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Abstract

We examine econometric inferential issues with Hausman instruments. The instrumental variable
(IV) estimator based on Hausman instrument has a built-in correlation across observations, which may
render the textbook-style standard error invalid. We develop a standard error that is robust to these
problems. Clustered standard error is not always valid, but it can be a good pragmatic compromise
to deal with the interlinkage problem if Hausman instrument is to be used in econometric models in
the tradition of Berry, Levinsohn, and Pakes (1995).
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1 Introduction

Hausman instrument was first introduced by Hausman (Hausman, Leonard, and Zona, 1994; Hausman,
1996) as a way to address endogeneity of the (log of) price variable in linear demand equations. It was
later adopted in the context of nonlinear specifications, following the tradition of Berry, Levinsohn, and
Pakes (1995, BLP hereafter), for similar purposes (e.g., Nevo, 2001; Crawford and Yurukoglu, 2012). For
a comprehensive discussion and documentation of the Hausman IV in the broader context of Industrial

Organization (IO) models, refer to Aguirregabiria (2019). The Hausman IV is also one of the most
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popular instruments in quantitative marketing and financial market analyses (see, e.g., Crawford and
Yurukoglu, 2012; Rossi, 2014; Egan, Hortagsu, and Matvos, 2017; Scanlon, 2019).

All the existing literature applying the Hausman IV focuses on empirical applications, with no the-
oretical discussion on the asymptotic framework and distribution necessary for econometric inference
using the Hausman IV. This paper addresses this gap by introducing various asymptotic frameworks to
examine inferential issues associated with the Hausman IV. We utilize a pseudo-panel structure to study
the Hausman IV in linear models, where n denotes the number of firms in a given market (market size),
and T represents the number of times the market is observed (number of markets).

Our first finding is that the Hausman IV estimator has a built-in correlation across contemporary
observations, which concurs with the endogeneity that requires an IV in the first place. We demonstrate
that the textbook-style standard error formula is valid only under asymptotics where both n and T grow
to infinity. If either n or T is fixed, this formula becomes invalid. Additionally, we consider a rescaled
version of the textbook-style standard error and a clustered standard error, showing that the former is
valid under large n asymptotics, while the latter is valid under large T" asymptotics. To overcome these
limitations, we develop a uniformly valid standard error that ensure correct asymptotic inference as long
as either n or T increases to infinity. This standard error is constructed as an average of the rescaled
textbook-style standard error and the clustered standard error.

Our asymptotic analysis is different from the typical results in the econometrics literature. It is
because the weak convergence concept, which is a standard tool for asymptotic analysis in econometrics,
was not adequate for our asymptotic analysis. We adopted the stable convergence concept, which is
rarely used in econometrics.! In this sense, this paper makes a technical contribution as well.

Our results are based on the specification that the underlying model is linear, which superficially
rules out the BLP specification. Because our analysis of the failure of the textbook-style standard error
is based on the problems with the “numerator” of the standard error in linear models, and because the

same issue arises in the *

‘ numerator” counterpart of the BLP, it is straightforward to conclude that the

textbook-style standard errors are invalid in the BLP specification when Hausman IV is adopted.
Regarding the practical implications for the BLP model with Hausman IV, we concede that this paper

does not extend the analysis of the uniformly consistent standard error, which was developed and justified

for the linear case. The BLP model involves numerous other components, making it challenging to isolate

and focus on the anomalies specifically related to the Hausman IV. While the large T asymptotic results

'Phillips and Ouliaris (1990), Phillips and Sul (2003), Kuersteiner and Prucha (2013), Hahn, Kuersteiner, and Mazzocco

(2020), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) are some small number of exceptions.



for linear models can be extended to the BLP model with Hausman IV in a straightforward manner—
essentially requiring only an adjustment of the “numerator”, we are uncertain if the same straightforward
extension applies to the large n asymptotic results.? Since analyzing the uniformly consistent standard
error requires characterizing the asymptotic distributions under conditions where either n or T' grows to
infinity, we are currently not in a position to establish a uniform inference method. Having said that,
we speculate that, in practice, it may be reasonable to use the clustered standard error. Although the
applied literature is not explicit on this point, it appears that large T asymptotics are implicitly adopted
in many cases.?

The remainder of this paper is organized as follows. In Section 2, we introduce the Hausman IV
estimator within a benchmark model and provide an intuitive overview of the main findings of this paper.
Section 3 derives the asymptotic distribution of the IV estimator in the benchmark model and discusses
the textbook-style standard error, clustered standard error, and provides the formula for a consistent
standard error. Section 4 extends these results to cases where exogenous regressors are included in the
structural equation. In Section 5, we demonstrate that the inference issues observed with the Hausman
IV estimator also arise with other IV approaches, such as the judge IV and Bartik IV. Section 6 concludes
the paper. The Appendix contains proofs of the main theoretical results, and the Supplemental Appendix
provides auxiliary lemmas used in these proofs.

The following notation will be adopted throughout the paper. We use K to denote a generic strictly
positive constant that may vary from one instance to another but remains independent of the panel
dimensions n and T'. We adopt the convention that a summation over an empty set equals zero. We
use a = b to indicate that a is defined as b. For real numbers ay,...,am, (a;)j<m = (a1,...,am)".
For any matrix A, AT denotes the transpose of A, and ||A| denotes the Euclidean norm of A. For
any doubly indexed sequence a;; (where i =1,...,nand t =1,...,T), we define a;. = 71! Zth ajt,

ar=n-! Y i<n @it and @ = (nT)~* D ot<T Di<n @it~ The summation Zi,# is taken over all i/ except 1,

. i—1 n
which means 3, air e = D0y @iy + i Gir g

2Some of the subtle issues include the following. As in the linear case, the clustered standard error is invalid under the
large n asymptotics as considered by Berry, Linton, and Pakes (2004). Having said that, the large n asymptotics is subject
to the concern along the line of Armstrong (2016), based on economics (not statistics) consideration. It is not clear to us

whether the same concern should be raised about the Hausman IV with large n asymptotics.
3For example, while Conlon and Gortmaker (2020) were not explicit about the asymptotics for standard error calculation,

it is clear that they adopted the large T" asymptotics implicitly due to their reference (p.1123) to Freyberger (2015) for bias

correction and standard error adjustment since the latter considered the large 7" asymptotics.



2 Intuitive Overview of the Main Results

The class of models that the Hausman IV is applicable can be written in the linear simultaneous equations

model of the form

Yit = i + Bris + uig, (1)
Tt = Mi +YCt + Vig, (2)
fori=1,...,nandt=1,...,T, where y;; is some dependent variable (such as the quantity demanded),

x;+ is some endogenous explanatory variable (such as the price), and the ¢; can be understood to be the
latent common shock (such as cost shocks), the residual terms u;; and v; + may be correlated, which leads
to the endogeneity of :cl-7t.4 The i denotes a city and the ¢ denotes the time, so the (7,t)-pair indexes
the “market” as commonly understood in the IO literature. The model (1) - (2) can be viewed as a result
of the more general model, such as (14) presented in Section 4 below, where other included exogenous
variables are partialled out.

This linear model is also flexible enough to include the BLP as long as y;; is understood to be some
nonlinear transformation that may depend on some additional parameters. For instance, Nevo (2001)’s
“full model” is similar to our “extended model” in (14) below with J > 1, where y;; is the mean utility
from the good, x;; is the price, w;; is a vector of product characteristics, and 8 and ¢ are the means
of individual coefficients ; and 6; (i = 1,...,n), which are assumed to follow a joint distribution up to
additional parameters 6, (Nevo, 2001, eq. (3)). Given 6y, all the y;4, x;; and w;¢, the market share
can be calculated from the model by numerical integration, denoted as s; ;(y, x, U)THQ), so the “dependent
variable” y; + can be obtained by solving the system of equations that matches the model-predicted market
share with the observed one from the data (Nevo, 2001, eq. (7)). The additional parameters as well as
the transformation complicates notations without shedding any further light on the basic econometric
problems, so we abstract away from the BLP-style complication.

Hausman (1996)’s insight is that under some conditions, the z;; with ¢ # 4, i.e., the contempo-

rary endogenous regressor from a different city, can serve as the instrument for xivt.‘a Hausman IV can

“Here, we abstract from the possibility of multiple goods, so in terms of commonly adopted notations, we let J = 1. Our

econometric analysis goes through even when J > 1 as long as it remains finite in the asymptotic framework.
5In this paper, we will adopt all his identifying assumptions, and focus on the inferential issues. While Bresnahan and

Gordon (2008) have raised questions on the identifying assumptions in Hausman (1996)’s paper, which Nevo (2000) and
Aguirregabiria (2019) have also noted, this paper will focus on addressing the inferential issues rather than revisiting the

questions of identification.



be particularly useful because cost shocks, the preferred instruments for demand estimation, are often
unavailable to researchers. When n > 2, a common practice is to use the average
-1
zig = (n—1) Zfﬂi/,t (3)
i
as the IV for x;;, which means that the IV estimator is numerically equal to

o 2orer 2oicn i = Zil) Wik — Uie) | Dier Di< Fit Wit — i)

T Y e Yian (Fig = Zi) (Wi = i) Yoer Dicn Zit (Tig — Ti)

where we use the usual partialling out trick to eliminate the fixed effects. Since

Yit — Ui = (Xig — Zi.) B+ uir — U (5)

based on the expression for y;; in (1), applying (5) to (4) gives:

b, = 2ov<r iz Fit (i — Ti ) B+ wig — Wi,.) 54
" dot<T Di<n Zit (Tig — Ti.)

It is straightforward to show that

1 T
Z Z Zip (Wi —4.) = Z Z Yuit (c; — €) + mz Z Z Ui Vi ¢ — 1 Z Z ;. vy., (6)

t<T i<n i<n t<T t<T i<n i'#1i i<n i/ #i

dot< Doi<n Zit (Wit — Ui,.)
dot<T 2i<n Zit (Tig — Ti.)

where ¢ = T~} > i<t ct- Note that the second term on the right (underlined) is a sum over ¢ of the U-
statistics Zign Do i Wit Vi - Elementary statistics suggests that the variance of such U-statistic would
depend on the covariance between u and v.6 The potential correlation between the v and v in the model
(1) and (2) is the source of endogeneity that would make the OLS inconsistent, and it is the reason why
the instrument is sought. Our contribution is to recognize that the U-statistic structure built-in as part
of the Hausman IV brings back the endogeneity (i.e., the covariance between u and v) as part of the
asymptotic variance.

Having described the intuition, we now summarize the basic theoretical results in the next section. In
Theorem 1, we provide the asymptotic distribution of the IV estimator Bw. We consider the asymptotic
framework where n and/or T' can go to infinity, although we insist that at least one of them should go to
infinity by requiring that nT — oco. It turns out that the asymptotic distribution of Biv depends on the
behavior of n and T in the limit. Theorem 1 is a general result that nests all possible limiting behaviors

of n and T. The asymptotic variance may be “random” depending on the limiting behaviors, and in

SFor intuition, consider the simple case with n = 2, where the U-statistic takes the form w1 tv2; + w2, v1,:. Obviously
the variance of this quantity is equal to Var (u1,+) Var (va¢) + 2 Cov (u1,¢,v1,t) Cov (u2,¢, v2,+) + Var (u2,+) Var (v1,¢), assuming

that the u’s and the v’s have zero means, as well as that u;,; and v,/ ¢ are independent for 7 # i’ ort #* t.



order to accommodate such situations, Theorem 1 presents the asymptotic distribution using the stable
convergence concept.

In Lemma 1, we consider the textbook-style standard error derived under the homoscedasticity and
independence assumption. The lemma establishes that this standard error is consistent only when both
n and T go to infinity; if n is fixed while T" — oo, it ignores the covariance between u and v, and therefore
is inconsistent; if T is fixed while n — o0, it is again inconsistent because it ignores a multiplicative factor
that depends on the magnitude of 7.

Recall that the concern about the covariance in the U-statistic arose in the decomposition (6) of the
“numerator” of Bw. The assumption that (u;,v;s) are i.i.d. across ¢ and ¢ implies that the U-statistic
Zz‘gn Zi,# u; vy ¢ should be independent over t. This suggests that a standard error clustered at the
time level might be consistent. However, Lemma 2 demonstrates that such a clustered standard error is
consistent only when T" — oo; when T is fixed and n — oo, it is inconsistent for a reason elaborated in
Section 3.2 below.

To address these issues, we develop a new standard error. In Theorem 2, it is shown that the new
standard error is consistent in general, and despite the relatively unusual stable convergence framework,
it enables asymptotically valid statistical inference, similar to what would be achieved under the usual
weak convergence.

It is important to emphasize that Theorems 1 and 2, as well as Lemmas 1 and 2, are derived under the
assumption that (u;, vi¢) are i.i.d. across i and t. Therefore, the inconsistency of both the textbook-style
standard error and the clustered standard error is not attributable to any cluster structure among the

pairs (u; ¢, vi ) over i or t.

3 Main Results in the Benchmark Model

In this section, we study the asymptotic properties of the IV estimator Biv based on the model presented
in (1) - (2). We refer to this as the benchmark model because the structural equation (1) does not
include any exogenous regressors in equation (1). The IV estimator in an extended model, which includes
additional regressors in (1), will be investigated in the next section. Throughout this paper, we consider
an asymptotic framework where both n and T are indexed by m = 1,2, ... and both are non-decreasing
in m, with n,,T,, — oo as m — oo. For simplicity, the dependence of n,, and T, on m is suppressed,

provided there is no risk of confusion.



Assumption 1 (1) (uj¢,vit) are i.i.d. across i and t with Elu;;] = 0 and Evi¢] = 0; (i) ¢y, is inde-
pendent of (wity,Vit,) for any i, and any t1 and ta; (iii) E[u;{t] + E[v;{t] < K and max; E[c}] < K, (iv)

62=T"1 Z;F:l(ct — )% —, 02 where 02 > 0 almost surely; (v)n >2, T >2 and (nT)~! = o(1).

Assumption 1 includes some regularity conditions used for studying the IV estimators. Conditions
(i, ii) impose a dependence structure on the unobserved components, i.e., u;¢, v;t, and ¢, allowing for
correlation between w;; and v;;. For the common factor ¢;, we only require an upper bound on its
fourth moment and a lower bound on its “sample variance”. The factor ¢; may exhibit time-varying
distributions, making it non-stationary, and have a general dependence structure over time. Condition
(v) requires that both n and T are strictly greater than 1, and nT diverges with the sample size. The
restriction (nT)~! = o(1) allows for cases such as: (i) large n and small T’ (ii) small n and large T'; and
(iii) large n and large T

The independence assumption between the {¢;:} and {(ui+,vi¢)} amounts to a homoscedasticity as-
sumption as well as no apparent cluster structure in the error vector {(u;¢, vi:)}. We acknowledge that
in a typical empirical question where the Hausman IV is applicable, (u;,v;¢) often has a cluster struc-
ture over ¢ or t, or both, but an important and interesting feature of our result is that the asymptotic
distribution of the Hausman IV estimator exhibits a clustering problem, introduced by the Hausman IV,

even when there is no apparent cluster structure in the original model.

Theorem 1 Let Fy denote the sigma-field generated by {ct}fg. Under Assumption 1, we have

(nT) V20 S0 (quaa(er — €) + €10) + Op((nT)~Y?)
1262 + Op((nT)~1/2) ’

(nT)2 (B — B) =
where ;4 = (n — 1)t 227:11 (uigvir ¢ + ug v ). Moreover, as m — oo,
(nT)'?(Biv = B) = wZ  (Fo-stably), (8)

where w2, = (Y0202 + (noo — 1) (0203 + 02 )/ (v*02) is independent of Z ~ N(0,1), o2 and o2 denote

the variances of u;; and v; ¢, respectively, and o, denotes the covariance between them.”

Theorem 1 derives the asymptotic distribution of the IV estimator f;,. The stable limit in (8) is
required to address the case of large n and small T, where 62 does not converge to a non-random
constant; instead, its probability limit remains random in such a scenario. In the small n and large

T case, it is evident that the covariance o, ,, in addition to the variances o2 and o2, appears in the

"The definitions of G-stable convergence and G-mixing convergence can be found in Section A of the Appendix.
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“asymptotic variance” w? . This arises from the cluster dependence of the Hausman IV Zit — Zi. =
(n—1)71 D it i (zi74 — Zy..), which acts through e;, contributing to the U-statistic term in (6). Since
ou.v is the source of endogeneity, its appearance in w2, highlights the critical importance of accounting for

inherent cluster dependence when calculating the standard error for inference on the unknown parameter

3.

3.1 Textbook-style Standard Error

In this subsection, we examine the textbook-style standard error for Bw. It turns out that such a standard
error is consistent only when both n and T go to infinity, although a minor modification is consistent as
long as n — oc.

Specifically, the textbook-style standard error formula for IV estimators with conditionally homoskedas-

tic residuals is given by:

éﬁo (Bw) _ (ZtST Zign (Zi,t - Zi,-)Q) (Zth Zzg; ﬂ?,t) 7
nT <Zt§T di<n Tit (Zit — 51))

where U; 1 = yi t — Vi, —Bw(xi,t —Z;,.). The following lemma presents the asymptotic properties of éﬁo (Bw)

Lemma 1 Under Assumption 1, we have:

. 2+2 2+ N — 1 —1+52 42 _
/nTSEO(Bw) _>p \/7 0u0¢ (722—4 ) Juo—v(l_Tool).
c

Lemma 1 shows that the textbook-style standard error is consistent only when both n and T go to
infinity. In this scenario the asymptotic variance of the IV estimator in Theorem 1 simplifies to o2 /(y202),
which is the same as the probability limit of §]\EO (Bw) after scaling.

In the large n and small T case, the textbook-style standard error is inconsistent due to the 1 — T);!
factor. However, we can apply a degrees of freedom adjustment to gﬁo(ﬁw), and show that the adjusted

standard error, i.e., SEq (Bin)(1 = T~1)~1/2 is consistent in the large n scenarios.

2

oo 18 not

In the small n and large T' case, the covariance term o, , in the “asymptotic variance” w
captured in the probability limit of gﬁo ( Bw) This indicates that the textbook-style standard error and its
adjusted version are inconsistent as long as o, # 0. Since the endogeneity of x; ; arises from o, , # 0, the

inconsistency of the textbook-style standard error is a by-product of the necessity of using IV estimation.



3.2 Clustered Standard Error

It is natural to conjecture that the cluster structure induced by the Hausman IV (agm in Theorem 1)
might be intuitively handled by a clustered standard error, which has an additional bonus of providing
a protection against potential heteroscedasticity. We now investigate the asymptotic properties of the
conventional clustered standard error in this context. We show that the clustered standard error is
consistent when T' — oo but not when T is bounded from above.

Under Assumptions 1(i, ii), it is clear that: {uis(c; — ¢)},.,, ;<7 are uncorrelated across i and across
t; and w;(c; — €) and ey ¢ are uncorrelated for any 7,7’ < n and any ¢,t' < T. Therefore, the cluster
dependence in the estimation error of Bw is introduced through ¢; ;. Indeed, for any 41,12 < n, i <ip—1,

ih, <ib—1 and any t,t' < T with t # t/, we have

Eluwi, vy ¢ty Vi 1] = Elug, 10y 1] Elugy pvig o] = 0,

which implies that
E [81‘77581-/,15/] =0
as long as t # t'. Therefore, there is no clustering across ¢. On the other hand, we notice that
PDPDETEUIIED 9D 9l (1) o8
t<T i<n t<T i<n i'#i

For any t < T and any i1,19 < n with i1 # io,

2
E |ty gtting Y vir g D Vg | =B [ty iy i 10y 1] = B [wiy 103y 1] B [, 103 0] = 00,

2/1#11 7,’27622
which shows that €;; has an equi-correlation across ¢, and it arises precisely due to the way the IV is

constructed. This motivates the following clustered standard error

2
o<t (Zzgn Ty (i — 5@))

5.
<Zt§T Di<n Tig (Zip — 51))

S/El (Bw) =

We next present the asymptotic properties of the clustered standard error.

Lemma 2 Under Assumption 1, we have

2
. nT)~ ! i< ien V(e — Q)uip — & +(n—1)"Yo202 + 02,
ST ()7 = LT (Rt (;T)tﬁi) — 2 s oy, )




where & = ny(c; — &) (@ + (¢ — €)(Biw — B)). Moreover, if T — oo as m — oo, then

V2030 + (noo — 1) Hogo7 + 07,)

(nT)SE1(Biw)? = i

. (10)

Lemma 2 provides the asymptotic approximation of the clustered standard error. The component
denoted as & in (9) arises from estimating the unknown parameters «; and 8 in the structural equation
(1). When T approaches infinity, Lemma 2 shows that (nT’ )S/Ell(@v)g is a consistent estimator of the
asymptotic variance of Bw. On the other hand, if T" is bounded from above, the asymptotic approximation
in (9) indicates that S/El(ﬁw) is an inconsistent estimator.

To illustrate this inconsistency, consider the simplified case where u;; is known, and as a result &
does not present in (9). In this case, the first term in the numerator of the faction on the right hand side

of (9), i.e.,
2 2

(nT)™* Z 27(% —Quiy | =+*T7! Z n~1/2 Z(Ct —Cuig |

t<T \i<n t<T i<n

26202 in large sample, which causes the inconsistency of SE, (BAM,)

fails to approach to
The intuition underlying this failure is that the stable convergence of (n~!/2 dicnlCr — Ui,

combined with the Cramér-Wold device and continuous mapping theorem, would imply that as m — oo,

2

PTIY 0 2N (e —Quig | = AP0l [T71Y 22| (Foestably),
tST lSTL tST

where (Z;)i<r is a vector of mutually independent standard normal random variables independent of o2.

2
In other words, the term (n7)~1>", 1 (ZKn v(er — é)ui,t) converges to a scaled x? random variable

when T is small, not the desired non-stochastic component v20202.

3.3 Averaging Textbook-style Standard Error and Clustered Standard Error

We now present a simple consistent standard error combining @O(Bw) and S/El(ﬁw) From Lemma 1,
it is clear that (1 — Tfl)*1/2§]§)0(3iv) is a consistent standard error as long as n — oo. On the other
hand, Lemma 2 shows that S/J\'El(ﬁw) is a consistent standard error whenever T" — oo. This motivates the

following averaging standard error:

n

SEavg(/Biv) = T +n

(1—T7Y)"Y28Eo(Br) + T—Tkngﬁl(&”)' (11)

We show that the averaging standard error is consistent under the general asymptotic framework with

nT — 0o as m — oo.

10



Specifically, if both n and T go to infinity, then (nT)Y2(1 — T_l)_1/2§]\30(3w) and (nT)l/QSTﬁl(ﬁiv)
converge to the same limit wy, and so does (nT)l/ Q@MQ(BW). When n is bounded from above, éﬁavg(ﬁm)
is dominated by the second term in (11), which as we have shown in (9) of Lemma 2, is a consistent
estimator of we, after rescaled by (nT )1/ 2. Finally, if T is bounded from above, gl\ﬂwg(@v) is dominated

by the first term in (11), which is a consistent estimator of wy, after rescaled by (nT)/?

, as indicated by
Lemma 1.
As a consequence, we arrive at the following theorem, showing that statistical inference based on the

averaging standard error is valid when either n or T approaches infinity.

Theorem 2 Under Assumption 1, we have (nT)l/QS/EJaUg(B’L'U) —p Woo, and

Biv_ﬁ

m — N(O, 1) (fo-mmmg) (12)

as m — Q.

Theorem 2 shows that asymptotically valid inference on 5 can be conducted using the stable limit

stated in (12). For instance, the usual (1 — «)-confidence interval given by
Clhi o= Biv - Za/2§]\'3a'ug(3iv)a Biv + za/QS/Eavg(Biv) (13)

covers 8 with probability approaching 1 — « for any « € (0, 1), where z, /2 denotes the (1 — a/2)-quantile

of the standard normal distribution.

4 Extended Model with Exogenous Regressors

The extended model incorporates several exogenous regressors, denoted as w; ¢ into the structural equa-

tion. Consequently, equation (1) becomes
Vit = 0 + iy B+ w0 + uig. (14)

The additional d,,-dimensional regressors w; ; are allowed to be correlated with the common shock ¢; and
may exhibit both spatial and time series dependence. Ignoring these regressors could lead to omitted
variable bias and/or incorrect standard error for the IV estimator and the inference procedures discussed

in the previous section.®

8This is particularly important for the Hausman IV because its identification condition is likely to fail unless the

advertising and promotional expenditure variables are included in the main regression (Rossi, 2014, p.666, footnote 8).
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~

To define the IV estimator in the extended model, we introduce the following notation. Let A\ =

A~

YTy, and define &4 as ¢ = x4 — Ti. — (Wi — u_Ji,.)T/\, where

S = (nT) 7! Z Z(wm — wiv.)w;’t and Ty, = (nT)7} Z Z(’wz}t — W;. )Tt

t<T i<n t<T i<n

Similarly, define g, + as i+ = yit — Ui, — (Wit —u‘)i,.)—rfr, where 7 = f]lj,lfuhy and fw,y is defined analogously

to I'y o with x; replaced by y;;. The IV estimator is then given by:

Bosy = DT Di<n Zit Uit
T Y e Yin Zit i

To study the properties of the IV estimator with additional regressors w;, the following assumption is

(15)

employed.

Assumption 2 (i) w;, ¢, is independent of (Wi, 1y, Vigt,) for any i1 and iz, and any t1 and ty; (i) there
exist a matriz Sy, such that Sy —p 2, Where the eigenvalues of ¥, are bounded away from zero almost
surely; (i11) there exist a matriz I'y, . such that Iquhc —p Dw,c, where fu),c 1s defined analogously to f’ww

with x4 replaced by c;; (iv) max; maxy E[||wq¢||*] < K; (v) 02, =02 =Ty, S5 Twe > 0 almost surely.

w,c—w

Condition (i) in Assumption 2 ensures that the regressors w;; are strictly exogenous, while condition
(iv) imposes a uniform upper bound on their fourth moment. Conditions (ii), (iii), and (iv) serve as
regularity conditions to ensure that the IV estimator Be,w achieves a convergence rate of (nT)*l/ 2,
Assumption 2 permits both time series and spatial dependence in w; ¢, and allows for correlation between

w;i; and the common shock ¢;. In this scenario, the probability limit of fw@ ie.,, I'y is a non-zero

matrix.

Theorem 3 Let F.o denote the sigma-field generated by {{Ct}tSToo AWitticne t<t . Under Assump-

tions 1 and 2, we have as m — o0
(NT)Y2(Bein — B) = WewoZ  (Fep-stably), (16)

where w? o, = (Y020l + (nos — 1) HoZoZ + 02 ,)) /(v ol,) is independent of Z ~ N(0,1).

e,00 —

We next present the formula for the average standard error, which is based on both the textbook-
style standard error and the clustered standard error, defined analogously to their counterparts in the
benchmark model. Similar to the benchmark model, neither the textbook-style standard error nor the

clustered standard error is consistent within the general asymptotic framework of nT" — oo employed in

12



this paper. However, these standard errors can be combined to construct a consistent averaging standard
error.

Let 2,y = (n — 1)t Zi,# (x,-@t — a_ci/,.) — (wiy — wi,.)Tga denote the Hausman IV with o; and w;,
partialled out, where

2;1fw72 and f‘mz = (nT)! Z Z(wm — W;.) %t

t<T i<n

¢
The textbook-style standard error is defined as

52 )
(Zth Zign Zi,t) (Zth Zign “e,i,t)
2
nT <Zt§T Zign Zi,tji,t)

SEe,O(Be,z’v) = s
where e ;1 = Uit — i‘i,tﬁAeJU. Under Assumptions 1 and 2, we can show that

26202 4 (Noo — 1) to202
Y O0u e,c ( oo ) u U(].—Togl), (17)

(nT)SE670(5€,iv)2 —p 740'3,(:

which indicates that the textbook-style standard error does not account for the covariance term o, ,, and

therefore is inconsistent when n is bounded from above.?

Lemma 3 Under Assumptions 1 and 2, we have

. 20202 4 (neo — 1) L0202 _
/nTSEe,D(Biv) _>p \/’7 u”c (’722-4 ) U U(l_Tool)-
c

The clustered standard error in the extended model is defined as
o 2
Zth <Zl§n Zi,t“e,i,t>
5
(Zth Zign Zi,tl“i,t)

Similar to its counterpart in the benchmark model, the clustered standard error is consistent only when 7T’

g:\Ee,l (3e,iv) =

goes to infinity. Therefore, we can combine the textbook-style standard error and the clustering “robust”
standard error to obtain an averaging standard error defined as

— ~ n
SEe,cwg(Be,iv) = T +n

CN—1/283 /5 T = 5
(1 =T 2SEc 0(Bew) + mSEe,l(ﬁe,w% (18)
which is consistent, as shown in the lemma below.
Lemma 4 Under Assumptions 1 and 2, we have (nT)l/QS/l\vag(Be,iv) —p We,o00-

By Theorem 3 and Lemmas 3 and 4, S/l\*]&avg(,ée,w) can be used to construct confidence intervals, as

in (13), and to perform statistical inference for the unknown parameter £.

9See the proof of Lemma 3 in the Appendix for the derivation of (17).
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5 Potential Inferential Issues with Other Instruments

The inferential issue attributable to the U-statistic structure can arise in other contexts as well. For
example, we suspect that the judge instrument would be subject to the similar problem depending
on how it is used. Like equations (1) and (2) in Kling (2006), we consider a linear regression model
Y; = S;v + €;, where Y; and S; respectively denote the outcome and the treatment variable in case i. In
Kling (2006), the judge assigned to the case is subscripted by j (and the assignment is supposed to be
random), and the instrument is Z;m based on S; = Z;m + Q6 + n;, where the additional variable @);
denotes the indicator of the district office.

In order to understand the connection between the judge IV to the Hausman IV, we replace the j
subscript with ¢, and consider a pseudo-panel representation of the model Y;; = S;;v + €;:, where ¢
denotes the i-th case (defendant) handled by judge ¢, and we will abstract away from @, in this section.

Now noting that Z; is just a judge’s identity, we finally obtain the model in panel data notation:

Yie = Siy + it

Sit = T + it

There can be many variants of the judge IV estimator. One possible variant uses an estimate of
for the (i,t) observation by using an estimate deleting the i-th case, i.e., z;+ = (n — 1)_1 Zi,# Sy If

so, the judge IV estimate of the treatment effect is

oy = Zth Zign 2itYi =yt Zth Zign Zi,t€it
" Zth Zign ZitSit Zth Zz‘gn zitSit’

where

Z Z Zit€it = Z Z gime + (n — 1)_1 Z Z Z EitMil -

t<T i<n t<T i<n t<T i<n i’ £i

It is evident that the second term after the equality of the above expression shares the same sum-of-U-
statistic structure as the second component in (6). Therefore, clustering will be an issue for econometric
inference if n is small. This problem can be solved by using a standard error clustered at the judge level
only when 7', the number of judges, is large.

The U-statistic creates the problem that the observations are unintentionally interlinked. Such a
problem may arise even in Bartik instrument context. For example, in Diamond (2016, equation (23)),
we see that the instrument is computed by using the average log wage in cities within 25 mile radius
of a given city, excluding the log wage of the given city itself. This naturally creates the inter-linkage

problem. Unlike the Hausman IV or the judge IV, where the inter-linkage is confined to a cluster and

14



we could resort to an asymptotic analysis where the number of clusters goes to infinity, the circles with
25-mile radius may overlap with each other, so from an asymptotic analysis perspective, the clustering
here takes a more complicated form . We leave the analysis of such a complicated problem as a topic for

future research.

6 Conclusion

In this paper, we address econometric inferential issues related to Hausman instruments. The IV estimator
based on Hausman instruments has a “numerator” that involves U-statistics, naturally introducing a
clustering problem even when the errors are independent of each other. The clustering issue can be
important depending on the size of the clusters relative to the total sample size. We develop a standard
error that is robust to these problems. While clustered standard errors are not always valid, they can

serve as a pragmatic compromise for addressing the inter-linkage issue when using Hausman IV in BLP.
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Appendix

A Notations and Definitions

We begin by introducing some concepts related to the stable convergence of random variables from the
literature, see, e.g., Hausler and Luschgy (2015). Let (€2, F,P) be the underlying probability space, and
X be a Polish topological space equipped with its Borel sigma-field B(X). For a sub-sigma-field G C F,
and a (X, B(X))-valued random variable X, let PX and PX!9 denote the marginal distribution of X and
the conditional distribution of X given G, respectively. Let Cy(X) denote the space of all continuous,

bounded functions h : X — R equipped with the sup-norm ||h| = sup,cy |h(2)|.

Definition 1 Let G C F be a sub-sigma-field. A sequence (Xp)m>1 of (X, B(X))-valued random vari-

ables is said to converge stably to an (X, B(X))-valued random variable X, denoted as
Xm — X (G-stably),
if PXml9 5 PXI9 weakly as m — co. That is

lim B (9B (+(X,)i01) = [ g [ ha)PXO( da)a,

m—0o0
for every G-measurable function g with E[|g|]] < oo and every h € Cy(X). In case that PXI9 equals PX

almost surely, then (Xp,)m>1 s said to converge G-mizing to X, denoted as
Xm— X (G-mixing).

The limit PXI9 in the G-stable convergence is a Markov kernel from (2, F) to (X, B(X)) such that
PX9(w,-) is a probability measure on B(X) for every w € Q, and PXI9(-, B) is F-measurable for every
B € B(X). For presenting the main results of this paper, we have X = R and PXI9 = P74l9 = N(0,7?)
for a G-measurable non-negative random variable 7, and a standard normal random variable Z which is

independent of G, in the stable martingale central limit theorem.

B Proofs of the Main Results

In this section, we provide the proofs of the main results, including Lemmas 1 and 2, and Theorems 1
and 2 from Section 3, as well as Theorem 3, and Lemmas 3 and 4 from Section 4. The auxiliary lemmas

used in these proofs are presented in the Supplemental Appendix (hereafter referred to as SA).
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Proof of Theorem 1. The expression in (7) follows directly from (4) and Lemmas SA.2 and SA.3
in SA. By Lemma SA.4 in SA,

(nT) "1/ Z Z('Vui,t(ct —C) +eit) > WZ  (Fo-stably), (19)
i<n t<T
which together with Assumption 1(iv) and (7) implies that

Yuit(ce — €) + €iy
(W) 725

(nT) (B = B) =) + Op((nT)71/2). (20)

i<n t<T

Since o2 is Fo-measurable, by Assumption 1(iv) and (19), we can apply Theorem 3.18(b) in Hiiusler and
Luschgy (2015) to get:

YUt (¢t —¢) +eiy A -~
Z - (nT)1/2 R (wOOZ, 7203) (Fo-stably). (21)
1<n t<T
For any (z,y) € R x R, let
zfy, y>0

g(z,y) = :
0, y<0

Then g(z,y) is Borel-measurable and P(#=27°9%)_continuous almost surely. Therefore by Theorem 3.18(c)

in Héusler and Luschgy (2015),

Z Yuit(ct — €) + €t 7252 | = 9@ Z, 7202 (Fo-stably). (22)
i<n t<T nT 2

The claim of the Theorem follows from (22) and the definition of g(x,y). =

Proof of Lemma 1. By the definition of g]\Eo(Bw), we can write

(0T) ey Sicn (S (s~ 70.))

Vv nT@O(Bzv) -
((nT)fl ZtST Zign Zi/?gi Tit (ﬁi/ﬂg — i‘i/7.)) t<T i<n

The claim of the lemma follows from Assumption 1(iv), and Lemmas SA.2, SA.5 and SA.6 in SA. =

Proof of Lemma 2. We begin by expressing

(nT)"' Y cr (Zign Qi (Zit — fi,-)>2

(NT)(S/El(Bw))Z = 5
((’I’lT)—l Zth Zlgn Tjt (Zi,t — Z,L’))

(23)
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By Lemma SA.2 in SA, the denominator on the right-hand side of (23) satisfies:
2
(V) D0Y i (e = 5) | =70t 4 Op(nD) 7). (24)
t<T i<n
Using Lemmas SA.8 and SA.9 in SA, we approximate the numerator on the right-hand side of (23) as

2

(D) D iy (zi — 7))

t<T \i<n
2 2 2 2
u-v + u,v —_

— )Y S e - uig—& |+ % + 0,((nT)"V/2). (25)

t<T \i<n e

By Lemmas SA.10 and SA.11 in SA, we have

2

D)) D Ala - Ouis—& | =0,(1). (26)

t<T \i<n
The claim in (9) follows from Assumption 1(iv) and (23)-(26). In view of (9), to prove (10), it is sufficient

to show that as T" — oo,
2

(nT)~* Z Z'y(ct —Quit—& | —p V2ola?. (27)

t<T \i<n

Applying Lemmas SA.10 and SA.11 in SA, and applying the Cauchy-Schwarz inequality, we get

2 2
D)7 Do —uig—& | =0T)t Y| Yol —uie | + ()Y &
t<T \i<n t<T \i<n t<T
—29(nT)" Z Z v(ct — C)ui e
t<T 1<n
2
= D) D Ale—uig | +O0p(T7?)
t<T \i<n
= 120262 4 2y (D) Y0 D er - g + 0T, (28)
t<T i<n
By Assumptions 1(i, ii, iii), we have
2
E||(nT)™' Y ) (= 02pie| | =(T)7>)Y > Eller — ) |E[uf,] < KT,
t<Ti<n t<Ti<n

which, together with Markov’s inequality, implies that

(D)"Y (e =& pie = Op(T1/2). (29)

t<T i<n
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The desired result in (27) follows from Assumption 1(iv), along with (28), (29) and Slutsky’s Theorem.

|
Proof of Theorem 2. First consider the case where both n and T go to infinity. By Lemmas 1 and
2, we have
(WD) 2= T 2SR (i) = - op(1) and - (nT)VSEL(B) = 2+ 0p(1),
which implies that
(TLT)I/QS/Eavg(Biv) — ;;C Tin ((nT)1/2(1 — T_l)—l/QS/EO(Biv) - ;7;)
+ 177;71 ((Tqul/Qéﬁil(é%v)-— ;Zi3> = ;Z; + op(1). (30)

Since woo = 0,,/(y0.) in this case, from (30) we have (nT)1/2§EMg(Bw) —p Woeo. Second, consider the
case where n is bounded from above and T approaches infinity. In this scenario,

no T
T+n

=1+o(1). (31)
Moreover, Lemma 1 shows that
(nT)?(1 = 1717 ?SEo(B1) = Op(1),

which together with (10) of Lemma 2 and (31) implies that

(0T)" 2By (o) = 7 (0SB (i) + 0p(1) = e + 0p(1).

To finish the proof of the first claim of the theorem, consider the last case where T is bounded from above

and n approaches infinity. In this scenario,

T
LS o(1) and

=o(1). (32)
Moreover, by Lemmas SA.10 and SA.11 in SA,
(nT)"/*SE1(Biv) = Op(1),

which together with Lemma 1 and (32) implies that

n

7 (V)2 = T 78R (i) + 0p(1) = woe + 0p(1).

(nT)"/*SE qug(Biv) =
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In sum, we have shown that (nT)l/ 2§]\Eavg(3w) —p Woo 1N the asymptotic framework with nT" — oo. It
is evident that w? is Fo-measurable. Therefore by the first claim of the lemma, Lemma SA.4 in SA and
similar arguments in the proof of Theorem 1, we can show that
/Biv — 5
SEavg (Bw)

Since Z and Fy are independent, the convergence above is Fg-mixing. =

— Z  (Fo-stably).

we have

A _ Y(er — ¢ — f; cifvl(wz’,t — W;.)) Uit + Eiy
()2 (Bejw — B) = (nT) 2> :

A eir +0,((nT)71?). (33)
i<n t<T 72(0-3 - Fg,czwlrw,c)

Since aéc is Fe o-measurable, by Assumptions 1(iv) and 2(ii, iii, v) and (33), we can apply Theorem

3.18(b) in Hausler and Luschgy (2015) to obtain:

(ct—c—T), St (ws e —d;,.) Jus e +ei s ~
Z‘< Zt<T7 = 7 7 7 7 We, z
T 2,22 7T A(n?l ) - 62002 (Fe,o-stably). (34)
Y (Uc — Ly Xy Fw,c) T Oec

w,c=w

The claim of the theorem follows from (34) and the same arguments used in the proof of (22). m

Proof of Lemma 3. By Lemmas SB.13, SB.16 and SB.17 in SA, we have

((”T)fl d4<T Di<n 23,t> X <(”T)71 d4<T Di<n ﬁgzt)

2

((NT)_I Zth Zign i’i,tzi,t)
%62+ 02(n—1)"1 4+ 0p((nT)~/?)
a (7262, + Op((nT)~1/2))?

(nT)SEc.0(Be.in)?

(a1 =T71) + Op((nT)""/2)),

(nT)S/Ee7O(3e,iv)2 72037‘3 T Ug(noo _ 1>71 02 (35)
1-—7"1 P 740-:31,0 h

This implies the claim of the lemma. m

Proof of Lemma 4. The proof follows from (35), Lemmas SB.13 and SB.24 in SA, and similar

arguments to those used in the proof of Theorem 2. Therefore, it is omitted. =
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Abstract

This supplement consists of two appendices. Appendix SA presents the lemmas used in proving

the results from Section 3 of the paper. Appendix SB contains auxiliary lemmas utilized in the proofs

of the results in Section 4.

SA Auxiliary Lemmas for Results in Section 3

Lemma SA.1 Under Assumption 1, we have:

D)) (@ig - 30.) =

i<n t<T

QN
(S V]

+ 021 = T7Y + 0,((nT)~Y?).

I
2
Q>

Proof. Using (2), we can write
Tit— Xi. = 'Y(Ct — 5) + vt — U,
for any ¢« < n and t < T. Therefore

(nT) 122 (@i — —nyT 12 ct—c + (nT)~ 122(1)@75—17@.)2

i<n t<T t<T i<n t<T

+2y(nT) D 0D (e ) (vig — 0y,.) -

i<n t<T
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Since T~ Y7, op (viy — v;)2 =11 > i< Vi — Uy, the second summation after the equality in (SA.2)
can be expressed as
(D) (i —0i,)7 = (D) D i -0 ) (SA.3)
i<n t<T i<n t<T i<n
By Assumptions 1(i, iii) and Markov’s inequality,
(nT) Y 0> i =07 4+ Op((nT)71?). (SA.4)
i<n t<T

The second summation after the equality in (SA.3) can be further written as

T t-1
n~! Z 1722 = (nT%)~! Z Z vzt 4 2(nT?! Z Z Z Vi U ¢ (SA.5)
i<n i<n t<T i<n t=2 t/=1
By Assumptions 1(i, iii),
2
T t-1
E (nTQ)_IZZZUi,tUi,t’ < K((nT?*)™),
i<n t=2 t'=1
which together with (SA.4) and Markov’s inequality implies that
nY ol =T el = 0,((nT?)72). (SA.6)

i<n
Collecting the results in (SA.3), (SA.4) and (SA.6) obtains
(D)2 (v = 50)* = 031 =T )+ Oy(nT) ™H/2). (SAT)
i<n t<T

For the third item after the equality in (SA.2), we have

2 2
E||(nT) Y Y (=) (vig—0i)| | =E [|(nT)"'D D (e = EJviy
i<n t<T i<n t<T
=op(nT?) Y E[(e — )] < K(nT) ™,
t<T

where the second equality is by Assumptions 1(i, ii) and the law of iterated expectations, and the in-

()" (e — ) (vig — 0i.) = Op((nT)~1/2). (SA.8)

i<n t<T

The claim of the lemma follows from (SA.2), (SA.7) and (SA.8). =



Lemma SA.2 Under Assumption 1, we have:

()Y wig (20 — 7) = 7262 + Op((nT)7V/2). (SA.9)

i<n t<T

Proof. Applying (SA.1) to the summand before the equality in (SA.9), in view of (3), results in:

(D) @i (2 — F) = (n=DnT) Y N wiy (v — Ta)

i<n t<T i<n t<T i’ #i
(nT)~ ’yZZx” (¢t —¢)
i<n t<T
+((n=1)nT) > 3w (v — s, (SA.10)
i<n t<T i'#i

where the first summation after the equality, in view of (2), can be further decomposed as

(nT)™ VZZx”ctfc—72T thctfc + (nT)~ VZZUMCt*C (SA.11)

i<n t<T t<T i<n t<T
By Assumptions 1(i, ii, iii),

2

szivt(ct_é) :ZZE[’UZt(Ct—C —UZZZE ct—c <KnT

i<n t<T i<n t<T i<n t<T
which together with (SA.11) and Markov’s inequality implies that
(nT) 1y Z Z zii(ci — €) = 4262 + 0,((nT)~Y/2). (SA.12)
1<n t<T
Applying (2) to the second summation in the right hand side of (SA.10) leads to

(n=1nT)" > 3 wip(veg — 0) = y(n = DnT) ™D e > Y (virg — 0ir)

1<n t<T ¢'#£i t<T i<n i'#i

+ ((n - 1)nT)_1 Z Z Vit Z(vi/»t — Q_Ji/.). (SA13)

i<nt<T  i'#i

Since
Z Z(th — V) = Z sz”,t — Z Z@i/. =(n-1) sz}t —n(n —1)7,
i<n i #£i i<n il #i i<n il #i i<n

it is evident that

(n=DnT) Y e Y ) (g —vir) = (nT) 1D Y epviy — @0 = Op((nT)1/?), (SA.14)

t<T  i<n i'#i i<n t<T



where the second equality is by Assumptions 1(i, ii, iii) and Markov’s inequality. For the second summa-

tion term on the right-hand side of (SA.13), we can write

Z Z Vit Z(Ui’,t —Vy.) = Z Z Z VitV ¢ — Z Z Vit Z Uy

i<nt<T  i'#i t<T i<n i'#i i<nt<T  i'#i
n i—1 n i—1
=2> 3 wigvp = 2T Y Y 0Ty (SA.15)
t<T =2 ¢=1 1=2 ¢/=1

By Assumptions 1(i, iii),

. 2 .
n 1—1 n i—1
2
E E (S RAIN E E ["Ui,tvi’,t :| S anT
t<T i=2 /=1 t<T i=24'=1
and
n o i-1 2 n i-1
E E V;. V. = E E E [|1_)i.1_}7;/.|2} < KTZQT_Q,

=2 4/'=1 =2 4/'=1

which, along with (SA.15), show that

((n—1)nT) IZZU”Z Uiy — V) = Op((nQT)_l/Q). (SA.16)

i<nt<T @4
Collecting the results in (SA.13), (SA.14) and (SA.16) yields
(0 =1)nT) " 323D " ais (v —w,) = Op((nT) /%), (SA.17)
i<n t<T i'#i

The claim of the lemma follows from (SA.10), (SA.12) and (SA.17). =m

Lemma SA.3 Under Assumption 1, we have:

SN wig (zig— 7)) =Y (yuig(er — 0) + i) + Op(1). (SA.18)

t<T i<n t<T i<n

Proof. In view of (SA.1), the summation term before the equality in (SA.18) can be written as:

Z Z Ui (zip — %) = (n—1)7" Z Z Z uig (w4 — Tir,.)

t<T i<n i<n t<T i'#i

= Z nyuiyt(ct —&)+ (-1t Z Z Z wi ¢ (Vi y — yr ). (SA.19)

i<n t<T i<n t<T i'+i

We next show that

n T

(=133 vy — D e+ 0p(1 (SA.20)

1<n t<T i'#i i=1 t=1



which together with (SA.19) proves the claim of the lemma. Some elementary algebra leads to

Z Z Z wip(viry — Uyp.) = Z Z Uit Z virg | — Z Z Ujt Z vy

i<n t<T i'#i t<T i<n i i i<nt<T i
— n i—1
= Z Z Z uz,tvi/,t + ui/,tvivt) -T Z Z(ﬂ,‘.@i/. + uy.v;.). (SA.21)
t<T 1=2i'=1 1=24/=1

By Assumptions 1(i, iii),

n 1—1 2 n 1—1
Z Zai-ﬁi“ = ZE |U;. | [[Dr. ‘ ] < KnQT_Qa
i=2 i'=1 i=2 /=1
and similarly,
n i-1 2
E .| | < Kn?T72,
=2 i/=1
which together with Markov’s inequality imply that
n t—1
(n=1)7'"TY > (0. + 0.0;.) = Op(1). (SA.22)
=2 3/=1

The desired result in (SA.20) follows from (SA.21), (SA.22) and the definition of €;; in Theorem 1. m

Lemma SA.4 Under Assumption 1, we have
(nT)~'/? Z Z(')’ui,t(ct —C) +eit) = Do (Fo-stably),
t<T i<n

where 2, = 7?0507 + (Noo — 1) (0007 + 07, ,) is independent of Z ~ N(0,1).

Proof. We shall apply the stable Martingale Central Limit Theorem (MGCLT) to prove the claim of
the lemma. Some notation is needed. For any k = 1,...,nT, we define t; = [k/n] and iy, = k—n(tx — 1),
where [k/n] denotes the smallest integer which is larger than or equal to k/n. Let Fy,, denote the

sigma-field generated by {ci,...,cp,,}. For k =1,...,nT, let Fj,, denote the sigma field generated by

{c1, ... em, s {wit, i<k, {vi,t, }i<k}- Using such notation, we can write
=1k
Wiyt (Ctp — C) + &
()2 S (e — ) + 21) Z Pt s )t Sty (5A.23)
(n
t<T i<n

We first show that {7k}, ., is a martingale difference array (MDA) adapted to Fp,,. By the definitions

of Fi.m, tr and iy, it is evident that 7, is F}, ,,-measurable. It remains to show that

E [0k Fi—1,m] =0, forany k=1,...,nT. (SA.24)



For any k = 1,...,nT, we have either: (i) ty = tx_1 and iy, = ix_1+ 1; or (ii) tx = tp_1+ 1, ix—1 = n and

i = 1. In the first scenario, we can apply Assumptions 1(i, ii) to show that:

E [iy, 1, (¢t — O Fr—1,m] = (ctp, — OF [wi_ 11,60 [ Fre1m] = (¢, — OF [wiy_ 11,0,_,] =0,

and

ip—1
E [Sikvtk“Fk*Lm] =E |(n— 1)71 Z (uikvtkvi/7tk + ui',tkvik,tk)’fk*Lm
i'=1
lg—1
=(n— 1)_1 Z (E [Ui/vtkfluik—l‘l’l,tkfl|‘7:k—17m] +E [ui'ytk71vik71+1vtk71|‘7:k’—17m])
=1
lg—1

= (n - 1)71 Z (U’i’,tk—1E [uik—1+1,tk—1] + ui,ytk—lE [Uilc—1+17tk—1]) =0,
/=1

which, together with the definition of 7, shows that (SA.24) holds. Similarly, in the second scenario, we

have €;, +, = 0, and

E [uik,tk (Ctk - 5)|]:k‘—17m] = (Ctk - E)E [ul,tk,1+l|]:k:—1,m} = (Ctk - E)E [ul,tk,1+1:| = 0;

which again verifies (SA.24). We next show that

nT
> B[] Frerm) —p @2, (SA.25)
k=1
and for any € > 0,
nT
> E[I{ || > e} Fk—1,m] = 0. (SA.26)
k=1

Let Grm = Nyysm Fr for any m > 1 and any k = 0,1,..., 1,7, Under (SA.23)-(SA.26), we can
apply the stable MGCLT, e.g., Theorem 6.1 in Hausler and Luschgy (2015), to show that
()23 (quigles — €) + gi4) = @22 (G-stably), (SA.27)
t<T i<n

where G denotes the sigma-field generated by o~y Gn,,7)n,m- Since Fo C G, the claim of the lemma
follows from (SA.27).} To verify (SA.25), we first apply Assumptions 1(i, ii) to obtain

nT nT
(nT) ZE (7] Fr—1,m] = ZE [uF, 4, (ct = %] Frm1.m)
k=1 k=1

'"We could have used the results in Kuersteiner and Prucha (2013) to establish the stable convergence, but we found it

easier to work with the regularity conditions in Hausler and Luschgy (2015) in the setup of this paper.



nT nT
+ 2y EE [(Ctk - E)uik,tkeik7tk| fk_lvm] + Z [ ity ‘ Fr-1 m]

k=1 k=1
nT Zk 1
= (’I’LT)’)/QO'ZO'S + — Z Z Cty, — Uz’ tkau+uz’ t,Ou, v)
k 1¢=1
2
T 1 T 1
0”3 ZZII <ZZ£€ 1 UZ/ tk) + 012) Zz:l (Zzgc 1 ul’ tk)
(n— 1)2
207w St Youf 1 oy Uity Vit
(;L —1y . (SA.28)
The second term after the second equality of (SA.28) can be written as
nT 1—1 n 1—1
— Z Z ct, — ¢)(vyr tkau—i—uz/ £ Oup) = Z Z Z (ct — &) (o2vy 10y g). (SA.29)
k=1 4=1 t<Tz 24'=1
By Assumptions 1(i, ii, iii), we have
. 2
n t—1
Z Z Z(Ct - 6) (Ui’,tag"i_ui’,to—u,v) fO,m
t<T i=2 i'=1
n—1 2
= (et —E || (n — i) (visop+ui10u)
t<T i=1
n—1
<KZ ¢t — ©) 22 (n —i)* < Kn®Té?
t<T =1
and
E[6]=T"'Y E[(a—-0?] <T 'Y E[¢] <K
t<T t<T
Therefore, by Markov’s inequality and (SA.29),
2’}/ nT ip—1
ot D D e~ o, 0) = Opl(nT) ), (54.30)
k=1 i'=1

We next study the third term after the second equality of (SA.28). By the definitions of i, and tx, we

can write

in—1 2 i—1 2
2
E :W b | ZZ D ve| =D o
k=1 =1

t<T i=2 i'=1
i—1 -1
2
= E E E (05, — u)+2§ E Vit tVi ¢
t<T =2 \i'=1 ii:%é:l



Y S -0 423 S ) Z (SA31)

t<T i=1 t<T i=2
Applying Assumptions 1(i, ii) leads to

2_

n—1 n—1
E (n— z)(vft —o)| | < Z Z(n —i)’E [v;{t] < Kn3T
t<T i=1 | t<ri=1
and
) 27
n—1 i—1
E ZZ(”_i)Z”i:tvi’vt _ZZ n—1) ZO‘ < Kn'T,
t<T i=2 i'=1 t<T i=2
which together with Markov’s inequality and (SA.31) shows that
, 2
2 nT ip—1
Ou 2 k=1 (Zi’:l Uil7tk) o202
— = O0,((n®T)1/?). SA.32
n(n —1)2T 2(n— 1) p((n°T) ) ( )

2
Similar result can be established for (nT(n — 1)2)~ 102 371, (Zl? 11 wyr tk) , which along with (SA.32)
implies that

2
nT ip—1 nl il
o2y (Zf“ Loy tk) +023 0, (Zf“ | Ui tk) 0202 0,((n?T)~1/2) (SA.33)
T 1 = Onlln : :

For the last term after the second equality of (SA.28), we can write the triple summation as

nT ip—1ip—1 n i—1 1—1
Z Z Z ulptk itk ZZ Z Z ui,l’tvz ¢
k=14 =11i,=1 t<T i=2 \¢{=1i)=1
i—1
- Z Z (n — @) ui i + Z Z (n—i Z Uit Virt Vil p)-
t<T i=1 t<T i=2 7=l

Applying the similar arguments for showing (SA.33) obtains

u v Z Zk ! Z;ﬁ;i Uit 4.Vl b Ug v
T = O, (SA.34)

Collecting the results in (SA.28), (SA.30), (SA.33) and (SA.34) obtains

nT

S E [#| Fietm] = wip + Op((nT)1/?), (SA.35)
k=1

where w2, = v%0362 + (n — 1) ! (oh02 + 02 ,). Since w2, —, @2, by Assumption 1(iv), (SA.25) follows
from (SA.35). We proceed to demonstrate (SA.26). Beginning with the definition of 7, we have

nT

ZE R I{17k] > e} Fro1m] < €72 Bl Fi1m)
k=1



ZT lk 17 (Ctk )4|~Fk—1,m} i f KE[ Eip ity |]:k—17m]

e2(nT)? e2(nT)? (SA-36)

k=1 k=1

By Assumptions 1(i, ii, iii), we observe that the first summation after the second inequality in (SA.36) is

bounded:

nT 4 =\4
Elu;, 4, (ct, —©) |fk—1,m] L
Z kstk (nT)2 nT Z Ct), — C
k=1
K(nT?) ™ (o —e)' = 0p((nT) ™), (SA.37)
t<T

where the second equality in (SA.37) follows by

E|T'Y (a—-8'| <KE|T') ¢+e'| <KT 'Y E[f] <K (SA.38)
t<T t<T t<T

and Markov’s inequality. To bound the second summation after the second inequality of (SA.36), we

observe that by Assumptions 1(i, iii),

4

nT ip—1 ip—1
(n =" Y Bl o Feotm <KZE <Z> + Vit (Z) Tt
k=1 k=1 =1

nT ip—1 4 ip—1 4
S KZ (Z Ui’,tk> + (Z ui’,tk> . (SA39)
k=1 i'=1

i'=1
Under Assumption 1(i), we can apply Rosenthal’s inequality (see, e.g., Theorem 2.12 in Hall and Heyde
(1980)) to obtain:

t<T i=2

CKYY (imvm) S B,

t<T 1=2 i'=1 =1
n
<SK) ) (i—-1)? < Kn'T, (SA.40)
t<T 1=2

where the second inequality is by Assumption 1(iii). Similarly, we can show that

4

7 1
Z <Zu tk> < Kn’T,
k=1

which, along with (SA.39) and (SA.40) and Markov’s inequality, implies that

nT
(nT) ™23 " Elel, 1y [ Fee1m) = Op((0®T) 7). (SA.41)
k=1



By combining the results in (SA.36), (SA.37) and (SA.41), we derive (SA.26). m

Lemma SA.5 Under Assumption 1, we have

(nT)™* Z Zu s =02(1=T7Y) + O0p((nT)~Y/?).

t<T i<n
Proof. Since 4 = u;; — (Bw — B)(xiy — Z;,.), we can write
(D)7 ade = (T) Y Y (wig — )
t<T i<n t<T i<n
(/Bw Z Z Tit —

t<T i<n

—2(Bi — B)T) YN (wie — T ) (i — i) (SA.42)

t<T i<n

Some elementary algebra leads to

(nT)' Y (i — ;) —on(1-T7)

t<T i<n
YD o) — Tty w o
t<T i<n i<n
T t-1
= (nT ZZ - —2(nT?)~! Z U U g (SA.43)
i<n t<T i<n t=2t'=1
By Assumptions 1(i, iii), we have
2
E ||(nT)~ O < (nT)'E[uj,] < K(nT)™"!
t<T i<n
and )
T t-1 T -1
WSS | | = 072 ot < Kr?)
i<n t=2t'=1 i<n t=2t'=1
which together with (SA.43) and Markov’s inequality shows that
NS iy — wi,)? = 02 (1= T + O,((nT)~V2). (SA.44)

t<T i<n

Lemma SA.1 and (8) in Theorem 1 together yield

(Biv — )Y @i — 7i)2 = Op((nD) 7). (SA.45)

t<T i<n

10



For the third term after the equality in (SA.42), we can use the Cauchy-Schwarz inequality to get

(Biv - nT -t ZZ Tt — Uzt ,-)

t<T 1<n
< \/(Bw — BRI Y (g — 71,)? \/<nT>—1 S iy - 1;,)?
t<T i<n t<T i<n
= 0,((nT)~1/?), (SA.46)

where the equality follows by (SA.44) and (SA.45). The claim of the lemma follows from (SA.42), (SA.44),
(SA.45) and (SA.46). =

Lemma SA.6 Under Assumption 1, we have

IS (i - 7P = %62 4 02— 1)+ O (nT) ), (SA.47)

t<T i<n

Proof. Applying (SA.1) to the term before the equality in (SA.47) leads to:

(nT)~! Z Z (zig — 2.)" = (n(n — 1)*T)~* Z Z Z Ty — Tir.)

t<T i<n t<T i<n \i'#i
2
= (-1 3 v =) -0+ > (virg — )
t<T i<n i/ £
2
=T (e =@ + (n(n = 1*T) Y T D (v — v,
t<T t<Ti<n \i'#i
+2v(n(n —1)T IZZCt—ch,/t ir.)
t<T i<n i #i
2
=262+ (= 1PT) 7 33 | D (v —vr,) | +O0p((nT) 712,
t<T i<n \i'#i

where the last equality is by the definition of 62, and (SA.14). It remains to show that
2
(n(n = 1°T) YD (v = 0.) | = 0dn = 1)+ Op((nT) ). (SA.48)
t<T i<n \i'#i
The term before the equality in (SA.48) can be decomposed as:
2

CONZARD 9 S DTS

t<T i<n \i'i

11



n i—1

= —=DT)" Y > (i —0:,)* + 200 = 2)(n(n— D*T) DD (vig — i) (vine — )

t<T i<n t<T i=2 ¢/=1

(SA.49)

Therefore, (SA.48) follows by Assumption 1(v), (SA.7) and (SA.16). =

2
Lemma SA.7 Under Assumption 1, we have (i) (nT)~! dot<T (Zzgn eiﬂg) —(n—=1)"Yolo2+02,) =
Op((HQT)_1/2)§ (i) (nT)_l ZtST Zign Zygn(ct — O = Op((nT)_lm)'

Proof. (i) By the definition of ¢;; and Assumption 1(i),

S B [(wigvrs +uipoid)’] 2352 (000 +on,) 20— 1)(onop +03,)

2
. pr— _— A.c
E [51,1‘/] (n _ 1)2 (n — 1)2 (n — 1)2 (S 50)
Therefore
2
()Y R | e =T) "> Y Ele,] =(n-1)"(okor +00,). (SA.51)
t<T i<n t<T i<n
By Assumptions 1(i, iii) and (SA.51),
2 2
E ||(nT)™? Z Zgivt —(n—1)"Yo26% + 012“,)
t<T \i<n
2 2 2 4
=E [|(nT) ") | [ Deie ] —E[[D e ST B> e |- (SA52)
t<T i<n i<n t<T i<n

Let F;; denote the sigma-field generated by {{w; ¢ }i<i, {vir+}ir<i}. Then by Assumptions 1(i, ii), {€;}i<n

is a MDA adapted to {F;} By Rosenthal’s inequality,

<n’
4 2

E Z Eit S K ZE [5?,7&] +E Z E [5127t|f.i—1,t] . (SA.53)

i<n i<n i<n
By Assumptions 1(i, iii) and Rosenthal’s inequality,
% i—1 4 i—1 4 %
4 . 2 -1
ZE [5i,t] S m ZE <Z vi’,t) + (Z ui’,t) S m Z(’L - 1) S Kn™". (SA54)
i<n i<n i'=1 i'=1 i<n
For the conditional variance of €;, we apply its definition and obtain the following upper bound:
% i1 2 i1 2
Seltmad < o X (] X (T ) [ e
i<n i<n \i’'=1 i<n \i'=1

12



Since

i<n \#'=1 1 -
n_ 1 n—1 n—1
= ai+2n—z 2+En—z Zultul/t,
=2 =1
we can use Assumptions 1(i, iii) to get
i—1 2|2 n—1
> (Z ut) <K <n2(n — 17+ (n—i)(i - 1)) < Kn'. (SA.56)
i<n \i'=1 i=1
Similarly, we can show that
212
s (z ) < Kt
i<n =
which, along with (SA.55) and (SA.56), shows that
2
E| (D E[e|Fi-14] <K. (SA.57)
i<n
Collecting the results in (SA.52), (SA.53), (SA.54) and (SA.57) leads to
2 2
D) D e | —(n=1) N odor +0r,)| | < KE(RPT),

t<T \i<n

which together with Markov’s inequality proves the first claim of the lemma. (ii) To show the second

claim of the lemma, we begin by writing

n 1—1
Z Z Z(Ct — E)umsi/’t = Z Z(Ct — E)u“si,t + Z Z Z(Ct — 5) (uiﬂgz—:i/,t + uiatsi,t). (SA58)
t<T i<n i/<n t<T i1<n t<T i=2 /=1

The first term after the equality in the above equation can be decomposed as
i—1 i—1
Z Z ct —O)uieir = (n—1)" Z Z ¢t —C (ugt Z Vit + Ui g Vst Z ui/7t> . (SA.59)
t<T i<n t<T i<n i'=1 i'=1

By Assumptions 1(i, ii, iii), we have

2

E ||((n—1)nT) IZZthC Zth,/t

t<T i<n

< KE ||((n—1)nT)~ ZZCt—c sz/t

t<T i<n

13



+ KE | |((n — 1)nT) 122@—0 Z’Uz't

t<T i<n

Zt<T Di<n(n — i)? + PO (e
((n—1)nT)?

Y < K(nT)™1,

where Y, 023 vy = 02> ... (n — i)v;s is used in deriving the second inequality. Therefore by

Markov’s inequality,

((n—1)nT) IZZ ¢t —C)u thvl/t— nT)~1/?). (SA.60)

t<T i<n

Similarly, we can show that

((n—1)nT)~ ZZ Ct_cuztvztzuz’t_ nT)~ 1/2)7

t<T i<n

which along with (SA.59) and (SA.60) leads to

(nT)" Y0 (e = @uigeir = Op((nT)~?). (SA.61)

t<T i<n

To bound the second term after the equality in (SA.58), we begin by observing that by Assumptions 1(i,

2

n i1 n i1 2
E||(nT)™? Z Z(ct —C)U;t Z Eilt < K(nT)™? Z E <Z Uiy Z ai@t)
t<T i=2 i'=1 t<T =2 =1

n i—1

<KnT)2) Y Y Eler,]
t<T i=2 i'=1

n i—1

<SE(n—1nT)2)Y Y > (' - 1) < K(nT) ™!
t<T i=2 i'=1

Hence by Markov’s inequality,

(nT) IZZ Ct—CUth&ut— nT)~1/?). (SA.62)

t<T i=2
Next note that
i—1 1—1 i—1 1—1
(n—1) Zathullt—Zv”ZZu t+Zu”ZZ Vit 1Uip ¢ (SA.63)
i'= ij=1144=1 ij=1144=1

The first term after the equality in (SA.63) can be further written as

n
E (%R

1=2

%

1 -1 i—1 1) —

Z Uyt (Uit ¢ = Oy szl Uzt+zvztz u/t +QZvltZZuzztuz/t (SA.64)

lih= i]=2144=1

(]

.
=
Il

14



By Assumptions 1(i, ii, iii), we obtain the following moment bounds

E || ((n—1nT) 02> (e —&)(i — Doiy

t<T i=2

E ((n—1)nT) IZth—cv”Zu,t Uu

t<T i=2

E|[((n—1)nT)" cht_cvztzzuzl,t Uil ¢

t<T 1=2

which together with (SA.64) and Markov’s inequality implies that

((n—=1)nT)~ cht_cvz,tzzuz’tuzzt_

t<T 1=2

By the same arguments, we can show that

((n —1)nT) IZZ Ct—CUthZUZI, Uiyt =

t<T 1=2

which combined with (SA.63) and (SA.65) yields

i—

i—

!

(nT) 15 g Ct—C&tE iy = O

Collecting the results in (SA.62) and (SA.66) leads to

t<T i=2

n i—1

- Z Z Z(Ct — ) (UitEir g + wir y€it)

t<T i=2 i'=1

2_
< K(nT)™!
-
< K(n’T)™,
i—1 11—1 27
< K(nT)™!,
1=21i4=1 ]
1 -1
L(nT)~1/2). (SA.65)
112
1 :—1
Op((nT)~1/%)
i1=1i4=1
nT)~1/?). (SA.66)
= 0, ((nT)~1/?). (SA.67)

The desired result in part (ii) of the lemma follows from (SA.58), (SA.61) and (SA.67). m

Lemma SA.8 Under Assumption 1, we have

D) Y g (200 — Z)

t<T \i<n

= (D)7 Y | Do (e = ) (uig — i) +€ie) —

t<T \i<n

Proof. Since t;; = u;; —

> g (20 — 7))

i<n

2

(Bw - B)(xi,t -

=(n—-1)"" Zﬁi,t Z (ziry — Tir..)

<n

Z;.), we can write

15
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2

(Bio = B)7*nler =) | +Op((n) ).



= (n — 1)_1 Z(u@t — ’I_Li’.) Z (-Tz",t — ii‘ily.)

i<n i/

—(n=1)""Bw - B) Z(l'i,t —7i.) Z (zirg — Tir..) .

i<n il #i
Using (SA.1), the two terms after the equality in (SA.68) can be further written as
(n=1)"" (g — )Y (wirg — Bo.) =Y _(V(er — &) (wiy — W) + €0) + Ty
1<n =) 1<n
and
(n=1)" B = 8) Y _(wie = 7)Y (w4 = T0.) = (Biw = B)7*nler = ° + (Biv — B) P,
i<n i'#i

respectively, where

Li=(mn-1)" (ZUZ ZW —Zu,tZW _ZUZ szrt)

i<n ) i<n i £ i<n &3
and
n 1—1
Ly=2(7v(c—¢) Zv” (n — 1)_1 Z Z('Ui,t — 0, )(virg — i) | -
i<n 1=2 /=1
Therefore,

Zign Ut Zi/# (sz",t - ﬂ?z')

n—1

= Z(fy(ct — E)(ui,t - ai,~) + 5i,t>

i<n

- (Bzv — 5)7271(% - 5)2 + I+ (/éw — B) 2.

By Lemma SA.7, we can deduce that

2
(nT)~! Z (Z(’Y(Ct —o)(uip — ;) + €z‘,t))

t<T \i<n

2 2
2(nT)~t Z (Z(’}/(Ct —C)uit + EM)) + 292 (nT)~t Z(ct —¢)? (Z ui,.)

t<T \i1<n t<T i<n

2 2
K(nT)™"> (e — @) ((Zu) + (Zui,t) ) + Op(1).
t<T i<n i<n

By Assumptions 1(i, ii, iii), we have

E [(nT)l > (-0 (Z u) ] =T)'> Bl -2’ ) E[a]] < KT

t<T i<n t<T i<n

16
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(SA.69)
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(SA.71)

(SA.72)

(SA.73)

(SA.74)



and
2

E||(nT)") (e =2 | Y i =T E[(a-0)? ) ol <K,

t<T i<n t<T i<n

which together with (SA.74) and Markov inequality implies that

2
(nT)~! Z (Z(W(Ct —o)(uip — ;) + 5i,t)) = 0p(1).

t<T \i<n

(nT)™ Y <(Biv — B)v*n(cr — 5)2>2 = (B = B)Y'nT 1Y (et —0)' = Op(T).

t<T t<T

Collecting the results in (SA.75) and (SA.76) leads to

(T D (ver = @) (i — @) +eip) = (Biw — By nlc — ) | = Op(1).

t<T \i<n
In view of (SA.73) and (SA.77), the claim of the lemma follows if
D =01 and (B =B’ I5, = 0p(1).
t<T t<T

To verify the first result in (SA.78), it is sufficient to show that

2 2 2

(SA.75)

(SA.76)

(SA.77)

(SA.78)

(=072 (D a.d v | (D wird v | DD v =0,(1). (SA.79)

t<T i<n i i<n il i<n i'#i

By Assumptions 1(i, iii),

E [ZtST (Sicn @ Yo U)Q] ) > erE [(2?2 S (v, + uv))z]

(n—1)? (n—1)?
_ K3 e ics S (E [ﬂ?@%} +E [ﬂ?,@f}) _ Kn
- (n—1)2 ~ (n—-1T"
which together with Markov’s inequality implies that
2
(=172 D a. Y v | =0,(T7). (SA.80)

t<T \i<n  i'#i

Similarly, we can show that

2 2

(n — 1)_2ZE Zui,tzﬁi',- + Zﬂi,-zvi',t <K,

t<T i<n il i<n i

17



and hence
2 2

(=172 D wied v |+ D ow > ving =0,(1) (SA.81)

t<T \ \i<n  i'#i i<n il
by Markov’s inequality. The desired result in (SA.79) follows from (SA.80) and (SA.81). In view of

Theorem 1, to verify the second result in (SA.78) it is sufficient to show that

2
()™ (=) [ D v —nv | =0,(1), (SA.82)
t<T i<n
n o i—1 2
(nT)™" > ((n — DY D (i = B ) (v — W,.)) = 0,(1). (SA.83)
t<T i=2i'=1

By Assumptions 1(i, iii), we obtain

2 - 2
E | (nT)™? Z(Ct —¢)? (Z Vit — nv) < K(nT) ! ZE (Z Vit — nv)

t<T i<n t<T i<n
2
-1 ZE Zw,t +n?p?
t<T L i<n
<KnT)™' (n+nl™") <K, (SA.84)
t<T

which together with Markov’s inequality shows (SA.82). Similarly,

n i—1 2
E (nT)_lz<n—1 ZZ Vi — U;.)(vir g — v/7.)>

t<T =2 4/=1

n i—1

=((n=1’nD) "D DN B [((vig — 05,) (virg — 09,))*] < En”, (SA.85)

t<T 1=2 =1

which together with Markov’s inequality shows (SA.83). m

Lemma SA.9 Under Assumption 1, we have

2
(nT)™ D | D_(nler = @) (uig — i) + €ig) =7 *nler = (B — B)
t<T \i<n
2
olo2+o2
- (nT)_l Z (Z’Y(Ct - E)ui,t - ét) + ﬁ + Op((nT)_l/z).
t<T \i<n

18



Proof. In light of the definition of & in Lemma 2, some elementary algebra leads to:
2

D)3 S (e — @) (uie — i) + eia) — ¥*nler — 82 (Biw — B)

t<T \i1<n
2
= (nT)* Z ZV(Ct —Q)uis — &
t<T \i<n
+ 2y(nT)~t Z Z Z(ct — S)ui ey — 2yaT Z Z(Ct —C)Eiy
t<T i<n i'<n t<T i<n
2

— 242 511) 122@—0 git+ (nT)~ Z Z&t

t<T i1<n t<T \i<n

Therefore, in view of Lemma SA.7, the claim of the lemma follows if

ﬂT‘lzz(thé)em = Op((nT?~ 172y and (B — IZZ c—¢) ey = Op((nTQ)_1/2), (SA.86)

t<T i<n t<T i<n

By Assumption 1(i, ii, iii) and (SA.50),
2

E[e’] <K(nT)™" and E|[7T7 Z Z(Ct — O)gi < KT,
t<Ti<n

which together with Markov’s inequality shows the first result in (SA.86). Similarly,
2

E{(T7'D ) (a—o) e <T?2Y M E[(—0*E[,] < KT,

t<T i<n t<T i<n

which, along with Markov’s inequality and Theorem 1, shows the second result in (SA.86). m

Lemma SA.10 Let p;; = uiy 227:11 uy ¢. Under Assumption 1, we have

2

(SA.87)

D) D (e —Quiy | =0p5t +2(nT) D Y (e — ) i+ Op((nT)12) = Op(1).

t<T \i1<n t<T i<n

Proof. By Assumptions 1(i, ii, iii),
2

E D)) (D (e—Quig | | <@D)™'Y Elle -0 ) Elui] < K,

t<T \i<n t<T i<n

which together with Markov’s inequality shows that

(nT) 12 th—cuzt = 0p(1).

t<T \i<n

19
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Since
n
(-0 uie| =(a—0? |no+ 3wk, — 02 +2 wi ||
i<n i<n =2

we can write
YD (e —uiy | =nT)ole? + (e —2)* ) (u, )+2) (e —0) Z pie. (SA.89)
t<T \i<n t<T i<n t<T

By Assumptions 1(i, ii, iii),
2

E|{(D)7') (e (ui,—on) | | <(0D)2) Elle— )Y Eluj] < K(nT)™"

t<T i<n t<T i<n

which together with (SA.88), (SA.89) and Markov’s inequality shows the claim of the lemma. =

Lemma SA.11 Under Assumption 1, we have

2
(nT) 12 Z (¢t — ). +yn(cy — ¢) 2(Biw — B) = O0,(T™1).
t<T \i<n
Proof. It is evident that the claim of the lemma follows if
n(Biw — -1 Z e — o)t =0,(T™"), and (SA.90)

t<T
2

(nT)~* Z ¢t —¢)? ZU’Z =O0,(T ). (SA.91)

t<T i<n
By Assumption (iii) and Markov’s inequality,
T (a—2)' = 0,(1), (SA.92)
t<T

which together with Theorem 1 shows (SA.90). By Assumptions (i, ii, iii),

2

()™ (e =) [ D . (nT)™" > El(e, — ¢)°] Y _E[a?] < KT,

t<T i<n t<T i<n

which along with Markov’s inequality shows (SA.91). m
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SB Auxiliary Lemmas for Results in Section 4

Lemma SB.12 Under Assumptions 1 and 2, we have:

~

A =30 0 e + Op(nT) V%) = 0,(1). (SB.93)

Proof. Using the expression for x;; in (2) and the definition of A, we can write

A=Ay e + 30 (nT) ! Z Z(wi’t — W;,.)Vi¢. (SB.94)
t<T 1<n
By Assumptions 1(i, iii) and 2(i, iv), we have
2

E|[(nT)"" )0 (wig — @i Jvig| | = 0T)2> Y E [(wiy —w;i,)?| E[v]] < K(nT)™,

t<T i<n t<T i<n
which, together with Markov’s inequality, implies that
(7)1 Y 0> (wig — @, Jvig = Op((nT)~1/2). (SB.95)
t<T i<n

The first equality in (SB.93) follows from (SB.94) and (SB.95). To show that X is stochastically bounded,

we begin by applying the Cauchy-Schwarz inequality to obtain

T )Y w2 x T Y (e — )2, (SB.96)

t<T i<n t<T

[l

Since (nT)~1 Dt<T Di<n wis]|* = Op(1) by Assumption 2(iv) and Markov’s inequality, we can use
(SB.96) and Assumption 1(iii) to show that

Lo = 0,(1). (SB.97)

By Assumptions 2(ii, iv), we have

Kil < pmin(iw) < pmax(zw) <K (SBQS)

A ~

with probability approaching 1, where pmin(2y) and pmax(2.w) denote the smallest and the largest eigen-

values of 3, respectively. Combining (SB.97) and (SB.98), we obtain
S lTwe = Op(1). (SB.99)

)

The second equality in (SB.93) follows from (SB.94), (SB.95) and (SB.99). m
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Lemma SB.13 Under Assumptions 1 and 2, we have:
(7)™ 0N iz = 7767 — T 30 Twe) + Op((nT)1/2).
t<T i<n
Proof. By the definitions of &;; and z; ¢, we can write

(nT) -1 ZZQ;”Z” = (nT)~ ZZ Tip — Tj.)%t — S\Tf‘wyz. (SB.100)

t<T i<n t<T i<n

Given the expression for z;; in (2) and the expression for z;; in (3), we can decompose Iy, . as

IA‘w,z ( n_l ZZZ Wit — wz xz’t

t<T i<n i'#i

IVfw,c+( n_l IZZZ Wi — W, vz’t (SBlOl)

t<T i<n i'#i

Therefore, by Lemmas SA.2 and SB.12, and using (SB.97), (SB.100) and (SB.101), the claim of the

lemma follows if
(n(n = DT)" YD (wig = @i Jvig = Op((nT) ). (SB.102)
t<T i<n i'#i

To show (SB.102), we first write

n 1—1 n t—1
Z Z Z Wyt — Wj,. Uz’ = Z Z Wy Vi ¢+ wi/7tvi7t) -T Z Z(wi.@i/. + ﬂ)i/.’f)i.). (SB103)
t<T i<n i'#i t<T i=2 i'= 1=2 /=1
By Assumptions 1(i, iii) and 2(i, iv),
n i—1 2 n—1 n 2 n—1
S ] | =B | w3 e | =2 XY S w| | < mom
t<T i=2 i'=1 t<T i=1 i'=it+1 t<T i=1 i'=i+1
which, together with Markov’s inequality, implies that
n i—1
((n=DT)7 Y>> wiewre = Op((nT) 7). (SB.104)
t<T i=2 i'=1
Similarly, we can show that
n i—1
O3S e = O ). 58109
t<T i=2 ¢/=1

Next, note that by Assumptions 1(i, iii) and 2(i, iv), and Cauchy-Schwarz inequality,

Z oy, :iE[T)E]E

i =i+1

i1 2

n
E E W;.Vj1.
1=24'=1

E

=141
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n—1 n
<SKT'Y (n—i) Y E[w)]<En’T™,
i=1 i=i+1
which, together with Markov’s inequality, implies that

n i—1

n(n —1)) 1221112111/ = Op((nT)~ 1/2),

1=2¢/=1
Similarly, we can show that

n i—1

(n(n — 1)1 @i = Op((nT)71/?),

1=2 ¢'=1

which, along with (SB.103)-(SB.106), proves (SB.102). m

Lemma SB.14 Under Assumptions 1 and 2, we have:

Be,iv - /8 =

(nT) ' Cier icnyuiplee — e =T By (wie — @3,)) + €ie) + Op((nT

(SB.106)

)

72362 — f‘l,czwlrw,C) + Op((n )~ 1/2)
Proof. Using the expression for y;; in (14) and the definition of 7, we can write

A=A+ O+ T,
where fmu = (nT)! Zth Zign(wi,t — wj.)ui¢. Therefore,

Uit = (@ip — T3 )0+ (i — ;) — (Wi — lUi,-)T(fT —0)

=2y B+ (uip — Us,.) — (wip — wi,~)T2;1fw,u-

Substituting the expression for g;; in (SB.108) into the definition of Be,iv, we obtain

(nT)~ Zt<TZz<n(ult )Zzt Fg,zzwlrwu

B w—B=
o (nT')~ Zth Zz‘gn it

A

Pesiv =P = 262 —T7 £a ) + Oy((nT)172)

y (SB.101) and (SB.102),
Ty = Twe + Op(nT)~1/?).

Applying similar arguments for showing (SB.95) yields

fw,u = (nT)il Z Z wivt(u@t — ﬂ@.) = Op((nT)*l/Q).

t<T i<n

23

(D)~ Yper icn(yuislee = ) +gi) = T .55 Tuu + Op((nT) 1)

(SB.107)

(SB.108)

(SB.109)

(SB.110)

(SB.111)



Combining the results from (SB.97), (SB.98), (SB.110) and (SB.111), we have

A ~

U] Sy =0 Sy 4 Op(nT)™Y),

w, 2w w,c—w

which together with (SB.109) proves the claim of the lemma. m

Lemma SB.15 Under Assumptions 1 and 2, we have:
(nT)_1/2 Z Z( ¢t —C— Fw CEw (wiﬂg — u_)i,.))um + Ei,t) —d chOZ (Fe,g—stably),
t<T i<n

where &, = 7205035 + (noo — 1) YoZo2 + 02 ) is independent of Z ~ N(0,1).

Proof. For any k = 1,...,nT, we define t;, = [k/n] and iy, = k — n(ty — 1). Let F. o, denote the
sigma-field generated by {{c}i<7,., {witti<nm i<, }- For k=1,...,nT, let F,j n denote the sigma-field
generated by {{ct}i<7,, {Witti<nm, t<Tm» {Wi,t, i<ks {vi,t }i<k}. Using such notation, we can write

’)’LT e Z Z Ct —C— w ciwl(wz t— Wi ))ui7t + €z‘7t)

t<T i<n

Eﬁe,k

nT T -1 _
Z VWi, b, ctk —C— Fw czw (wlk te — wikﬁ)) + Eip

Tk (SB.112)

k=1
By similar arguments as those used to derive (SA.24) in the proof of Lemma SA.4, we can show that

{7le.k} p<pp is an MDA adapted to Fe g m. We next show that

nT
D B [ ] Fer-tm] —p @2 oo (SB.113)
k=1
and for any € > 0,
nT
> E[2 1 I{|fie k] > e} Fer—1.m] = 0. (SB.114)
k=1

Under conditions (SB.113) and (SB.114), the claim of the lemma follows by similar arguments used in

proving Lemma SA.4. By the definitions of 7, ; and 7j, it follows that

776 k= 1k — (nT) 1/27Fw Ciwl(wlk g — wikw)uik,tk' (SB'115)
Therefore,
nT nT
ZE [ﬁzyk‘ fe,k—l,m} = ZE [77/]%’ ]:e,k—l,m] + Y U?FI czwlrw c
k=1 k=1
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— 29T, St (nT) 1/22 Wiy 1, — Wi ) E [Tkthiy by, | Fek1.m)] - (SB.116)
k=1

By similar arguments as those used to derive (SA.35) in the proof of Lemma SA.4, Assumptions 1(i, ii,
iii) and 2(i), and the definition of F¢ y_1 ,,, we can show that

nT

STE [#| Feporm] = wip + Op((nT)™V/?). (SB.117)
k=1

Since 7Mgu, 1), = (nT)_l/Q(yuizk’tk(ctk — ) + Ui, 1€y t,, ), Dy Assumptions 1(i, ii, iii) and 2(i), we have

E [flkuikutk‘ f&k*l,m] - (nT) 1/2 (Ctk - C) (nT)_l/QE [uikutkgikutk‘ fe,k*Lm]

in—1
= (nT) " Pyon(cy, — &) + (n(n — 1)°T) 2> (v g o0 +1ir 1, 0u),
=1
which implies
nT
(nT)_1/2 Z(wik,tk - wik,')E [ﬁkuik,tk| fe,k—l,m]
k=1
nT ip—1
= VUsz,c + (n(n - 1)T)_1 Z Z (wik,tk - wlk,)( itk u+uz’ tko'u ’U)
k=1i'=1
n e
= ’yJZFw,C + (n(n—1)T)~! Z Z Wit — 12)1-,.)(aivi/7t+au,vui/7t). (SB.118)
t<T =2 i'=1

By similar arguments to those used in proving (SB.102), we can show that

n t—1

(n(n—1)T IZZZ Wi g — Wi ) (020 4+ Oy Uis ) = Op((nT)_1/2). (SB.119)

t<T i=2 ¢/=1

Combining the results from (SB.116), (SB.117), (SB.118) and (SB.119), we obtain

nT
S R [#24] Feporm] = 720062 = T 25 Tue) + (n— 1) Hono? + 02,) + Op((nT)~1/?).  (SB.120)
k=1

(SB.114). By Assumption 1(iii), (SB.115), and the Cauchy-Schwarz inequality

nT nT
Z E[ﬁg,kf{me,ﬂ > E}‘}_e,kfl,m] < e? ZE[ﬁi,k’fe,k*Lm]
k=1 k=1
nT nT
< K& (zEma,m,m] )23 i, wz-k,.>>4)
k=1 k=1

25



nT nT
< et (SR ) ISl ) 1S~ ).
k=1 k=1

(SB.121)

By similar arguments as those used to derive (SA.36), (SA.37) and (SA.41) in the proof of Lemma SA .4,

we have
nT

> Elii| Fep—1,m) = Op((nT) 7). (SB.122)
k=1

By Assumption 2(iv) and Markov’s inequality,

nT

(nT)_2 Z ”wik,tk — Wiy,-

k=1

* = OP((nT)_l)a

which, together with (SB.97) and (SB.98), implies that

nT
100,50 Tl P(0T) 72 [wi gy, — @iy |[* = Op((nT)7H). (SB.123)
k=1

Combining the results from (SB.121), (SB.122) and (SB.123), we conclude that (SB.114) holds. m

Lemma SB.16 Under Assumptions 1 and 2, we have:

()Y Y e = on(l =T + Op((nT)~1/2).

t<T i<n
Proof. By the definition of 4. ;; and the expression for g; in (SB.108), we can write

A ~

Ueit = (Uit — ﬂi,-)—ii,t(ﬁe,w—ﬁ) — (wig — wi,-)TZ;lrw,u =TUe,it — (Wit — @i,-)Tﬁgwa (SB.124)
where ¢, = XA];IIA“w,u — (Be,iv_ﬁ)j‘ and e = (Ui — Ui )—(zip — Eiv.)(ﬁe,w—ﬁ). This implies

()Y > a2, = D) N il + by Suwde — 2001) Y 0 i iaw] . (SB.125)
t<T i<n

t<T i<n t<T i<n

Applying similar arguments to those used in the proof of Lemma SA.5 (replacing Bw with Be,iv and

Theorem 1 with Theorem 3), we can show that

(D) SN @2, = 021 - T + Op(nT) /). (SB.126)

t<T i<n

By Theorem 3, Lemma SB.12, (SB.98) and (SB.111), we can deduce that
[@ull = Op((nT)™/?)  and ¢, Eudu=0,((nT)™"). (SB.127)
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Similarly, we can show that

(nT)_l Z Z ae,i,tw;,rtg)w = f‘t—g,uéw - (Be,iv_ﬁ)f‘t—lr),xd;w = OP((nT)_l)

t<T i<n

The claim of the lemma now follows from (SB.125) to (SB.128). =

Lemma SB.17 Under Assumptions 1 and 2, we have:

()Y > 52 =462+ on(n— 1)+ Op((nT)1?)
t<T i<n

A

where 630 =62 - ffuvcz;lfwyc.
Proof. By the definition of Z;;, we begin by writing

()Y > 8

t<T i<n
2
=(T) 'Y (Zz',t =z, — (wig — 1%-)%)
t<T i<n
=(mT) 'Y (2 — 2%+ @ Sup — 20, b,
t<T i<n

By the definition of ¢, (SB.98), (SB.99) and (SB.110), we have

A

¢ =3, Tw: =755 Twe + Op((nT)72) = 0,(1),

which together with (SB.97) and (SB.98) implies that

@ S0wp =T, Bl e 4+ O, ((nT)~1/?).

w,c—w

Similarly, by (SB.97), (SB.98), (SB.110) and (SB.131),

Lo =710 3 T + Op((nT) 1%,

w,c—w

(SB.128)

(SB.129)

(SB.130)

(SB.131)

(SB.132)

(SB.133)

Combining the results from Lemma SA.6, (SB.130), (SB.132) and (SB.133), we establish the claim of the

lemma. m

Lemma SB.18 Under Assumptions 1 and 2, we have:

2

(D) DY (wig — i ) (wig — i) @ | = (1= T )ory’ Ty, 2y e + Op(T1?).

t<T \i<n

27
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Proof. The term on the left-hand side of (SB.134) can be expressed as:

2
() D (i — i) (wig — w5,) T
t<T \i<n

()Y O (i — ) (wig — wi,) T ¢)?

t<T i<n
n 1—1

nT -1 Z Z Z g bt Ull t — )(wm — ’lDi’t)T@(’wi/,t — wi/7.)T@.

t<T 1=2i'=1

We first analyze the double summation term on the right-hand side of (SB.135).

(SB.135)

k —k
Let wy'y and w;'y

denote the kth entries of w;; and w;, respectively. By Assumptions 1(i, iii) and 2(i, iv), we can show

that for any ki, ko < dy:

t<T i<n

)72 S [ud ] EBl(wf) — wf)?(wf — wl?)?)

t<T i<n

2
k _k k k

(nT)~! ZZ mlt - wif)(wi,i - wz‘f) ]

<

Using Assumptions 1(i, iii), we have

E[(@. - ool )] =E [ T2 (uf, —00) + 2T 2Zu”2u”/

t<T t'=1
T t—1

=74 Z E [(u?}t — 03)2] 44774 Z Z E[“?,t“?,t']

t<T t=2 /=1
T t—1
ST Y Eluf] +477*) 0 oy < KT 2.
t<T t=2 /=1

Combining this result with Assumptions 2(i, iv) leads to:

2
k _k k _k
(nT)"' Y (@ Y (wlt — w) (whz — wl2)
t<T i<n
2
(nT) QZE 2 ol )E Z(wﬁi—wﬁ?)(wﬁg—wﬁé)
i<n t<T
2
K(nT)) B [|T71 ) (wi} — @) (wi; —@2)
i<n t<T
2
o1y 58 oty bl ] < Koz
i<n t<T

28

(SB.136)

2

(SB.137)



Next, observe that:

S wie 3w — 02 | (whi — wwls —al)

t<T v<T
k —k k —k
= Z(“?t - UZ)(wié —w; ) (wi; — w;?)
t<T
T t—1
YO wigu ((wf,; — o) (wfz — wf?) + Wk, — o) (wfz ~ wgf?)) . (SB.138)
t=2t'=1

By Assumptions 1(i, iii) and 2(i, iv), we have

2
k k k k
E D (uf —on)(wfy —oft) (w3 — o)
t<T
=Y E[(uf, — 00)?] E[(wi} — @*)*(wf? — @}?)?] < KT, (SB.139)
t<T
and
T t—1 2
E Z Z U g Ui 47 ((wl% — u_)fl)(wfi — wfz) + (wfi, — wfl)(wfi, — w52)>
t=2 t'=1
T t—1
k —k k —k k —k k —k
= Z E[uz tuz t’]EH(wz,}f wz 1)(wi,% - wz 2) + (U)Zé/ - wif)(“@';’ - wz 2)‘2]
t=2 t'=1
T t—1
<K> ) oy < KT (SB.140)
t=2 t'=1
Collecting the results from (SB.138), (SB.139) and (SB.140), we conclude
2
E Z Uit Z Uiy — o2 (wf“}5 - wfl)(wfi — wff) < KT? (SB.141)
t<T v<T
By Assumptions 1(i) and 2(i) and using (SB.141), we obtain
2
E||(nT)™ Y 0 (igtti. — opT 1) (whh — @} (w2 — w}?)
t<T i<n
2
= (T2 B 1Y (wie ) i — oy | (wij —ai)(wii — )| | < KnT*)™,
i<n t<T #<T

which, along with (SB.136), (SB.137) and Markov’s inequality, implies that for any ki, ko < d,,:

(D)7 YD ((wie = @) = (1= T~ No) (wi} — @) (wiy — ;%) = Op((nT)~1/?). (SB.142)

t<T i<n
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Therefore, combining this with (SB.131) and (SB.132), it follows that

(WT) S0 i — 14,2 = 01,) 9)? = (1= T 026 S+ 0y (nT) 1)

t<T i<n

= (1-T7Y02y T S T e + Op((nT) /%), (SB.143)

w,c—w

Next, we consider the triple summation term on the right-hand side of (SB.135). Some elementary

algebra yields:

n i1—1
Z Z Z wig — Ui,) (g — Uy ) (wiy — Wig) G(wy g — Wy ) @
t<T 1=2 i/=1
n i—1
= Z Z Z(Uz‘ﬂgui/’t — ui,tai’7- — ’17,2‘7.’(1,1'/7,5 -+ 'lj,ifﬂi/’.)(’ll)i,t — Tf)i7t)Tg5(wi/7t — QD,L‘/7.)TQ£A3. (SB144)
t<T i=2 i'=1

By Assumptions 1(i, iii) and 2(i, iv), we have

A 2
n i—1
} : k —k k —k
E : E :ui,tui/,t(wié - w@'f)(wi/?t - wi/?.)
t<T i=2 i'=1
n 1—1
-y 38 :E[ 2wl — @) (wh?, — a2 )? ] < Kn?T,
t<T 1=2 /=1
and
n i—1
_ k _k k —k
E E E ui gy, (Wi — w0 ) (Wi, — ;)
t<T i=2 i'=1
n 1—1
— k —k k —k
< E E E g uiytui/”(wi; —wif)(wi,?t—wi,?.)
t<T i=2 i'=1
1/2
n i—1 2 /
_ k k k _k
<> > D wigty (Wit — @) (wi?, — @)
t<T i=2 i'=1
n 1—1 1/2
= g E E { tu%, kl - u’;f?)Q(wf,Qt = wfﬁ%ﬂ < KnT'/2.
t<T \i=2 i'=1
Thus, by Markov’s inequality:
n i—1
-1 k1 k k —k —-1/2
(D)™ 0N (g — wigti ) (wly — 0 (wiE, — @)2) = Op(T7?). (SB.145)
t<T 1=2 i'=1
Similarly, we can show that
n 1—1
-1 - - k _k k _k —-1/2
§ E E (g, uir g — Uz‘;ui’,-)(wij - wi})(wi/?t - wi/?.) = Op<T / ),
t<T i=2 i'=1
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which, combined with (SB.131), (SB.144) and (SB.145) implies that

n i—1

TlT -1 Z Z Z 'LLZ Gt ’U,,L/ t— 'U,,L )(wz"t — TI)i7t)T¢(wi/7t — ’lf)ily‘)T(ﬁ = Op<T71/2). (SB146)

t<T 1=2i'=1

The claim of the lemma follows from (SB.135), (SB.143) and (SB.146). m

Lemma SB.19 Under Assumptions 1 and 2, we have:

(D) D e — ) (uae — 1) | | D (i — U, ) (wig — i) '

t<T \i<n i<n

= (1 =T Yo2ql] STy e 4 O, (T71/2). (SB.147)

w,c—w

Proof. Some elementary algebra yields:

nT ! Z Z Ct - C Uz7t - ﬂi,~) Z(Uiﬂ: - ﬂ@.)(wi,t — ﬂ)if)

t<T \i<n i<n
(nT) 122 ct — ¢)(uip — Uy )2(wzt w;,.)
t<T 1<n
1 Z Z Z<Ct — &) (wig — i) (ugr g — Ugr ) (wir ¢ — Wyr.). (SB.148)
t<T i<n i'#i

By Assumptions 1(i, ii, iii) and 2(i, iv), we can use similar arguments to those for proving (SB.142) to

show that

(nT)~" Z Z((uzt — ;)2 — (1 =T Yo} (¢ — &) (wis —w;.) = Op((nT) ™).

t<T i<n

Combining this with (SB.97), (SB.131) and (SB.132) leads to

(nT) 122 et — @) (uwig — i) (wiy — W) @

t<T i<n

= (1 =T oal ) p + Op((nT)7/%) = (1 = T Noin Ly, 23 T + Op(nT)71/7). (SB.149)

w,c—w

The triple summation on the right-hand side of (SB.148) can be written as

()Y (e — &) (wip — Wi ) (wir g — U ) (wir g — i)

t<T i<n i'#£i

n i—1

= (nT)~" Z Z Z(Ct — ) (wit — Ui, ) (wir g — Uy ) (Wir g — Wyr )

t<T i=2 /=1
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n —1

+ ()Y DTS (e — ) (g — T ) (wig — Ui, ) (wig — ;). (SB.150)

t<T i=2 i/=1

Using similar arguments to those used for proving (SB.146), we can show that

n i—1
D) IS e = ) uig — ) (i g — ) (wirg — w) @ = Oy (T7Y?),

t<T i=2 i'=1

and -
D)3 N TS e = @) uirg — i) (uig — ) (wiy — @) @ = Op(T72),

t<T i=2 i'=1

which, together with (SB.131) and (SB.150), implies that

(D)7 YD (e — ) uig — s, ) (i — i) (winy — W) ' p = Op(T72). (SB.151)

t<T i<n i'<n

The claim of the lemma follows from (SB.148), (SB.149) and (SB.151) shows the claim of the lemma. =

Lemma SB.20 Under Assumptions 1 and 2, we have:

(nT)*l Z Z(ui’t — ﬂi7.)(wz‘7t — wi,-) Z gir | = Op(Tfl/Q)'

t<T \i<n i<n

Proof. Without loss of generality, we assume that w; ; is a scalar throughout the proof of this lemma.

If w; is a vector, the proof can be applied componentwise. We begin the proof by writing:

D) Y (g — ) (wig — i) | (D i

t<T \i<n i<n
= (TLT)_l Z Z Z(wu — wi,-)ui,teiﬂt — (nT)_l Z Z Z(wm — U_]i,-)ai,-ei’yt-
t<T i<n i/<n t<T i<n i'<n

Applying similar arguments to those used for proving Lemma SA.7(ii) with ¢; — ¢ replaced by w; ¢ — w;,.,

we can show that under Assumptions 1(i, iii) and 2(i),

D) SN S (wig — @i Yuigeny = Op((nT) ).

t<T i<n i'<n

Therefore, the claim of the lemma follows if

(nT)! Z Z Z(wi,t — Wi, )i €0y = Op((nT)~1/2). (SB.152)

t<T i<n i'<n
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To demonstrate the result in (SB.152), we first decompose the triple summation term on its left-hand
side as follows

SN wig —wi i ere =YY (wip — W) £y

t<T i<n i'<n t<T i<n
n 1—1
+ Z Z Z(ﬁi;(’wi’t - ’LT)L.)Eﬂ)t + ﬂi/,(wi/’t — ’Lf)i/’.)ff@t). (SB153)
t<T i=2 i'=1
The first term on the right-hand side can be further decomposed as:

SN (wig =i )iy =T Y eip(wig — ;)i

t<T i<n t<T i<n
T t-1

FTY N (e (Wi — Wi Juig + i (wig — Wi Jup). (SB.154)

i<n t=2t'=1
Using similar arguments as those employed in deriving (SA.61) with ¢; — ¢ replaced by w;; — w; ., we can

show that under Assumptions 1(i, iii) and 2(i),

nT2 ZZ Wit — W )UitEit = Op((nTg)_l/Q). (SB.155)

t<T i1<n

For any iy > i; and any ¢, # t}, for k = 1,2, we have
Eles, 0 (Wi ¢, — Wiy, )iy 41 €ig 11, (Wi 1, — Wi, ) Ui ]
= E[(w;, ¢ — Wiy, ) (Wi 4 — Wiy )E[Es, 41 Wi 11 €4y 11 Wi 1]
= E[(wil,t’l - U_)il,-)(wiz,t’Q - wiQ,-)]E[eil,t’luil,heiz,t’z]E[uiQ,tQ] =0,

where the first equality is by Assumption 2(i), and the subsequent equalities follow from Assumptions

1(i, iii) and 2(iv). Therefore,

T t—1 T 2
SN eiw(wip - wi,-)ui if | =D_E Z Uit Z Eipr (Wi — Wi,.)
i<n t=2t'=1 i<n t'=1
T t-1
=KY > > El(wiy — @)’ |E[ef y)E[u]
i<n t=2 ¢'=1
T t—1
D72y > ) (i-1) < KT
t=2 /=1 i<n

which together with Markov’s inequality shows that

T t—1

(nT?) ™Y DY v (wiy — i Juig = Op((nT) 7). (SB.156)

i<n t=2t'=1
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Similarly,

2 2
T t-1 T-1 T
E E E E git(Wip — Wi )uip| | = E E E g Wi € (Wi y — W)
i<n t=2 /=1 i<n t=1 t'=t+1
T-1 T

=33 3" El(wiy — @)Y B[, )Eu)]

Thus, by Markov’s inequality

T t—-1

(T*) Y N > ei(wiy — i Jug e = Op((nT) 7).

i<n t=2 /=1
Combining this with (SB.154), (SB.155) and (SB.156) yields:
(nT) 'Y eii(wiy — @i ), = Op((nT) 7). (SB.157)
t<T i<n

Next, we examine the second term after the equality in (SB.153), which can be decomposed as

n 1—1
D> D (i (wiy =i ey e + i (wi g — By )ei)
t<T i=2 i'=1
n i—1
=7! Z Z Z((wi,t — W)U € ¢ + (Wir g — Wit ) Uit 1€4t)
t<T i=2 i/ =1

T t—1 n i—1

FTTY DD D (wialwig = @ )i + i (wig = 01 )en)
t=2 /=1 1i=2 i'=1
T t-1 n i-1

+ T_l Z Z Z Z(ui/,t(wi/’t/ — U_Jil’,)&"i,t/ + Uyt (wi’,t — 'U_)z",-)gi,t)- (SB158)

t=2 t'=1i=2 i'=1
Using similar arguments as those used to derive (SA.67) with ¢; — ¢ replaced by w;+ — w; ., we can show

that

(nT?)~! (Wi — @, Yuigeir t + (Wir g — Wyr Jugn 42i4) = Op((T)7H2). (SB.159)
t<T i=2 i'=1

For any iy > iy, any i) < iy, any t;, and ) for k = 1,2, we have

Elugy (Wi ¢ — Wiy, )Eir 41 Wit (Wi 1, — Wig )€t 11]
= E[(wy, 4 — Wiy, ) (Wiy 1y, — Wig, )| E[es 11 Wiy 11 €t 1 Wi 1]

= E[(wi, 1 — @i, ) (Wi, 1, — Wiy, B[ g1 iy 0, €1 1 [Bwig 1] = 0, (SB.160)
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where the first equality is by Assumption 2(i), and the subsequent equalities follow from Assumptions

1(i, iil) and 2(iv). Additionally, for any to > ¢;, and for any %), < ¢ and t}, < t;, for k = 1,2, we have

Efuwi by (i — Wi )€ 1 Wity (W g — Wi ) 11]

= E[(w;y — wi,.)(wi g, — Wi, )]E[eg v wizi € g Eluig] = 0. (SB.161)

By (SB.160) and (SB.161), we have

n T t—-1i-1 2 n T t—1 i-1 2
_ 2 _
E E E Ui,t(wi,t’ - wi,-)gi’,t/ = E E Us ¢ Wi g — Wy, )€ ¢!
i=2 t=2 ¢/=14'=1 i=2 t=2 t'=14¢=1
n T t—1 2
= ai E E E Wi g — (. E €l 1/
=2 t=2 t'=1 =1
T t—1 n 2
=02 > > El(wiy —wi) Z ey
t=2 t/'=1 i=2

T t—1 n i—1
SKn-1)72) >3 M ('—1) < KnT?  (SB.162)
t=2t'=11=21i=1

where the second, the third, and the fourth equalities are by Assumptions 1(i) and 2(i), and the first
inequality follows from Assumptions 1(i, iii) and 2(iv). Thus, by Markov’s inequality

T t—1 n i—1

(TSNS i (wip — W ey = Op(nT?)71/2). (SB.163)

t=2t'=11=2i'=1

For any tp > t1, and for any ¢ < i and t} < t; for k = 1,2, we have

Elug g (Wi, — Wi )€i1 4, Ui, (Wity, — Wi )Eqy 1]
= E[(wit, — Wi, ) (wit, — Wi, )Ew €41 1,05 11 1,]

= E[(wit, — i, )(wig, — wi,.)|Efu; y 1€t Wit ]E[E 2] = 0, (SB.164)

where the first equality is by Assumption 2(i), and the subsequent equalities follow from Assumptions

1(i, iii) and 2(iv). By (SB.160) and (SB.164), and using similar arguments as those for deriving (SB.162),

we obtain:
T t—1 n i-1 2 n T i1 t—1 2
E E E § E wip(Wip — Wi )eiry| | = E E |(wi; — w;,.) Ui €t 4
t=2t'=11i=2 =1 =2 t=2 '=1t'=1
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n T t—1 i—1

= g E[(wz,t w; ) ]E § Us ¢/ § Eirt
=2 t=2 t'=1 i'=1
n i—1 t—1

I
B
M|

g
=
B

g
=
=
=
0

=2 t=2t'=14= 1

Thus, by Markov’s inequality

T 4
(nT?)~'> " (wit (Wi — Wi )eir g + Ui (wi g — Wi )ew 1) = Op((NT?)~H2). (SB.165)
For any ty > t1, any t}, < tx, any i and ¢} for k = 1,2, we have

E[ui’l,tl( it wi’1,~)€i1,t’1ui’2,t2( Loty — Wi )Ez‘g,td

= Ef(wy . — oy ) (wiy 4y — Wiy JE[ugs ¢, €5 1 €4, 1 [Blugg 1,] = 0, (SB.166)

where the first equality follows from Assumptions 1(i, iii) and 2(iv). Additionally, for any i > i1, and

for any ¢, <t and 4, < i), for k = 1,2, we have

E[Uz’pt( T Wi )5z‘1,t’lui’2,t(wz’2,t’2 — Wy, . )5i2,t’2]

= El(wy; 4y — g )(w Wit 4, — Wiy . )JE[u Uil €41t uZ27t]]E[€i2,t/2] = 0. (SB.167)

1t e

By (SB.166) and (SB.167),

T t—1 n i-1 2 T n 2
E § § u'L’,t Wiy — Wy )51 t = § E § Uyt § Wy ¢ — 5z N
t=2t'=11i=21i'=1 t=2 i= i'=1 t'=1
n T i—1 t—1 2
= Z Z Efuy ,|JE Z(wi’,t’ — Wy )& 11
1=2 t=2 ¢/=1 t'=1
n i—1 t—1

wi’,~)2]E[5?,t’]

Il
e
g
=
E
&
g

T —
<Kn-12>>" (i’ —1) < KnT?,
=2 t=2t'=14=1



which, together with Markov’s inequality, shows that

T t—1 n i—1

TSNS wpi(wiry — oy )eip = Op(nT?) 7). (SB.168)

t=2¢'=11=2 =1

For any ty > t1, any iy and 4}, any tj <t for k = 1,2, we have

Elug o (wir 4, — Wig )it Uity 11 (Wit 1, — Wit )Ein o]

= E(wir ¢, — Wiy, ) (Wig 1, — Wiy )E[wgr 1 €0y 1 0ir 11 ]E[€4,,8,] = 0, (SB.169)

where the first equality follows from Assumptions 1(i, iii) and 2(iv). Additionally for any i > i1, and for

any ¢, <t and i) < iy for k = 1,2, we have

Elug 1 (wyr ¢ — Wy )eiy gy v (Wig ¢ — Wiy )iy 1]

= E[(wy; 1 — 0y ) (wiy ¢ — 0, )| Elug &y wiy o |BlEi 1] = 0. (SB.170)

By (SB.169) and (SB.170),

T t—1 n i-1 2 T n i—1 t—1 2
E Z Z Z (157R% (”u)z-/,t — TDZ'/,.)EZ‘J = Z E 812’1‘/ Z (158 ’U)Z/ t— W;r )
t=2t'=11=214=1 t=2 i=2 i'=1t'=1
T n i—1 t—1 2
= E E Zzuz’t’ wz’t_wz )
t=2 =2 i'=1t'=1

Il
g
]
]
=
f’mw
=
=
=
5
X
£

Thus, by Markov’s inequality

which along with (SB.168) shows that

T t—1 n -1

(T Y T (g a(wiry — @i eig + u g (wi g — Wi Jeiy) = Op((nT?)1?). (SB.1TL)

t=2 t'=1i=2 i'=1
Collecting the results from (SB.158), (SB.159), (SB.165) and (SB.171) leads to

n 1—1

TN (@ (wig — Wi )eir g A T (win g — By )ei) = Op((nT)~?), (SB.172)

t<T i=2 i'=1

The desired result in (SB.152) follows from (SB.153), (SB.157) and (SB.172). m
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Lemma SB.21 Under Assumptions 1 and 2, we have:

2
(1)) (Z(V(Ui,t — i )(e =)+ 6i,t)) =7ou6r + (n— 1) Nonoy +oy,,) + Op(T72).

t<T \i<n
Proof. By Assumptions 1(i, ii, iii), we have
2

E [T (=02 ui| | <T 2D El(e— )] Elu?] <nlT7,

t<T i<n t<T i<n
which, together with (SA.87) in the proof of Lemma SA.9 and Markov’s inequality, shows that
aT ™) (e =) uig = 0p(T71). (SB.173)
t<T i<n
Combining this with Lemma SA.10, (SA.91) in the proof of Lemma SA.11, and (29) in the proof of

Lemma 2, we obtain

2 2
D)) (e =)D (i =) | =@I) Y | (=) wig | =207 (e — 87> wig
t<T i<n t<T i<n t<T i<n
2
+ (D) (=) wi. | =062+ 0,(T71/?). (SB.174)
t<T i<n

By Lemma SA.7(ii) and (SA.86) in the proof of Lemma SA.9,

(nT)~* Z(ct —C) Z(u” — U;.) Z gir | = (nT)™? Z(Ct —C) Z Uit Z&‘,t

t<T i<n i<n t<T i<n i<n
—aT ™Y (=) Y eie = Op((nT) 71/, (SB.175)
t<T i<n

Since

2
(nT)™" (Z(v(uz’,t — i )(e =)+ 6i,t))

t<T \i<n
2 2
=2(nT)7! Z (¢t — ) Z(um — ) | + 1) Z Z Eit
t<T i<n t<T \i<n
+2y(nT) ™ Z(Ct —0) Z(Ui,t — U, Z git |
t<T i<n i<n

the claim of the lemma follows from Lemma SA.7(i), (SB.174) and (SB.175). m
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Lemma SB.22 Under Assumptions 1 and 2, we have:

2
(D)™ D S (wig — 1) (Ve — &) = (wiy — i)' @) + i)
t<T \i<n
=7%00(62 = (1= T Ty 20 Twe) + (n = 1) Nokor + 02,) + Op(T1/?). (SB.176)

Proof. The term on the left-hand side of the equality in (SB.176) can be expressed as

2
()™ D (i — i) (Ve — ) = (wip — wi,) ) + €i4)
t<T \i<n
2 2
= (D) D (v(uig =) e =) +ein) | A D) D (i — ) (wig — i) TR
t<T \i<n t<T \i<n

—2(nT)~! Z Z(’Y(ui,t — ;. )(ct — €) + i) Z(ui,t — ;) (wig — ;) TP

t<T \i<n i<n

Therefore, by Lemmas SB.18, SB.19 and SB.20, and using (SB.131), we obtain

2
()™ D (i — i) (v(er — @) = (wip — w;,) ") + &)
t<T \i<n
2
=(T) "D D (v(uig = W) (e =) +eir) | —APon(l =T Oy 2y Tue + Op(T71?),
t<T \1<n

which, combined with Lemma SB.21, establishes the claim of the lemma. m

Lemma SB.23 Under Assumptions 1 and 2, we have

2

(D) D e (Zi,t = Zi, — (wiz — @i,-)%)

t<T \i<n

S icn (i — @i ) (Y(er =€) = (wip — wi) T @) + i)
=) Y | —v(er — &) (Beiw — B) Sien(Vlee =) = (wip —wi ) ') | + Op((nT)~1/2).
t<T - ~ ~ ~ A
=Y icn Pop (Wi — Wi ) (Y(er — ) — (wiy — ;) @)
Proof. Applying the expression for z;; in (3), the expression for z; ; —Z; . in (SA.1) and the expression
for @i+ in (SB.124), we can express

Z Ue g t (Zi,t —Zi. — (wig — @i,-)T¢)

i<n
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N -1 T ~
:E Ueit | (n—1) § Tirp — — (Wit —w;.) @

i<n i/
= Z((ui,t — ;.. (Y(cr — ©) — (wig — w;,.) ") +€it) — (Bew — B)7*nlcy — €)?
i<n
— et =)D by(wip — W) + (et — &) (Beyv — B) Y _(wig — ;) ¢
i<n 1<n
+ by Z(wi,t — ;) (wig — 03,) "¢+ Ty + (Besiv — B) Iz — Toy) — by lay, (SB.177)
i<n

where ¢, = ﬁlglfw’u - (Be’w—ﬁ)jx, I+ and I, are defined in (SA.71) and (SA.72) respectively. Addi-
tionally,
I3y = Z(vi’t — U ) (Wit — u_)z',.)Tgb and Iyt =(n—1)" Z Z Wit — W) W,t — T)i/’.) .
i<n 1<n i'#1
By Assumption 1(iii) and Theorem 3, we have
. 2
(nT) Y ((58@ — B)y*nlc — a)2> = 0,(T7Y). (SB.178)
t<T
By Assumptions 1(iii) and 2(iv), and applying Markov’s inequality,
ST S (6 — 0wy — w12 = Op(1). (SB.179)
t<T i<n

Therefore,

2
(D)7 (e =) [ D du(wie — i) | < bl PT71Y (e —2)* Y llwie — @il = Op(T7),
t<T i<n t<T i<n

(SB.180)
where the first inequality follows from the Cauchy-Schwarz inequality, and the equality is due to (SB.127)
and (SB.179). Similarly, we can show that due to (SB.131)

2
(Beiw — B)*(nT) 12 (ax—¢ Z wiy—w;) @ | =0,(T7h). (SB.181)
t<T i<n
Applying the Cauchy-Schwarz inequality,
2
. 2
()Y D b (wie —wi ) (wig —wi) '@ | <T > ( (Wi — Wi, ) (Wi — @z‘,-)Tﬁ)
t<T \i<n t<T i<n
13 . _ 4
<T bl PRI YD llwiy — @y, |
t<T i<n
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= 0,(T™), (SB.182)

where the last equality is due to Assumption 2(iv), (SB.127) and (SB.131). Therefore, considering Lemma

SB.22, (SB.177), (SB.178), (SB.180), (SB.181) and (SB.182), the claim of the lemma follows if
DA Beiv = B Y 3y + 13, + D (duag)® = Op(1). (SB.183)
t<T t<T t<T

By similar arguments to those used in proving Lemma SB.18, we can show that

2

(nT) > 13, =0T D (i — i) (wig — i) TR

t<T t<T \i<n

= (1 =T Y2 3ol + 0 (T72) = 0,(1),

w,c—w

where the last equality follows from (SB.97) and (SB.99). Combining this with Theorem 3, we have

Be w Zlgt - (SB184)

t<T
By Theorem 3 and the same arguments as those used for deriving (SA.78),
S I+ Beaw — B2 I3, = 0y(1). (SB.185)
t<T t<T
Considering (SB.184) and (SB.185), the desired result in (SB.183) follows if
D (dIae)® = Op(1). (SB.186)
t<T
To show (SB.186), we begin by writing
¢wl4t = TL — 1 Z Z ¢w Wit — wz (Ui’,t — 'Ui’,')

i<n i'#i

n —1

(n—1) -1 Z Z wzt ) (Uz",t — 1_)1'/7.) + ¢I(wi1’t — 11_11'/7.) ('Uz',t — 1_)2‘7.)). (SB.187)

=2 i'=1

Therefore, by the Cauchy-Schwarz inequality,

n i—1 2
> (b Ian)? < 2lbulPD (0= )T (wig — i) (viy — By,
t<T t<T =2 i'=1
n i1 2
+ 20wl P (=)0 (wiry — @) (vig — m,.)‘ (SB.188)
t<T =2 i'=1
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For any k =1,...,dy, by the Cauchy-Schwarz inequality and Assumptions 1(i, iii) and 2(i, iv), we have

n i—1 2 nel n 2
S [S0 St )| | = [ e ) 37 bt
t<T |i=2 i'=1 t<T i=1 i=it+1
n 2
S SR |- 0?| 3 (b —ah)
t<T i=1 i'=it1
n
< KZZE (n—i) Y (wh,— w{.‘i?_)Q] < Kn’T,
t<T i=1 i'=i+1
which, together with Markov’s inequality, implies that
n 1—1 2

D=1 0> (wh (virg — )| = Op(nT). (SB.189)

t<T i=2i'=1
Similarly, we can show that

n 1—1 2

Z n—1)"1 Z Z wh t w?, ) (vig — ;)| = Op(nT).

t<T 1=2 /=1
Combining this with (SB.127), (SB.188) and (SB.189) establishes (SB.186). m
Lemma SB.24 Suppose that Assumptions 1 and 2 hold. If T — oo as m — 0o, then

2
(nT)~* Z Zﬂeﬂ-’t (zi,t —Zi. — (wi — QDL.)Tgb) —p V20202 4 (e — 1) Ho202 + o2 )

t<T \i<n
Proof. By (SB.178), (SB.180), (SB.181) and (SB.182), and applying Lemmas SB.22 and SB.23, we

have
2

NS s | (0= )T (e — Fo) — (wig —w5,) @

t<T \i<n il

=767 — (1 =T I 25 Twe) + (n = )7 (on0) + 0,) + Op(T7?),

w,c—w
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