

ℓ2-penalty. The break parameter in factor loadings is estimated using cross-valiation (γ = γ̂),

whereas the down weighting parameter λ is fixed at 0.98 as recommended by Chudik et al.

(2024). We consider two types of a breaks: breaks determined by a time point, and breaks

determined by a state that defines a regime. For time breaks, the location and the number

of breaks are estimated via the procedures discussed in subsection 3.3. For state-dependent

breaks we proceed as follows: let St ≡ {t : yt > ȳt}Tt=1 be a set that defines a regime, where

yt is the target series. Since ECB SPF has quarterly frequency, we use ȳt =
∑t−1

t−5 yt, which

is the average of the target series over the previous four quarters. We consider two regimes:

t ∈ St and t /∈ St. We note that the aforementioned definition of St does not attempt to

separate between the periods of recession and expansion. One can certainly come up with a

more elaborate definition of regimes for such purposes. Our goal is to see if the possibility

of revisiting a regime, which was not present for time breaks, can be useful when combining

forecasts.

Our benchmark is the simple average with equal weights on all forecasters (referred to as

EW), since it is a commonly used benchmark (see Genre et al. (2013) and Thompson et al.

(2024) among others). Going back to the discussion in Section 3 regarding setting β = 0

in equation (3.5): as we pointed out, this corresponds to using only post-break sample for

estimation which is suboptimal since the value of β is already chosen optimally from the grid

that includes β = 0 to minimize the MSFE. Hence, by construction, RD-FGL is superior to

using only post-break data.

For RD-FGL with time breaks the number of breaks for loadings and precision is es-

timated using the test for existence of break point (Bai and Perron (2003)): using their

sequential procedure we search for up to three breaks and set the trimming parameter to
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10% of the total number of observations, and the significance level at 5%. The location of

the break points for each series is estimated using the one-at-a-time approach described in

Subsection 3.3.

Table 1 compares the performance of FGL and RD-FGL with the competitors for predict-

ing three macroeconomic indicators for Euro-area using a combination of ECB SPF forecasts.

It reports the ratios of MSFE of each method to the MSFE of the EW. Using the Model

Confidence Set (MCS) of Hansen et al. (2011), we identify the set of superior models (SSM)

for each series and horizon at 90% confidence level. Models marked with a star in Table 1

belong to the SSM according to MCS test which ranks them according to the relative sample

loss of the i-th model relative to the average across models in SSM.

There are five main findings that we learn from analysing Table 1: (1) for most series

factor-based models outperform non-factor ones. This means that incorporating the factor

structure in the forecast errors improves forecasting performance. (2) for all series the model

based on sample covariance provides one of the worst performances. This means that the

factor structure per se is not sufficient to achieve performance gains over EW, hence, it is

necessary to impose sparsity on the precision matrix of the idiosyncratic components. (3)

For real GDP growth and inflation series RD-FGL is included in the SSM for most values

of R. For the unemployment rate, FGL outperforms RD-FGL. This result is supported by

the behaviour, observed in the actual series: real GDP growth and inflation exhibit strong

breaks following the global financial crisis and Covid pandemic, however this is not the case

for the unemployment rate series that did not have strong breaks throughout the whole

sample period. (4) For real GDP growth RD-FGL with time breaks and state-dependent

breaks perform comparatively similar. For inflation and unemployment series RD-FGL with

state-dependent breaks outperforms the one with time breaks. This highlights the benefits
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of allowing a possibility of recurring regimes. (5) The majority of combination models

outperform AR(1) which emphasizes the benefits of combining multiple forecasts.

5 Application to FRED-MD

In a second empirical application, we use a large monthly frequency macroeconomic

database of McCracken and Ng (2016), who provide a comprehensive description of the

dataset and 126 macroeconomic series. We consider the time period 1959:1-2024:08 with

the total number of observations T = 788. We use four forecast targets: monthly industrial

production (INDPRO), consumer price index for all items (CPIAUCSL), personal consumer

expenditures: Chain Index (PCEPI), and civilian Unemployment Rate (UNRATE). To cre-

ate forecasts we use the optimal combination of target series forecasts (see equation (2.3))

based on individual monthly indicators5. We split the sample in three parts: the first 240

observations are used to estimate the competing forecasting models. The remaining 548 ob-

servations are split into the training sample m = 400, and the test sample n = T −m−h+1,

where h is the forecast horizon. We roll the estimation window over the test sample to up-

date all the estimates in each point of time t = m, . . . , T − h. For INDPROD, CPIAUCSL,

and PCEPI we forecast the average growth rate (series Yt is in logarithms), UNRATE we

forecast the average change (series Yt is without logarithms):

y
(h)
t+h =

1

h
(Yt+h/Yt).

The total number of forecasting models is p = 125. Similarly to Section 4, we first esti-

mate time-varying mean of the forecast errors mt using AR(1) and use it to demean forecast

5We thank the associate editor for this suggestion.
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errors. After that we estimate factor model. The optimal number of factors in the forecast

errors is chosen using the standard data-driven method that uses the information criterion

IC1 described in Bai and Ng (2002).

We use the same alternative estimators of precision/covariance matrix as in Section 4.

We use RD-FGL with a state break defined by St ≡ {t : yt > ȳt}Tt=1, where yt is the target

series. Since FRED-MD has monthly frequency, we use ȳt =
∑t−1

t−13 yt, which is the average

of the target series over the previous twelve months. We consider two regimes: t ∈ St and

t /∈ St.

There are four main findings that we learn from analyzing Table 2: (1) For CPIUCSL,

PCEPI, and UNRATE RD-FGL significantly outperforms methods without modeling a

break. This highlights the importance of defining the regimes using St and ȳt over the past

twelve months. For INDPRO, FGL outperforms RD-FGL. A potential explanation might

be the fact that there is less variation in INDPRO compared to other targets, which means

there are less benefits of using different regimes. (2) For most cases, factor-based models

outperform non factor-based counterparts. However, in contrast to the ECB-SPF applica-

tion in Section 4, the benefits are, on average, less pronounced. We attribute this finding to

the difference in the nature of combined forecasts: for ECB SPF we combined the forecasts

solicited from experts who use similar information sets to make forecasts and, hence, their

errors tend to exhibit common movements especially in the periods of increased uncertainty.

Whereas for FRED-MD we created our own forecasts using each macroeconomic series in

the dataset as predictors one at a time. Naturally, even though there are still benefits of

extracting common components for FRED-MD case, they are weaker compared to combin-

ing professional forecasts. (3) For all series, the model based on sample covariance provides

one of the worst performances. However, its relative performance is better when contrasted
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with the ECB SPF application. The reason for this improved performance, similarly to our

discussion in (2), is somewhat deteriorated performance of the factor-based models. (4)

Similarly to the ECB SPF application, many combination models still outperform AR(1).

However, the relative performance of AR(1) has improved and even belongs to the SSM set.

6 Conclusions

In this paper we develop a framework to generalize network inference under a factor

structure in the presence of structural breaks. We overcome the challenge of using graphical

models under the factor structure and provide a simple approach that allows practitioners to

combine a large number of forecasts when experts tend to make common errors. Using pre-

and post-break data, our new approach to forecast combinations breaks down forecast errors

into common and unique parts which improves the accuracy of the combined forecast. We

allow the structural breaks to affect factor loadings and idiosyncratic precision matrix. For

the ease of practical use we develop a scalable optimization procedure for RD-FGL, based on

the ADMM. Two empirical applications to forecasting macroeconomic series using the data

of the ECB Survey of Professional Forecasters and FRED-MD show that incorporating (i)

factor structure in the forecast errors together with (ii) sparsity in the precision matrix of

the idiosyncratic components and (iii) regime-dependent combination weights improves the

performance of a combined forecast.
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Supplemental Appendix to

“Combining Forecasts under Structural Breaks

Using Graphical LASSO”

Appendix A Graphical Lasso Algorithm

Recall that we have p competing forecasts of the univariate series yt, t = 1, . . . , T . Let

et = (e1t, . . . , ept)
′ ∼ N (0,Σ) be a p × 1 vector of forecast errors. Assume they follow a

Gaussian distribution. The precision matrix Σ−1 ≡ Θ contains information about partial

covariances between the variables. For instance, if θij, which is the ij-th element of the

precision matrix, is zero, then the variables i and j are conditionally independent, given the

other variables.

Let W be the estimate of Σ. Given a sample {et}Tt=1, let S = (1/T )
∑T

t=1(et)(et)
′ denote

the sample covariance matrix, which can be used as a choice for W. Also, let Γ̂2 ≡ diag(W)

and its (i, j)-th element is denoted as γ̂ij. We can write down truncated Gaussian log-

likelihood (up to constants) l(Θ) = log det(Θ) − tr(WΘ). When W = S, the maximum

likelihood estimator of Θ is Θ̂ = S−1. The objective function associated with truncated

Gaussian log-likelihood is also known as Bregman divergence and was shown to be applicable

for non-Gaussian distributions (Ravikumar et al. (2011)).

In the high-dimensional settings it is necessary to regularize the precision matrix, which

means that some edges will be zero. A natural way to induce sparsity in the estimation

of precision matrix is to add penalty to the maximum likelihood and use the connection

between the precision matrix and regression coefficients to maximize the following penalized

log-likelihood that weighs the variables by their scale:

Θ̂τ = arg min
Θ=Θ′

tr(WΘ)− log det(Θ) + τ
∑
i ̸=j

γ̂iiγ̂jj|θij|, (A.1)

over positive definite symmetric matrices, where τ ≥ 0 is a penalty parameter for the off-

diagonal elements. We refer to the objective function in (A.1) as a “weighted penalized

log-likelihood”. The subscript τ in Θ̂τ means that the solution of the optimization problem

in (A.1) will depend upon the choice of the tuning parameter. In order to simplify notation,

we will omit the subscript.
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Define the following partitions of W, S and Θ:

W =

 W11︸︷︷︸
(p−1)×(p−1)

w12︸︷︷︸
(p−1)×1

w′
12 w22

 ,S =

 S11︸︷︷︸
(p−1)×(p−1)

s12︸︷︷︸
(p−1)×1

s′12 s22

 ,Θ =

 Θ11︸︷︷︸
(p−1)×(p−1)

θ12︸︷︷︸
(p−1)×1

θ′
12 θ22

 .

(A.2)

Let β ≡ −θ12/θ22. The idea of GL is to set W = S+ τI in (A.1) and combine the gradient

of (A.1) with the formula for partitioned inverses to obtain the following ℓ1-regularized

quadratic program

β̂ = arg min
β∈Rp−1

{1
2
β′W11β − β′s12 +

∑
i ̸=j

τ γ̂iiγ̂jj∥β∥1
}
. (A.3)

As shown by Friedman et al. (2008), (A.3) can be viewed as a LASSO regression, where

the LASSO estimates are functions of the inner products of W11 and s12. Hence, (A.1) is

equivalent to p coupled LASSO problems. Once we obtain β̂, we can estimate the entries

Θ using the formula for partitioned inverses. The weighted GL procedure is summarized in

Algorithm A.1.
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Algorithm A.1 Weighted Graphical LASSO

1: Initialize W = S + τI, with wii = sii. The diagonal of W remains the same in what
follows.

2: Estimate a sparse Θ using the following weighted Graphical LASSO objective function:

Θ̂τ = arg min
Θ=Θ′

tr(WΘ)− log det(Θ) + τ
∑
i ̸=j

γ̂iiγ̂jj|θij|,

over positive definite symmetric matrices.
3: Repeat for j = 1, . . . , p, 1, . . . , p, . . . until convergence:

� Partition W into part 1: all but the j-th row and column, and part 2: the j-th
row and column.

� Solve the score equations using the cyclical coordinate descent:

W11β − s12 + τ γ̂iiγ̂jj · Sign(β) = 0.

This gives a (p− 1)× 1 vector solution β̂.

� Update ŵ12 = W11β̂.

4: In the final cycle (for i = 1, . . . , p) solve for

1

θ̂22
= w22 − β̂′ŵ12, θ̂12 = −θ̂22β̂.

As was shown in Friedman et al. (2008), the estimator produced by Algorithm A.1 is

guaranteed to be positive definite. Furthermore, Janková and van de Geer (2018) showed

that Algorithm A.1 is guaranteed to converge and produces consistent estimator of precision

matrix under certain sparsity conditions.
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Appendix B Factor Graphical LASSO

Algorithm B.2 Factor Graphical LASSO (FGL)

1: Estimate factors, f̂t, and factor loadings, B̂, using PCA. Obtain Σ̂f = 1
T

∑T
t=1 f̂tf̂

′
t ,

Θ̂f = Σ̂−1
f , ε̂t = et − B̂f̂t, and Σ̂ε =

1
T

∑T
t=1 ε̂tε̂

′
t.

2: Estimate a sparse Θε using the weighted Graphical LASSO in initialized with Wε =

Σ̂ε + τI:

Θ̂ε,τ = arg min
Θε=Θ′

ε

tr(WεΘε)− log det(Θε) + τ
∑
i ̸=j

γ̂ε,iiγ̂ε,jj|θε,ij|. (B.1)

where γ̂ε,ii is the (i, i)-th element of Γ̂2
ε ≡ diag(Wε).

3: Use Θ̂f from Step 1 and Θ̂ε from Step 2 to estimate Θ using the Sherman-Morrison-

Woodbury formula:

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε. (B.2)

Let Θ̂ε,τ be the solution to (B.1) for a fixed τ . To choose the optimal shrinkage intensity

coefficient, we minimize the following Bayesian Information Criterion (BIC) using grid search:

BIC(τ) ≡ T
[
tr(Θ̂ε,τΣ̂ε)− log det(Θ̂ε,τ )

]
+ (log T )

∑
i≤j

1
[
θ̂ε,τ,ij ̸= 0

]
. (B.3)

The grid G ≡ {τ1, . . . , τM} is constructed as follows: the maximum value in the grid, τM ,

is set to be the smallest value for which all the off-diagonal entries of Θ̂ε,τM are zero, that

is, the maximum modulus of the off-diagonal entries of Σ̂ε. The smallest value of the grid,

τ1 ∈ G, is determined as τ1 ≡ ϑτM for a constant 0 < ϑ < 1. The remaining grid values

τ1, . . . , τM are constructed in the ascending order from τ1 to τM on the log scale:

τi = exp
(
log(τ1) +

i− 1

M − 1
log(τM/τ1)

)
, i = 2, . . . ,M − 1.

We use ϑ =
√

log p/T + 1/
√
p (motivated by the convergence rate from Theorem 1) and

M = 10 in the simulations and the empirical exercise.
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Appendix C Proof of Theorem 1

We first present a lemma which is used in the proof.

Lemma 1.

(a) |||Θ|||1 = O(dT ).

(b) a ≥ c > 0, where a was defined in Section 2 and c was defined in Assumption (A.1)
(ii).

(c) |â− a| = OP (ϱTdT sT ), where â was defined in Section 2.

Proof.

(a) To prove part (a) we use the following matrix inequality which holds for any A ∈ Sp:

|||A|||1 = |||A|||∞ ≤
√
d(A)|||A|||2, (C.1)

where d(A) was defined in Section 4. The proof of (C.1) is a straightforward conse-
quence of the Schwarz inequality.

Sherman-Morrison-Woodbury formula together with (C.1) and Assumptions (B.1)-
(B.3) yield:

|||Θ|||1 ≤ |||Θε|||1 +
∣∣∣∣∣∣ΘεB[Θf +B′ΘεB]−1B′Θε

∣∣∣∣∣∣
1

= O(
√
dT ) +O

(√
dT · p · 1

p
·
√
dT

)
= O(dT ). (C.2)

(b) Under Assumption (A.1):
a = ι′pΘιp/p ≥ c > 0.

(c) Using the Hölders inequality, we have

|â− a| =

∣∣∣∣∣ι′p(Θ̂−Θ)ιp

p

∣∣∣∣∣ ≤
∥∥∥(Θ̂−Θ)ιp

∥∥∥
1
∥ιp∥∞

p
≤
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1

= OP (ϱTdT sT ) = oP (1),

where the last rate is obtained using the assumptions of Theorem 1.
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C.1 Proof of Theorem 1

First, note that the forecast combination weight can be written as

ŵ −w =

(
(aΘ̂ιp)− (âΘιp)

)
/p

âa

=

(
(aΘ̂ιp)− (aΘιp) + (aΘιp)− (âΘιp)

)
/p

âa
.

As shown in Callot et al. (2019), the above can be rewritten as

∥ŵ −w∥1 ≤
a
∥(Θ̂−Θ)ιp∥

1

p
+ |a− â|∥Θιp∥1

p

|â|a
. (C.3)

Prior to bounding the terms in (C.3), we first present an inequality which is used in the
derivations. Let A ∈ Rp×p and v ∈ Rp×1. Also, let Aj and A′

j be a p× 1 and 1× p row and
column vectors in A, respectively.

∥Av∥1 = |A′
1v|+ . . .+

∣∣A′
pv
∣∣ ≤ ∥A1∥1∥v∥∞ + . . .+ ∥Ap∥1∥v∥∞ (C.4)

=

(
p∑
j=1

∥Aj∥1

)
∥v∥∞ ≤ pmax

j
|Aj|1∥v∥∞.

Hölders inequality was used to obtain each inequality in (C.4). If A ∈ Sp, then the last
expression can be further reduced to p|||A|||1∥v∥∞.

Let us now bound the right-hand side of (C.3). In the numerator we have:

∥∥∥(Θ̂−Θ)ιp

∥∥∥
1

p
≤ |||Θ|||1 = OP (ϱTdT sT ), (C.5)

the rates was derived in Lee and Seregina (2020), and the inequality follows from (C.4).

∥Θιp∥1
p

≤ |||Θ|||1 = O(dT ), (C.6)

where the rate follows from Lemma 1 (a) and the inequality is obtained from (C.4). Com-
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bining (C.5), (C.6), and Lemma 1 (c) we get:

a

∥∥∥(Θ̂−Θ)ιp

∥∥∥
1

p
+ |a− â|

∥Θιp∥1
p

= O(1) · OP (ϱTdT sT ) +OP (ϱTdT sT ) · O(dT )

= OP (ϱTd
2
T sT ) = oP (1), (C.7)

where the last equality holds under the assumptions of Theorem 1.
For the denominator of (C.3) it easy to see that |â|a = OP (1) using the results of Lemma

1 (b).
For the MSFE part of Theorem 1, using Lemma 1 (b)-(c), we get

∣∣∣∣ â−1

a−1
− 1

∣∣∣∣ = |a− â|
|â|

= OP (ϱTdT sT ) = oP (1),

where the last rate is obtained using the assumptions of Theorem 1.
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Appendix D Implementation via ADMM Algorithm

To enable practical implementation of the RD-FGL, we develop an optimization proce-
dure using ADMM algorithm to solve the convex optimization problem in (3.5).

First, we need to reformulate the unconstrained problem in (3.5) as a constrained problem
which can be solved using ADMM:

{Θ̂ε,j}N+1
j=1 = arg min

{Θε,j}N+1
j=1

N+1∑
j=1

nj

[
tr
(
Σ̂ε,jΘε,j

)
− log detΘε,j

]
+ α∥Θε,j∥od,1 (D.1)

+ β
N+1∑
j=2

ψ(Θε,j −Θε,j−1)

s.t. Zj,0 = Θε,j, for j = 1, . . . , N + 1 (D.2)(
Zj−1,1,Zj,2

)
=
(
Θε,j−1,Θε,j

)
, for j = 2, . . . , N + 1. (D.3)

Let Z =
{
Z0,Z1,Z2

}
=
{(

Z1,0, . . . ,ZN+1,0

)
,
(
Z1,1, . . . ,ZN,1

)
,
(
Z2,2, . . . ,ZN+1,2

)}
.

Let U =
{
U0,U1,U2

}
=
{(

U1,0, . . . ,UN+1,0

)
,
(
U1,1, . . . ,UN,1

)
,
(
U2,2, . . . ,UN,2

)}
be the

scaled dual variable and ρ > 0 is the ADMM penalty parameter. Now we can use scaled
ADMM to write down the augmented Lagrangian:

Lρ(Θε,Z,U) =
N+1∑
j=1

nj

[
tr
(
Σ̂ε,jΘε,j

)
− log detΘε,j

]
+ α∥Zj,0∥od,1 (D.4)

+ β
N+1∑
j=2

ψ(Zj,2 − Zj−1,1)

+
(ρ
2

)N+1∑
j=1

(
∥Θε,j − Zj,0 +Uj,0∥2F − ∥Uj,0∥2F

)

+
(ρ
2

)N+1∑
j=2

(
∥Θε,j−1 − Zj−1,1 +Uj−1,1∥2F − ρ

2
∥Uj−1,1∥2F

+ ∥Θε,j − Zj,2 +Uj,2∥2F − ∥Uj,2∥2F

)
.
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Let k denote the iteration number, then ADMM consists of the following iterative updates:

Θk+1
ε,j ≡ argmin

Θε≻0
Lρ(Θε,Z

k,Uk), (D.5)

Zk+1 =


Zk+1

0

Zk+1
1

Zk+1
2

 ≡ arg min
Z0,Z1,Z2

Lρ(Θk+1
ε ,Z,Uk), (D.6)

Uk+1 =


Uk+1

0

Uk+1
1

Uk+1
2

 ≡


Uk

0

Uk
1

Uk
2

+


Θk+1
ε − Zk+1

0

(Θk+1
ε,1 , . . . ,Θ

k+1
ε,N )− Zk+1

1

(Θk+1
ε,2 , . . . ,Θ

k+1
ε,N+1)− Zk+1

2

 . (D.7)

The Z step:
The updating rule in (D.6) is easily recognized to be the element-wise soft thresholding
operator. However, we need to split it into two updates since (Z1,Z2) have to be updated
jointly. Therefore, the update for Zk+1

j,0 will be:

Zk+1
j,0 ≡ Sα/ρ(Θ

k+1
ε,j +Uk

j,0), (D.8)

where Sα/ρ(·) is the element-wise soft-thresholding operator.

We will solve a separate update for each (Zj,2,Zj−1,1) pair for j = 2, . . . , N + 1:

(Zk+1
j,2 ,Z

k+1
j−1,1) = arg min

Zj,2,Zj−1,1

(ρ
2

)(
∥Θε,j − Zj,2 +Uj,2∥2F (D.9)

+ ∥Θε,j−1 − Zj−1,1 +Uj−1,1∥2F + βψ(Zj,2 − Zj−1,1)

)
.

Note that (D.9) is guaranteed to converge to a fixed point since it can be written as a
proximal operator:

(Zk+1
j,2 ,Z

k+1
j−1,1) = proxβ

ρ
ψ(·)

(
Θε,j +Uj,2,Θε,j−1 +Uj−1,1

)
(D.10)
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Remark 5. A proximal operator of the scaled function νf , where ν > 0 can be expressed as:

proxνf (v) = argmin
x

(
f(x) +

1

2ν
∥x− v∥22

)
,

where f is a closed proper convex function. Note:

proxνf (v) ≈ v − τ∇f(v).

Parikh and Boyd (2014) show that the fixed points of the proximal operator of f are precisely
the minimizers of f , i.e., proxνf (x

⋆) = x⋆ if and only if x⋆ minimizes f .

The Θ step:
The updating rule in (D.5) can be further simplified to obtain a closed-form solution. Rewrite
(D.5):

Θk+1
ε,j = argmin

Θε≻0
tr
(
Σ̂jΘε,j

)
− log detΘε,j +

1

2η

∥∥Θε,j −Ak
∥∥2
F
, (D.11)

where Ak =
Zki,0 + Zkj−1,1 + Zkj,2 −Uk

j,0 −Uk
j−1,1 −Uk

j,2

3
, and η =

nj

3ρ
.

Take the gradient of the updating rule in (D.11) in order to get an analytical solution:

Σ̂ε,j −Θ
−1,(k+1)
ε,j +

1

η

(
Θk+1
ε,j −Ak

)
= 0, (D.12)

1

η
Θk+1
ε,j −Θ−1,(k+1)

ε =
1

η
Ak − Σ̂ε,j. (D.13)

Equation (D.13) implies that Θk+1
ε,j and 1

η
Ak − Σ̂ε,j share the same eigenvectors.

Let QjΛjQ
′
j be the eigendecomposition of 1

η
Ak − Σ̂ε,j, where Λj = diag(λ1,j, . . . , λp,j), and

Q′
jQj = QjQ

′
j = I.6 Pre-multiply (D.13) by Q′

j and post-multiply it by Qj:

1

η
Θ̃k+1
ε,j − Θ̃

−1,(k+1)
ε,j = Λj. (D.14)

6Note that in practice we need to check thatAk is symmetric. If it is not, then we can define Ã ≡ Ak+(Ak)′

2
and use it in the described algorithm instead of Ak. Since Θj is symmetric the results will not be affected.
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Now construct a diagonal solution of (D.14):

1

η
ṽi,j −

1

ṽi,j
= λi,j, (D.15)

where ṽi,j denotes the i-th eigenvalue of Θ̃ε,j. Solving for ṽi,j we get:

ṽi,j =
λi,j +

√
λ2i,j +

4
η

2η−1
. (D.16)

Now we can calculate Θk+1
ε,j which satisfies the optimality condition in (D.14):

Θk+1
ε,j =

1

2η−1
Qj

(
Λj +

√
Λ2
j + 4η−1I

)
Q′
j. (D.17)

Use the definition of η =
nj

3ρ
:

Θk+1
ε,j =

nj
6ρ

Qj

(
Λj +

√
Λ2
j +

12ρ

nj
I
)
Q′
j. (D.18)

Step (D.18) is the most computationally intensive task in the algorithm since the runtime
of decomposing a p × p matrix is O(p3). Also, note that compared to standard ADMM
without smoothing penalty β, (D.18) enforces stronger shrinkage. This is consistent with
our motivation for the additional constraint - to smooth the estimator of precision matrix.
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Appendix E Monte Carlo

We divide the simulation results into two families of DGPs. The first one studies the

consistency of the FGL and RD-FGL for estimating precision matrix and the combination

weights. The second one evaluates the out-of-sample forecasting performance of combined

forecasts in terms of MSFE. We compare the performance of forecast combinations based on

the factor models in Algorithm 1 (RD-FGL) and Algorithm B.2 (FGL) with equal-weighted

(EW) forecast combination, and combinations that use GL without factor structure (Al-

gorithm A.1).7 We examine the performance of RD-FGL for different specifications of the

smoothing function ψ(·) as described in Section 3. LASSO penalty is denoted as ℓ1, Group

LASSO as ℓg, and Ridge as ℓ2. Similarly to the literature on graphical models, all exercises

use 100 Monte Carlo simulations. To check robustness of RD-FGL, we present simulation

results for several cases: (i) with a structural break in both B and Θε, (ii) without a break,

(iii) with break only in Θε, and (iv) with multiple breaks.

E.1 Consistent Estimation of Forecast Combination Weights

We consider sparse Gaussian graphical models which may be fully specified by a precision

matrix Θ0. Therefore, the random sample is distributed as et = (e1t, . . . , ept)
′ ∼ N (0,Σ0),

where Θ0 = (Σ0)
−1 for t = 1, . . . , T, i = 1, . . . , p. Let Θ̂ be the precision matrix estimator.

We show consistency of the FGL in (i) the operator norm,
∣∣∣∣∣∣∣∣∣Θ̂−Θ0

∣∣∣∣∣∣∣∣∣
2
, and (ii) in ℓ1-vector

norm for the combination weights, ∥ŵ −w∥1, where w is given by (2.3).

The forecast errors are assumed to have the following structure:

et︸︷︷︸
p×1

= B ft︸︷︷︸
q×1

+ εt, ft = ϕf ft−1 + ζt, t = 1, . . . , T (E.1)

where et is a p× 1 vector of forecast errors following N (0,Σ), ft is a q× 1 vector of factors,

B is a p× q matrix of factor loadings, ϕf is an autoregressive parameter in the factors which

is a scalar for simplicity, ζt is a q × 1 random vector with each component independently

following N (0, σ2
ζ ), εt is a p× 1 random vector following N (0,Σε), with sparse Θε that has

a random graph structure described below. To create B in (E.1) we take the first q columns

of an upper triangular matrix from a Cholesky decomposition of the p × p Toeplitz matrix

parameterized by ρ: that is, B = (b)lm, where (b)lm = ρ|l−m|, l,m ∈ {1, . . . , p}. We set

ρ = 0.2, ϕf = 0.2 and σ2
ζ = 1. The specification in (E.1) leads to the low-rank plus sparse

7EW arises when the forecast errors follow a factor structure (one factor, homogeneous idiosyncratic
variance). It can be viewed as one of “factor-based” methods. To this extent, egalitarian LASSO of Diebold
and Shin (2019) is a special case of FGL.
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decomposition of the covariance matrix E [ete
′
t] = Σ = BΣfB

′ +Σε. When Σε has a sparse

inverse Θε, it leads to the low-rank plus sparse decomposition of the precision matrix Θ,

such that Θ can be expressed as a function of the low-rank Θf plus sparse Θε.

We consider the following setup: let p = T δ, δ = 0.85, q = 2(log(T ))0.5 and T =

[2κ], for κ = 7, 7.5, 8, . . . , 9.5. Our setup allows the number of individual forecasts, p, and

the number of common factors in the forecast errors, q, to increase with the sample size, T .

A sparse precision matrix of the idiosyncratic components Θε is constructed as follows:

we first generate the adjacency matrix using a random graph structure. Define a p × p

adjacency matrix Aε which represents the structure of the graph with aε,lm being the l,m-th

element of the adjacency matrix Aε. We set aε,lm = aε,ml = 1, for l ̸= m with probability π,

and 0 otherwise. Such structure results in sT = p(p− 1)π/2 edges in the graph. To control

sparsity, we set π = 500/(pT 0.8), which makes sT = O(T 0.05). The adjacency matrix has all

diagonal elements equal to zero. To generate a sparse symmetric positive-definite precision

matrix we use Scikit-Learn datasets package in Python (Pedregosa et al. (2011)). To control

the magnitude of partial correlations, the value of the smallest coefficient is set to 0.1 and

the value of the largest coefficient is set to 0.3.

To incorporate structural breaks in Θε and factor loadings B, we proceed as follows. We

fix a single break point in the middle of the sample size, T/2: in the precision matrix of the

idiosyncratic errors before the break, referred to as Θε,1, the value of the largest coefficient

is set to 0.4; whereas in the precision matrix of the idiosyncratic errors after the break, Θε,2,

the value of the largest coefficient is set to 0.6. As a consequence, even though both matrices

are still sparse, Θε,2 has larger partial correlations. We use Θε,1 and Θε,2 to generate εt

in (E.1). For the structural break in factor loadings (which is assumed to happen at the

same time as the structural change in Θε), before the break we set ρ1 = 0.2 in the Toeplitz

matrix used to generate B (i.e., B = (b)lm, where (b)lm = ρ|l−m|), and after the break we set

ρ2 = 0.6.

Figure E.1 shows the averaged (over Monte Carlo simulations) errors of the estimators of

the precision matrix Θ and the optimal combination weight versus the sample size T in the

logarithmic scale (base 2). The estimate of the precision matrix of the EW forecast combi-

nation is obtained using the fact that diagonal covariance and precision matrices imply equal

weights. To determine the values of the diagonal elements we use the shrinkage intensity

coefficient calculated as the average of the eigenvalues of the sample covariance matrix of

the forecast errors (see Ledoit and Wolf (2004)).

Figure E.1 examines the performance when there are breaks in both Θε and B: ac-

counting for the break significantly reduces the estimation error of precision matrix and

combination weights. We report the results for the case when γ is estimated using cross-
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validation (γ = γ̂) (as discussed in Section 4). Online Supplement S2 presents the results

for the case when the break is only in Θε.

Figure E.1: Averaged errors of the estimators of Θ (left) and w on logarithmic scale (base
2): break in Θε and factor loadings B. p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05). The
horizontal axis ranges from T = 27, . . . , T = 29.5.

E.2 Comparing Performance of Forecast Combinations

We consider the standard forecasting model in the literature (e.g., Stock and Watson

(2002)), which uses the factor structure of the high dimensional predictors. Suppose the

data is generated from the following data generating process (DGP):

xt = Λgt + vt, gt = ϕgt−1 + ξt, yt+1 = g′
tα+

∞∑
s=1

θsϵt+1−s + ϵt+1, (E.2)

where yt+1 is a univariate series of our interest in forecasting, xt is an M × 1 vector of

regressors (predictors), α is an M × 1 parameter vector, gt is an r× 1 vector of factors, Λ is

an M × r matrix of factor loadings, vt is an M × 1 random vector following N (0, σ2
vIM), ϕ

is an autoregressive parameter in the factors which is a scalar for simplicity, ξt is an M × 1

random vector with each component independently following N (0, σ2
ξ ), ϵt+1 is a random
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error following N (0, σ2
ϵ ), and α is an r× 1 parameter vector which is drawn randomly from

N (1, 1). We set σϵ = 1. The coefficients θs are set according to the rule θs = (1 + s)c1cs2

as in Hansen (2008). We set c1 = 0.75. We set M = 100 and generate r = 5 factors. To

create Λ in (E.2) we take the first r rows of an upper triangular matrix from a Cholesky

decomposition of the M ×M Toeplitz matrix parameterized by ρ = 0.9. The ranking of

competing models was not very sensitive to varying values of ϕ, ρ, c2, and r.

One-step ahead forecasts are estimated from the factor-augmented autoregressive (FAR)

models of orders k, l, denoted as FAR(k, l):

ŷt+1 = µ̂+ κ̂1ĝ1,t + · · ·+ κ̂kĝk,t + ψ̂1yt + · · ·+ ψ̂lyt+1−l, (E.3)

where the factors (ĝ1,t, . . . , ĝk,t) are estimated from equation (E.2). We consider the FAR

models of various orders, with k = 1, . . . , K and l = 1, . . . , L. We also consider the models

without any lagged y or any factors. Therefore, the total number of forecasting models is

p ≡ (1 +K)× (1 + L). We set K = 2 and L = 7.

The total number of observations is m. The period for training the models is set to be

m1 = m/2 – this is used to train competing FAR models in (E.3). The remaining part of

the sample, m2 = m−m1 is split as follows: the estimation window for training competing

models (that is, EW, GL, FGL, and RD-FGL) is set to be of size = m2/2. We roll the

estimation window over the the test sample of the size m2/2 to update all the estimates in

each point of time. Recall that q denotes the number of factors in the forecast errors as in

equation (2.1).

To incorporate structural break we proceed as follows. The period for training the models

is set to be m1 = m/3 – this is used to train competing FAR models in (E.3). The remaining

part of the sample, m2 = m − m1 is split as follows: the estimation window for training

competing models is set to be of size = m2/2. We roll the estimation window over the test

sample of the size m2/2. The break point is fixed at 1/2 of the first estimation window.

Before the break, when generating θs we set c2 = 0.3, and after the break c2 = 0.9. All other

parameters stay unchanged. Notice that the break in c2 can propagate into both a break in

precision matrix and factor loadings.

Similarly to the previous subsection, we include different specifications of the smoothing

function ψ(·). Figure E.2 shows the performance of all models including RD-FGL with γ

estimated using cross-validation: similarly to the conclusions in the previous subsection,

accounting for the break significantly reduces MSFE of the combined forecast.
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Figure E.2: Plots of the MSFE over the total number of observations m. c1 = 0.75, c2 = 0.3
(before the break), c2 = 0.9 (after the break), M = 100, r = 5, σξ = 1, L = 7, K = 2, p =
24, q = 3, ϕ = 0.8. Left: ρ = 0.2, right: ρ = 0.9.

E.3 No Break

In this subsection we present simulation results that augment the results in Section 5 by

assuming there is no break in the DGP.

First, we explore behavior of precision matrix and weights estimates. The setup is the

same as in Subsection E.1, but there is no break in Θε: the value of the smallest coefficient

is set to 0.1 and the value of the largest coefficient is set to 0.3.

Figure E.3 shows the averaged (over Monte Carlo simulations) errors of the estimators

of the precision matrix Θ and the optimal combination weight versus the sample size T in

the logarithmic scale (base 2). For comparison, we include RD-FGL in all simulations. Since

there is no break in the DGP, the tuning parameter for the factor loadings γ = 1 and the value

of β is estimated to be zero. Henceforth, all specifications of the smoothing function ψ(·)
yield similar results and we only include one of them RD-FGL (ℓ2). As evidenced by Figure

E.3, FGL and RD-FGL demonstrate superior performance over EW and non-factor based

model (GL). FGL and RD-FGL have comparable performance, but since there is no break

in DGP, FGL is more efficient. Furthermore, FGL and RD-FGL achieve lower estimation
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error in the combination weights, which leads to lower risk of the combined forecast. Also,

note that the precision matrix estimated using the EW method also shows good convergence

properties.

Figure E.3: Averaged errors of the estimators of Θ (left) and w on logarithmic
scale (base 2). p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05). The horizontal axis ranges
from T = 27, . . . , T = 29.5.

Second, we explore behavior of MSFE under no breaks. We set c1 ∈ {0, 0.75} and

c2 = 0.9. We set M = 100 and generate r = 5 factors. To create Λ in (E.2) we take the

first r rows of an upper triangular matrix from a Cholesky decomposition of the M ×M

Toeplitz matrix parameterized by ρ = 0.9. The ranking of competing models was not very

sensitive to varying values of ϕ, ρ, c2, and r – the results examining sensitivity to a grid of

10 different AR(1) coefficients ϕ equidistant between 0 and 0.9, a grid of 10 different values

of ρ equidistant between 0 and 0.9, c2 ∈ {0.6, 0.7, 0.8, 0.9}, and r ∈ {1, · · · , 7} are available

upon request.

One-step ahead forecasts are estimated from the factor-augmented autoregressive (FAR)

models of orders k, l, denoted as FAR(k, l), defined in (E.3). We consider the FAR models

of various orders, with k = 1, . . . , K and l = 1, . . . , L. We also consider the models without

any lagged y or any factors. Therefore, the total number of forecasting models is p ≡
(1 +K)× (1 + L), which includes the forecasting models using naive average or no factors.

We set K = 2 and L = 7.
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The total number of observations is m. The period for training the models is set to be

m1 = m/2 – this is used to train competing FAR models in (E.3). The remaining part of

the sample, m2 = m−m1 is split as follows: the estimation window for training competing

models (that is, EW, GL, FGL, and RD-FGL) is set to be window = m2/2. We roll the

estimation window over the the test sample of the size m2/2 to update all the estimates in

each point of time. Recall that q denotes the number of factors in the forecast errors as in

equation (2.1).

Similarly to the previous subsection, we include RD-FGL in all simulations. When there

is no break in the DGP, the tuning parameter for the factor loadings, γ, is set to one, and

the penalty that controls the change of idiosyncratic precision matrix over time, β, is zero.

Figure E.4 shows the MSFE for different sample sizes and fixed parameters: we report the

results for two values of c1 ∈ {0, 0.75}. As evidenced from Figure E.4, the models that use

the factor structure outperform EW combination and non-factor based counterparts for both

values of c1.

Figure E.4: Plots of the MSFE over the total number of observations m . c1 = 0
(left), c1 = 0.75 (right), c2 = 0.9, M = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q =
3, ρ = 0.9, ϕ = 0.8.
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E.4 Break Only in Idiosyncratic Precision Matrix

This subsection presents the results for the case when there is a single break in Θε. The

DGP is the same as described in Subsection 5.1: the break point is fixed in the middle of

the sample T/2. Before the break, the value of the largest coefficient in Θε,1 is set to 0.4,

after the break it changes to 0.6.

Figure E.5 shows the averaged (over Monte Carlo simulations) errors of the estimators of

the precision matrix Θ and the optimal combination weight versus the sample size T in the

logarithmic scale (base 2). The estimate of the precision matrix of the EW forecast combi-

nation is obtained using the fact that diagonal covariance and precision matrices imply equal

weights. To determine the values of the diagonal elements we use the shrinkage intensity

coefficient calculated as the average of the eigenvalues of the sample covariance matrix of

the forecast errors (see Ledoit and Wolf (2004)).

Figure E.5 shows the performance of all models including RD-FGL when the break is

only in Θε (γ = 1): accounting for the break significantly reduces the estimation error of

precision matrix and combination weights.

Figure E.5: Averaged errors of the estimators of Θ (left) and w on logarithmic
scale (base 2): break in Θε. p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05). The horizontal
axis ranges from T = 27, . . . , T = 29.5.
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E.5 Multiple Breaks

We examine the performance of RD-FGL and competing methods for the case of two

known breaks.

First, we explore behavior of precision matrix and weights estimates. To incorporate two

structural breaks in Θε, we add the following modification to the DGP setup in Subsection

5.1. We fix two break points: one at t1 = T/4 and the other at t1 = 3T/4. Define the

following idiosyncratic precision matrices: Θε,1 before t1, Θε,2 between t1 and t2, and Θε,3

after t2. The value of the largest coefficient in the three aforementioned matrices is set to

0.2, 0.4, and 0.6, accordingly.

Figure E.6: Averaged errors of the estimators of Θ (left) and w on logarithmic
scale (base 2): two breaks in Θε. p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05). The
horizontal axis ranges from T = 27, . . . , T = 29.5.

As demonstrated in Figure E.6, similarly to the findings in the main manuscript for the

case with one break, accounting for the break significantly reduces the estimation error of

precision matrix and combination weights.

Second, we explore behavior of MSFE under two breaks. To incorporate two structural

breaks we add the following modification to the DGP in Subsection E.2. The total number

of observations is m. The period for training the models is set to be m1 = T/3 – this is used

51



to train competing FAR models in (E.3). The remaining part of the sample, m2 = m−m1

is split similarly to Subsection E.2: the estimation window for training competing models

is set to be window = m2/2. We roll the estimation window over the the test sample. The

break points are fixed at 1/3 and 3/4 of the first estimation window, and will be referred to

as t1 and t2.

When generating θs we set c2 as follows: c2 = 0.3 before t1, c2 = 0.6 between t1 and t2,

c3 = 0.9 after t2.

Before the break, when generating θs we set c2 = 0.3, and after the break c2 = 0.9. All

other parameters stay unchanged. Notice that the break in c2 can propagate into both a

break in precision matrix and factor loadings.

Similarly to the main manuscript, we include different specifications of the smoothing

function ψ(·). Figure E.7 shows the performance of all models including RD-FGL with γ

estimated using cross-validation: similarly to the conclusions in Subsection E.2, accounting

for the break significantly reduces MSFE of the combined forecast.

Figure E.7: Plots of the MSFE over the total number of observations m . c1 = 0.75,
c2 = 0.3 (before t1), c2 = 0.6 (between t1 and t2), c3 = 0.9 (after t2), M = 100, r = 5, σξ =
1, L = 7, K = 2, p = 24, q = 3, ρ = 0.9, ϕ = 0.8.
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E.6 Varying Break Magnitude

We examine the performance of RD-FGL and competing methods for the case of one

known break of smaller magnitude.

First, we explore behavior of precision matrix and weights estimates. The setup is the

same as in Subsection E.1: we fix a single break point in the middle of the sample size,

T/2: in the precision matrix of the idiosyncratic errors before the break, referred to as

Θε,1, the value of the largest coefficient is set to 0.4; whereas in the precision matrix of the

idiosyncratic errors after the break, Θε,2, the value of the largest coefficient is set to 0.45.

We use Θε,1 and Θε,2 to generate εt in (E.1).

Figure E.8: Averaged errors of the estimators of Θ (left) and w on logarithmic
scale (base 2): one break in Θε. p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05). The
horizontal axis ranges from T = 27, . . . , T = 29.5.

As demonstrated in Figure E.8, similarly to the findings in the main manuscript, ac-

counting for the break significantly reduces the estimation error of precision matrix and

combination weights even if the break magnitude is small.

Second, we explore behavior of MSFE for smaller break magnitude. The setup is the

same as in Subsection E.1: the period for training the models is set to be m1 = m/3 –

this is used to train competing FAR models in (E.3). The remaining part of the sample,
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m2 = m − m1 is split as follows: the estimation window for training competing models is

set to be window = m2/2. We roll the estimation window over the test sample of the size

m2/2. The break point is fixed at 1/2 of the first estimation window. Before the break,

when generating θs we set c2 = 0.3, and after the break c2 = 0.4. All other parameters stay

unchanged.

Similarly to the main manuscript, we include different specifications of the smoothing

function ψ(·). Figure E.9 shows the performance of all models including RD-FGL with γ es-

timated using cross-validation: similarly to the conclusions in Subsection E.2, accounting for

the break significantly reduces MSFE of the combined forecast even if the break magnitude

is small.

Figure E.9: Plots of the MSFE over the total number of observations m . c1 = 0.75,
c2 = 0.3 (before the break), c2 = 0.4 (after the break), M = 100, r = 5, σξ = 1, L = 7, K =
2, p = 24, q = 3, ρ = 0.9, ϕ = 0.8.

Appendix F Additional Figures

Figures F.1-F.2 provide additional illustration of the stylized fact that the ECB SPF
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respondents tend to jointly understate or overstate the predicted series.

Figure F.1: The European Central Bank’s (ECB) Survey of Professional Fore-
casters (SPF). Each circle denotes the forecast of each professional forecaster in the SPF
for the quarterly 2-quarters-ahead forecasts of Euro-area inflation, year-on-year percentage
change of the Harmonised Index of Consumer Prices. Actual series is the blue line. Source:
European Central Bank.
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Figure F.2: The European Central Bank’s (ECB) Survey of Professional Forecast-
ers (SPF). Each circle denotes the forecast of each professional forecaster in the SPF for
the quarterly 2-quarters-ahead forecasts of Euro-area unemployment rate, percentage of the
labor force. Actual series is the blue line. Source: European Central Bank.
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