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I Introduction

According to Berry, Levinsohn, and Pakes (1995, BLP henceforth), the two-stage least

squares (2SLS) estimators of the logit demand function are not aligned with the profit

maximization behavior of firms because the estimated price elasticities of demand for a large

number of cars are too small to make sense. Later, Chernozhukov, Hansen, and Spindler

(2015) show that the inconsistency in the 2SLS estimation can be resolved by incorporating

high order polynomials and interaction terms of the instrumental variable (IV) and control

variables. These additional instruments and control variables help capture the neglected

nonlinearity.

However, the resulting high dimensionality of the instruments and control variables may

lead to the collinearity problem. In the generalized method of moments (GMM) estimation,

highly correlated instruments can result in a singular weighting matrix.

In addition, Bekker (1994) shows that the 2SLS estimator becomes inconsistent when

the number of instruments is too large relative to the number of observations. Thus, the

consistency of 2SLS estimators fails if instruments are in high dimension.

Another challenge with high dimensional instruments is the potential presence of weakly

relevant instruments (i.e., weak instruments). According to Phillips (1989) and Staiger and

Stock (1997), when instruments are weakly correlated with the endogenous variable, the

2SLS estimator fails the consistency because the asymptotic distribution of the estimator

will be Cauchy-like (not normally distributed and has no moments), and the inference will

be invalid. Similar issues arise in GMM estimation as proved in Stock and Wright (2000).

The asymptotic distribution of weakly identified parameters is not asymptotically normal.

Hence, an instrument selection procedure is necessary in order to ensure the consistency

of these estimators. Various approaches have been developed for this purpose, including the

least absolute shrinkage and selection operator (Lasso), multiple testing, and information

criteria.

While Lasso has advantage in variable selection, its estimator is biased. Belloni and

Chernozhukov (2013) propose the Post-Lasso estimation, which can reduce the bias in the
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estimator. Belloni, Chen, Chernozhukov, and Hansen (2012) apply Lasso and Post-Lasso

for the first stage prediction and instrument selection in a high dimensional IV regression

model. Chernozhukov, Hansen, and Spindler (2015) further extended Lasso and Post-Lasso

to both the first and second stages of the 2SLS estimation when both instruments and control

variables are in high dimension. Additionally, Gillen, Moon, and Shum (2014) and Gillen,

Montero, Moon, and Shum (2019) apply Lasso to select instruments and control variables

for the BLP-type model.

Caner (2009) , Caner and Zhang (2014) and Fan and Liao (2014) discuss the use of

penalty for moment selection in GMM. Donald, Imbens, and Newey (2009) propose a moment

selection procedure by using an information criterion based on the asymptotic mean square

error (MSE).

Unlike traditional variable selection methods, Hartford, et al. (2017) apply machine

learning techniques to the IV regression model. In particular, Ng and Bai (2009) consider

L2Boosting for instrument selection. Bühlmann (2006) proves that L2Boosting achieves a

consistent estimation on the regression function even when the number of regressors increases

exponentially with the sample size. A simulation comparison between Lasso and L2Boosting

in Bühlmann (2006) shows that both methods share very similar properties. However, as

discussed in Meinshausen (2007), Lasso may perform poorly in variable selection within a

high-dimensional linear model that contains many irrelevant regressors.

However, the majority of these papers assume that instruments are “valid”, meaning

they are not correlated with the structural error, and thus do not question the validity of

instruments but only focus on the relevancy of instruments for endogenous variables.

Only a few recent papers have relaxed the validity assumption on the instruments. Di-

Traglia (2016) allows highly relevant but somewhat invalid moments to be selected because

of the benefit in reducing the MSE even at the cost of bias. This approach may be reasonable

for prediction but not for inference. To make correct statistical inference, the bias should

be the first priority before improving the overall efficiency measured by the MSE. Hence,

it is important to remove all invalid moments to avoid bias. By adding different types of

penalties into the GMM objective function, Liao (2013) illustrates how to perform moment
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selection when some of the moments are invalid. Similarly, Caner, Han, and Lee (2017)

extend the adaptive elastic net GMM estimation by allowing many invalid moments. Cheng

and Liao (CL, 2015) introduce the “Penalized GMM (PGMM)” method with a cleverly mod-

ified adaptive Lasso and show that PGMM is asymptotically oracle in selecting valid and

relevant moments.

When the number of instruments exceeds the number of observations, the LASSO-like

or elastic net GMM methods may fail because its weighting matrix may not be invertible.

In this paper, we propose an alternative selection algorithm based on boosting, which we

refer to as “Double-criteria Boosting (DB)”. It is a step-wise procedure for instrument

selections and not constrained by the number of instruments. We demonstrate that DB

is asymptotically oracle in selecting only strongly valid and strongly relevant instruments

from a set of high dimensional instruments that may be either weakly valid, invalid, weakly

relevant, or irrelevant. DB is based on a ratio of two criteria, which evaluate both the

validity and relevancy of each candidate instrument. We prove that DB consistently selects

only strongly valid and strongly relevant instruments. More importantly, we show that DB

will not select a weakly valid instrument or a weakly relevant instrument (with the extent

of ‘weakness’ being defined for the local-to-zero asymptotics). Furthermore, in proving the

consistency of DB, we allow the endogenous variable to be an unknown nonlinear function

of instruments, which we approximate using a set of sieve functions, such as polynomials of

observable instruments as in Chernozhukov, Hansen, and Spindler (2015). After DB selects

instruments, we compute the GMM estimator using the selected instruments. This entire

estimation process is referred to as DB-GMM.

This paper is organized as follows. In Section II, we set up the structural model for the

high dimensional IV regression, define validity and relevancy of instruments, and classify

instruments into different categories. In Section III, we review the L2Boosting selection

procedure introduced by Ng and Bai (2009). Since the estimator is computed by GMM after

instrument selection, we refer to their method as Boosting GMM (BGMM). In Section IV,

we propose a new instrument selection method, DB. Section V presents Monte Carlo studies

that compare DB-GMM with other methods. Section VI presents an empirical application,
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following the design in Berry, Levinsohn, and Pakes (1995) and Chernozhukov, Hansen, and

Spindler (2015), to demonstrate the merits of using the DB-GMM. Section VII concludes

the paper. All proofs are gathered in Section VIII (Appendix).

II Model

Consider an IV model as

yi = β′xi + ui (1)

xi = E(xi|wi) + vi. (2)

For i = 1, . . . , n, yi is the scalar dependent variable, xi is a k × 1 vector of endogenous

variables, and β is a k × 1 vector of parameters. The conditional mean E(xi|wi) is an

unknown function of observable instruments wi, where wi = (w1,i . . . wp,i)
′ is a p×1 vector.

The two error terms ui and vi have dimensions of 1× 1 and k × 1 respectively and have the

(k + 1)× (k + 1) variance-covariance matrix

Σ =

[
σ2
1 Σ12

Σ21 Σ22

]
.

According to Belloni, Chen, Chernozhukov, and Hansen (2012), the exact sparse model

can be estimated by the “approximately sparse model” with an approximation error ri.

E(xi|wi) can be approximated by a linear combination of sieve functions h(wi) = (h1(wi) . . . hℓn(wi))
′

such that

E(xi|wi) =
ℓn∑
j=1

γjhj(wi) + ri, (3)

where the parameter γj is a k × 1 vector for each j = 1, . . . , ℓn, and ri = (r1,i . . . rk,i)
′ is

a k × 1 vector of the approximation error. Since the functional form of hj (·) is known, we

define a sieve instrument zj,i ≡ hj(wi) and

(z1,i . . . zℓn,i)
′ ≡ (h1(wi) . . . hℓn(wi))

′ . (4)
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From Equations (2) and (3),

xi =
ℓn∑
j=1

γjzj,i + ri + vi. (5)

The validity and the relevancy of instruments are defined in a local asymptotic framework.

The moment function of each instrument zj,i for j = 1, . . . , ℓn is

g(zj,i, β) = zj,iui. (6)

The validity of each instrument depends on the moment condition,

E (g(zj,i, β)) = E (zj,iui) =
bj
nδj

. (7)

And the relevancy of each instrument depends on the parameter,

γj =
aj
nαj

. (8)

Let Zj = (zj,1 . . . zj,n)
′ for j = 1, . . . , ℓn. We define deferent degrees of validity and relevancy

as stated below.

Definition 1 (Validity): The extent of validity depends on bj and δj as follows: V1 =

{j : bj = 0} ∪
{
j : bj ̸= 0 and δj >

1
2

}
, and V2 =

{
j : bj ̸= 0 and 0 ≤ δj ≤ 1

2

}
. Zj is strongly

valid if j ∈ V1, and weakly valid or invalid if j ∈ V2.

Definition 2 (Relevancy): The extent of relevancy depends on aj and αj as follows:

R1 = {j : aj = 0}∪{j : aj ̸= 0 and αj > 0} , and R2 = {j : aj ̸= 0 and αj = 0}. Then, Zj is

irrelevant or weakly relevant if j ∈ R1, and a strongly relevant instrument if j ∈ R2.

We partition the set of instruments into two subsets, S and D, following Cheng and Liao

(2015). The “sure” set S = {Z1, . . . , ZℓS} includes the strongly valid and strongly relevant

instruments that are initially selected, and ℓS denotes the total number of instruments in S.

The “doubt” set D = {ZℓS+1, . . . , Zℓn} is the set of instruments that are not in S, and we do

not know the validity and relevancy of these instruments inD. Hence, an instrument selection

is needed for instruments in D. We further partition D into three subsets, D = A∪B0 ∪B1.

The subset A is a set of strongly valid and strongly relevant instruments that share the same
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properties as instruments in S. The subset B0 is a set of strongly valid but irrelevant or

weakly relevant instruments, and the subset B1 is a set of invalid or weakly valid instruments

that are not in A ∪ B0. Our goal is to select only instruments in A but none from B0 ∪ B1.

TABLE 1 summarizes each subset of the instruments according to Definitions 1 and 2.

III Boosting GMM (BGMM)

Ng and Bai (2009) propose a two-stage procedure for the high dimensional IV regression

model, which we refer to as Boosting GMM (BGMM). In the first stage, instruments are

selected through L2Boosting. In the second stage, the parameter of interest β is estimated

by GMM with the selected instruments.

Referring to the model described in Section 2, S includes all the strongly valid and

strongly relevant instruments that are initially selected. The instruments in D are the

potential instruments that are considered by L2Boosting. At each step m = 1, . . . , M̄ ,

where M̄ is the maximum iteration of L2Boosting, we first compute the residual from the

difference between xi and its fitted value from the previous steps. This is referred to as

“current residual”, representing the remaining unexplained factors from the previous step.

To identify the next most relevant instrument, we regress the “current residual” on each

instrument in D and select the instrument that minimizes the loss function. With the

selected instrument, we obtain an estimate of the “current residual”. We refer this estimate

as a weak learner because it captures only a small portion of the overall picture and may not

be highly accurate on its own. When aggregating all weak learners up to the current step,

this forms a strong learner, which provides better accuracy. We denote Fm,i = Fm,i (zi) as

the strong learner and fm,i = fm,i (zi) as the weak leaner for i = 1, . . . , n. The relationship

between the weak learner and the strong learner is

Fm,i = Fm−1,i + cmfm,i, (9)

where cm > 0 is a learning rate. For simplicity, we assume the dimension of xi to be k = 1

and σ2
2 = Σ22. If k > 1, we repeat L2Boosting for each variable in xi.
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L2Boosting algorithm

The detail description of L2Boosting is listed in Algorithm 1.

Algorithm 1 BGMM

1. When m = 0, the initial weak learner of X = (x1 . . . xn)
′ using instruments in S is

F0,i = f0,i = γ̂0,initial +

ℓS∑
j=1

γ̂j,initialzj,i, (10)

where γ̂0,initial and γ̂j,initial are the OLS estimators.

2. For each step m = 1, . . . , M̄

(a) We compute the “current residual”, v̂m,i = xi − Fm−1,i.

(b) Next, we regress the current residual v̂m,i on each instrument zj,i, for j = ℓS +
1, . . . , ℓn. The estimators γ̂0 and γ̂j are solved as

{γ̂0,j, γ̂j} = min
γ0,γj

n∑
i=1

(v̂m,i − γ0 − γjzj,i)
2 . (11)

We select the instrument that has the minimum sum of squared residuals, such
that

jm = arg min
j∈{ℓS+1,...,ℓn}

n∑
i=1

(v̂m,i − γ̂0,j − γ̂jzj,i)
2 . (12)

(c) The weak learner is
fm,i = γ̂0,jm + γ̂jmzjm,i, (13)

where zjm,i is the instrument that is selected.

(d) The strong learner Fm,i is updated as

Fm,i = Fm−1,i + cmfm,i, (14)

with learning rate cm > 0.

3. We compute the GMM estimator using the selected instruments.

L2Boosting controls over-fitting in two ways. First, it applies the learning rate cm to the

weak learner fm,i at each step. The learning rate controls the influence of each weak learner
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when adding up to the strong learner. A smaller learning rate implies greater regularization

in the L2Boosting, which reduces the impact of weak learners and requires a larger number of

iterations. Second, an early stopping rule is used to determine the number of steps required

in L2Boosting before over-fitting. The stopping rule we used in this paper is a version of

AIC suggested in Bühlmann (2006). Let V̂m = (v̂m,1 . . . v̂m,n)
′, fm = (fm,1 . . . fm,n)

′
,

Fm = (Fm,1 . . . Fm,n)
′
, and 1 be an n × 1 vector of ones. We define Zjm = [1 Zjm ] , and

Pm = Zjm(Z
′
jmZjm)

−1Z′
jm to be an n× n matrix. From Equation (13),

1γ̂0,jm + Zjm γ̂jm = PmV̂m

fm = Pm (X − Fm−1) . (15)

Let ZS = (Z1 . . . ZℓS ) . When m = 0, Pj0 = ZS(Z
′
SZS)

−1Z′
S. Then the strong learner at

each step m is

Fm = Fm−1 + cmPm (X − Fm−1)

=

[
In×n −

m∏
a=0

(In×n − cjaPja)

]
X =: BmX.

AIC is computed as

AICc(m) = log(σ̂2
2,m) +

1 + trace(Bm)/n

1− (trace(Bm) + 2)/n
, (16)

where log(σ̂2
2,m) =

1
n

∑n
i=1 (v̂m,i − cmfm,i)

2. Then M̂ = argminm=1,...,M̄ AICc(m).

Consistency of L2Boosting

Consider the following assumptions from Bühlmann (2006).

Assumption 1: The dimension of instruments satisfies ℓn = O(exp(Cn1−η)), n → ∞, for

some 0 < η < 1, 0 < C < ∞.

Assumption 2: supn∈N
∑ℓn

j=1 |γj| < ∞.

Assumption 3: sup1≤j≤ℓn,n∈N ||Zj||∞ < ∞, where ||Zj||∞ = supω∈Ω |Zj(ω)| and Ω denotes

the underlying probability space.

Assumption 4: E|vi|s < ∞ for some s > 4/η with η in Assumption 1.
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In Assumption 1, the dimension of instruments is allowed to grow exponentially with

respect to the number of observations. So instruments can be in a high dimension. As-

sumption 2 gives an L1-norm sparseness condition that the sum of the coefficient γj for all

j is bounded. Hence, only finite number of instruments are strongly relevant. Assumption 3

states that by restricting the growth rate of ℓn, the maximum realization of random variable

Zj under sample space Ω needs to be bounded. In Assumption 4, the existence of some

higher moments of the error term vi is needed, and the number of existing moments depends

on η from Assumption 1. Thus the number of existing moments and the growth rate of ℓn

are related.

According to Bühlmann (2006 Theorem 1), the L2Boosting estimation converges to the

conditional mean of xi in quadratic mean under a linear model. We extend this result

of Bühlmann (2006) to the case when E(xi|wi) is nonlinear and is approximated by the

approximately sparse model in Belloni, Chen, Chernozhukov, and Hansen (2012). Recall

Equation (5)

xi =
ℓn∑
j=1

γjzj,i + ri + vi,

where {zj,i} is a set of sieve instruments such as polynomials of instruments in wi, and ri is

the approximation error. Here we make an additional assumption to control the relative size

of the sparse approximation error ri with respect to the size of the error term vi and number

of sieve instruments ℓn.

Assumption 5: When E(xi|wi) =
∑ℓn

j=1 γjzj,i + ri is approximated by a linear function

of sieve instruments {zj,i} , the sparse approximation error ri satisfies that E (r2i |wi) ≤

σ2
2

(
log ℓn
n

)
, where σ2

2 = E(v2i ).

Assumption 5 requires that the mean squared approximation error needs to be bounded

by the product of the variance of vi and
log(ℓn)

n
. We now state a theorem that L2Boosting

still works in the sense that Fmn,i
converges to E(xi|wi) in quadratic mean.
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Theorem 1: Let E(xi|wi) =
∑ℓn

j=1 γjzj,i + ri be approximated by a linear function of sieve

instruments {zj,i}. Under Assumptions 1-5, for some sequence (mn)n∈N with mn → ∞

sufficiently slowly as n → ∞, the L2Boosting estimation converges to the conditional mean

of xi,

E

[
1

n

n∑
i=1

(Fmn,i − E(xi|wi))
2

∣∣∣∣∣W
]
= op(1) as n → ∞.

where W = (w1 . . . wn)
′ is an n× p matrix and wi = (w1,i . . . wp,i)

′ .

Proof: Appendix A.

However, L2Boosting can only check for the relevancy of instruments but not the validity

of instruments. Theorem 1 may still hold with the existence of invalid instruments. But a

possible selection of weakly valid or invalid instruments by L2Boosting will cause the BGMM

estimators to be inconsistent for β. Hence, we develop a new boosting algorithm to select

only relevant and valid instruments, which we discuss next.

IV Double-criteria Boosting GMM (DB-GMM)

We propose a new selection procedure, DB, that checks for both the relevancy and the validity

of instruments. After the selection, we use GMM to compute the DB-GMM estimator.

Double-criteria Boosting algorithm

The DB algorithm is described in Algorithm 2. The new selection algorithm (Algorithm 2)

is similar to L2Boosting (Algorithm 1) in the previous section, except Step 2(b), where the

new objective function Equation (23) is replacing Equation (12) in Algorithm 1. We now

doubly minimize the invalidity (measured by Equation (20)) and minimize the irrelevancy

(measured by the inverse of Equation (24)) of an instrument in each iteration, as we describe

in details below.

First, we measure the invalidity based on the usual Lagrange Multiplier (LM) test statis-

tic. It is now more convenient to use the correlation coefficient instead of using the covariance
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between Zj and U as in the moment condition for Algorithm 1. Let

ρj =
E (zj,iui)√

E
(
z2j,i
)√

E (u2
i )

=
dj
nδj

. (17)

where di =
bj√

E(z2j,i)
√

E(u2
i )

and bj defined in Equation (7).

We estimate ρj by using the initial 2SLS estimator β̂initial, which is computed using the

instruments in set S. Then the residual with the initial 2SLS estimators,

ûi ≡ yi − β̂initialxi, (18)

is used to obtain the sample correlation coefficient between Û and each Zj ∈ D, that is

ρ̂j =
1
n

∑n
i=1 zj,iûi√

1
n

∑n
i=1 z

2
j,i

√
1
n

∑n
i=1 û

2
i

. (19)

Then we define the LM statistic measure for invalidity of zj as

nR2
V,j = nρ̂2j . (20)

Similarly, we also define the LM statistic measure for relevancy of zj, nR
2
R,j, which we

describe in Equation (24) inside Algorithm 2.
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Algorithm 2 DB-GMM

1. When m = 0, the initial weak learner of X = (x1 . . . xn)
′ using instruments in S is

F0,i = f0,i = γ̂0,initial +

ℓS∑
j=1

zj,iγ̂j,initial, (21)

where γ̂0,initial and γ̂j,initial are the OLS estimators.

2. For each step m = 1, . . . , M̄

(a) The “current residual” is defined as v̂m,i = xi − Fm−1,i.

(b) Next, we regress the current residual v̂m,i on each instrument zj,i, for j ∈
{ℓS + 1, . . . , ℓn}. The estimators γ̂0,j and γ̂j are solved as

{γ̂0,j, γ̂j} = min
γ0,γj

n∑
i=1

(v̂m,i − γ0 − γjzj,i)
2 . (22)

We select the instrument zjm,i that gives the minimum ωj, i.e.,

jm = arg min
j∈{ℓS+1,...,ℓn}

ωj ≡
(
nR2

V,j
)r2(

nR2
R,j

)r1 , (23)

where

R2
R,j = 1−

∑n
i=1 (v̂m,i − γ̂0,j − γ̂jzj,i)

2∑n
i=1 (v̂m,i − v̄m)

2 , (24)

v̄m = 1
n

∑n
i=1 v̂m,i, and r1 and r2 are the user selected constants such that r1, r2 >

0.

(c) The weak learner is
fm,i = γ̂0,jm + γ̂jmzjm,i, (25)

where zjm,i is the instrument that is selected.

(d) The strong learner Fm,i is updated as,

Fm,i = Fm−1,i + cmfm,i, (26)

with cm > 0.

3. We compute the GMM estimator using the selected instruments.

Remark 1: We introduce the selection criterion ωj to evaluate the validity and relevancy of

each instrument Zj. The user selected constants r1 and r2 control the penalties associated
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with the validity and relevancy. A higher value of r2 results in a greater penalty for the invalid

instrument, as it increases the numerator in ωj. On the other hand, when the instrument has

high relevancy score, a higher value of r1 leads to a larger denominator in ωj and an overall

smaller ωj. In simulations and application of this paper, we report results using r1 = r2 = 1.

We have experimented by simulation with different values of r2 with fixing r1 = 1. (i) When

r1 > r2, the penalty on invalid instruments is weaker. The probability of selecting invalid

instruments will be higher. Then the DB-GMM estimation may become more biased. Our

simulation results confirm that the bias is larger when r1 > r2 than when r1 = r2. (ii) When

r1 < r2, the penalty on invalid instruments is stronger. The simulation results shows that

the bias and the mean squared error (MSE) are not significantly different from the default

setting with r1 = r2. This highlights the importance of removing invalid instruments by

choosing r2 such that r1 ≤ r2 , a feature of DB, that is absent in L2Boosting. (iii) If r2

is too small compare to r1, DB may select weakly valid instrument in finite samples. But

asymptotically, the probability of selecting weakly valid instrument will go to 0.

Remark 2: Our selection criterion ωj serves the same purpose as the information based

adjustment in PGMM, as proposed by Cheng and Liao (2015). However, in PGMM, the

selection criterion for each instrument Zj is calculated independently of other instruments

in D. As a result, the PGMM selection criterion does not consider the selection of other

instruments. In contrast, Double-criteria Boosting updates the current residual v̂m,i at each

DB iteration. Then the relevancy criterion nR2
R,j not only depends on S but also on all

previously selected instruments. In both methods, the instruments selected from D are not

necessarily weaker than those in S. But instruments in S must be valid and relevant before

entering the selection process.

Remark 3: When the validity and relevancy of the instruments are uncertain, DB-GMM

is capable of starting the selection process with an empty “sure”set, S. We demonstrate this

property through a Monte Carlo simulation reported in Section V (TABLE 9). We thank a

referee who asked us to consider this case. The results show that DB-GMM performs well

even when S is empty. In contrast, PGMM requires S to be a non-empty set.
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Remark 4: As DB follows a forward selection procedure, the statistic R2
R,j, which is the

R2 of the regression at each step, reflects the relevancy strength of each instruments to the

endogenous variable. It is essentially related to the F-statistics or concentration parameters.

As defined in Equation (23), minimizing 1
nR2

R,j
is equivalent to maximizing nR2

R,j. Therefore,

instrument that explain the most variation will have higher probability of being selected by

DB.

Remark 5: The stopping rule in DB is the same as in L2Boosting. As R2
V,j is computed

based on the 2SLS estimation using only instruments in S, nR2
V,j is fixed at any iteration

m = 1, . . . , M̄ . According to the definition, the maximization of R2
R,j can be achieved by

minimizing the ratio
∑n

i=1(v̂m,i−γ̂0,j−γ̂jzj,i)
2∑n

i=1(v̂m,i−v̄m)2
. Since

∑n
i=1 (v̂m,i − v̄m)

2 is the same for all j at each

m,
∑n

i=1(v̂m,i−γ̂0,j−γ̂jzj,i)
2∑n

i=1(v̂m,i−v̄m)2
∝
∑n

i=1 (v̂m,i − γ̂0,j − γ̂jzj,i)
2. Note that

∑n
i=1 (v̂m,i − γ̂0,j − γ̂jzj,i)

2

is the criterion in Equation (12) for L2Boosting. Hence, the same stopping rule is applied

to DB.

Next, in Theorem 2, we prove that DB will only select the strongly valid and strongly

relevant instruments in A, and will not select any instrument in B0 or B1, with probability

1 asymptotically. In other words, DB ensures that ωjm for all Zjm ∈ A will be smaller than

ωj for Zj ∈ B ≡ B0 ∪ B1, with probability approaching 1 (w.p.a.1) in each iteration m.

Theorem 2: Under Assumptions 1-5, in each iteration m, the selected instrument Zjm is

strongly valid and strongly relevant w.p.a.1 as n → ∞. That is,

Pr (ωjm < ωj) → 1 for all Zj ∈ B, as n → ∞,

and thus, the selected instrument Zjm ∈ A.

Proof: Appendix B.

Compare to other methods that minimize estimation risk, DB selection is better for

inference as it only selects strongly valid and strongly relevant instruments.
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V Monte Carlo

To study the finite sample properties of different estimation methods under the high di-

mensional IV regression model, we consider the following three data generating processes

(DGPs).

DGP 1 (Linear):

yi = βxi + ui,

xi =

p∑
j=1

γjwj,i + vi =
ℓn∑
j=1

γjzj,i + vi, (27)

where the endogenous variable xi is a scalar (k = 1), and zj,i = wj,i. DGP 1 follows the

design of DGP in Cheng and Liao (2015). We set β = 0 as the true value, n ∈ {100, 250},

and p = ℓn = 52. Let zS,i = (z1,i z2,i)
′ be the strongly valid and strongly relevant instruments

in S. Let zA,i = (z3,i z4,i)
′ , zB0,i = (z5,i . . . z28,i)

′ and zB1,i = (z29,i . . . z52,i)
′ be the “doubt”

instruments in D. We set γ1 = 0.1, γ2 = 0.3, γ3 = 0.5, γ4 ∈ {0.5, 0.01}, and γj = 0 for

any j ≥ 5. Then z4,i is a weakly relevant instrument if γ4 = 0.01. In order to compute

the invalid instrument zB1,i, we first need to generate a strongly valid instrument z∗B1,i
. The

strongly valid instruments and error terms follow the normal distribution where

(zS,i zA,i zB0,i z
∗
B1,i

) ∼ N(0,ΣZ)

(ui vi) ∼ N(0,Σ),

and Σ =

(
0.5 0.6
0.6 1

)
. For ΣZ , we consider two different cases. In the first case, it is

exactly the same as in Cheng and Liao (2015), where ΣZ = diag(ΣS∪A,ΣB). ΣS∪A is a 4× 4

Toeplitz matrix that each (i, j) element equals to 0.2|i−j|, and ΣB is an (ℓn − 4) × (ℓn − 4)

identity matrix. We denote the first case as “CL” in TABLE 3. In the second case, ΣZ is an

ℓn× ℓn Toeplitz matrix, where each (i, j) element equals to a|i−j| with a ∈ {0.5, 0.9}. Lastly,

following Cheng and Liao (2015), for j = 29, . . . , 52, the invalid instrument zj,i is generated

as

zj,i = z∗j,i + cjui, (28)
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where z∗j,i is the strongly valid instrument in z∗B1,i
, and

cj = c0 +
(j − 29)(c̄− c0)

ℓn/2− 2
. (29)

So cj increases from c0 to c̄ as j increases. We choose c0 = 0.2, c̄ = 2.4.

DGP 2 (Polynomials):

yi = βxi + ui

xi =

p∑
j=1

θj
(
wj,i + w2

j,i

)
+ vi, (30)

where xi is a scalar, β = 0, and n ∈ {100, 250} as in DGP 1. Let p = 5, then the observable

strongly valid instruments are generated as

(w1,i w2,i w3,i w4,i w
∗
5,i) ∼ N(0,ΣW ), (31)

where ΣW is a 5× 5 Toeplitz matrix with each (i, j) element a|i−j| and a ∈ {0, 0.5, 0.9}. We

set θ1 = θ2 = 0.1, θ3 = 0.5, and θ4 = θ5 = 0. So only the first three observable instruments

are strongly relevant to xi. The error terms ui and vi are generated as

(ui vi) ∼ N(0,Σ),

where Σ =

(
0.5 0.5
0.5 1

)
. To generate an invalid instrument, we contaminate w∗

5,i, which

was constructed as a valid instrument in Equation (31), by adding the structural error ui

w5,i = w∗
5,i + ui. (32)

Suppose the functional form of xi is unknown. We approximate xi using sieve instruments

{zj,i}. We set zj,i = wj,i for j = 1, . . . , 5, and zj,i = hj(wi) for j = 6, . . . , ℓn, where hj(wi)

is the polynomial of each instrument in wi up to the 4th order. This leads to a total of 125

instruments: 5 from the observable instruments wi, 15 from the 2nd order, 35 from the 3rd

order, and 70 from the 4th order. The pre-selected “sure ” set is zS,i = (z1,i z2,i)
′ .

DGP 3 (Exponential): The generation of variables in DGP 3 is similar as in DGP 2. The
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only difference is that xi is generated as an additively separable exponential function of wi,

xi =

p∑
j=1

θj exp(wj,i) + vi. (33)

In DGP 1, as zj,i = wj,i, all instruments are observable and the functional form of hj (·)

is known. The functional form of xi in DGP 3 is unknown as in DGP 2, and we use sieve

instruments to approximate as in DGP 2. The total number of instruments in DGP 3 is also

125, and we set zS,i = (z1,i z2,i)
′ .

Simulation results

In TABLEs 3 to 5, we compare the bias and root mean squared errors (RMSE) of DB-GMM

with OLS, 2SLSSD (2SLS with all instruments in S∪D), 2SLSS (2SLS with only instruments

in S), 2SLSSA (2SLS with all strongly valid and strongly relevant instruments in S ∪ A),

BGMM, and PGMM. The user selected parameters in PGMM are the same as in Cheng and

Liao (2015) . We choose the learning rate for both boosting algorithms to be cm = 0.01 for

all m.

DGP 1 is linear where all instruments are observable. Compared to the oracle result in

the column of 2SLSSA, the bias and the RMSE of the OLS estimation are higher because xi is

endogenous. As the correlation between instruments becomes stronger, the OLS estimation

has slight improvement in its bias and RMSE. The 2SLSSD estimation is also inconsistent

because of the existence of invalid and irrelevant instruments. 2SLSS has lower bias but

higher RMSE compared to 2SLSSA because DGP 1 has only four strongly valid and strongly

relevant instruments, and only two of them are included in S. When the coefficient of the

fourth instrument (Z4 ∈ A) reduces from 0.5 to 0.01, the bias of 2SLSS is similar to the case

when γ4 = 0.5, but the RMSE is slightly higher due to existence of the weak instrument

(γ4 = 0.01). BGMM has similar problem as in 2SLSSD. Due to the inclusion of invalid

instruments, BGMM has a higher bias and RMSE than OLS in most of cases. The bias

and RMSE of OLS, 2SLSSD, and BGMM become significantly worse when γ4 reduces to
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0.01. Both of the last two methods, PGMM and DB-GMM, are able to check the validity

and relevancy of the instruments. When γ4 = 0.5 (strong instrument), PGMM has a lower

bias than DB-GMM, but the RMSE of DB-GMM is always the smallest among all other

methods (excluding the oracle 2SLSSA). When γ4 decreases to 0.01, PGMM still has a lower

bias than DB-GMM. However, the RMSE of PGMM now is lower than the RMSE of DB-

GMM in 3 out of 6 cases. In general, when the correlation between instruments increases

(a increases), the results of all methods are improving. When a = 0.9, the results of 2SLSS ,

PGMM, and DB-GMM are very close to the oracle result. Because when instruments are

highly correlated, selecting a few strongly valid and strongly relevant instruments will be as

efficient as selecting all instruments in S ∪ A.

In both DGP 2 and DGP 3, there are total of 125 sieve instruments. Because the

sieve instruments Z are generated from the polynomial of wi, high collinearity between

instruments exists even when there has not been correlation between wi (a = 0). In DGP 2,

OLS is inconsistent due to the endogeneity. When ℓn > n, the RMSE of 2SLSSD diverges,

which confirms the theoretical result in Bekker (1994) . If only instruments in S are selected,

the bias and RMSE of 2SLSS remain high because 2SLSS fails to capture any nonlinearity

in the endogenous variable. The performance of BGMM is very stable across all cases even

when ℓn > n. PGMM fails for ℓn > n, where the weighting matrix is not invertible during

the estimation. It also fails when a = 0.9 and n = 250 because of the high collinearity among

all sieve instruments. These problems can be solved by replacing the weighting matrix with

an identity matrix, which will cause the RMSE of PGMM to be strictly higher than the

RMSE of DG-GMM. DB-GMM has the lowest bias and RMSE for most of the cases. The

results in DGP 3 are very similar to DGP 2. Hence, we conclude that DB-GMM has the

best performance in the nonlinear cases as demonstrated in the results of DGP 2 and DGP

3.

To control the over-fitting problem, a smaller learning rate in boosting leads to more

regularization. In TABLE 6, we compare the estimation results of BGMM and DB-GMM

with a set of learning rates, cm ∈ (0.01, 0.05, 0.1, 1)′. In the cases of ℓn = 250, the DB-GMM

estimations with cm = 0.01 are always less bias comparing to other learning rates. TABLE
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7 reports the average number of steps iterated and average number of instruments selected

in BGMM and DB-GMM across different learning rates. Even though the number of steps

is the highest in most cases when cm = 0.01, the number of instruments selected are the

smallest compared to other learning rates. These confirms our selection of cm = 0.01 in

estimation of the above simulations.

We also conducted two additional experiments on DGP 2, with results presented in

TABLEs 8 and 9. TABLE 8 reports the 90% confidence interval of the estimators. The

results confirm that DB-GMM performs well for inference, delivering the smallest RMSE

and narrowest confidence intervals.

In view of Remark 3 above, TABLE 9 reports the results when no instruments are pre-

selected in the S (i.e., S is an empty set). Still, DB-GMM continues to outperform other

methods. TABLE 9 does not include the results of PGMM, as S cannot be empty in PGMM.

VI Empirical Application

We apply DB-GMM to estimate the price elasticity of demand in automobile industry as

described in BLP (1995). For simplicity, consider a homogeneous individual log utility

function

ξit = φ(wit, xit, uit, β) + εit, (34)

where φ(wit, xit, uit, β) = φit is a function that includes all information on the product

characteristics of car i in year t. The subscription it together denotes one car. Let xit denote

the price of each car it, wit be a vector of the observable market level product characteristics

of a car it, uit be the unobservable product characteristics of a car it which cause the

endogeneity in the price, and β be the parameters in φ(·). Applying the simple logit model,

the market share sit for each car it is calculated as

sit =
exp(φit)

1 +
∑

∀it exp(φit)
. (35)
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Suppose φit is linearized in all of its components. The demand equation in terms of market

share can be calculated as

yit = β0 + βpricexit + β′
wwit + uit, (36)

where yit = log(sit) − log(s0t), and s0t is the outside option in year t. The outside option

refers to consumers’ choosing to buy a used car or to use alternative transportations.

Since price is endogenous, by applying the “approximately sparse model” in Equation

(3), we assume price is a linear combination of product characteristics and sieve functions of

product characteristics such that

xit = γ0 + γ′
wwit + γ′

1h1(wit) + γ′
2h2(wit, t) + γ′

3h3(wit) + vit, (37)

where h1(wit) is the set of quadratic and cubic terms of continuous variables in wit, and

h2(wit, t) is the set of the first order interactions of all variables in wit and time t. We

generate additional instruments in h3(wit) as follows: 1) the sum of each characteristics of

other cars that are produced by the same firm in the same year as car it, and the count of

these cars; 2) the sum of each characteristics of cars that are produced by other firms in the

same year as car it, and the count of these cars. It is necessary to include instruments in

h3(wit) because the product characteristics of competitive cars also influence the price.

The data used in BLP (1995) is obtained from annual issues of the Automotive News

Market Data Book from 1971 to 1990. The product characteristics in the data set are

weight, horsepower, length, width, miles per gallon ratio (MPG), and a dummy variable for

air condition as a standard equipment. Price is obtained from the listed retail price of the

base model in the unit of 1000 dollars of year 1983. In addition, the price of gasoline is also

included in the data. With the given information, we calculate miles per dollar (MP$) by

MPG divided by the price per gallon. With treating each model of a car in each year as one

car, there are total of 2217 cars included in the data set. Hence, the model in Equations (36)

and (37) are estimated as if the data is cross-sectional (no time series) for it = 1, . . . , 2217.

We use the data set in Chernozhukov, Hansen, and Spindler (2015), who also study

the automobile application in BLP (1995). We include 4 control variables in the model -
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namely, the dummy variable of air conditioning (AC), horsepower/weight (HPW), miles

per dollar (MP$), and size of car (Size). We denote these control variables as wit =

(ACit HPWit MP$it Sizeit)
′. There are total 63 instruments, including the constant. To

utilize the selection capability, we only select HPW in S that is assumed to be valid and

relevant. The remaining 62 instruments are in D. In order to be consistent with the profit

maximization behavior of the firm, the number of cars that have inelastic demand need to be

small, because if the demand were inelastic to price changes, firm would easily make higher

revenue by increasing the price.

We compare the estimation results of 6 different methods in TABLE 10. Instead of using

PGMM directly as described in the previous sections, we re-estimate the coefficients using

GMM with the selected instruments from PGMM. We refer to this method as Post-PGMM

and denote it as PGMM∗.

In TABLE 10, we find some estimators are insignificant at 5% significant level across

different methods. These include HPW in OLS, 2SLSSD and Post-PGMM, AC in OLS and

2SLSSD, MP$ in DB-GMM, Size and Price in Post-PGMM. The other estimators are very

significant regardless of the estimation methods. The estimators of Size are positive for all

methods and ranges from 2.3331 to 10.4995. The signs of the estimators of HPW, AC, and

MP$ vary across the methods due to the instruments selection.

Because of the endogeneity in price, possible high collinearity and high dimensionality of

instruments, estimators in OLS and 2SLSSD may be inconsistent. On the other hand, 2SLSS

fails to capture all strongly valid and strongly relevant instruments among the nonlinear sieve

instruments. Hence, the estimators in 2SLSS is inefficient and lead to a positive coefficient

estimates for Price. BGMM selects 20 instruments in total, where 18 of them are from D.

Among these 18 instruments, 5 of them are from h1(wit) and h2(wit, t), and 13 of them are

from h3(wit). As BGMM only checks relevancy, it selects too many instruments, where some

of the instruments may be invalid. By adding the validity check, PGMM fail selects any

instrument from D.

In comparison, we find that DB-GMM selects 4 additional instruments, 2 are from h1(wit)

and h2(wit, t), and the other 2 are from h3(wit, t). Compared with other methods, the
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estimator of Price in DB-GMM is the smallest and thus suggesting the most elastic demand

to price changes.

VII Conclusions

We propose the Double-criteria Boosting algorithm that consistently selects strongly valid

and strongly relevant instruments in a high dimensional IV regression model. We theo-

retically prove that DB will not select a weakly valid instrument nor a weakly irrelevant

instrument. The simulation results illustrate that DB-GMM estimation has smaller RMSE

compared to other methods even in the extreme case where no “sure” instrument is pre-

selected. In addition to the simulation results presented in the paper, we also explore differ-

ent learning rates, such as 0.01, and find similar conclusions. Moreover, in the application

based on BLP (1995), where instruments are generated from polynomials of the product

characteristics, the DB-GMM result suggests that the price elasticity of demand estimated

by DB-GMM is more elastic than the other methods.

VIII Appendix

This appendix includes the proofs on Theorem 1 and Theorem 2.

A. Proof of Theorem 1

Under the approximately sparse model in Equation (3), the conditional quadratic mean

of regression error using L2Boosting is,{
E

[
1

n

n∑
i=1

(Fmn,i − E(xi|wi))
2

∣∣∣∣∣W
]}1/2

=

E

 1

n

n∑
i=1

(
Fmn,i −

ℓn∑
j=1

γjzj,i − ri

)2
∣∣∣∣∣∣W


1/2

≤

E

 1

n

n∑
i=1

(
Fmn,i −

ℓn∑
j=1

γjzj,i

)2
∣∣∣∣∣∣W


1/2

+

{
E

[
1

n

n∑
i=1

r2i

∣∣∣∣∣W
]}1/2

by Minkowski’s inequality. By Bühlmann (2006) Theorem 1, the first term is op(1). By
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Assumptions 1 and 5, the second term is

E

(
1

n

n∑
i=1

r2i

)
≤ σ2

2

(
log ℓn
n

)
= Op

(
Cn−η

)
= op(1).

Hence,

E

[
1

n

n∑
i=1

(Fmn,i − E(xi|wi))
2

∣∣∣∣∣W
]
= op(1).

□

B. Proof of Theorem 2

Lemma 1: Under Assumptions 3 and 4, R2
R,j = Op

(
γ̂2
j

)
.

Proof: Denote v̂∗m,i = v̂m,i − v̄m, and z∗j,i = zj,i − z̄j. Then

R2
R,j = 1−

∑n
i=1

(
v̂∗m,i − γ̂jz

∗
j,i

)2∑n
i=1 v̂

∗2
m,i

=

∑n
i=1

(
2v̂∗m,iγ̂jz

∗
j,i − γ̂2

j z
∗2
j,i

)∑n
i=1 v̂

∗2
m,i

= 2γ̂2
j

( ∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗
m,iz

∗
j,i

)∑n
i=1 v̂

∗
m,iz

∗
j,i∑n

i=1 v̂
∗2
m,i

− γ̂2
j

∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗2
m,i

= γ̂2
j

∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗2
m,i

.

Under Assumptions 3 and 4, 1
n

∑n
i=1 z

∗2
j,i = Op (1) and

1
n

∑n
i=1 v̂

∗2
m,i = Op (1) . Then,

∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗2
m,i

=

Op (1) . Hence, R
2
R,j = Op

(
γ̂2
j

)
. □

Lemma 2: Under Assumption 3, 1
n

∑n
i=1 zj,iûi

p→ E(zj,iui).
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Proof:

1

n

n∑
i=1

zj,iûi =
1

n

n∑
i=1

zj,i

(
yi − xiβ̂2SLS

)
=

1

n

n∑
i=1

zj,i

[
(yi − xiβ)− xi

(
x′
izS,i

(
z′S,izS,i

)−1
z′S,ixi

)−1 (
x′
izS,i

(
z′S,izS,i

)−1
z′S,iui

)]
=

1

n

n∑
i=1

zj,i

[
ui − xi

(
x′
izS,i

(
z′S,izS,i

)−1
z′S,ixi

)−1 (
x′
izS,i

(
z′S,izS,i

)−1
z′S,iui

)]
=

1

n

n∑
i=1

zj,iui −
1

n

n∑
i=1

zj,ixi

(
x′
izS,i

(
z′S,izS,i

)−1
z′S,ixi

)−1 (
x′
izS,i

(
z′S,izS,i

)−1
z′S,iui

)
=

1

n

n∑
i=1

zj,iui + op(1)
p→ E(zj,iui). □

Lemma 3: Under Assumptions 1 to 5, 1
n

∑n
i=1 zj,iv̂m,i

p→ E(zj,ivi).

Proof: First, we rewrite 1
n

∑n
i=1 zj,iv̂m,i in terms of the strong learner Fm−1,i and the error

term vi. We obtain,

1

n

n∑
i=1

zj,iv̂m,i =
1

n

n∑
i=1

zj,i (xi − Fm−1,i)

=
1

n

n∑
i=1

zj,i

(
xi −

ℓn∑
j=1

γjzj,i +
ℓn∑
j=1

γjzj,i − Fm−1,i

)

=
1

n

n∑
i=1

zj,i

(
vi +

ℓn∑
j=1

γjzj,i − Fm−1,i

)

=
1

n

n∑
i=1

zj,ivi −
1

n

n∑
i=1

zj,i

(
Fm−1,i −

ℓn∑
j=1

γjzj,i

)
.

By Theorem 1, Fm−1,i
q.m.→

∑ℓn
j=1 γjzj,i implies Fm−1,i

p→
∑ℓn

j=1 γjzj,i. Hence

1

n

n∑
i=1

zj,iv̂m,i =
1

n

n∑
i=1

zj,ivi + op (1)
p→ E (zj,ivi) . □

Proof of Theorem 2:
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For validity, ρj ∝ bj

nδj
. By Lemma 2,

√
n

(
1

n

n∑
i=1

zj,iûi

)
= Op(bjn

1
2
−δj) = bjOp(n

1
2
−δj).

Then

nR2
V,j = nρ̂2j

=

(
1√
n

∑n
i=1 zj,iûi

)2(
1
n

∑n
i=1 z

2
j,i

) (
1
n

∑n
i=1 û

2
i

)
= b2jOp

(
n1−2δj

)
.

For relevancy, γj =
aj
nαj , and nR2

R,j = Op

(
nγ̂2

j

)
by Lemma 1. From Lemma 3,

√
n

(
1

n

n∑
i=1

zj,iv̂m,i

)
= Op(ajn

1
2
−αj) = ajOp(n

1
2
−αj).

As v̂∗m,i = v̂m,i− v̄m and z∗j,i = zj,i− z̄j, v̂
∗
m,i, and z∗j,i will have the same order as v̂m,i and zj,i.

Then

nR2
R,j ∝ nγ̂2

j

=

(
1√
n

∑n
i=1 z

∗
j,iv̂

∗
m,i

1
n

∑n
i=1 z

∗2
j,i

)2

= a2jOp

(
n1−2αj

)
.

Notice that A = V1 ∩ R2 is the set of strongly valid and strongly relevant instruments,

B0 = V1 ∩R1 is the set of strongly valid and weakly relevant or irrelevant instruments, and

B1 = V2 is the set of weakly valid or invalid instruments. For simplicity, consider the cases

where both aj and bj are not equal to 0. Then the orders of nR2
V,j and nR2

R,j depend on δj

and αj respectively. For instrument in each of A, B0, and B1, ωj has the following orders in

probability:
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ωj =

(
nR2

V,j
)r2(

nR2
R,j

)r1 =
op(1)

Op(nr1)
= op(n

−r1) Zj ∈ A,

ωj =

(
nR2

V,j
)r2(

nR2
R,j

)r1 =
op(1)

Op(nr1(1−2αj)))
= op(n

−r1(1−2αj)) Zj ∈ B0,

ωj =

(
nR2

V,j
)r2(

nR2
R,j

)r1 =
Op(n

r2(1−2δj))

Op(nr1(1−2αj))
= Op

(
nr2(1−2δj)−r1(1−2αj)

)
Zj ∈ B1.

We summarize the above results in TABLE 2, which adds the orders of ωj to TABLE

1. By definition, αj > 0 for irrelevant and weakly relevant instruments. Hence, when

comparing instruments between A and B0, op(n
−r1) < op(n

−r1(1−2αj)) for any instruments

Zjm ∈ B0. Similarly, 0 ≤ δj ≤ 1
2
for invalid and weakly valid instrument. Then op(n

−r1) <

Op

(
nr2(1−2δj)−r1(1−2αj)

)
for Zjm ∈ B1. Therefore, for any selected instrument Zjm by the DB

algorithm,

Pr (ωjm < ωj) → 1 for all Zj ∈ B0 ∪ B1, as n → ∞,

so that Zj ∈ B0∪B1 will not be selected w.p.a.1. □
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TABLE 1:
Categories of instruments

Strongly Valid Weakly Valid and Invalid
V1 V2

Irrelevant and Weakly Relevant R1 B0

Strongly Relevant R2 S,A B1

Notes : The notation for each subset of instruments follows Cheng and Liao (2015, p. 446,
Table 2.1). Instruments in S are sure to be valid and relevant. Instruments in A are valid
and relevant, those in B0 are strongly valid but not strongly relevant, and those in B1 are
not strongly valid.

TABLE 2:
Order of ωj for each category of instruments

Strongly Valid Weakly Valid and Invalid
V1 V2

Irrelevant and Weakly Relevant R1 B0 : ωj = op(n
r1(2αj−1))

Strongly Relevant R2 A : ωj = op(n
−r1) B1 : ωj = Op

(
nr2(1−2δj)−r1(1−2αj)

)
Notes : The notations are the same as TABLE 1
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TABLE 3:
DGP 1 - Estimates and RMSEs

n ℓn a OLS 2SLSSD 2SLSS 2SLSSA BGMM PGMM DB-GMM
Panel A: strong instrument with γ4 = 0.5

100 52 CL 0.3363 0.3604 0.0020 0.0162 0.3706 0.0068 0.0288
0.3388 0.3632 0.1979 0.0786 0.3743 0.2980 0.1746

100 52 0.5 0.2816 0.2911 -0.0024 0.0088 0.2970 -0.0021 0.0116
0.2841 0.2941 0.1048 0.0686 0.3013 0.1045 0.0917

100 52 0.9 0.2172 0.2079 -0.0005 0.0076 0.2020 -0.0001 0.0057
0.2204 0.2118 0.0593 0.0535 0.2078 0.0598 0.0591

250 52 CL 0.3329 0.3736 -0.0002 0.0054 0.3777 0.0005 0.0121
0.3339 0.3748 0.1058 0.0493 0.3795 0.1044 0.0889

250 52 0.5 0.2804 0.2968 0.0014 0.0050 0.3003 0.0016 0.0064
0.2815 0.2983 0.0601 0.0425 0.3023 0.0603 0.0538

250 52 0.9 0.2166 0.2002 -0.0010 0.0019 0.1979 -0.0009 0.0017
0.2179 0.2020 0.0358 0.0329 0.2005 0.0358 0.0356

Panel B: weak instrument with γ4 = 0.01
100 52 CL 0.4210 0.4619 0.0026 0.0290 0.4780 0.0261 0.0348

0.4231 0.4643 0.1970 0.1110 0.4811 0.1573 0.1600

100 52 0.5 0.3846 0.4112 0.0015 0.0216 0.4256 0.0028 0.0164
0.3868 0.4138 0.1316 0.0990 0.4292 0.1267 0.1245

100 52 0.9 0.3405 0.3428 -0.0014 0.0135 0.3478 -0.0017 0.0136
0.3431 0.3460 0.0850 0.0799 0.3529 0.0865 0.1001

250 52 CL 0.4178 0.4890 -0.0004 0.0120 0.4952 0.0002 0.0144
0.4186 0.4901 0.1081 0.0654 0.4967 0.1083 0.0923

250 52 0.5 0.3842 0.4310 0.0009 0.0093 0.4370 0.0010 0.0087
0.3851 0.4322 0.0728 0.0575 0.4387 0.0729 0.0667

250 52 0.9 0.3392 0.3440 -0.0007 0.0061 0.3473 -0.0010 0.0079
0.3402 0.3456 0.0531 0.0505 0.3496 0.0533 0.0630

Notes : For each different case, the first row is the bias of β̂, and the second row is the
RMSE of β̂. 2SLSSD denotes 2SLS with all instruments. 2SLSS denotes 2SLS with
instruments in S. 2SLSSA denotes 2SLS with instruments in S ∪ A, which demonstrates
the oracle result. Column 3 indicates different variance-covariance matrix of Z. When a =
CL, ΣZ is the same as in Cheng and Liao (2015), where ΣZ = diag(ΣS∪A,ΣB). ΣS∪A is a
4× 4 Toeplitz matrix that each (i, j) element equals to 0.2|i−j|, and ΣB is an
(ℓn − 4)× (ℓn − 4) identity matrix. When a ∈ {0.5, 0.9}, ΣZ is an ℓn × ℓn Toeplitz matrix,
where each (i, j) element equals to a|i−j|.
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TABLE 4:
DGP 2 - Estimates and RMSEs

n ℓn a OLS 2SLSSD 2SLSS 2SLSSA BGMM PGMM DB-GMM
100 125 0 0.3103 4.9391 0.2218 0.0181 0.2363 0.1975 0.0216

0.3205 46.5148 0.8011 0.0930 0.2621 0.6628 0.1848

100 125 0.5 0.2707 0.2649 -0.0010 0.0132 0.2011 0.0228 0.0196
0.2825 0.7593 0.4671 0.0775 0.2286 0.4410 0.1364

100 125 0.9 0.2196 -0.5400 -0.0176 0.0009 0.2233 -0.0264 0.0096
0.2327 6.9021 0.3236 0.0731 0.2439 0.4009 0.1004

250 125 0 0.2792 0.2329 0.0771 0.0036 0.1993 0.1267 0.0043
0.2843 0.2398 0.6743 0.0581 0.2130 1.0879 0.1588

250 125 0.5 0.2554 0.2218 0.0130 0.0069 0.1843 0.0120 0.0039
0.2609 0.2281 0.1432 0.0474 0.1971 0.1415 0.0653

250 125 0.9 0.2158 0.2121 -0.0102 0.0013 0.2213 -0.0106 -0.0024
0.2207 0.2177 0.1032 0.0480 0.2313 0.1023 0.0658

Notes : See TABLE 3.
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TABLE 5:
DGP 3 - Estimates and RMSEs

n ℓn a OLS 2SLSSD 2SLSS 2SLSSA BGMM PGMM DB-GMM
100 125 0 0.1659 0.1329 0.3219 -0.0010 0.1197 0.5625 0.0070

0.1712 0.1388 2.1693 0.0366 0.1282 3.3374 0.0925

100 125 0.5 0.1611 0.1355 0.0155 0.0054 0.1222 0.0151 0.0135
0.1677 0.1434 0.0954 0.0387 0.1341 0.0960 0.0496

100 125 0.9 0.1372 0.1323 0.0100 0.0012 0.1396 0.0090 0.0069
0.1429 0.1385 0.0619 0.0329 0.1496 0.0618 0.0353

250 125 0 0.1740 0.1420 0.0409 0.0050 0.1282 0.3717 0.0149
0.1796 0.1484 0.3838 0.0426 0.1380 3.0727 0.0668

250 125 0.5 0.1536 0.1286 -0.0024 -0.0016 0.1156 -0.0001 0.0033
0.1588 0.1345 0.1074 0.0376 0.1258 0.1029 0.0504

250 125 0.9 0.1320 0.1273 -0.0078 -0.0052 0.1327 -0.0072 -0.0012
0.1404 0.1366 0.0681 0.0332 0.1471 0.0687 0.0398

Notes : See TABLE 3.
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TABLE 6:
DGP 2 - Estimation with Different Learning Rate

BGMM DB-GMM
n ℓn a 0.01 0.05 0.1 1 0.01 0.05 0.1 1

100 125 0 0.2363 0.2581 0.2573 0.2558 0.0216 0.0245 0.0187 0.0139
0.2621 0.2776 0.2774 0.2770 0.1848 0.1526 0.1456 0.1434

100 125 0.5 0.2011 0.2214 0.2213 0.2181 0.0196 0.0179 0.0164 0.0149
0.2286 0.2424 0.2426 0.2417 0.1364 0.1067 0.1067 0.1225

100 125 0.9 0.2233 0.2204 0.2208 0.2189 0.0096 0.0279 0.0275 0.0189
0.2439 0.2399 0.2405 0.2398 0.1004 0.1143 0.1137 0.1046

250 125 0 0.1993 0.2079 0.2073 0.2045 0.0043 0.0106 0.0111 0.0080
0.2130 0.2181 0.2176 0.2163 0.1588 0.0893 0.0892 0.0914

250 125 0.5 0.1843 0.2017 0.2008 0.1969 0.0039 0.0060 0.0062 0.0055
0.1971 0.2111 0.2101 0.2065 0.0653 0.0605 0.0605 0.0620

250 125 0.9 0.2213 0.2141 0.2128 0.2120 -0.0024 0.0123 0.0133 0.0073
0.2313 0.2229 0.2218 0.2212 0.0658 0.0783 0.0794 0.0671

Notes : For each different case, the first row is the bias of β̂, and the second row is the
RMSE of β̂. Each column represents the result of different learning rate (cm)
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TABLE 7:
DGP 2 - Instrument Selection Count

BGMM DB-GMM
n ℓn a 0.01 0.05 0.1 1 0.01 0.05 0.1 1

100 125 0 492.00 461.98 229.19 20.96 414.21 435.82 217.48 19.57
9.39 28.46 27.92 18.79 5.12 11.38 11.49 8.78

100 125 0.5 492.00 473.93 236.24 22.59 448.15 464.31 232.11 22.19
10.03 25.57 25.13 18.60 4.56 9.50 9.48 8.22

100 125 0.9 492.00 465.74 234.74 23.79 482.23 475.75 235.53 23.34
8.45 16.26 16.08 14.20 3.81 6.39 6.39 5.90

250 125 0 492.00 488.04 243.12 22.03 459.63 485.69 241.68 23.42
7.30 33.10 32.80 20.60 5.61 12.95 13.12 10.76

250 125 0.5 492.00 491.45 245.35 24.28 490.38 488.23 243.59 23.90
9.22 27.02 26.78 20.34 4.48 9.43 9.60 8.86

250 125 0.9 492.00 489.14 244.46 24.92 491.46 491.36 245.41 24.39
8.24 17.03 16.77 14.49 3.34 5.90 5.96 5.85

Notes : For each different case, the first row is the number of steps in boosting algorithm.
The second row is the number of instruments selected by boosting algorithms from D.
Each column represents the result of different learning rate (cm)
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TABLE 8:
DGP 2 - Estimates with 90% Monte Carlo Confidence Intervals

n ℓn a OLS 2SLSSD 2SLSS 2SLSSA BGMM PGMM DB-GMM
250 125 0 5% Quantile 0.1750 0.1258 -1.1775 -0.1056 0.0770 -1.8604 -0.1747

95% Quantile 0.3964 0.3596 1.1234 0.1120 0.3446 1.1475 0.1996
250 125 0.5 5% Quantile 0.1625 0.1210 -0.4499 -0.1104 0.0746 -0.3960 -0.1547

95% Quantile 0.3637 0.3353 0.3162 0.1045 0.3381 0.3082 0.1594
250 125 0.9 5% Quantile 0.1299 0.1209 -0.2274 -0.0977 0.0958 -0.2135 -0.1302

95% Quantile 0.3264 0.3327 0.2011 0.0938 0.3757 0.2053 0.1124

Notes : We re-ran DGP 2 in TABLE 4 to estimate the 90% Monte Carlo confidence
intervals from the 5% quantiles and 95 quantiles of the Monte Carlo distributions of the
estimators. The Monte Carlo experiment is repeated 1,000 times.
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TABLE 9:
DGP 2 - Estimates When S Is Empty

n ℓn a OLS 2SLSSD 2SLSSA BGMM DB-GMM
100 125 0 Bias 0.2853 1.2577 0.0184 0.2378 0.0050

RMSE 0.2981 19.4112 0.0868 0.2582 0.1386

100 125 0.5 Bias 0.2620 0.1175 0.0122 0.2186 -0.0123
RMSE 0.2750 3.6345 0.0855 0.2392 0.1430

100 125 0.9 Bias 0.2301 0.2144 0.0119 0.2261 -0.0020
RMSE 0.2435 2.0268 0.0755 0.2477 0.1281

250 125 0 Bias 0.2832 0.2386 0.0096 0.2129 -0.0011
RMSE 0.2881 0.2449 0.0572 0.2228 0.0876

250 125 0.5 Bias 0.2604 0.2255 0.0069 0.2004 0.0044
RMSE 0.2657 0.2321 0.0522 0.2109 0.0905

250 125 0.9 Bias 0.2194 0.2159 0.0049 0.2182 0.0007
RMSE 0.2251 0.2224 0.0479 0.2283 0.0825

Notes : We re-ran DGP 2 in TABLE 4 when S is an empty set. PGMM is not reported
because it requires at least one instrument in S. Note that2SLSSD denotes the 2SLS using
all instruments in the doubt set since S ∪ D = D as S is an empty set. Also, the oracle
estimator 2SLSSA denotes the 2SLS using all the good instruments in A since S ∪ A = A
and therefore 2SLSSA = 2SLSA.
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TABLE 10:
Estimation of the Automobile Demand

OLS 2SLSSD 2SLSS BGMM PGMM∗ DB-GMM
constant -10.0716 -10.0438 -0.3943 -10.6119 -6.2167 -10.4486

(0.2576) (0.2608) (0.3591) (0.3166) (4.5852) (0.7093)
HPW -0.1243 0.1161 -56.5805 1.3099 -66.8782 3.4381

(0.2790) (0.3179) (5.7465) (0.3989) (76.4532) (0.8998)
AC -0.0343 0.0584 14.6306 0.6616 -247.9943 3.2621

(0.0710) (0.0880) (2.4066) (0.1273) (33.9590) (0.7228)
MP$ 0.2650 0.2484 -0.2046 0.2398 14.5104 0.0591

(0.0425) (0.0433) (0.0862) (0.0504) (0.9967) (0.1328)
Size 2.3421 2.3331 3.1143 2.8138 10.4995 2.9521

(0.1246) (0.1265) (0.5929) (0.1644) (7.7667) (0.3475)

Price -0.0886 -0.0970 0.6774 -0.1480 -1.9219 -0.2752
(0.0043) (0.0063) (0.1238) (0.0104) (1.6073) (0.0407)

Notes : PGMM∗ is the Post-PGMM. The values inside the parentheses are the standard
error of the corresponding estimators. S in this table includes only one instrument,
S = {HPW}.
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