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Abstract

In a dynamic binary choice model that allows for general forms of nonstationarity, we trans-

form the identification of the flow utility parameters into the solution of a (linear) system of

equations. The identification of the parameters, therefore, follows the usual argument for lin-

ear GMM. In particular, we show that the state transition distribution is not essential for the

identification and estimation of the parameters. We propose a three-step conditional-choice-

probability-based semiparametric estimator that bypasses estimation of and simulating from

the state transition distribution. Simulation experiments show that our estimator gives com-

parable or better estimates than a competitor estimator, yet it requires fewer assumptions in

certain scenarios, is substantially easier to implement, and is computationally much less de-

manding. The asymptotic distribution of the estimator is provided, and the sensitivity of the

estimator to a key assumption is also examined.
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1 Introduction

Structural dynamic discrete choice (DDC) models are a powerful framework for the economic

analysis of inter-temporal choices of agents across a wide range of empirical studies. Although

the conditional choice probability (CCP) estimators, proposed by Hotz and Miller (1993); Hotz

et al. (1994) and further generalized and improved by many authors (e.g., Arcidiacono and Miller,

2011), simplify the estimation of DDC models by avoiding solving the full dynamic programming

problem as in Rust (1987), the estimation of DDC models remains a daunting task. Among other

complications CCP estimators require the estimation of the state transition distribution as input

for a nonlinear generalized method of moments (GMM) estimation of the parameters in the flow

utility function. Being a conditional distribution of all the state variables in the current period

given all the state variables in the previous period, the state transition density is usually difficult

to estimate nonparametrically, especially when there are many state variables and state variables

are continuous. In consequence, researchers routinely use parametric specifications, but it is not

always obvious what parametric specification is appropriate, and ad hoc choices do not always have

sound economic justification. Moreover, the CCP estimators also require simulating from in order

to integrate over the estimated state transition distribution. This can be very time-consuming as

it puts enormous strain on computer memory (regardless whether the state transition distribution

is nonparametric or parametric) if the decision horizon is long.

The main practical contribution of this paper is to develop a novel CCP-based semiparametric

estimator of flow utility parameters that bypasses state transition distribution estimation and

simulation. Instead, our three-step estimator uses preliminary nonparametric conditional mean

estimates to obtain a linear system. The conditional mean estimates have a smaller dimension and

better finite sample properties than the state transition estimates, yet our estimator is very flexible

to allow the model primitives (e.g., flow utility functions, state transition distribution) to be time-

varying, and the decision horizon to be finite, infinite or unknown. Although our estimator requires

individual-level panel data, the length of the panel can be short (T ≥ 2), and the sample terminal

period could be before the decision terminal period. In our simulation experiments in Section 5,

our estimator is a thousand times faster than a CCP estimator with nonparametric estimation of

the state transition distribution.

Even for counterfactual analysis, where state transition distribution estimation and simulation

is necessary, our state-transition-free estimator can still be useful in guiding the comparison and

selection among different parametric specifications of the state transition distributions.

Our estimator builds on a rigorous and constructive identification analysis, which we believe is

an important theoretical contribution to the DDC literature. This is made possible by our finding

that the log odds ratio equations, which capture agents’ optimal decision rule and involve iterated

conditional means given the state variables in all future periods, can be simplified to a system that
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contains conditional means given the state variables only in the current period. Such a simplification

eliminates the need for recursive simulation from the state transition distribution as is typically

required for CCP estimators (e.g., Hotz and Miller, 1993; Hotz et al., 1994; Arcidiacono and Miller,

2011). It is worth emphasizing that such a simplification is achieved not by imposing stronger

assumptions. We find that common assumptions that are usually made in the DDC literature (see,

e.g., a summary by Aguirregabiria and Mira, 2010) implies a Markovian property for the observed

state variables. That is, for the state variables in a future period, the current state variables are

less informative than those in a future period that is closer to the target period. In consequence,

the law of iterated expectations implies that the iterated conditional mean given the state variables

in the current and the future periods is equal to the conditional mean given the current-period

state variables only.

In our identification analysis, we start with this simplified system and transform it into a

partially linear system under a linear flow utility assumption that is weaker than typical in the DDC

literature. We avoid arbitrary “normalization” of the expected flow utility for one choice. (Norets

and Tang, 2014; Aguirregabiria and Suzuki, 2014; Chou, 2016, demonstrate the bias induced by

such a “normalization”). If one is willing to make an additional mild assumption about the sample-

terminal-period integrated value function, then we show that the system can be further transformed

into one that is fully linear in the parameters of interest, enabling clear and simple identification

conditions as in linear GMM.1 Sensitivity to this new assumption is also examined in the paper.

We analyze various scenarios to underscore the versatility of our approach and note that excluded

variables that do not affect the flow utility but affect future payoff, although not required for the

identification, may help fulfilling the rank condition of the linear system in scenarios where they

fail otherwise.

Based on the identification results, our CCP-based semiparametric estimator of the flow utility

parameters proceeds in three steps. First, nonparametrically estimate the CCPs. Second, nonpara-

metrically estimate conditional means, which have the CCPs as dependent variables. The third

step is to plug the estimated CCPs and estimated conditional means into the linear system to

estimate the parameters of interest via linear minimum distance (MD).

This paper is related to important earlier studies on the estimation of structural DDC mod-

els, especially the ones that leverage CCP estimates. Following Hotz and Miller (1993), various

CCP estimators have been developed for a variety of settings. When the DDC model does not

involve terminal or renewal choices, Hotz et al. (1994) develop a two-step CCP estimator. They

first estimate CCPs and state transition distributions. They then estimate structural parameters

by evaluating the choice-specific value functions using estimated CCPs and simulated future states

1Pesendorfer and Schmidt-Dengler (2008) point out the identification of dynamic discrete games in the infinite

horizon stationary setting can be equivalently expressed as a linear GMM problem. We focus on single agent dynamic

discrete choices, but in general nonstationary setting allowing for continuous state variables.
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from estimated state transition distributions. Aguirregabiria and Mira (2002) find that the two-

step nature of Hotz et al. (1994)’s CCP estimator can generate serious finite sample bias in the

structural parameter estimates, and they reduce the bias by repeatedly updating the CCP esti-

mates using the structural parameter estimates from the second step of Hotz et al. (1994)’s CCP

estimator. Arcidiacono and Miller (2011) extend Hotz et al. (1994)’s CCP estimator by including a

finite number of latent types. Leveraging the properties of infinite horizon stationary DDC models,

Srisuma and Linton (2012) propose a simple CCP estimator when the state space includes continu-

ous variables. Kalouptsidi, Scott and Souza-Rodrigues (2021) recently study the identification and

estimation of DDC models with market-level observed and unobserved state variables that affect

consumers’ payoffs. Using individual-level panel data, they develop a new CCP estimator, of which

the second step can be expressed as a linear regression. The key difference between our estimator

and these CCP estimators is that we do not require estimating or simulating the state transition

distributions.

This paper is also related to the growing literature on the identification of DDC models that

follows the seminal work of Magnac and Thesmar (2002), which uses excluded variables in a limited

setting.2 Blevins (2014) shows how dynamic models with both discrete and continuous choice vari-

ables can be identified. Abbring and Daljord (2020) use excluded variables to identify the discount

factor in the DDC models, which is usually assumed to be known in the literature. Arcidiacono

and Miller (2020) explore the property of single action finite dependence, which is generalization of

the terminal/renewal choices, to identify nonstationary DDC models when the decision horizon is

beyond the data horizon (“short panel” data). Our paper establishes the identification of nonsta-

tionary dynamic binary choice models using short panel data in the absence of finite dependence,

and excluded variables only play a non-essential, auxiliary role in our approach. To the best of

our knowledge, no existing research shows the identification all structural primitives, including flow

utility parameters and the discount factor, of a nonstationary DDC model using short panel data.

Compared to the literature that investigates the identification of DDC models when there are seri-

ally correlated unobserved state variables (e.g. Kasahara and Shimotsu, 2009; Hu and Shum, 2012;

Chou, Derdenger and Kumar, 2019; Kalouptsidi, Scott and Souza-Rodrigues, 2021), unobserved

state variables being serially independent is one limitation of our paper.

Terminology and notation. In the rest of this paper, Hotz et al. (1994)’s two-step CCP

estimator and its successors will be collectively referred to as “HM estimators” to avoid confusion,

as our estimator also estimates CCPs in the first step but differs in how the CCP estimates are used

in the estimation of the flow utility parameters. We use f as a generic symbol for (conditional)

probability density/mass functions. The symbol “≡” means that the object on its left-hand side is

2They show that the exclusion restriction identifies the discount factor and the “difference between the expected

values of two sequences of choices” (eq. (8) of their paper). But they did not show that the exclusion restriction can

identify the flow utility functions themselves.
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defined as the expression on its right-hand side.

Plan of paper. The rest of this paper proceeds as follows. Section 2 sets up a dynamic

binary choice model that permits general nonstationarity and briefly reviews HM estimators. Sec-

tion 3 transforms the identification problem into the solution of a linear system under common and

mild new assumptions, analyzes the identification of the linear system, and provides a CCP-based

semiparametric estimator of the model that bypasses the state transition distribution estimation.

Section 4 discusses the bias induced by relaxing the new assumption made in our paper and how

to reduce it. Section 5 compares the performance of our estimator and an HM estimator using

simulated samples. We make concluding remarks in Section 6. All the proofs and certain related

issues are in the appendices.

2 A Nonstationary Dynamic Binary Choice Model

In this section, we introduce a dynamic binary choice model that incorporates a general form of

nonstationarity. Then, we briefly review the aspect of the HM estimators that we will simplify in

Section 3.

2.1 Model

Each agent makes a binary choice at ∈ {0,1} in each of a number of periods, denoted by t ∈ T ≡
{Tstart, Tstart + 1, . . . , Tend}, where Tend = ∞ is allowed. Let ut(at, st) + εatt denote the flow utility

that has an additively separable form, where the expected flow utility ut(at, st) depends on the

choice at and st, a ds × 1 vector of observed state variables, through an unknown function ut, and

εatt (at = 0,1) are unobserved (to researchers) scalar flow utility shocks. Let εt = (ε0t, ε1t)′ denote
the unobserved state variables and Ωt = (s′t, ε′t)′.

We maintain the following Assumptions 1 to 3 in this paper.

Assumption 1 (Controlled Markov process). For all t and j ∈ N+ such that t, t + 1 and t − j all

belong to T , assume that Ωt+1 ⊥⊥ (Ωt−j , at−j) ∣ (Ωt, at).

Assumption 2 (Flow utility shocks). For all t such that t and t− 1 both belong to T , assume: (i)

εt ⊥⊥ st; (ii) εt ⊥⊥ st−1; (iii) εt is serially independent; and (iv) ε0t ⊥⊥ ε1t, and they both follow a type

I extreme value distribution which is re-centered at zero.

Assumption 3 (Conditional independence). For all t such that t and t+1 both belong to T , assume

st+1 ⊥⊥ εt ∣ (st, at).

Assumptions 1 to 3 are common assumptions in the literature of DDC models and have been

made, explicitly or implicitly, in many applications. In particular, Assumptions 2(i) and 2(ii) are

implied by Assumption IID in the survey by Aguirregabiria and Mira (2010) and are necessary
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for the conditional independence assumption in Rust (1987) (p. 1011).3 Moreover, Assumptions

2(iii), 2(iv) and 3 correspond to Assumptions IID, CLOGIT and CI-X, respectively, in the survey

by Aguirregabiria and Mira (2010).

Under Assumption 1, the agents solve a dynamic programming problem; that is, they ob-

serve Ωt and choose at to maximize their expected lifetime payoff E(∑Tend−t
j=0 βj(ut+j(at+j , xt+j) +

εat+jt+j) ∣Ωt, at) in every period, where β ∈ (0,1) is the discount factor. Note that Assumption 1

implies that the choice at in period t is completely determined by the current state variables Ωt

(see, for example, Aguirregabiria and Mira, 2010, p.39), so the value function in period t is also a

function of Ωt alone, which we denote as Vt(Ωt). We also define the integrated value function in

period t as V̄t(st) = E(Vt(Ωt) ∣ st). Then under Assumptions 1 to 3, the agent’s expected lifetime

payoff if choosing at = a can be shown (in Appendix A) to be

ut(a, st) + εat + βE(V̄t+1(st+1) ∣ st, at = a), where a = 0 or 1. (1)

We use the following notation to denote the difference in the conditional means of a future random

variable hτ given st and between at = 1 and at = 0 (τ > t):

∆E(hτ ∣ st) ≡ E(hτ ∣ st, at = 1) −E(hτ ∣ st, at = 0). (2)

Then, the agent’s optimal decision rule is

at = I{ut(1, st) − ut(0, st) + β∆E(V̄t+1(st+1) ∣ st) > ε0t − ε1t}. (3)

We use pt(⋅) to denote the CCP function in period t, that is,

pt(s) = Pr(at = 1 ∣ st = s). (4)

Note that the subscript t emphasizes that the CCP might be a different function in every period,

and this is a result of the general nonstationarity (see Remark 1 below) allowed by the model in

this paper.

In the rest of this paper, we will suppress the argument of the CCP functions and use pt to

denote pt(st) for notational conciseness, whenever it is not confusing. By Assumption 2(iv) and

eq. (3), the log odds ratio has the expression

ln( pt
1 − pt

) = ut(1, st) − ut(0, st) + β∆E(V̄t+1(st+1) ∣ st), (5)

3From the phrasing of Assumption IID in Aguirregabiria and Mira (2010), it is not obvious that Assumptions 2(i)

and 2(ii) are implied, but they claim in the paragraph after Assumption DIS that, using our notation, Assumptions

CI-X and IID together imply that f(st+1, εt+1 ∣ at, st, εt) = fε(εt+1)fs(st+1 ∣ at, st), which does not hold without

Assumptions 2(i) or 2(ii).
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which is similar to the log odds ratio in static logit models, but the difficulty of the dynamic model

resides in the last term, which captures the difference in the discounted future lifetime payoffs

between the two choices.4

Remark 1 (Nonstationarity). Nonstationarity in the context of DDC models means that the agent’s

decision problem in any period t is not an identical copy of that in other periods t′ ≠ t. The model

in this paper permits several sources of nonstationarity: (i) the decision terminal period Tend may

be finite and/or unknown; (ii) the function ut(a, s) that determines the non-stochastic part of the

flow utility may vary with t; (iii) the state transition density ft(Ωt+1 ∣Ωt) may vary with t. Any of

these sources could result in time-varying CCPs and/or time-varying value functions.

2.2 Brief Review of the HM Estimators

Our approach in Section 3 builds on the results in Hotz and Miller (1993) and Hotz et al. (1994),

but we derive new results that allow for a substantial simplification of the analysis, under the same

assumptions. Before detailing our approach, we briefly review in this subsection the aspect of the

HM estimators that we will simplify.

The HM estimators are GMM estimators based on the moment conditions E(at − pt ∣ st) = 0,

in which, by eq. (5), the CCP equals pt = Λ(ut(1, st) − ut(0, st) + β∆E(V̄t+1(st+1) ∣ st)) with the

function Λ(v) ≡ exp(v)/(1 + exp(v)). The key part of the HM estimators, therefore, is to evaluate

∆E(V̄t+1(st+1) ∣st), the last term in eq. (5). They utilize the following recursive expression that can

be shown (in Appendix A) to hold by Bellman’s principle of optimality and Assumptions 1 to 3:

V̄t+1(st+1) = Uo
t+1(st+1) + βE(V̄t+2(st+2) ∣ st+1) (6)

for t such that t+1 and t+2 both belong to T . In eq. (6), the integrated optimal flow utility function

Uo
t+1(st+1) incorporates the optimal choice in period t + 1 and is a function of the CCP pt+1(st+1)

and of the expected flow utility ut+1(at+1, xt+1). Uo
t+1(st+1) has a closed form, as in Hotz and Miller

(1993, eq. (3.8)). Then, by repeatedly applying eq. (6) to t + 2, t + 3, . . . , Tend and plugging into

E(V̄t+1(st+1) ∣ st, at = a), the last term in eq. (5) becomes the difference of the following expression

between a = 1 and a = 0:

E(V̄t+1(st+1) ∣ st, at = a)

= E(Uo
t+1(st+1) ∣ st, at = a) + βE(E(V̄t+2(st+2) ∣ st+1) ∣ st, at = a)

4Assumption 2(iv) is imposed for simplicity, and gives rise to the log odds ratio on the left-hand side of eq. (5).

This assumption can be relaxed because Hotz and Miller (1993) show the existence of a one-to-one mapping between

the right-hand side of eq. (5) and the CCP, and the mapping depends only on the joint distribution of εt. This is

easy to see from the binary decision rule in eq. (3): let Fε0−ε1 be the cumulative distribution function of ε0t − ε1t,

then the CCP function equals pt = Fε0−ε1(ut(1, xt)−ut(0, xt)+β∆E(V̄t+1(st+1) ∣ st)) by the decision rule, so we have

F −1ε0−ε1(pt) = ut(1, xt) − ut(0, xt) + β∆E(V̄t+1(st+1) ∣ st), where the superscript −1 indicates inverse function.
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= E(Uo
t+1(st+1) ∣ st, at = a) + βE(E(Uo

t+2(st+2) ∣ st+1) ∣ st, at = a)

+ β2E(E(E(V̄t+3(st+3) ∣ st+2) ∣ st+1) ∣ st, at = a)

= ⋯

= E(Uo
t+1(st+1) ∣ st, at = a) + βE(E(Uo

t+2(st+2) ∣ st+1) ∣ st, at = a)

+ β2E(E(E(Uo
t+3(st+3) ∣ st+2) ∣ st+1) ∣ st, at = a) +⋯

+ βTend−t−2E(E(E(⋯E(Uo
Tend−1(sTend−1) ∣ sTend−2)⋯ ∣ st+2) ∣ st+1) ∣ st, at = a)

+ βTend−t−1E(E(E(⋯E(E(V̄Tend
(sTend

) ∣ sTend−1) ∣ sTtr−2)⋯ ∣ st+2) ∣ st+1) ∣ st, at = a). (7)

This involves iterated conditional means given, sequentially, st, st+1, and up to sTend−1. When all

the state variables in st are discrete, eq. (7) is just eq. (3.12) in Hotz and Miller (1993).

HM estimators evaluate eq. (7) by simulating many draws of entire time sequences of ob-

served state variables and choices st, at, st+1, at+1, . . . , sTend
, aTend

. Simulating from the transition

distribution of the state variables is essential in this process.5 The resulting CCPs under various

hypothesized parameter values are then matched with the observed CCPs (i.e., observed choices

proportions) in the data to solve for parameter estimates.

Remark 2 (Implementation issues of the HM estimators). The ideal draws of the state variables

st requires estimation of the choice-specific state transition densities fst∣st−1,at−1 for each t, and

estimation of the CCPs pt in eq. (4) is required to obtain the draws of the choice at for each t.

Although these draws need only to be made once, they must be used to evaluate eq. (7) for every

hypothesized parameter value. When the dimension of st is moderately large, such estimation,

simulation and numerical integration can be tedious to perform and may require a huge simulation

sample to deliver good approximation of E(V̄t+1(st+1) ∣st, at). Retaining these draws in the compute

memory can put an enormous burden on it, significantly slowing down the implementation of the HM

estimators, regardless whether the state transition distributions are parametric or nonparametric,

or whether the model is stationary or nonstationary.

In practice, a truncation period Ttr is often chosen to replace Tend in eq. (7).6 If fst∣st−1,at−1

varies with t, which generally implies that pt also varies with t (i.e., a nonstationary model),

then choosing Ttr can be tricky. On the one hand, if one chooses Ttr to be before the sample

5We are aware that with the aid of a renewal choice or a terminal choice, the above iteration and the complicated

simulation can be avoided, but our discussion is about the general case. We are also aware that when the state

variables are all discrete taking only a small number of values, there is no need to do simulation and the above

iterated expectations can be computed analytically using state transition matrices. In addition, as eq. (7) involves

choices only in the outmost conditional mean, it is not necessary to simulate the choice sequence at, at+1, . . . , aTtr

if estimation is the sole purpose. Instead, one could simply estimate the state transition fst ∣st−1 , which embeds the

optimal decision rule, and then simulate the state variable sequence sequence st, st+1, . . . , sTtr to evaluate eq. (7), but

this is somehow not common in a typical implementation of the HM estimators.
6For example, when if Tend is infinite, then choosing a large but finite Ttr is necessary, and the impact of the

truncation on the evaluation of eq. (7) is negligible since β ∈ (0,1).
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terminal period, then fst∣st−1,at−1 and pt for t ≤ Ttr can all be estimated from the data. The problem

arises when only short panel data are available (i.e., Ttr very small), in this case the impact of

the truncation is not negligible, so the estimate of E(V̄t+1(st+1) ∣ st, at) can be substantially biased,

leading to biased parameter estimates, and it is unclear how to systematically quantify such bias.

On the other hand, if one chooses Ttr to be after the sample terminal period, then they must make

additional assumptions regarding how the state variables and the flow utility parameters will evolve

beyond the data horizon in this nonstationary model. Unfortunately, there is no agreed-upon way

of making such assumptions, and it is unclear how large the bias is.

If the model is stationary, which implies that neither fst∣st−1,at−1 nor pt(⋅) depends on t, then Ttr
can be later than the sample terminal period, but simulation and numerical integration could still

be tedious to perform.

In practice, a parametric specification is often used when nonparametric estimation of fst∣st−1,at−1

is difficult, such as when st has a large dimension or contains continuous variables (see, for example,

Li and Racine, 2007, Chapter 5). It is not always obvious, however, what parametric specification

is appropriate, or how sensitive the estimates or the counterfactuals are to such a specification.

3 Identification and Estimation

In this section, we show the identification of the structural parameters of the flow utility under

common assumptions in the DDC literature (including Assumptions 1 to 3 above and Assump-

tion 4 below) and a mild new assumption (Assumption 5 below). We also provide an CCP-based

semiparametric estimator that bypasses the state transition distributions.

3.1 Identification

To show the identification of the parameters in the flow utility function ut(a, s), our analysis starts
with eq. (5) and proceeds in three steps. Section 3.1.1 collapses the iterated conditional means

in eq. (7) to a conditional mean that only conditions on st and at, by exploiting results for the

DDC models under Assumptions 1 to 3. This substantially simplifies the analysis. The Markovian

property of st (Lemma 1 below) is the most crucial, but appears to have been overlooked before.

Section 3.1.2 transforms eq. (5) (one for each t ∈ {1, . . . , T−1}) into a system of linear equations in the

structural parameters under a (weaker than) common Assumption 4 and a mild new Assumption 5.

Section 3.1.3 provides a set of testable sufficient conditions for the identification of the resulting

linear system using the usual linear GMM argument. Various implications, special cases and caveats

are also mentioned in Section 3.1.3.
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3.1.1 Collapse of Iterated Conditional Means

The difficulty of evaluating the log odds ratio for dynamic binary choice models, as opposed to static

models, as explained in Section 2.2, stems from the iterated conditional means in the last term of

eq. (5), which is the discounted future lifetime payoff difference. The first important theoretical

result of this paper is to show that those iterated conditional means can be collapsed to a much

simpler form under Assumptions 1 to 3.

Lemma 1 (Markovian observed state variables). Under Assumptions 1 and 2(i)-(iii), st is a first

order Markov process; that is, st+1 ⊥⊥ st−j ∣ st for t and j ∈ N+ such that t, t + 1 and t − j all belong

to T .

Lemma 2 (Conditional independence). For t and j ∈ N+ such that t, t + 1 and t + j all belong to

T , suppose g(⋅) is a measurable function of st+j. Then, under Assumptions 1 and 2(i)-(iii),

E(E(g(st+j) ∣ st+1) ∣ st, at) = E(g(st+j) ∣ st, at).

Theorem 1 (Collapse of iterated conditional means). Under Assumptions 1 to 3, the log odds ratio

in eq. (5) simplifies to

ln( pt
1 − pt

) = ut(1, xt) − ut(0, xt) +
T ∗−1
∑

τ=t+1
βτ−t∆E(Uo

τ (sτ) ∣ st)

+ βT ∗−t∆E(V̄T ∗(sT ∗) ∣ st) (8)

for all t and T ∗ both belonging to T such that t < T ∗.

Proof. First note that the last term of eq. (5), by eq. (7), is the sum of multiple terms that have

the form

E(E(E(⋯E(g(st+j) ∣ st+j−1)⋯ ∣ st+2) ∣ st+1) ∣ st, at), (9)

where t and j ∈ N+ are such that t, t+ 1, . . . , t+ j all belong to T , and g(⋅) is a measurable function

of st+j . As a result, the proof of this theorem will proceed in three steps. Step 1 is to use Lemma 1

to show that the expression in eq. (9) equals E(E(g(st+j) ∣ st+1) ∣ st, at). Step 2 is to use Lemma 2

to further simplify the double conditional mean. Step 3 is to apply this general simplification to

all relevant terms in eq. (5) to get the result of this theorem.

Step 1. Under Assumptions 1 and 2(i)-(iii), the expression in eq. (9) can be simplified as

E(E(E(E(E(⋯E(g(st+j) ∣ st+j−1)⋯ ∣ st+4) ∣ st+3) ∣ st+2) ∣ st+1) ∣ st, at)

= E(E(E(E(E(⋯E(g(st+j) ∣ st+j−1)⋯ ∣ st+4) ∣ st+3) ∣ st+2, st+1) ∣ st+1) ∣ st, at)

= E(E(E(E(⋯E(g(st+j) ∣ st+j−1)⋯ ∣ st+4) ∣ st+3) ∣ st+1) ∣ st, at)

= E(E(E(E(⋯E(g(st+j) ∣ st+j−1)⋯ ∣ st+4) ∣ st+3, st+1) ∣ st+1) ∣ st, at)
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= E(E(E(⋯E(g(st+j) ∣ st+j−1)⋯ ∣ st+4) ∣ st+1) ∣ st, at)

= ⋯

= E(E(g(st+j) ∣ st+1) ∣ st, at), (10)

where the first and the third equalities hold by st+3 ⊥⊥ st+1 ∣ st+2 and st+4 ⊥⊥ st+1 ∣ st+3, respectively,
both implied by Lemma 1, and the second and the fourth equalities hold by the law of iterated

expectations. The rest of eq. (10) holds by repeatedly applying the argument used in the first four

equalities to all the later periods.

Step 2. Under Assumptions 1 and 2(i)-(iii), combine eq. (10) and Lemma 2, we immediately

get

E(E(E(⋯E(g(st+j) ∣ st+j−1)⋯ ∣ st+2) ∣ st+1) ∣ st, at) = E(g(st+j) ∣ st, at). (11)

Step 3. Applying eq. (11) to every term in eq. (7) and plugging the resultant expressions to

eq. (5), which holds under Assumptions 1 to 3, we get the result of this theorem. ∎

Remark 3 (Key of collapse). As is clear from eq. (10), the key to the collapse of the iterated

conditional means in the log odds ratio is the Markovian property of st in Lemma 1, which appears

to us to be a new result for DDC models characterized by Assumptions 1 to 3 and might be of

independent interest. Intuitively, the Markovian property means that none of the observed state

variables in earlier periods provides additional information about st+j beyond what is contained in

st+j−1. At the same time, the law of iterated expectations essentially states that only the least infor-

mative information set matters. In consequence, the iterated conditional means given consecutive

earlier observed state variables comes down to a conditional mean given the earliest state variable

st+1, which is the least informative about st+j.
7

Theorem 1 is a crucial result that permits the identification analysis and the state-transition-

free estimator in this paper, because it eliminates the need of simulating the whole sequence of st,

hence the elimination of the need of estimating the state transition distributions of st (i.e., fst+1∣st).
Instead, one only needs to estimate a few conditional means given st, as we will elaborate in the

rest of this section.

3.1.2 Transformation into a Linear System

We conjecture that some progress could be made in the nonparametric identification of the expected

flow utility function ut(at, st), since Uo
τ (sτ) can be written as a linear combination of uτ(1, sτ) and

uτ(0, sτ) with the CCPs being the weights (see Lemma 3 below). We will leave this conjecture,

7Technically, let Ft denote the σ-algebra generated by st for all t ∈ T . The Markovian property implies that

for all relevant j ∈ N+, (Ft+j ∩ Ft+j−1) = (Ft+j ∩ (Ft+j−1 ∪ Ft+1)), which, combined with the trivial relationship

(Ft+j ∩Ft+1) ⊆ (Ft+j ∩(Ft+j−1∪Ft+1)), further implies (Ft+j ∩Ft+1) ⊆ (Ft+j ∩Ft+j−1), and the collapse of the iterated

conditional means shown in eq. (10) follows the law of iterated expectations straightforwardly.
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however, for future inquiry and in this paper make the following simplifying assumption that is

general than typical in the DDC literature.

Assumption 4 (Expected flow utility). Let xt denote a dx × 1 subvector of st, with dx ≤ ds. For

each t ∈ T , assume ut(0, xt) = x′tδ0,t and ut(1, xt) = x′tδ1,t for some δ0,t and δ1,t. We normalize δ0,1

to an arbitrary dx × 1 vector of constants, denoted by c.

Assumption 4 allows xt to be st itself or a proper subvector of st. In the latter case, the

coordinates of st that are not in xt, denoted by a dz × 1 vector zt (with dz ≡ ds − dx), are observed

state variables that do not affect the current flow utility but may affect the future lifetime payoff

through their impact on the distribution of st+1. We call zt “excluded variables”, and their function

will be discussed in Remark 9 below.

It is a common assumption in the DDC literature to assume that ut(0, xt) = 0 for all xt values

and all t ∈ T (or equivalently, δ0,t = 0 for all t ∈ T ), but we refrain from making such assumption

because it has been illustrated to be arbitrary and to result in substantial bias in counterfactual

analysis (Aguirregabiria and Suzuki, 2014; Norets and Tang, 2014; Chou, 2016). More importantly,

such strong assumption is unnecessary, because in contrast to static binary choice models, dynamic

models can leverage inter-temporal variation in xt to separate ut(0, xt) and ut(1, xt), in addition

to the difference between the two.8 A normalization for the sample initial period, however, is

necessary.9

The linear specification of ut(a, xt), although common in the DDC literature, may appear

restrictive. This concern could be partially alleviated as the state variables themselves and various

functions of them (e.g., power series) are allowed to be included in xt.
10 Under Assumption 4, the

identification of the flow utility function, the key primitive structural object of this model, boils

down to identifying δ0t and δ1t for t ∈ T . The next lemma links the optimal flow utility function

Uo
t (st) in eq. (8) with these parameters.

Lemma 3 (Optimal flow utility). Under Assumptions 1 to 4, the expected optimal flow utility

function Uo
t (st) for t ∈ T can be written as

Uo
t (st) = ptx′tδ1,t + (1 − pt)x′tδ0,t − pt ln(pt) − (1 − pt) ln(1 − pt). (12)

8Remark 13 below is also related to this.
9One could normalize δ1,t to an arbitrary constant vector c instead, but it will not affect the identification conditions

or the values of the parameters δ and γK discussed in Section 3.1.3 below. Moreover, because this arbitrary value

will be canceled in the difference in the sample initial period flow utility between the two choices and does not affect

future payoff, it will not affect the counterfactual analysis either. In this sense, it is a real normalization.
10In fact, it is possible to relax Assumption 4 to something similar to Assumption 5 below. That is, suppose

there exists a Ku × 1 vector of known functions of x, denoted by qKu(x) ≡ (qKu,1
(x), . . . , qKu,Ku(x))′, and for

each t ∈ T , there exist Ku × 1 unknown vectors of parameters δKu
0t and δKu

1t , such that ut(0, xt) = qKu(xt)
′δKu

0,t

and ut(1, xt) = qKu(xt)
′δKu

1,t . The identification of δKu
0,t and δKu

1,t follows the same argument as for δ0,t and δ1,t in

Section 3.1.3 below, and the bias resulting from the violation of this specification can be quantified in the same way

as in Section 4.1 below, both straightforwardly.
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An conceptual distinction that is important for our identification analysis is between decision

horizon and data horizon. Although the agent’s decision horizon is T as introduced at the beginning

of Section 2.1, the data horizon, denoted as Tda ≡ {1, . . . , T}, that is available for researchers to

observe may only be a subset of it – that is, Tend ≥ T and Tstart ≤ 1. All the results we derive so far

hold for ∀t ∈ T ; therefore, they also hold for ∀t ∈ Tda. In particular, eq. (8) still holds if T ∗ is replaced

by T . For identification analysis, however, only the data horizon should be utilized, because this

paper allows for very general nonstationarity and avoids making additional assumptions regarding

how the state variables and the flow utility parameters will evolve beyond the data horizon.11

Plugging the expression of Uo
t (st) in Lemma 3 into eq. (8), replacing T ∗ with T , rearranging

and defining

∆x̄τ1,t ≡∆E(pτxτ ∣ st) (13a)

∆x̄τ0,t ≡∆E((1 − pτ)xτ ∣ st) (13b)

∆x̄τt ≡∆E(xτ ∣ st) (13c)

yT−1 ≡ ln(
pT−1

1 − pT−1
), and (13d)

yt ≡ ln(
pt

1 − pt
) +

T−1
∑

τ=t+1
βτ−t∆η̄τt (13e)

for t = 1, . . . , T − 2 and τ > t, where

∆η̄τt ≡∆E(ητ ∣ st),

ητ ≡ pτ ln(pτ) + (1 − pτ) ln(1 − pτ), for τ > t, (14)

we get the following equations

yT−1 = x′T−1δ1,T−1 − x′T−1δ0,T−1 + β∆E(V̄T (sT ) ∣ sT−1), and

yt = x′tδ1,t − x′tδ0,t +
T−1
∑

τ=t+1
βτ−t∆x̄τ ′1,tδ1,τ +

T−1
∑

τ=t+1
βτ−t∆x̄τ ′0,tδ0,τ

+ βT−t∆E(V̄T (sT ) ∣ st)

for t = 1, . . . , T −2. We denote ∆t ≡ δ1,t−δ0,t for t = 1, . . . , T , then δ1,t = δ0,t+∆t, and these equations

can be rewritten as

yT−1 = x′T−1∆T−1 + β∆E(V̄T (sT ) ∣ sT−1), and (15a)

yt = x′t∆t +
T−1
∑

τ=t+1
βτ−t∆x̄τ ′t δ0,τ +

T−1
∑

τ=t+1
βτ−t∆x̄τ ′1,t∆τ

11Note that in contrast to the HM estimators, for which the choice of Ttr can be tricky and impactful (recall

Remark 2 above and see Section 5.3 below for further details), our approach does not require the use of a truncation

period Ttr, regardless of whether it is within or beyond the data horizon.
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+ βT−t∆E(V̄T (sT ) ∣ st) (15b)

for t = 1, . . . , T − 2, where eq. (15b) holds by the definitions of ∆x̄τ1,t, ∆x̄
τ
0,t and ∆x̄τt in eqs. (13a)

to (13c). Note that c, the arbitrary normalized value of δ0,1, does not show up in eq. (15).

We assume that the discount factor β is known for conciseness and focus on the identification of

∆t and δ0,t,
12 the key structural parameter of the model that specifies the flow utility functions in

the first T − 1 periods in the data.13 Although yt, ∆x̄
τ
t and ∆x̄τ1,t may appear to have complicated

expressions, by their definitions in eqs. (13a) to (14), they can be regarded as known for the

identification purpose, since all their components are either observed or identified from the data.

Therefore, the identification of ∆t and δ0,t will take advantage of the linear structure of eq. (15), and

the only outstanding complication is that ∆E(V̄T (sT ) ∣ st) (t = 1, . . . , T − 1) is a different unknown

function of st for each t, and yet the unknown inner function V̄T (sT ) remains invariant.

Remark 4 (Infeasibility of Robinson (1988) approach). Although eq. (15) is a partially linear

system, the approach developed by Robinson (1988) is not feasible to identify or to estimate the

linear parameters ∆t (t = 1, . . . , T − 1) and δ0,t (t = 2, . . . , T − 1). This is because the non-linear

terms in eq. (15) are unknown functions of st, which include all the regressors in the linear terms

(xt, as well as zt that show up in ∆x̄τt and ∆x̄τ1,t) as subsets (t = 1, . . . , T −1), leading to the failure

of the key condition (3.5) in Robinson (1988).

Equation (15) is of primary importance to the rest of our identification analysis, because it

resembles a system of partially linear regression equations (T−1 of them) with “dependent variables”

yt, “independent variables” xt, β
τ−t∆x̄τt and βτ−t∆x̄τ1,t, “non-linear term” βT−t∆E(V̄T (sT )∣st), and

“coefficients” ∆τ and δ0,τ (τ ≥ t).
The following assumption about the sample-terminal-period integrated value function V̄T (sT ),

new to the literature but mild, will help further transform eq. (15) into a familiar linear system,

for which we are equipped with many tools from the canon.

Assumption 5 (Sample-terminal-period integrated value function). Assume that there exists a

K × 1 vector of known functions of s, denoted by qK(s) ≡ (qK,1(s), . . . , qK,K(s))′, and a K × 1
unknown vector of parameters γK , such that

V̄T (sT ) = qK(st)′γK . (16)

12Remark 12 below shows that the identification only needs minor modification to account for unknown β, and

the corresponding estimation method follows straightforwardly by slightly modifying the estimator in Section 3.2

(omitted in this paper). Alternatively, β can be identified and estimated from a secondary data source, which is also

common in the DDC literature.
13δ1,T and δ0,T are not identified without further assumptions if T < Tend, since there are no data to distinguish

the flow utility in period T from the expected future payoffs after T . If T = Tend, then Remark 5 below show its

identification.
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Remark 5 (An important special case). Assumption 5 may appear to be a very restrictive specifi-

cation of the unknown sample-terminal-period integrated value function V̄T (sT ), but it includes an

important special case – when the sample terminal period is also the decision terminal period (i.e.,

T = Tend). In this case, the value function V̄T (sT ) in the sample terminal period consists of the

current flow utility only and by Lemma 3, it is

V̄T (sT ) = x′T δ0,T + pTx′T∆T − ηT , (17)

where ηT is defined in eq. (14), which is a function of

pT =
exp(x′T∆T )

1 + exp(x′T∆T )

due to T = Tend and eq. (5). Note that ∆T can be identified and estimated using only the cross-

sectional data on the terminal period choices and state variables, therefore, ∆T , pT and ηT can all be

regarded as known for identification purpose. In summary, this is a special case where Assumption 5

holds exactly with K = 2dx + 1, qK(xT , zT ) = (x′T , pTx′T ,−ηT )′ and γK = (δ′0,T ,∆′T ,1)′.

It might be helpful to interpret Assumption 5 as approximating the V̄T (sT ) using a series of

basis functions qK(s), such as power series. In the rest of Section 3, we proceed with Assumption 5

holding exactly, but we will discuss the approximation perspective in Section 4.

Under Assumption 5, eq. (15) becomes a system of linear equations of ∆t (t = 1, . . . , T − 1), δ0,t
(t = 2, . . . , T − 1) and γK :

yT−1 = x′T−1∆T−1 + β∆q̄K′T−1γ
K , and (18a)

yt = x′t∆t +
T−1
∑

τ=t+1
βτ−t∆x̄τ ′t δ0,τ +

T−1
∑

τ=t+1
βτ−t∆x̄τ ′1,t∆τ

+ βT−t∆q̄K′t γK (18b)

for t = 1, . . . , T − 2, where

∆q̄Kt ≡∆E(qK(st) ∣ st), (19)

whose randomness comes from both xt and zt. Like ∆x̄τt , ∆x̄
τ
1,t and yt, we can regard ∆q̄Kt as

known in the identification analysis, since they are directly identifiable from the data.

Equation (18) is the linear system that serves as the basis of our identification analysis in

Section 3.1.3. The goal, therefore, is to identify δ ≡ (∆′1, δ′0,2,∆′2, . . . , δ′0,T−1,∆′T−1)′ and γK .

3.1.3 Identification of the Linear System

This subsection gives the sufficient and necessary condition for the identification of δ and γK in

the linear system eq. (18). We also recognize that δ and γK are likely to be over-identified and
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give a few sets of sufficient conditions for that. The following features of eq. (18) are crucial for the

identification analysis: (i) the “dependent variables” yt and the “independent variables” xt, ∆x̄
τ
t ,

∆x̄τ1,t and ∆q̄Kt (t = 1, . . . , T − 1 and t < τ ≤ T − 1) consist of only observed variables or conditional

mean functions of observed variables (which can be identified in a preliminary step) and can be

regarded as known for the identification purpose, so the only unknowns are the “coefficients” δ and

γK ; (ii) eq. (18) does not contain any “error” or “disturbance” terms, so it should hold for each

and every individual agent under Assumptions 1 to 5. The identification of δ and γK , therefore,

boils down to under what conditions eq. (18) admits a unique solution. Whenever necessary, we

will use the subscript i, (i ∈ {1, . . . ,N}), with a comma and in front of all the other subscripts, to

indicate each agent in a size N random sample. In the rest of this subsection, we will first focus on

the cases of T = 2 and T = 3 to highlight the key idea, then we extend to the general T case.

We start with the special case where T = 2. In this case, eq. (18b) does not exit, θ2 ≡ (∆′1, γK′)′

are the only parameters, and eq. (18a) is equivalent to the following system of N equations with

dx +K unknowns:

y2,1 =X2,1θ2, (20)

where y2,1 denotes the N × 1 vector that stacks yi,1 (i.e., agent i’s copy of y1), and X2,1 denotes

the N × (dx +K) matrix that stacks row vectors Xi,2,1 ≡ (x′i,1, β∆q̄K′i,1 )′ (i.e., agent i’s copy of X2,1)

for i = 1, . . . ,N . An obvious sufficient condition for eq. (20) to admit a unique solution, therefore,

is that X2,1 has rank dx +K. That is, the vectors Xi,2,1 are linearly independent for some dx +K
agents.

Equation (18a) for T = 2 also implies the following system of dx +K equations with dx +K
unknowns:

E(X2,1y1) = E(X2,1X
′
2,1)θ2. (21)

The sufficient and necessary condition for eq. (21) to admit a unique solution is that its square

Jacobian matrix L2 ≡ E(X2,1X
′
2,1) – also the second moment matrix of (x′1, β∆q̄K′1 )′ – has full

rank (i.e., dx +K). This condition turns out to be also necessary for eq. (20) to admit a unique

solution, because otherwise X2,1 has a linear relationship among its variables and it cannot be

linearly independent for any dx + K agents. Also note that this condition is equivalent to the

second moment matrix of (x′1,∆q̄K′1 )′ having rank dx +K since β is a constant.

The T = 2 case is special since there is no over-identification opportunity. Our discussion so far

is summarized in the next proposition.

Proposition 1 (Identification when T = 2). When T = 2, ∆1 and γK are the only parameters.

They are identified if and only if the (dx+K)×(dx+K) matrix L2 defined above has full rank. This

condition is equivalent to that the second moment matrix of (x′1,∆q̄K′1 )′ has full rank (i.e., dx+K).

Next, we consider the case where T = 3, which clearly illustrates the sources of identification

and over-identification for T > 2 cases. When T = 3, eq. (18a) is equivalent to the following system
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of N equations with dx +K unknowns θ3,2 ≡ (∆′2, γK′)′:

y3,2 =X3,2θ3,2, (22)

where y3,2 denotes the N × 1 vector that stacks yi,2 (i.e., agent i’s copy of y2), and X3,2 denotes

the N × (dx +K) matrix that stacks row vectors Xi,3,2 ≡ (x′i,2, β∆q̄K′i,2 )′ (i.e., agent i’s copy of X3,2)

for i = 1, . . . ,N ; and eq. (18b) is equivalent to the following system of N equations with 3dx +K
unknowns θ3 ≡ (θ′3,1, θ′3,2)′:

y3,1 =X3,1θ3, (23)

where y3,1 denotes the N × 1 vector that stacks yi,1 (i.e., agent i’s copy of y1), X3,1 denotes the

N × (3dx +K) matrix that stacks row vectors Xi,3,1 ≡ (x′i,1, β∆x̄2′i,1, β∆x̄2′i,1,1, β2∆q̄K′i,1 )′ (i.e., agent
i’s copy of X3,1) for i = 1, . . . ,N , θ3,1 ≡ (∆′1, δ′0,2)′ and θ3,2 is defined above.

Just like the relationship between eq. (20) and eq. (21) for T = 2, whether eq. (22) and eq. (23)

jointly pins down a unique value for θ3 is equivalent to whether the following system of 4dx + 2K
equations with 3dx +K unknowns,

⎡⎢⎢⎢⎢⎣

E(X3,2y2)
E(X3,1y1)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0(dx+K)×2dx E(X3,2X
′
3,2)

E(X3,1X
′
3,1)

⎤⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎣

θ3,1

θ3,2

⎤⎥⎥⎥⎥⎦
, (24)

has a unique solution. The sufficient and necessary condition for this, just like for eq. (21), is that

the Jacobian matrix of the linear system eq. (24), which is no longer a square matrix and contains

more rows than columns, has full column rank (i.e., 3dx +K). Note that the first dx +K row of

eq. (24) correspond to period t = 2, and E(X3,2X
′
3,2) is the corresponding square Jacobian matrix;

the last 3dx + K row correspond to period t = 1, and E(X3,1X
′
3,1) is the corresponding square

Jacobian matrix.

Because the Jacobian matrix of eq. (24) has more rows (4dx + 2K) than columns (3dx +K), so

there might be multiple ways for it to achieve full column rank. The key source of over-identification

when T = 3 is the multitude of equations for periods t = 1 and t = 2. Our discussion of the T = 3
case is formally summarized as follows.

Proposition 2 (Identification and over-identification when T = 3). When T = 3, ∆1, δ0,2, ∆2 and

γK are the only parameters.

(i) The parameters are identified if and only if the (4dx + 2K) × (3dx +K) Jacobian matrix,

L3 ≡
⎡⎢⎢⎢⎢⎣

0(dx+K)×2dx E(X3,2X
′
3,2)

E(X3,1X
′
3,1)

⎤⎥⎥⎥⎥⎦
,

has full column rank.

(ii) If more than one matrix that consists of 3dx +K distinct rows from L3 has full rank, then

the parameters are over-identified.
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The next two corollaries provide two sets of sufficient conditions for condition (i) in Proposi-

tion 2. Corollary 1 recognizes that the equations corresponding to t = 1 contain all the relevant

parameters and have the potential of identifying them all. Corollary 2 takes advantage of the

block-triangular structure of the Jacobian matrix L3 to identify θ3,2 and θ3,1 sequentially. They

could hold at the same time, leading to over-identification of the parameters.

Corollary 1 (Identification when T = 3). When T = 3, the parameters are identified if E(X3,1X
′
3,1),

or equivalently the second moment matrix of (x′1,∆x̄2′1 ,∆x̄2′1,1,∆q̄K′1 )′, has full rank.

Corollary 2 (Identification when T = 3). When T = 3, the parameters are identified if: (i) the

second moment matrix of (x′2,∆q̄K′2 )′ has full rank (i.e., dx+K), and (ii) the second moment matrix

of (x′1,∆x̄2′1 )′ has full rank (i.e, 2dx).

The identification and over-identification conditions of the parameters for the general cases

where T > 3 can be derived following the same argument. To formally state the results, we first

define

XT,T−1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
(dx+K)×1

≡
⎡⎢⎢⎢⎢⎣

xT−1

β∆q̄KT−1

⎤⎥⎥⎥⎥⎦
, XT,t

±
((2T−2t−1)dx+K)×1

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xt

β∆x̄t+1t

β∆x̄t+11,t

β2∆x̄t+2t

β2∆x̄t+21,t

⋮
βT−1−t∆x̄T−1t

βT−1−t∆x̄T−11,t

βT−t∆q̄Kt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

for T ≥ 2 and t = 1,2, . . . , T − 2, and let

L̃T,t
±

((2T−2t−1)dx+K)×((2T−2t−1)dx+K)

≡ E(XT,tX
′
T,t) and

LT,t
±

((2T−2t−1)dx+K)×((2T−3)dx+K)

≡ [ 0((2T−2t−1)dx+K)×(2(t−1)dx) L̃T,t ]

for T ≥ 2 and t = 1, . . . , T − 1. Then the identification and over-identification conditions of the

parameters, given in the next theorem, depends on the ((T − 1)2dx + (T − 1)K)× ((2T − 3)dx +K)
matrix LT that stacks LT,t for t = T − 1, . . . ,1 (in that order). It is obvious from the definition that
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LT has a block-triangular structure as follows:

LT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×2dx 0(dx+K)×2(T−5)dx 0(dx+K)×2dx 0(dx+K)×2dx E(XT,T−1X
′
T,T−1)

0(3dx+K)×2dx 0(3dx+K)×2(T−5)dx 0(3dx+K)×2dx E(XT,T−2X
′
T,T−2)

0(5dx+K)×2dx 0(5dx+K)×2(T−5)dx E(XT,T−3X
′
T,T−3)

⋮ ⋰
0((2T−5)dx+K)×2dx E(XT,2X

′
T,2)

E(XT,1X
′
T,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Theorem 2 below encompasses Proposition 1 and Proposition 2 as special cases.

Theorem 2 (Identification and over-identification for general T ). The parameters of interest are

(δ′, γK′)′.
(i) The parameters are identified if and only if the LT matrix defined above has full column

rank.

(ii) If more than one matrix that consists of (2T −3)dx+K distinct rows from LT has full rank,

then the parameters are over-identified.

Again, condition (i) in Theorem 2 might hold under multiple distinct sets of sufficient conditions,

and two of them are the next two corollaries, which are generalization of Corollary 1 and Corollary 2,

respectively.

Corollary 3 (Identification for general T ). (δ′, γK′)′ is identified if the second moment matrix of

(x′1,∆x̄2′1 ,∆x̄2′1,1, . . . ,∆x̄τ ′1 ,∆x̄τ ′1,1, . . . ,∆x̄T−1′1 ,∆x̄T−1′1,1 ,∆q̄K′1 )′ has full rank.

Corollary 4 (Identification for general T ). (δ′, γK′)′ is identified if: (i) the second moment matrix

of (x′T−1,∆q̄K′T−1)′ has full rank (i.e., dx +K); and (ii) the second moment matrix of (x′t,∆x̄t+1′t )′

has full rank (i.e, 2dx) for all t = 1, . . . , T − 2.

Again, Corollary 3 recognizes that the equations corresponding to t = 1 contain all the relevant

parameters and have the potential of identifying them all. Corollary 4 takes advantage of the block-

triangular structure of LT to sequentially identify the parameters. Condition (i) in Corollary 4

ensures that ∆T−1 and γK are identified, which can therefore be regarded as known for subsequent

analysis. Condition (ii) in Corollary 4 then sequentially ensures the identification of ∆t and δ0,t+1

for t = T − 2, . . . ,1 (in that order).

Remark 6 (Over-identification). A few observations are worth emphasizing here. First, the fun-

damental source of over-identification, as the discussion leading to Proposition 2 indicates, is the

multitude of equations in eq. (18), one for each period t = 1, . . . , T − 1, for a given T ≥ 3. Second,

for all T ≥ 2, the equation for period t = 1 in eq. (18) contains all the parameters of interest, so it is

able to identify all the parameters if its Jacobian matrix has full rank (see Corollary 1 and Corol-

lary 3). This observation, when T is large, can be utilized to reduce the sensitivity of our estimator
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to Assumption 5 (we will elaborate this in Section 4.2 below). Third, among all the equations in

eq. (18), the one for period t contains all the parameters in the one for period t′ if t′ > t, so the

matrix LT has a block-triangular structure. This feature, as will be detailed in Remark 13 below, is

useful in dealing with time-invariant variables in xt.

The following remarks help deepen the understanding of the source of (over-)identification by

analyzing various scenarios. They also underscore that the transformation into a linear system

greatly simplifies the identification analysis of DDC models.

Remark 7 (The simplest model). The simplest version of the model in Remark 5 is when T =
Tend = 2. In this case, we have V̄2(s2) = x′2δ0,2 + p2x′2∆2 − η2 by eq. (17). Note that p2x

′
2∆2 − η2 is

known as discussed in Remark 5, so ∆E(p2x′2∆2 − η2 ∣ s1) can be moved to the left-hand side, and

eq. (18a) becomes

y1 − β∆E(p2x′2∆2 − η2 ∣ s1) = x′1∆1 + β∆E(x2 ∣ s1)′δ0,2. (27)

So, the sufficient and necessary condition in Proposition 1 boils down to none of the variables in

the vector (x′1,∆E(x2 ∣ s1)′)′ being perfectly linearly correlated with any linear combination of the

other variables in the vector. Note that x1 is a subvector of s1, so this condition essentially requires

that none of the variables in ∆E(x2 ∣ s1) is a purely linear function of x1 alone.

Remark 8 (A closer look at condition (ii) in Corollary 4). Recall the definition in eq. (13c), we

have ∆x̄t+1t =∆E(xt+1 ∣st) for t = 1, . . . , T −2. So, condition (ii) in Corollary 4 is equivalent to none

of the variables in the vector (x′t,∆E(xt+1 ∣ st)′)′ being perfectly linearly correlated with any linear

combination of the other variables in the vector. Similar to Remark 7, this essentially requires that

none of the variables in ∆E(xt+1 ∣ st) is a purely linear function of xt alone for t = 1, . . . , T − 2.

Remark 9 (Function of excluded variables). Excluded variables zt, when available, can make the

identification conditions more likely to hold although, as is clear from Remark 7 and Remark 8, they

are not essential for the identification. Consider the least favorable scenario where ∆E(xt+1 ∣ st)
contains an additive component that is linear in xt, denoted as ρ1xt, with ρ1 being a dx×dx matrix of

constants. If zt is empty, then ∆E(xt+1 ∣st) = ρ1xt, and the identification conditions in Proposition 1

and Corollary 4 fail.14 Suppose zt is non-empty and there exists a dx × 1-vector-valued function

of dz arguments and a dx × dx matrix of constants, denoted as ℓ(⋅) ≡ (ℓ1(⋅), . . . , ℓdx(⋅))′ and ρ2,15

respectively, such that

⎡⎢⎢⎢⎢⎣

xt

∆E(xt+1 ∣ xt, zt)

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2dx×1

=
⎡⎢⎢⎢⎢⎣

Idx 0dx×dz

ρ1 ρ2

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2dx×2dx

⎡⎢⎢⎢⎢⎣

xt

ℓ(zt)

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2dx×1

, (28)

14Condition (i) in Corollary 4 can be analyzed using the same argument as in Remark 8 and this remark, and

therefore is omitted for conciseness.
15ρ1, ℓ(⋅) and ρ2 are allowed to depend on t, due to the nonstationary feature of the model, but it is unnecessary

to make this dependence explicit here.
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then the following is sufficient for the identification conditions in Proposition 1 and Corollary 4:

(a) the second moment matrix of (x′t, ℓ(zt)′)′ is invertible; and (b) ρ2 has full rank (i.e., dx).

Since xt+1, xt and zt are all observed and ∆E(xt+1 ∣ xt, zt) can be nonparametrically estimated,

the plausibility of (a) and (b) can be accessed empirically. It is notable that they do not necessarily

restrict dz, the number of excluded variables. If zt enters ∆E(xt+1 ∣ xt, zt) linearly (i.e., ℓ(⋅) are all

linear functions in all arguments), then they require that dz ≥ dx.16 The other extreme is that the

variation of zt and the non-linearity in ℓ(⋅) combined are such that the variables in (x′t, ℓ(zt)′)′ are
mutually linearly independent, then one excluded variable suffices. Many cases in between the two

extremes are also possible.

Remark 10 (Consequences of (falsely) normalizing δ0,t). If one assumes, despite of resulting biased

counterfactuals discussed after Assumption 4, that δ0,t = 0 for t = 1, . . . , T , then they will find that

the identification condition of ∆t for t = 1, . . . , T − 1 becomes quite simple when T = Tend. First,

because ∆T is identified as shown in Remark 5, ∆E(pTx′T∆T −ηT ∣ sT−1) can be regarded as known,

then eq. (18a) becomes

yT−1 − β∆E(pTx′T∆T − ηT ∣ sT−1) = x′T−1∆T−1,

and therefore ∆T−1 is identified from this equation under the usual condition that the variables in

xT−1 are not perfectly correlated. Similarly, eq. (18b) becomes

yt − β∆E(pTx′T∆T − ηT ∣ sT−1) −
T−1
∑

τ=t+1
βτ−t∆x̄τ ′1,t∆τ = x′t∆t

for t = 1, . . . , T −2. Because the left-hand side is known from the data after period t, ∆t is identified

recursively under the usual condition that the variables in xt are not perfectly correlated. Also note

that excluded variables play no role in this setting.

Remark 11 (Stationary models). If the model is stationary, then ∆t = ∆̄ and δ0,t = δ̄0 for all t.

Due to such restrictions on the parameters, eq. (18) becomes

yT−1 = x′T−1∆̄ + β∆q̄K′T−1γ
K , and (29a)

yt = (x′t +
T−1
∑

τ=t+1
βτ−t∆x̄τ ′1,t) ∆̄ + (

T−1
∑

τ=t+1
βτ−t∆x̄τ ′t ) δ̄0 + βT−t∆q̄K′t γK (29b)

for t = 1, . . . , T − 2. The (over-)identification of ∆̄, δ̄0 and γK can therefore be clearly analyzed

using eq. (29).

16To see this, first note that we can let ℓ(zt) = zt without loss of generality, then eq. (28) implies that we need 2dx

linearly independent random variables (the left-hand side) that are linear combinations of dx + dz random variables

(the last vector on the right-hand side).
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A novel observation about stationary models can be made here: if T ≥ 3, then stationary models

may not even need the normalization δ0,1 = c we made in Assumption 4. To illustrate, consider the

case when T = 3, in which eq. (29) becomes

y2 = x′2∆̄ + β∆q̄K′2 γK , and (30a)

y1 = (x′1 + β∆x̄2′1,1) ∆̄ + (β∆x̄2′1 ) δ̄0 + β2∆q̄K′1 γK . (30b)

Then ∆̄ and γK are identified from eq. (30a) if the variables in x2 and ∆q̄K2 are not perfectly

correlated, and then δ̄0 is identified from eq. (30b) if the variables in ∆x̄21 are not perfectly corre-

lated. Since δ0,t = δ̄0 for all t, δ0,1 is identified from the data rather than relying on an arbitrary

normalization. The intuition, as we mentioned in the discussion after Assumption 4, is that the

inter-temporal variation in dynamic models provides extra identification source than static models,

even if the models are stationary.

Remark 12 (Identification with unknown discount factor). So far, our analysis assumes that the

discount factor β is known, but in fact, β can be easily identified with a slightly stronger condition.

For notational conciseness, we focus on the T = 3 case, and the key idea is clearly illustrated by

strengthening the conditions for the sequential identification approach in Corollary 2.

Under condition (i) in Corollary 2 (i.e., the second moment matrix of (x′2,∆q̄K′2 )′ has full rank),
(∆′2, βγK′)′ are identified through eq. (18a) and can then be regarded as known. The unique solution

of eq. (18b), on the other hand, is equivalent to the unique solution of

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(x1y1)
E(∆x̄21y1)
E(∆x̄21,1y1)
E(∆q̄K1 y1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(x1x′1) E(x1∆x̄2′1 ) E(x1∆x̄2′1,1) E(x1∆q̄K′1 )
E(∆x̄21x′1) E(∆x̄21∆x̄2′1 ) E(∆x̄21∆x̄2′1,1) E(∆x̄21∆q̄K′1 )

E(∆x̄21,1x′1) E(∆x̄21,1∆x̄2′1 ) E(∆x̄21,1∆x̄2′1,1) E(∆x̄21,1∆q̄K′1 )
E(∆q̄K1 x′1) E(∆q̄K1 ∆x̄2′1 ) E(∆q̄K1 ∆x̄2′1,1) E(∆q̄K1 ∆q̄K′1 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆1

βδ0,2

β∆2

β(βγK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(31)

where the last dx + K subvector of the unknown vector is proportional to the known parameters

(∆′2, βγK′)′ by a factor of β, and the first 2dx subvector of the unknown vector is the unknown

parameters (∆′1, βδ′0,1)′. It is obvious, therefore, that β and (∆′1, βδ′0,1)′ can be identified if the

second moment matrix of the vector that consists of (x′1,∆x̄2′1 )′ and any one single variable from

(∆x̄2′1,1,∆q̄K′1 )′ has full rank, which is only slightly stronger than condition (ii) in Corollary 2 (i.e.,

the second moment matrix of (x′1,∆x̄2′1 )′ has full rank).

A subtle identification requirement is made more explicit by our discussion in Remark 7 to

Remark 12 – the choice at must exert impact on the next-period state variables xt+1, otherwise at

least some coordinates of ∆E(xt+1 ∣st) will be zeros, and the corresponding coefficients in δ (or γK)

cannot be identified.
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This requirement will be violated if xt contains an intercept or some variables that remain time-

invariant for the entire sample duration, such as birthplace. Another perspective to understand

this problem is by recalling the paragraph after Assumption 4, where we mentioned that the inter-

temporal variation in the state variables xt can be utilized to relax the common “normalization”

δ0,t = 0 for all t in the DDC literature. Therefore, if the inter-temporal variation in xt is absent,

proper normalization is needed, which is characterized by the next remark.

Remark 13 (Identification with intercept or time-invariant variables in xt). To accentuate the

identification issue that arises due to time-invariant variables in xt, here we focus on the case

where the value of only the first coordinate of xt, denoted by xt,1, remains time-invariant for each

agent for the entire sample duration. For conciseness, we also assume that none of the functions

in ∆E(qK(st) ∣ sT−1) is a function of xT−1,1 alone so that ∆T−1 and γK are identified. The general

case where multiple coordinates of xt are time-invariant, as well as the minor modification needed

to accommodate them in identification and estimation, is elaborated in Appendix D.1.

A problem emerges when one tries to identify δ0,t (t = 2, . . . , T − 1) in the presence of a time-

invariant xt,1. This problem is best understood via the sequential approach in Corollary 4. Take

eq. (18b) for t = T − 2 as an example, it becomes

yT−2 − β∆x̄T−1′1,T−2∆T−1 − β2∆q̄K′T−2γ
K = x′T−2∆T−2 + β∆x̄T−1′T−2 δ0,T−1, (32)

where the left-hand side is known, and the first coordinate of ∆x̄T−1T−2, i.e., ∆E(xT−1,1 ∣xT−2, zT−2), is
zero, because xT−1,1 = xT−2,1 for both aT−2 = 1 and aT−2 = 0. In consequence, the first coordinate of

δ0,T−1 cannot be identified. Note, however, that eq. (32) holds regardless of its value. On the other

hand, all coordinates of ∆T−2 can be identified using eq. (32), including the coefficient for xT−2,1

(just like how intercept can be identified in a linear regression).

Then proceed to eq. (18b) for t = T − 3, and it becomes

yT−3 − β∆x̄T−2′1,T−3∆T−2 − β2∆x̄T−1′1,T−3∆T−1 − β2∆x̄T−1′T−3 δ0,T−1 − β3∆q̄K′T−3γ
K

= x′T−3∆T−3 + β∆x̄T−2′T−3 δ0,T−2, (33)

where the left-hand side is known. To see this, note that even though the first coordinate of

δ0,T−1 is not identified, it does not matter since the corresponding coordinate of ∆x̄T−1T−3, i.e.,

∆E(xT−1,1 ∣ xT−3, zT−3), is zero, because xT−1,1 = xT−2,1 for both aT−3 = 1 and aT−3 = 0, by es-

sentially the same argument as before. This means that we are free to normalize the first coordinate

of δ0,T−1 to any real value, and it will not affect the identification and estimation of the other

parameters.17

This argument proceeds recursively for all earlier periods, and a few insights can already be drawn

from our detailed analysis of the last three periods. First, ∆t for t = 1, . . . , T − 1 are identified even

17For the counterfactual scenario where xt,1 remains the same value for the entire time, this normalization does

not affect the counterfactual analysis either.
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in the presence of time-invariant variable, and this is not surprising because only contemporaneous

cross-sectional variation is required to identify the difference in flow utility between the two choices

(recall static binary choice models). Second, the first coordinates of δ0,t for t = 2, . . . , T − 1 cannot

be identified if xt,1 remains time-invariant for each agent for the entire sample duration (since

condition (ii) in Corollary 4 fails), but their values do not affect the identification and estimation

of the other parameters, and therefore they can be normalized to arbitrary values. More generally,

if there are other coordinates in xt that remain time-invariant for each agent for the entire sample

duration, then by the same argument, the corresponding coordinates in δ0,t for t = 2, . . . , T −1 cannot

be identified but can be arbitrarily normalized. Third, the coordinates of δ0,t for t = 2, . . . , T − 1 that

correspond to time-varying variables in xt can be identified. Theorem 2’ in Appendix D gives the

modified sufficient and necessary condition for the identification of these parameters as well as ∆t

for t = 1, . . . , T − 1. It is worth pointing out that time-varying variables do not have to change

value for every agent in every period. As is clear from the above argument, the identification of the

coordinates of δ0,t (t = 2, . . . , T −1) only requires the corresponding coordinates of xt to change value

for some agent in every period so that the corresponding coordinates of ∆E(xT−1 ∣st) are non-zeros

at the population level. As a result, the coefficients in δ0,t (t = 2, . . . , T − 1) of both intermittently

time-varying variables (e.g., marital status, highest degree) and continually time-varying variables

(e.g., age, disposable income) are identified.

3.2 Estimation

This subsection provides an estimation procedure of the flow utility parameters based on a random

sample of size N , where for each agent i ∈ {1, . . . ,N} we observe Di,t ≡ (ai,t, s′i,t)′ = (ai,t, x′i,t, z′i,t)′

for every period t ∈ Tda = {1, . . . , T}. Let Di denote all observed variables for agent i.

We use p to collectively denote all CCPs, use ∆η̄ to collectively denote all ∆η̄τt (t = 1, . . . , T −2,
t < τ ≤ T − 1), use ∆x̄ to collectively denote all ∆x̄τ1,t and ∆x̄τt (t = 1, . . . , T − 2, t < τ ≤ T − 1), and
use ∆q̄K to collectively denote all ∆q̄Kt (t = 1, . . . , T − 1). In light of the identification analysis in

Section 3.1.3, the parameters δ and γK can be estimated via minimum distance (MD) using the

following moment functions:

mT−1(D,δ, γK , p,∆η̄,∆x̄,∆q̄K) ≡ −vT−1(D,δ, γK , p,∆η̄,∆x̄,∆q̄K)XT,T−1, and (34a)

mt(D,δ, γK , p,∆η̄,∆x̄,∆q̄K) ≡ −vt(D,δ, γK , p,∆η̄,∆x̄,∆q̄K)XT,t, (34b)

where vT−1(D,δ, γK , p,∆η̄,∆x̄,∆q̄K) ≡ yT−1−x′T−1∆T−1−β∆q̄K′T−1γ
K , vt(D,δ, γK , p,∆η̄,∆x̄,∆q̄K) ≡

yt − x′t∆t −∑T−1
τ=t+1 β

τ−t∆x̄τ ′t δ0,τ −∑T−1
τ=t+1 β

τ−t∆x̄τ ′1,t∆τ − βT−t∆q̄K′t γK for t = 1, . . . , T − 2, and XT,t

for t = 1, . . . , T − 1 are defined in eq. (25). Let m(D,δ, γK , p,∆η̄,∆x̄,∆q̄K) be the stack of the

moment functions mt(D,δ, γK , p,∆η̄,∆x̄,∆q̄K) for t = T − 1, . . . ,1 (in that order), which is a

((T − 1)2dx + (T − 1)K)× 1-vector-valued moment function that equals zeros under the true values
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of δ and γK . In this moment function, the nuisance parameters p, ∆η̄, ∆x̄ and ∆q̄K , which are

all conditional mean (difference) functions, need to be estimated in preliminary steps. Recall that

∆η̄, ∆x̄ and ∆q̄K all take the common form of ∆E(hτ ∣ xt, zt) (t = 1, . . . , T − 2, t < τ ≤ T − 1) in

eq. (2), where the generic notation hτ denotes a random variable that is either directly observable

or identified after knowing the CCP functions pτ . The specific expressions of hτ for ∆η̄τt , ∆x̄
τ
t and

∆q̄Kt are known and are given in eq. (14), eqs. (13a) to (13c), and eq. (19), respectively.

To summarize, the estimation proceeds in the following three steps.

(I) For each t = 1, . . . , T −1, use the data {Di,t}Ni=1 to estimate the CCP function pt in eq. (4) and

obtain the estimated CCP values p̂i,t for each agent i ∈ {1, . . . ,N}.18

(II) Obtain ĥi,τ by substituting unknown pi,τ with p̂i,τ whenever applicable. Then, for each

t = 1, . . . , T − 2 and t < τ ≤ T − 1, use the data {ĥi,τ ,Di,t}Ni=1 to estimate the corresponding

conditional mean difference functions in ∆̂η̄, ∆̂x̄ and ∆̂q̄K and obtain their estimated values

for each agent i ∈ {1, . . . ,N}.

(III) Let m̄N(δ, γK) ≡ 1
N ∑

N
i=1 m̂(Di, δ, γ

K), where m̂(Di, δ, γ
K) ≡ m(Di, δ, γ

K , p̂, ∆̂η̄i, ∆̂x̄i, ∆̂q̄
K
i ).

Then, (δ̂′, γ̂′K)′ is the MD estimator as follows:

(δ̂′, γ̂K′)′ ≡ argmin
δ∈R(2T−3)dx ,γK∈RK

m̄N(δ, γK)′WNm̄N(δ, γK), (35)

whereWN is a ((T − 1)2dx + (T − 1)K)×((T − 1)2dx + (T − 1)K) symmetric weighting matrix

that converges in probability to a positive definite matrix W as N →∞.

Although the unique solution to eq. (35) has an explicit-form solution due to the linearity of

m̄N in δ and γK , we skip it for conciseness, since the the convexity of the objective function in

eq. (35) makes it easy to solve numerically.

Remark 14 (Advantages of our estimator). The advantages of our CCP-based semiparametric

estimator, compared to the HM estimators recounted in Section 2.2, are threefold. First, it avoids

the estimation of the state transition distributions fst∣st−1,at−1. Estimating the conditional means is

a problem with smaller dimension and better finite-sample properties than the state transition dis-

tributions, which can be difficult to estimate or simulate nonparametrically, especially when st has a

large dimension or contains both continuous and discrete variables (e.g., spouse income and number

of young children). The fact that any finite-order Markov process of finite number of variables can

be rewritten as a first-order Markov process by expanding the state vector exacerbates the large-

dimension problem even further. Even if a parametric specification is used, specifying a conditional

18The CCP functions could be parametrically or nonparametrically, and for generality we assume this is done

nonparametrically. The same goes for other unknown functions below unless indicated otherwise.
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mean model is easier than specifying the entire conditional distribution. Second, unlike the HM es-

timators, which require simulating from the estimated state transition distributions, our estimator

only uses the observed data, and therefore is much less demanding computationally. (In the simu-

lation experiments in Section 5 below, the HM estimator is a thousand times more time-consuming

than our estimator.) Third, although estimating, simulating from state transition distributions is

unavoidable for counterfactual analysis, our state-transition-distribution-free estimator could still

serve as a benchmark to guide the choice among parametric state transition models.

Remark 15 (Estimation step (II)). The conditional mean difference functions ∆̂η̄, ∆̂x̄ and ∆̂q̄K ,

taking the common form of ∆E(hτ ∣ xt, zt) = E(hτ ∣ xt, zt, at = 1) − E(hτ ∣ xt, zt, at = 0), resemble

the average treatment effect in the program evaluation and the missing data literature.19 Many

estimators from that literature can therefore be used, and here we briefly discuss two of them.

A “inverse probability weighted” (IPW) estimator is based on a useful identity ∆E(hτ ∣ xt, zt) =
E(ϕ(hτ , at, pt) ∣ xt, zt), where

ϕ(hτ , at, pt) ≡
athτ
pt
− (1 − at)hτ

1 − pt
, (36)

and the function Φ(xt, zt) ≡ E(ϕ(hτ , at, pt) ∣ xt, zt) can be estimated by regressing ϕ(ĥi,τ , ai,t, p̂i,t)
on xi,t and zi,t.

20 Then, the estimated value of the corresponding function for agent i equals to

Φ̂(xi,t, zi,t).
A “conditional mean projection” (CEP) estimator (or “imputation” estimator) estimates the

function Φ1(xt, zt) ≡ E(hτ ∣ xt, zt, at = 1) using the subsample {ĥi,τ , xi,t, zi,t}ai,t=1 and estimates the

function Φ0(xt, zt) ≡ E(hτ ∣xt, zt, at = 0) using the subsample {ĥi,τ , xi,t, zi,t}ai,t=0 for t = 1, . . . , T − 2,
t < τ ≤ T − 1. Then, the estimated value of the conditional mean difference for agent i equals to

Φ̂1(xi,t, zi,t) − Φ̂0(xi,t, zi,t).
19It is worth pointing out that the goal of step (II) is simply to estimate the conditional means of realized (directly

observed or previously identified) hτ given xt, zt and at, not the (unconditional or conditional) means of “potential

outcomes” like in the program evaluation literature. As a result, the “ignorability” condition, which serves the

purpose of equating the conditional means of realized variables to structural parameters in the potential outcome

model, is not required to hold. On the other hand, one can conceptualize the realized hτ in a future period τ (τ > t)

as hτ = ath
(1)
τ +(1−at)h

(0)
τ , where h

(1)
τ and h

(0)
τ are “potential outcomes” for scenarios at = 1 and at = 0, respectively.

Then the DDC model studied in this paper (particularly, Assumptions 1 to 3) permits “ignorability” in the sense

that Assumptions 1 to 3 do not necessarily imply or exclude (h
(1)
τ , h

(0)
τ ) ⊥⊥ at ∣ xt, zt, and vice versa.

20Equation (36) holds due to the Law of Total Probability. To see this, note that

E(athτ ∣ xt, zt) = E(athτ ∣ xt, zt, at = 1)Pr(at = 1 ∣ xt, zt) + E(athτ ∣ xt, zt, at = 0)Pr(at = 0 ∣ xt, zt)

= E(hτ ∣ xt, zt, at = 1)pt(xt, zt).

Because pt is a function of xt, zt only, it can be moved to the left-hand side of the equation and into the conditional

expectation, implying E(athτ /pt ∣ xt, zt) = E(hτ ∣ xt, zt, at = 1). Similarly, it can be shown that E((1 − at)hτ /(1 −

pt) ∣ xt, zt) = E(hτ ∣ xt, zt, at = 0). Again, note that the “ignorability” condition is not required for eq. (36) to hold.
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Both the IPW and the CEP estimators are shown to be
√
N -consistent and asymptotically

normal (Hirano, Imbens and Ridder, 2003; Chen, Hong and Tamer, 2005), but the CEP estimator

requires weaker regularity conditions. In particular, it does not require the CCPs to be uniformly

bounded away from zero and one. Suppose the IPW estimator is used in step (II) and fulfills the

regularity conditions in Section 5 of Newey (1994a), then Proposition 3 below gives the asymptotic

distribution of δ̂ by characterizing its influence function. Its derivation heavily uses Newey (1994a)’s

pathwise-derivative-based characterization of the influence function of semiparametric estimators,

which is relegated to Appendix C. Meanwhile, Chen, Hong and Tarozzi (2008) show that the IPW

and the CEP estimators are asymptotically equivalent (eqs. (7) and (12), as well as the discussion

on p.819), so if the CEP estimator is used in step (II), the asymptotic distribution of δ̂ will remain

the same as in Proposition 3.21

To state the proposition, we let mt,0(D) ≡ mt(D,δ0, γK0 , p0,∆η̄0,∆x̄0,∆q̄K0 ) for t = 1, . . . , T − 1
and stack them to m0(D) ≡ (mT−1,0(D), . . . ,m1,0(D))′. Here and in the rest of this paper, we use

the subscript “,0”, with a comma in the front and after all the other subscripts (if applicable), to

emphasize that all the parameters (potentially infinite-dimensional) that the object involves take

the true values. The influence function of (δ̂′, γ̂K′)′ takes the form

ψ(D) ≡ −(L′TWLT )−1L′TW (m0(D) + α(D)) , (37)

where

α(D) ≡ αη(D) + αx(D) + αq(D) + αp,direct(D) + αp,indirect(D),

LT is defined in eq. (26), and αη(D), αx(D), αq(D), αp,direct(D) and αp,indirect(D) are defined in

eq. (C.2), eq. (C.3), eq. (C.4), eq. (C.5) and eq. (C.6) in Appendix C, respectively.

Proposition 3 (Asymptotic distribution of δ̂). Under Assumptions 1 to 5 and the regularity condi-

tions in Section 5 of Newey (1994a), the three-step CCP-based semiparametric estimator δ̂ defined

in eq. (35) has the asymptotic distribution

√
N (δ̂ − δ) d.Ð→ N (0, V ) ,

where V ≡ E(ψδ(Di)ψ′δ(Di)), and ψδ(⋅) is the first (2T − 3)dx coordinates of the influence function

ψ(D) in eq. (37).

To use Proposition 3 for inference, a consistent estimator of the asymptotic variance V is

necessary. We follow Lemma 5.4 of Newey (1994a) to give a general approach to V̂ , although for

specific nonparametric conditional mean estimators (e.g., kernel or series) used in steps (I) and (II),

simpler estimators are often available (Newey, 1994a,b). Let

̂̃LT,T−1 ≡
⎡⎢⎢⎢⎢⎣

1
N ∑

N
i=1 xi,T−1x

′
i,T−1

β
N ∑

N
i=1 xi,T−1∆̂q̄

K′
i,T−1

β
N ∑

N
i=1 ∆̂q̄

K
i,T−1x

′
i,T−1

β2

N ∑
N
i=1 ∆̂q̄

K
i,T−1∆̂q̄

K′
i,T−1

⎤⎥⎥⎥⎥⎦
,

21We will use the CEP estimator in step (II) in our simulation experiments (Section 5).
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where ∆̂q̄Ki,T−1 ≡ ∆̂E (qK(xT , zT ) ∣ xi,T−1, zi,T−1). Define ̂̃LT,t similarly for t = 1, . . . , T −2 so that we

obtain L̂T . In addition, let α̂η(Di), α̂x(Di), α̂q(Di), α̂p,direct(Di) and α̂p,indirect(Di) be estimators

of αη(Di), αx(Di), αq(Di), αp,direct(Di) and αp,indirect(Di), respectively, with unknown parameters

and functions in the latter be replaced by the corresponding estimates obtained via our estimator.

Define

α̂(Di) ≡ α̂η(Di) + α̂x(Di) + α̂q(Di) + α̂p,direct(Di) + α̂p,indirect(Di),

φ̂(Di) ≡m(Di, δ̂, γ̂
K , p̂, ∆̂η̄, ∆̂x̄, ∆̂q̄) + α̂(Di),

Σ̂ ≡ 1

N

N

∑
i=1
φ̂(Di)φ̂(Di)′, and

V̂ ≡ (L̂′TWN L̂T )−1L̂′TWN Σ̂WN L̂T (L̂′TWN L̂T )−1. (38)

Proposition 4 (Consistent estimator of asymptotic variance). Under Assumptions 1 to 5 and the

regularity conditions in Section 5 of Newey (1994a), V̂
p.Ð→ V .

The results in this subsection premise that none of the variables in xt is time-invariant, and,

according to Remark 13, all coordinates of δ and γK are identified. To accommodate time-invariant

variables in xt, we merely need to slightly revise the notation to exclude the unidentified (and

unnecessary to estimate) coordinates of δ0,t, and all the results in this subsection essentially remain

unchanged for the other coordinates. We elaborate this in Appendix D.2.

4 Sensitivity of Estimation to Assumption 5

The sample-terminal-period integrated value function V̄T (sT ) oftentimes has a different form from

that in Assumption 5. In this section, we will first quantify the estimation bias of the flow utility

parameter induced by imposing Assumption 5 when it might be violated. Then, we will discuss

how to utilize the over-identification opportunity in the linear system eq. (18) to reduce the impact

of Assumption 5 on estimation.

4.1 Bias in Estimation from Imposing Assumption 5

The parametric form V̄T (sT ) = qK(xT , zT )′γK in Proposition 3 can be interpreted as an approxi-

mation of V̄T (sT ), especially when one uses common series basis functions, such as power series, as

qK(xT , zT ). Define the approximation error

rK(xT , zT ) ≡ V̄T (sT ) − qK(xT , zT )′γK

and its expected difference in period t (t = 1, . . . , T − 1)

∆r̄Kt ≡∆E(rK(xT , zT ) ∣ xt, zt).
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Next lemma shows that the expected difference of the approximation error diminishes rapidly with

K, the dimension of the approximation of V̄T (sT ).

Lemma 4 (Approximation error ∆r̄Kt due to approximating V̄T (sT ) by power series). Suppose

that

(i) qK(xT , zT ) is a triangular sequence of powers of (xT , zT );22

(ii) K = (k + 1)ds, where ds = dx + dz is the dimension of sT , so that qK(xT , zT ) has powers in all

state variables at least up to k;

(iii) the support S of sT = (xT , zT ) is a compact subset of Rds;

(iv) V̄T (sT ) is m times continuously differentiable.

Then there exists γK such that the resulting approximation error satisfies

E((∆r̄Kt )2) = O (K
− 2m

ds ) , for t = 1, . . . , T − 1.

Let δKpseudo denote the probability limit of our estimator δ̂ in eq. (35). Because the m̄N in eq. (35)

is linear in δ and γK , we know that δKpseudo exists, is unique and has an explicit-form solution under

the conditions of Theorem 2 (see, for example, Newey and McFadden, 1994).23 These properties

help translate the approximation error of V̄T (sT ) to the asymptotic bias δKpseudo−δ straightforwardly.

Theorem 3 (Asymptotic bias bound of δ̂ due to approximating V̄T (sT ) by power series). Suppose

Assumptions 1 to 4 and the conditions (i) to (iv) in Lemma 4 hold. Also suppose that qK(xT , zT )
and xt for t = 1, . . . , T − 1 all have finite second moments, 0 < λmin(W ) ≤ λmax(W ) < ∞, and 0 <
λmin(L′L) ≤ λmax(L′L) <∞, where λmin and λmax denote the smallest and the largest eigenvalues,

respectively. Let ∥ ⋅ ∥ denote the Frobenius norm, then we have

∥δKpseudo − δ∥ = O (K
−m

ds ) .

4.2 Reducing Sensitivity of Estimation to Assumption 5

When the sample horizon is long, an advantage of the HM estimators is that the sample-terminal-

period integrated value function V̄T (sT ) has a negligible impact on estimation. This is visible from

eq. (7), where only the last term contains V̄Ttr(sTtr) and the pre-multiplied factor βTtr−t−1 quickly

approaches zero as Ttr − t increases. In fact, a typical implementation of the HM estimators would

truncate and ignore the last term of eq. (7) for this reason. The same idea, combine with the

22That is, power of each state variable is added to qK(xT , zT ) one by one, and qK(xT , zT ) includes all lower order

powers before adding any higher order power. See eq. (22) in Hirano, Imbens and Ridder (2003) for details.
23In addition, Proposition 3 continues to hold with δ replaced by δKpseudo.
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over-identification opportunity recognized in Remark 6, can be leveraged to reduce the sensitivity

of our estimator to Assumption 5.

Start by considering eq. (15b) for t = 1. It contains the entire parameter vector δ and is linear

in δ; only the last term of it contains V̄T (sT ) and the pre-multiplied factor βT−1 quickly approaches

zero as T increases. Truncating the last term, eq. (15b) for t = 1 becomes a linear equation

y1 = x′1∆1 +
T−1
∑
τ=2

βτ−1∆x̄τ ′t δ0,τ +
T−1
∑
τ=2

βτ−1∆x̄τ ′1,1∆τ ,

which is capable of identifying the entire vector δ if the usual rank condition holds.24 Similarly,

eq. (15b) for t = 2, when truncating the last term, is capable of identifying the last (2T −5)dx coor-

dinates of δ; and the same logic applies to those t for which βT−t is reasonably small. Therefore, the

truncated version of eq. (15b) for the first few periods constitute a linear system that is insensitive

to Assumption 5, but at the same time still provides ample over-identification opportunity.

5 Simulation Experiments

Using a simple three-period model, we compare the performance of our three-step semiparametric

estimator in Section 3.2, referred to as the CRS estimator henceforth, with that of a generic

nonparametric implementation of the HM estimator. The simulation results below substantiate

our discussion in Remark 14 – the CRS estimator presents comparable or better estimates than the

HM estimator, yet it requires fewer assumptions in certain scenarios and is substantially easier to

implement than the HM estimator.

5.1 Model Specification and Parameterization

We consider a three-period model (i.e., Tstart = 1 and Tend = 3) with two time-varying observed

state variables xt,1 and xt,2 and an intercept (i.e., dx = 3), as well as one observed excluded variable

zt, for t = 1,2,3. Let the flow utility function be

ut(a, xt) = δa,t,0 + δa,t,1xt,1 + δa,t,2xt,2, (39)

with the parameters for a = 1 being (δ1,t,0, δ1,t,1, δ1,t,2) = (−1,0.4,0.5) and the parameters for a = 0
being (δ0,t,0, δ0,t,1, δ0,t,2) = (2.9,−0.5,−0.8), all remaining invariant for all periods t = 1,2,3.

The time-varying state variables st = (x1t, x2t, zt)′ follow time-invariant choice-specific VAR(1)

transition processes:

(xt,1, xt,2, zt)′ = ca +Aa(xt−1,1, xt−1,2, zt−1)′ +wat,

24Precisely, if the upper-left ((2T − 3)dx) × ((2T − 3)dx) submatrix of L̃1 has full rank.
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where Aa is a 3 × 3 matrix, ca is a 3 × 1 vector, and wat ∼ N(03×1,Σa) and independent across

a = 0,1 and t = 1,2,3. We let

c0 = (2,1,0)′, A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0 0.2

0 0.2 0.2

0 0 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and Σ0 =
1

2
⋅ I3×3.

We let a = 1 be a “reset” choice in the sense that A1 = 03×3. To ensure that the stationary

distribution of st is the same whether at = 0 or 1,25 we let

c1 = (I3×3 −A0)−1c0 = (2.5,1.25,0)′, vec(Σ1) = (I9×9 −A0 ⊗A0)−1 vec(Σ0).

We let the discount factor β = 0.9 and assume that it is known to researchers.

To generate a simulation sample from this model, we must know the CCP function pt(xt,1, xt,2, zt)
for any value of the continuous vector (xt,1, xt,2, zt) by solving the dynamic programming (DP) prob-

lem. This is not a trivial task, and we proceed in three steps. First, we discretize the continuous

state space of st into an efficient grid and obtain the corresponding state transition processes using

the “EDS” method (Maliar and Maliar, 2015; Gordon, 2021). This allows us to draw from a much

smaller number of state grid points but still approximate well the stochastic behavior of the state

variables. Second, we solve the DP problem backwardly with the state variables on the discrete

EDS grid, which was shown to well approximate the solution of the original DP problem (Maliar

and Maliar, 2015). This step gives the CCP value on the discrete EDS grid, from which we obtain

the CCP function of continuous state variables by polynomial interpolation. Third, we simulate

the three periods of the state variables st and the choices at for N agents and R Monte Carlo

repetitions. The details of these three steps, which might be of independent interest, can be found

in Appendix F. We acknowledge that this “discretization-interpolation” approach to generating

simulation samples will inevitably result in bias in final parameter estimation, but because the

CRS and the HM estimators are based on the same simulation samples, any approximation errors

in generating the samples should affect both estimators equally.

In all of our simulation experiments, we use all the three periods of data for estimation (i.e.,

T = 3).26 Although the flow utility parameters and the state transition processes are in fact time-

invariant, we assume that researchers do not have this piece of information and allow them to vary

with t. With three periods of data available, the implementation of the HM estimator depends

crucially on whether researchers know that the sample terminal period is the decision terminal

period. The next two subsections will report, separately, the simulation results in the scenarios

where researchers know or do not know T = Tend.
25As detailed in Appendix F.1, this property makes the model easier to discretize.
26Note that T = 3 is a case that is less favorable to the CRS estimator because, as argued in Section 4.2, the

longer the data horizon (i.e. T larger), the less sensitive the CRS estimator is to Assumption 5. On the other hand,

the shorter the data horizon, the faster it is for the HM estimator to simulate the state variables and the choices if

researchers know T = Tend.
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5.2 Results If Researchers Know T = Tend = 3
If researchers know that T = Tend, then Assumption 5 in this paper holds with qK(xT , zT ) taking a

known form (recall Remark 5). At the same time, the HM estimator does not need to simulate the

state transition distributions and the choices beyond the third period when evaluating the moment

functions.

In this scenario, δ0,1,k (k = 0,1,2) are normalized to the true value (2.9,−0.5,−0.8) (recall

Assumption 4), δ0,t,0 (t = 1,2,3) are not identified but can be normalized to its true value 2.9

(recall Remark 13), and δ0,3,k (k = 1,2) and ∆3,k (k = 0,1,2) are a part of γK (recall Remark 5, so

δ1,3,k for k = 0,1,2 are also identified and estimated). In total, 13 out of 18 flow utility parameters

are identified and estimated by both the CRS and the HM estimators. We let N = 250 and R = 1000.

Table 1: Flow Utility Parameter Estimates If T = Tend = 3 Is Known

CRS estimator HM estimator

δa,t,k Truth Bias Std Dev MSE Bias Std Dev MSE

δ1,1,0 −1.0 −0.107 0.602 0.374 −0.228 0.790 0.676

t = 1 δ1,1,1 0.4 0.020 0.201 0.041 0.055 0.239 0.060

δ1,1,2 0.5 0.045 0.293 0.088 0.085 0.270 0.080

δ0,2,1 −0.5 0.032 0.195 0.039 −0.088 0.997 1.002

δ0,2,2 −0.8 0.066 0.278 0.082 0.003 0.956 0.914

t = 2 δ1,2,0 −1.0 −0.201 0.605 0.406 −0.237 0.796 0.690

δ1,2,1 0.4 0.070 0.251 0.068 −0.035 0.993 0.987

δ1,2,2 0.5 0.170 0.339 0.144 0.097 0.954 0.920

δ0,3,1 −0.5 0.007 0.191 0.037 −0.002 0.768 0.590

δ0,3,2 −0.8 0.029 0.261 0.069 0.058 0.756 0.575

t = 3 δ1,3,0 −1.0 −0.172 0.635 0.433 −0.136 0.683 0.485

δ1,3,1 0.4 0.041 0.235 0.057 0.025 0.770 0.594

δ1,3,2 0.5 0.103 0.311 0.107 0.110 0.758 0.587

† There are T = 3 periods and N = 250 agents in Monte Carlo repetition. The results are based

on R = 1000 Monte Carlo repetitions.
‡ In this simple scenario, we show that the flow utility parameters in the terminal period (i.e.,

t = 3) are also identified because γK
= (δ′0,3,∆

′
3,1)

′ (recall Remark 5) and δ1,3 = δ0,3 +∆3.

Table 1 reports the true values, the simulation biases, the simulation standard deviations and

the simulation mean squared errors (MSEs) for both the CRS and the HM estimators. The CRS

estimator exhibits smaller variances (except δ1,1,2) and smaller MSEs (except δ1,1,2) than the HM

estimator, and for many parameters, much smaller. The CRS estimator has smaller biases for
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about half of the parameters. For this simple scenario, the performance of the CRS and the HM

estimators are comparable, with the CRS estimator appearing slightly better in terms of MSE.

It is worth emphasizing that the CRS estimator is much faster than the HM estimator to

implement – it took our four-core laptop four minutes to complete R = 1000 repetitions of the CRS

estimator on T = 3 and N = 250 samples, but about 26 hours on a latest 12-core Mac Studio to

compute the HM estimator using the same simulation samples – a thousand-time difference.27

Moreover, the HM estimator results reported in Table 1 are based on a commercial optimization

software (Knitro, see Byrd, Nocedal and Waltz, 2006, for details), which we used to enhance the

performance of the HM estimator, while the CRS estimator only uses the core packages of R to solve

a linear problem. In a separate and unreported experiment, we used the optim function (Nelder-

Mead algorithm) in the basic stats package of R to solve the nonlinear optimization problem

of the HM estimator. It also took the same computer about a whole day to complete R = 1000

repetitions using the same simulation samples, but for many of the samples the HM estimator

did not converge.28 It is not surprising, then, that the resultant HM estimator exhibits worse

performance than the HM estimator results reported here, with larger biases, variances and MSEs

than the CRS estimator for almost all parameters (for many parameters, much larger).29

5.3 Results If Researchers Do Not Know T = Tend
If researchers have three periods of data but do not know whether or not the sample terminal

period is the decision terminal period, or if they know T < Tend but do not know the value of

Tend, the implementation of both the CRS and the HM estimators becomes more complex. In this

scenario, the functions qK(xT , zT ) used in the CRS estimator no longer have a known form, and we

use a power series, as described in Lemma 4, as our qK(xT , zT ) functions. The HM estimator, in

contrast, must make additional assumptions about the value of Tend and the flow utility parameters

and the state transition distributions beyond the data horizon, because the state variables and the

choices need to be simulated till Tend (or a large enough Ttr satisfying T < Ttr ≤ Tend, so that the

impacts of the truncation is negligible, recall Remark 2) in evaluating the moment functions of the

27For the CRS estimator, the unknown conditional mean functions are estimated nonparametrically using a power

series described in Lemma 4. For the HM estimator, the state transition distributions are estimated by kernel

density estimators, and we draw 500 sequences of state variables and choices for three periods when evaluating the

moment functions. In a preliminary experiment, we tried to draw 1500 sequences instead of 500. This attempt, while

still taking minutes to complete the CRS estimator and delivering similar results as 500 draws for both estimators,

appeared to take unreasonably longer time to run even a few repetitions of the HM estimator, suggesting that the

memory space might be the binding resource when implementing the HM estimator. So, we chose to use 500 draws

for the HM estimator for all the reported results.
28After finding that the HM estimator did not converge for many simulation samples, we increased the maximum

number of iterations of the Nelder-Mead algorithm from 500 to 1000, and the non-convergent issue did not improve

much.
29These results are not reported but available upon request.
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HM estimator. We assume that researchers, in this scenario, assume that the decision horizon is

infinite, that the flow utility parameters beyond the third period are the same as those in the third

period, and that the state transition distributions beyond the third period are the same as those

from t = 2 to t = 3. We draw 500 sequences of state variables and choices for 50 periods when

evaluating the moment functions of the HM estimator.30

In this scenario, the flow utility parameters in the third period are no longer a part of γK .

Because the CRS estimator is agnostic about and robust to the value of Tend, the identification

result in Theorem 2 only covers periods t = 1 and t = 2, so the flow utility parameters in only

the first two periods are estimated by the CRS estimator. On the other hand, due to additional

assumptions about Tend, the flow utility and the state transition beyond period t = 3, which we must

make for its implementation, the HM estimator also delivers estimates of flow utility parameters in

period t = 3. We still let N = 250 and R = 1000.

Table 2 reports the true values, the simulation biases, the simulation standard deviations and

the simulation MSEs for both the CRS and the HM estimators. Again, the CRS estimator exhibits

smaller biases for more than half of the parameters and much smaller variances for all parameters

than the HM estimator, leading to significantly advantageous MSEs of the CRS estimator. A little

more caution, however, is needed when interpreting these results for this scenario, because the

performance of the HM estimator depends on the additional assumptions that researchers make. If

the additional assumptions that researchers make in this scenario differ from the above additional

assumptions that we assume researchers make in implementing the HM estimator, then the HM

estimator may deliver different results (and possibly more advantageous than the CRS estimator).31

So the results in Table 2 do not guarantee that the CRS estimator will perform better than the

HM estimator under all possible additional assumptions that researchers make when implementing

the HM estimator. The upside is that the CRS estimator frees researchers from having to make

arbitrary additional assumptions beyond the data horizon, and therefore delivers estimates that

are less sensitive to the assumptions.

When it comes to computing time, the two estimators, again, exhibit a thousand-time dif-

ference.32 It is even more obvious in this scenario that the simulated state variable and choice

30The discount factor is β = 0.9, so the impact of the unknown value functions beyond 50 periods is 0.950 ≈ 0.005

and negligible, although the decision horizon is assumed to be infinite.
31For example, if researchers assume that Tend = T = 3, which is allowed in this scenario, then the HM estimator

results will be the same as those in Table 1, which still compare disadvantageously to the CRS estimator in Table 2.

On the other hand, although qK(xT , zT ) takes a known form in the scenario where T = Tend = 3 is known, researchers

can choose to ignore this piece of information and still use a power series as qK(xT , zT ). Then, the comparison should

be between the CRS results in Table 1 and the HM results in Table 2, where the advantages of the CRS estimator

are even more visible, possibly due the dependence between steps (II) and (III) of the CRS estimation procedure.
32The unknown conditional mean functions for the CRS estimator and the state transition distributions are esti-

mated using the same methods, respectively, as in Section 5.2. Again, we used the commercial optimization software
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Table 2: Flow Utility Parameter Estimates If T = Tend Is Unknown

CRS estimator HM estimator

δa,t,k Truth Bias Std Dev MSE Bias Std Dev MSE

δ1,1,0 −1.0 −0.068 0.447 0.204 −0.182 0.931 0.900

t = 1 δ1,1,1 0.4 0.008 0.159 0.025 0.046 0.267 0.073

δ1,1,2 0.5 0.049 0.242 0.061 0.055 0.273 0.078

δ0,2,1 −0.5 0.027 0.109 0.013 −0.066 0.952 0.911

δ0,2,2 −0.8 0.033 0.162 0.027 −0.001 1.056 1.115

t = 2 δ1,2,0 −1.0 −0.103 0.452 0.215 −0.179 0.674 0.486

δ1,2,1 0.4 0.039 0.172 0.031 −0.037 0.970 0.942

δ1,2,2 0.5 0.116 0.226 0.065 0.078 1.053 1.115

δ0,3,2 −0.5 – – – 0.013 0.297 0.088

δ0,3,3 −0.8 – – – 0.129 0.320 0.119

t = 3 δ1,3,1 −1.0 – – – −0.125 0.698 0.503

δ1,3,2 0.4 – – – 0.046 0.333 0.113

δ1,3,3 0.5 – – – 0.168 0.337 0.142

† There are T = 3 periods and N = 250 agents in each Monte Carlo repetition. The results are

based on R = 1000 Monte Carlo repetitions.
‡ In this scenario, δa,3,k (a = 0,1 and k = 0,1,2) are not identified under Assumptions 1 to 5,

and therefore are not estimated by the CRS estimator. Under additional (and required)

assumptions about Tend, the flow utility and the state transition beyond period t = 3 (detailed

in the paper), which we made for its implementation, the HM estimator delivers estimates of

them.

sequences of the HM estimator can put a strain on the memory, because using 12 cores turned out

to be much slower than using 10 cores on our computer as the former depleted the memory.

6 Concluding Remarks

A few lines of future inquiry are worth exploring. First, identifying the expected flow utility function

ut(at, xt) while relaxing Assumption 4 (linearity) might be possible, as alluded to at the beginning

of Section 3.1.2. Second, generalizing the analysis in this paper to permit unobserved heterogeneity

among the agents, as characterized by latent types, appears to be feasible in light of some previous

research (e.g., Kasahara and Shimotsu, 2009; Arcidiacono and Miller, 2011). Third, to allow for

serially correlated flow utility shocks, while challenging, will widen the scope of applicability of

Knitro (Byrd, Nocedal and Waltz, 2006) to solve for the HM estimator, but for this scenario we did not try the basic

optimization solvers in R.
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nonstationary DDC models.
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Online Appendices

for “Identification and Estimation of Nonstationary Dynamic Binary Choice Models”

by Cheng Chou, Geert Ridder and Ruoyao Shi

A Proofs of eq. (1) and eq. (6) in Section 2

Equation (1) and eq. (6), or close variations of them, underlie most econometric analysis of DDC

models. Despite their ubiquity, rigorous proofs under clear assumptions are hard to find in the

DDC literature. For completeness and as a preparation for our analysis, this appendix proves them

under the model setup and Assumptions 1 to 3 in Section 2.1.

Lemma A.1. Under Assumptions 1 and 2(i)-(iii), εt+1 ⊥⊥ εt ∣ (st, at) for t such that t and t+1 both

belong to T .

Proof. First note the choice at is completely determined by st and εt under Assumption 1 (see

Aguirregabiria and Mira, 2010, p.39, and it can easily be shown), then by Assumptions 2(ii) and

2(iii), we have εt+1 ⊥⊥ at. As a result,

f(εt+1 ∣ εt, st, at) = f(εt+1) = f(εt+1 ∣ st, at).

Then we have

f(εt+1, εt ∣ st, at) = f(εt ∣ st, at)f(εt+1 ∣ εt, st, at)

= f(εt ∣ st, at)f(εt+1 ∣ st, at);

that is, εt+1 ⊥⊥ εt ∣ (st, at). ∎

Lemma A.2. Under Assumptions 1 and 2(i)-(iii), εt ⊥⊥ (st−j , at−j) ∣ st for t and j ∈ N+ such that t

and t − j all belong to T .

Proof. To prove this, we separate the cases j = 1 and j ≥ 2. For j = 1, recall that Assumption 1

implies that at−1 is completely determined by st−1 and εt−1, then εt ⊥⊥ at−1 by Assumptions 2(ii)

and 2(iii). Together with Assumption 2(i) and 2(ii), this further implies

f(εt ∣ st−1, at−1, st) = f(εt) = f(εt ∣ st). (A.1)

In consequence, we have

f(εt, st−1, at−1 ∣ st) = f(st−1, at−1 ∣ st)f(εt ∣ st−1, at−1, st)

= f(st−1, at−1 ∣ st)f(εt ∣ st).

For j ≥ 2, we have

f(εt, st−j , at−j ∣ st)
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= ∫ f(εt,Ωt−1, at−1, st−j , at−j ∣ st)dΩt−1dat−1

= f(st−j , at−j ∣ st)∫ f(εt,Ωt−1, at−1 ∣ st−j , at−j , st)dΩt−1dat−1

= f(st−j , at−j ∣ st)∫ f(Ωt−1, at−1 ∣ st−j , at−j , st)f(εt ∣Ωt−1, at−1, st−j , at−j , st)dΩt−1dat−1. (A.2)

Note that

f(εt ∣Ωt−1, at−1, st−j , at−j , st)

= f(εt ∣Ωt−1, at−1, st−j , at−j , st)f(st ∣Ωt−1, at−1)
f(st ∣Ωt−1, at−1)

= f(εt ∣Ωt−1, at−1, st−j , at−j , st)f(st ∣Ωt−1, at−1, st−j , at−j)
f(st ∣Ωt−1, at−1)

= f(εt, st ∣Ωt−1, at−1, st−j , at−j)
f(st ∣Ωt−1, at−1)

= f(εt, st ∣Ωt−1, at−1)
f(st ∣Ωt−1, at−1)

= f(εt ∣Ωt−1, at−1, st)

= f(εt ∣ st), (A.3)

where the second and the fourth equalities hold by Assumption 1, and the last equality holds by

Assumptions 1, 2(i)-(iii) and an argument similar to the one used to show eq. (A.1). Plug eq. (A.3)

into eq. (A.2), we get

f(εt, st−j , at−j ∣ st)

= f(st−j , at−j ∣ st)f(εt ∣ st)∫ f(Ωt−1, at−1 ∣ st−j , at−j , st)dΩt−1dat−1

= f(st−j , at−j ∣ st)f(εt ∣ st).

This completes the proof. ∎

Lemma A.3. Under Assumptions 1 to 3,

V̄t(st) = Uo
t (st) + βE(V̄t+1(st+1) ∣ st)

for t such that t and t + 1 both belong to T .

Proof. By the well-known expectation maximization of the logit model (e.g. Theorem 1 of Arcidi-

acono and Miller, 2011),

V̄t(st) = ut(0, xt) + βE(V̄t+1(st+1) ∣ st, at = 0) − ln(1 − pt). (A.4)

The next step is to express βE(V̄t+1(st+1) ∣ st, at = 0) in terms of βE(V̄t+1(st+1) ∣ st). Note that the

CCPs incorporate the equilibrium optimal decision rule given the current st, and by the law of

total probabilities, we have

E(V̄t+1(st+1) ∣ st) = ptE(V̄t+1(st+1) ∣ st, at = 1) + (1 − pt)E(V̄t+1(st+1) ∣ st, at = 0)
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= E(V̄t+1(st+1) ∣ st, at = 0) + pt∆E(V̄t+1(st+1) ∣ st),

which immediately implies

βE(V̄t+1(st+1) ∣ st, at = 0) = βE(V̄t+1(st+1) ∣ st) − ptβ∆E(V̄t+1(st+1) ∣ st). (A.5)

Substituting β∆E(V̄t+1(st+1) ∣ st, at = 0) in eq. (A.4) with its expression in eq. (A.5), we have

V̄t(st) = ut(0, xt) − ln(1 − pt) − ptβ∆E(V̄t+1(st+1) ∣ st) + βE(V̄t+1(st+1) ∣ st). (A.6)

By eq. (5),

β∆E(V̄t+1(st+1) ∣ st) = ln(
pt

1 − pt
) − [ut(1, xt) − ut(0, xt)]. (A.7)

Substituting β∆E(V̄t+1(st+1) ∣ st) in eq. (A.6) with its expression in eq. (A.7), we have

V̄t(st) = ptut(1, xt) + (1 − pt)ut(0, xt) − pt lnpt − (1 − pt) ln(1 − pt)

+ βE(V̄t+1(st+1) ∣ st),

where the sum ptut(1, xt) + (1 − pt)ut(0, xt) − pt lnpt − (1 − pt) ln(1 − pt) is just Uo
t (st) according to

eq. (3.8) of Hotz and Miller (1993), for which Assumptions 1 to 3 are sufficient conditions. ∎

Proof of eq. (1). By Assumption 1, the expected payoff is ut(a, xt)+εat+βE(Vt+1(st+1, εt+1)∣st, εt, at).
Assumption 3 and Lemma A.1 together imply thatΩt+1 ⊥⊥ εt∣(st, at), and therefore E(Vt+1(st+1, εt+1)∣st, εt, at) =
E(Vt+1(st+1, εt+1) ∣ st, at). Moreover, because Lemma A.2 states that εt+1 ⊥⊥ (st, at) ∣ st+1, we have

E(Vt+1(st+, εt+1)∣st, at) = E(E(Vt+1(st+1, εt+1)∣st+1, st, at)∣st, at) = E(E(Vt+1(st+1, εt+1)∣st+1)∣st, at) =
E(V̄t+1(st+1) ∣ st, at). ∎

Equation (6) holds simply by increasing the time index in Lemma A.3 by one.

B Proofs of the Results in Section 3.1

This appendix provides proofs of the results in Section 3.1, as well as auxiliary intermediary lemmas

used in their proofs.

Lemma B.1 (Markovian state variables). Under Assumption 1, Ωt is a first order Markov process;

that is, Ωt+1 ⊥⊥ Ωt−j ∣Ωt for t and j ∈ N+ such that t, t + 1 and t − j all belong to T .

Proof. First note that f(Ωt+1 ∣ at,Ωt,Ωt−j) = f(Ωt+1 ∣ at,Ωt) by Assumption 1. Also recall that the

choice at is completely determined by Ωt under Assumption 1 (see Aguirregabiria and Mira, 2010,

p.39, and it can easily be shown), so Pr(at ∣Ωt,Ωt−j) = Pr(at ∣Ωt). These two equalities, together

with the law of total probabilities, lead to

f(Ωt+1 ∣Ωt,Ωt−j) = ∑
at=0,1

f(Ωt+1 ∣ at,Ωt,Ωt−j)Pr(at ∣Ωt,Ωt−j)
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= ∑
at=0,1

f(Ωt+1 ∣ at,Ωt)Pr(at ∣Ωt)

= f(Ωt+1 ∣Ωt),

which is the result of this lemma. ∎

Lemma B.2. Under Assumptions 1 and 2(i)-(iii), st+j ⊥⊥ st ∣ st+1 and Ωt+j ⊥⊥ Ωt ∣ Ωt+1 for t and

j ∈ N+ such that t, t + 1 and t + j all belong to T .

Proof. We consider

f(st+j , st ∣ st+1)

= ∫ f(st+j , st+j−1, . . . , st+2, st ∣ st+1)dst+j−1⋯dst+2

= f(st ∣ st+1)∫ f(st+j , st+j−1, . . . , st+2 ∣ st, st+1)dst+j−1⋯dst+2

= f(st ∣ st+1)∫ f(st+j , st+j−1, . . . , st+2 ∣ st+1)dst+j−1⋯dst+2

= f(st ∣ st+1)f(st+j ∣ st+1),

where the third equality holds by Lemma 1. The result f(Ωt+j ,Ωt ∣Ωt+1) = f(Ωt ∣Ωt+1)f(Ωt+j ∣Ωt+1)
can be shown by the same argument using Lemma B.1, and this completes the proof of this

lemma. ∎

Lemma B.3. Under Assumptions 1 and 2(i)-(iii), st+j ⊥⊥ εt ∣ st+1 for t and j ∈ N+ such that t,

t + 1 and t + j all belong to T .

Proof. We consider

f(st+j , εt ∣ st+1)

= ∫ f(st+j , εt+1, εt ∣ st+1)dεt+1

= ∫ f(εt+1 ∣ st+1)f(st+j , εt ∣ st+1, εt+1)dεt+1

= ∫ f(εt+1 ∣ st+1)f(st+j ∣ st+1, εt+1)f(εt ∣ st+1, εt+1)dεt+1

= ∫ f(st+j , εt+1 ∣ st+1)f(εt ∣ st+1, εt+1)dεt+1, (B.1)

where the third equality holds by st+j ⊥⊥ εt ∣ (st+1, εt+1) implied by Lemma B.2. Note that in

eq. (B.1),

f(εt ∣ st+1, εt+1) =
f(εt, st+1, εt+1)
f(st+1, εt+1)

= f(εt, st+1)f(εt+1)
f(st+1)f(εt+1)

= f(εt, st+1)
f(st+1)

= f(εt ∣ st+1),
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where the second equality holds by Assumptions 2(i) and 2(iii). As a result, eq. (B.1) becomes

f(st+j , εt ∣ st+1) = ∫ f(st+j , εt+1 ∣ st+1)f(εt ∣ st+1)dεt+1

= f(εt ∣ st+1)∫ f(st+j , εt+1 ∣ st+1)dεt+1

= f(εt ∣ st+1)f(st+j ∣ st+1),

which is the result of this lemma. ∎

Proof of Lemma 1. First note that by the first order Markovian property ofΩt shown in Lemma B.1,

we have st+1 ⊥⊥ st−j ∣ (st, εt), which indicates f(st+1, st−j ∣ st, εt) = f(st+1 ∣ st, εt)f(st−j ∣ st, εt). More-

over, the result of Lemma A.2 further simplifies the last term f(st−j ∣ st, εt) in this equality to

f(st−j ∣ st), implying f(st+1, st−j ∣ st, εt) = f(st+1 ∣ st, εt)f(st−j ∣ st). Finally, applying the integral

operator ∫ ⋅dF (εt ∣ st) to both sides of this equality gives

∫ f(st+1, st−j ∣ st, εt)dF (εt ∣ st) = ∫ f(st+1 ∣ st, εt)f(st−j ∣ st)dF (εt ∣ st)

Ô⇒ f(st+1, st−j ∣ st) = f(st+1 ∣ st)f(st−j ∣ st),

which is the result of this lemma. ∎

Proof of Lemma 2. First recall that at is completely determined by st and εt under Assumption 1,

then Lemmas B.2 and B.3 imply that st+j ⊥⊥ (st, at) ∣ st+1. Then, we have

E(E(g(st+j) ∣ st+1) ∣ st, at)

= ∫ ∫ g(st+j)f(st+j ∣ st+1)f(st+1 ∣ st, at)dst+jdst+1

= ∫ ∫ g(st+j)f(st+j ∣ st+1, st, at)f(st+1 ∣ st, at)dst+jdst+1

= ∫ ∫ g(st+j)f(st+j , st+1 ∣ st, at)dst+jdst+1

= ∫ g(st+j)f(st+j ∣ st, at)dst+j

= E(g(st+j) ∣ st, at).

∎

Proof of Lemma 3. As mentioned in Lemma A.3, Assumptions 1 to 3 are sufficient for eq. (3.8) of

Hotz and Miller (1993), which states that

Uo
t (st) = ptut(1, xt) + (1 − pt)ut(0, xt) − pt lnpt − (1 − pt) ln(1 − pt).

The result of this lemma, therefore, follows by plugging in the expression of ut(1, xt) and ut(0, xt)
in Assumption 4. ∎
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C Influence Function ψδ(D) in Proposition 3

In this section, we use Proposition 5 of Newey (1994a) to compute the influence function ψ(D) of
(δ̂′, γ̂K′)′. The first (2T − 3)dx coordinates of ψ(D), denoted as ψδ(D), are the influence function

of δ̂.

Proposition 3 and Proposition 4 hold by Lemma 5.3 and Lemma 5.4 of Newey (1994a) under

the regularity conditions in Section 5 of Newey (1994a), and therefore the proofs are omitted here.

C.1 Basic Terms in the Influence Function

In eq. (37), LT is the Jacobian matrix of the moment functions (with respect to δ and γK); αη(D),
αx(D) and αq(D) are the respective adjustment terms for the estimation of ∆η̄, ∆x̄ and ∆q̄K

in step (II) of the estimation strategy in Section 3.2, αp,direct(D) is the adjustment term for the

estimation of the CCPs in step (I) that appears directly in the moment function, and αp,indirect(D)
is the adjustment term for the estimation of the CCPs in step (II) that appears in the “dependent

variables” of the nonparametric regressions leading to ∆η̄, ∆x̄ and ∆q̄K in step (II).

Note that by eq. (18), as well as the definition of the moment function m in eq. (34), we have

m0(D) = 0, because vt(D,δ0, γK0 , p0,∆η̄0,∆x̄0,∆q̄K0 ) = 0 for t = 1, . . . , T − 1. In other words, the

influence function consists only the adjustment terms.

In the rest of this subsection, we verify that the LT matrix define in eq. (26) indeed equals to

the Jacobian matrix, denoted by M . We know that

M
((T−1)2dx+(T−1)K)×((2T−3)dx+K)

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MT−1,δ MT−1,γ

⋮ ⋮
M1,δ M1,γ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Mt,δ
((2T−2t−1)dx+K)×(2T−3)dx

≡ ∂

∂δ′
E(mt(D,δ, γK0 , p0,∆η̄0,∆x̄0,∆q̄K0 ))∣

δ=δ0
,

and

Mt,γ
((2T−2t−1)dx+K)×K

≡ ∂

∂γK′
E(mt(D,δ0, γK , p0,∆η̄0,∆x̄0,∆q̄K0 ))∣

γK=γK
0

.

So, it is easy to see that, assuming interchangeability of differentiation and integral,

M = LT . (C.1)

C.2 Adjustment Terms in the Influence Function

Note that the moment functions m depend on the CCP functions in step (I) and the nonparametric

regression functions in step (II) only through their values at given argument values, so Proposition

5 of Newey (1994a) applies. In the rest of this subsection, we use p̃, ∆̃η̄, ∆̃x̄ and ∆̃¯Kq to denote
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given values that these unknown functions take, and their coordinates are denoted in a similar way.

These values are taken as real variables, not functions, in the partial derivatives shown in the rest

of this subsection.

C.2.1 Adjustment Term for Estimated ∆η̄ Functions

To compute the adjustment term for estimated ∆η̄ functions, we first need to compute

Mt,∆η̄τ
t′
≡ ∂

∂∆̃η̄τt′
mt(D,δ0, γK0 , p0, ∆̃η̄τt′ ,∆η̄

τ,c
t′,0,∆x̄0,∆q̄

K
0 )∣

∆̃η̄τ
t′=∆η̄τ

t′,0

,

where ∆η̄τ,ct′ denotes all the coordinates of ∆η̄ other than ∆η̄τt′ .

Through basic algebra, we get Mt,∆η̄τ
t′
= 0((2T−2t−1)dx+K)×1 for t = 1, . . . , T − 2, t′ ≠ t and

τ = t′ + 1, . . . , T − 1, MT−1,∆η̄τ
t′
= 0(dx+K)×1 for t′ = 1, . . . , T − 1 and τ = t′ + 1, . . . , T − 1, and

Mt,∆η̄τt
= −βτ−tXT,t,0 for t = 1, . . . , T − 2 and τ = t + 1, . . . , T − 1. As a result,

αη(D) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βXT,T−2,0 [( aT−2
pT−2,0

− 1−aT−2
1−pT−2,0 )ηT−1,0 −∆η̄

T−1
T−2,0]

⋮
∑T−1

τ=t+1 β
τ−tXT,t,0 [( at

pt,0
− 1−at

1−pt,0 )ητ,0 −∆η̄
τ
t,0]

⋮
∑T−1

τ=2 β
τ−1XT,1,0 [( a1

p1,0
− 1−a1

1−p1,0 )ητ,0 −∆η̄
τ
1,0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.2)

C.2.2 Adjustment Term for Estimated ∆x̄ Functions

Note that ∆x̄ contains two types of conditional mean functions, ∆x̄τt defined in eq. (13c) and ∆x̄τ1,t

define in eq. (13a). To compute the adjustment term for estimated ∆x̄ functions, therefore, we first

need to compute

Mt,∆x̄τ
t′
≡ ∂

∂∆̃x̄τt′
mt(D,δ0, γK0 , p0,∆η̄0, ∆̃x̄τt′ ,∆x̄

τ,c
t′,0,∆q̄

K
0 )∣

∆̃x̄τ
t′=∆x̄τ

t′,0

and

Mt,∆x̄τ
1,t′
≡ ∂

∂∆̃x̄τ1,t′
mt(D,δ0, γK0 , p0,∆η̄0, ∆̃x̄τ1,t′ ,∆x̄

τ,c
1,t′,0,∆q̄

K
0 )
RRRRRRRRRRRR∆̃x̄τ

1,t′=∆x̄τ
1,t′,0

,

where ∆x̄τ,ct′ denotes all the coordinates of ∆x̄ other than ∆x̄τt′ , and ∆x̄τ,c1,t′ denotes all the coordinates

of ∆x̄ other than ∆x̄τ1,t′ .

Through basic algebra, we get Mt,∆x̄τ
t′
= 0((2T−2t−1)dx+K)×dx for t = 1, . . . , T − 2, t′ ≠ t and

τ = t′ + 1, . . . , T − 1, MT−1,∆x̄τ
t′
= 0(dx+K)×dx for t′ = 1, . . . , T − 1 and τ = t+ 1, . . . , T − 1, and Mt,∆x̄τ

t
=

βτ−tXT,t,0δ
′
0,τ,0 for t = 1, . . . , T −2 and τ = t+1, . . . , T −1. In addition, Mt,∆x̄τ

1,t′
= 0((2T−2t−1)dx+K)×dx

for t = 1, . . . , T − 2, t′ ≠ t and τ = t′ + 1, . . . , T − 1, MT−1,∆x̄τ
1,t′
= 0(dx+K)×dx for t′ = 1, . . . , T − 1 and
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τ = t + 1, . . . , T − 1, and Mt,∆x̄τ
1,t
= βτ−tXT,t,0∆

′
τ,0 for t = 1, . . . , T − 2 and τ = t + 1, . . . , T − 1. As a

result,

αx(D) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βXT,T−2,0δ
′
0,T−2,0 [(

aT−2
pT−2,0

− 1−aT−2
1−pT−2,0 )xT−1 −∆x̄

T−1
T−2,0]

⋮
∑T−1

τ=t+1 β
τ−tXT,t,0δ

′
0,τ,0 [( at

pt,0
− 1−at

1−pt,0 )xτ −∆x̄
τ
t,0]

⋮
∑T−1

τ=2 β
τ−1XT,1,0δ

′
0,τ,0 [( a1

p1,0
− 1−a1

1−p1,0 )xτ −∆x̄
τ
1,0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βXT,T−2,0∆
′
T−2,0 [(

aT−2
pT−2,0

− 1−aT−2
1−pT−2,0 )pT−1,0xT−1 −∆x̄

T−1
1,T−2,0]

⋮
∑T−1

τ=t+1 β
τ−tXT,t,0∆

′
τ,0 [( at

pt,0
− 1−at

1−pt,0 )pτ,0xτ −∆x̄
τ
1,t,0]

⋮
∑T−1

τ=2 β
τ−1XT,1,0∆

′
τ,0 [( a1

p1,0
− 1−a1

1−p1,0 )pτ,0xτ −∆x̄
τ
1,1,0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.3)

C.2.3 Adjustment Term for Estimated ∆q̄K Functions

To compute the adjustment term for estimated ∆q̄K functions, we first need to compute

Mt,∆q̄K
t′
≡ ∂

∂∆̃q̄Kt′
mt(D,δ0, γK0 , p0,∆η̄0,∆x̄0, ∆̃q̄Kt′ ,∆q̄

K,c
t′,0 )∣

∆̃q̄K
t′ =∆q̄K

t′,0

,

where ∆q̄K,c
t′ denotes all the coordinates of ∆q̄K other than ∆q̄Kt′ .

Through basic algebra, we get Mt,∆q̄K
t′
= 0((2T−2t−1)dx+K)×K for t = 1, . . . , T − 1 and t′ ≠ t, and

Mt,∆q̄Kt
= βT−tXT,t,0γ

K′
0 for t = 1, . . . , T − 1. As a result,

αq(D) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βXT,T−1,0γ
K′
0 [( aT−1

pT−1,0
− 1−aT−1

1−pT−1,0 ) q
K(xT , zT ) −∆q̄KT−1,0]

⋮
βT−tXT,t,0γ

K′
0 [( at

pt,0
− 1−at

1−pt,0 ) q
K(xT , zT ) −∆q̄Kt,0]

⋮
βT−1XT,1,0γ

K′
0 [( a1

p1,0
− 1−a1

1−p1,0 ) q
K(xT , zT ) −∆q̄K1,0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.4)

C.2.4 Adjustment Terms for Estimated CCPs

We first compute αp,direct(D), which captures the impact of estimated CCPs that appear directly

in the moment functions. To do so, we need to compute

Mt,pt′ ≡
∂

∂p̃t′
mt(D,δ0, γK0 , p̃t′ , pct′,0,∆η̄0,∆x̄0,∆q̄K0 )∣

p̃t′=pt′,0
,
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where pct′ denotes all the coordinates of p other than pt′ . Note that the CCPs only appear directly

as the first term of the contemporaneous yt, in the form of ln ( pt
1−pt ), so Mt,pt′ = 0((2T−2t−1)dx+K)×1

for t = 1, . . . , T − 1 and t′ ≠ t, and Mt,pt = −XT,t,0/(pt,0(1 − pt,0)) for t = 1, . . . , T − 1. As a result,

αp,direct(D) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XT,T−1,0
pT−1,0(1−pT−1,0) (aT−1 − pT−1,0)

⋮
XT,t,0

pt,0(1−pt,0) (at − pt,0)
⋮

XT,1,0

p1,0(1−p1,0) (a1 − p1,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.5)

We then compute αp,indirect, which captures the impact of estimated CCPs that appear as the

“dependent variables” of the unknown functions ∆η̄ and ∆x̄. Due to eq. (36), pτ is part of the

numerators of the “dependent variables” of the nonparametric regressions for ∆η̄τt and ∆x̄τ1,t, and

pt is part of their denominators. For τ > t and t = 1, . . . , T − 2, define

Hτ
t,pτ ≡ (

at
pt,0
− 1 − at
1 − pt,0

) ln pτ,0

1 − pτ,0
, Hτ

t,pt ≡ −
⎛
⎝
at
p2t,0
+ 1 − at
(1 − pt,0)2

⎞
⎠
ητ,0,

X τ
t,pτ ≡ (

at
pt,0
− 1 − at
1 − pt,0

)xτ , and X τ
t,pt ≡ −

⎛
⎝
at
p2t,0
+ 1 − at
(1 − pt,0)2

⎞
⎠
pτ,0xτ ,

where we recall that ητ is defined in eq. (14). By chain rule, we combine these with Mt,∆η̄τt
and

Mt,∆x̄τ
1,t

for t = 1, . . . , T − 2 and τ = t + 1, . . . , T − 1 to get

αp,indirect(D) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

β ln
pT−1,0

1−pT−1,0E(XT,T−2,0 ( aT−2
pT−2,0

− 1−aT−2
1−pT−2,0 ) ∣xT−1, zT−1) (aT−1 − pT−1,0)
⋮

∑T−1
τ=t+1 β

τ−t ln
pτ,0

1−pτ,0E(XT,t,0 ( at
pt,0
− 1−at

1−pt,0 ) ∣xτ , zτ) (aτ − pτ,0)
⋮

∑T−1
τ=2 β

τ−1 ln
pτ,0

1−pτ,0E(XT,1,0 ( a1
p1,0
− 1−a1

1−p1,0 ) ∣xτ , zτ) (aτ − pτ,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βXT,T−2,0 ( aT−2
p2T−2,0

+ 1−aT−2
(1−pT−2,0)2)E(ηT−1,0∣xT−2, zT−2) (aT−2 − pT−2,0)

⋮

∑T−1
τ=t+1 β

τ−tXT,t,0 ( at
p2t,0
+ 1−at
(1−pt,0)2)E(ητ,0∣xt, zt) (at − pt,0)

⋮

∑T−1
τ=2 β

τ−1XT,t,0 ( a1
p21,0
+ 1−a1
(1−p1,0)2)E(ητ,0∣x1, z1) (a1 − p1,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βxT−1E(XT,T−2,0 ( aT−2
pT−2,0

− 1−aT−2
1−pT−2,0 ) ∣xT−1, zT−1) (aT−1 − pT−1,0)
⋮

∑T−1
τ=t+1 β

τ−txτE(XT,t,0 ( at
pt,0
− 1−at

1−pt,0 ) ∣xτ , zτ) (aτ − pτ,0)
⋮

∑T−1
τ=2 β

τ−1xτE(XT,1,0 ( a1
p1,0
− 1−a1

1−p1,0 ) ∣xτ , zτ) (aτ − pτ,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βXT,T−2,0 ( aT−2
p2T−2,0

+ 1−aT−2
(1−pT−2,0)2)E(pT−1,0xT−1∣xT−2, zT−2) (aT−2 − pT−2,0)

⋮

∑T−1
τ=t+1 β

τ−tXT,t,0 ( at
p2t,0
+ 1−at
(1−pt,0)2)E(pτ,0xτ ∣xt, zt) (at − pt,0)

⋮

∑T−1
τ=2 β

τ−1XT,t,0 ( a1
p21,0
+ 1−a1
(1−p1,0)2)E(pτ,0xτ ∣x1, z1) (a1 − p1,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C.6)

D Accommodating Time-Invariant Variables in xt

In this section, we modify the theorems in Section 3.1.3 and Section 3.2 to accommodate the

possibility that xt contains time-invariant variables. Because the proofs are essentially the same as

in the main text with only modified notation, we omit them.

Without loss of generality, suppose the last dx∗ coordinates of xt, where t = 1, . . . , T and 0 ≤
dx∗ ≤ dx, are time-varying. Denote these variables as x∗t . So, the first dx − dx∗ coordinates of xt

are time-invariant variables. Recall that Remark 13 shows that the corresponding first dx − dx∗
coordinates of δ0,t for t = 2, . . . , T − 1 are not identified and can be normalized to arbitrary values

without affecting the identification and estimation of the other parameters in δ and γK . Let δ∗0,t

denote the last dx∗ coordinates of δ0,t for t = 2, . . . , T − 1. Therefore, our goal becomes to identify

and to estimate δ∗ ≡ (∆′1, δ∗′0,2,∆′2, . . . , δ∗′0,T−1,∆′T−1)′ and γK .

D.1 Identification

We let ∆x̄∗τt denote the last dx∗ coordinates of ∆x̄τt for t = 1, . . . , T − 2 and t < τ ≤ T − 1.33 eq. (18)

becomes a system of linear equations of ∆t (t = 1, . . . , T − 1), δ∗0,t (t = 2, . . . , T − 1) and γK :

yT−1 = x′T−1∆T−1 + β∆q̄K′T−1γ
K , and

yt = x′t∆t +
T−1
∑

τ=t+1
βτ−t∆x̄∗τ ′t δ∗0,τ +

T−1
∑

τ=t+1
βτ−t∆x̄τ ′1,t∆τ

33That is, ∆x̄∗τ1,t ≡ ∆E(pτx∗τ ∣ st). Note that the conditioning variables are the entire vector st, including the

time-invariant variables in xt.
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+ βT−t∆q̄K′t γK

for t = 1, . . . , T − 2.
Proposition 1 remains unchanged. Other parallel results are stated below with an apostrophe

to the original theorem numbers.

Proposition 2’ (Identification and over-identification with time-invariant variables in xt when

T = 3). When T = 3, ∆1, δ
∗
0,2, ∆2 and γK are the identifiable parameters.

(i) The parameters are identified if and only if the (3dx + dx∗ + 2K) × (2dx + dx∗ +K) Jacobian
matrix,

L∗3 ≡
⎡⎢⎢⎢⎢⎣

0(dx+K)×(dx+dx∗) E(X3,2X
′
3,2)

E(X∗3,1X∗′3,1)

⎤⎥⎥⎥⎥⎦
,

has full column rank, where X∗3,1 ≡ (x′1, β∆x̄∗2′1 , β∆x̄2′1,1, β
2∆q̄K′1 )′ and X3,2 is defined immediately

after eq. (22).

(ii) If more than one matrix that consists of 2dx + dx∗ +K distinct rows from L∗3 has full rank,

then the parameters are over-identified.

Corollary 1’ (Identification with time-invariant variables in xt when T = 3). When T = 3, the

parameters are identified if E(X∗3,1X∗′3,1), or equivalently the second moment matrix of (x′1,∆x̄∗2′1 ,

∆x̄2′1,1,∆q̄
K′
1 )′, has full rank.

Corollary 2’ (Identification with time-invariant variables in xt when T = 3). When T = 3, the

parameters are identified if: (i) the second moment matrix of (x′2,∆q̄K′2 )′ has full rank (i.e., dx+K),

and (ii) the second moment matrix of (x′1,∆x̄∗2′1 )′ has full rank (i.e, dx + dx∗).

We define

X∗T,T−1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
(dx+K)×1

≡XT,T−1, X∗T,t
±

((T−t)dx+(T−t−1)dx∗+K)×1

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xt

β∆x̄∗t+1t

β∆x̄t+11,t

β2∆x̄∗t+2t

β2∆x̄t+21,t

⋮
βT−1−t∆x̄∗T−1t

βT−1−t∆x̄T−11,t

βT−t∆q̄Kt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for T ≥ 2 and t = 1,2, . . . , T − 2, and let

L̃∗T,t
±

((T−t)dx+(T−t−1)dx∗+K)×((T−t)dx+(T−t−1)dx∗+K)

≡ E(X∗T,tX∗′T,t) and
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L∗T,t
±

((T−t)dx+(T−t−1)dx∗+K)×((T−1)dx+(T−2)dx∗+K)

≡ [ 0((T−t)dx+(T−t−1)dx∗+K)×((t−1)dx+(t−1)dx∗) L̃∗T,t ]

for T ≥ 2 and t = 1, . . . , T − 1. Again, it is obvious from the definition that the (T (T − 1)dx/2+ (T −
1)(T −2)dx∗/2+(T −1)K)×((T −1)dx+(T −2)dx∗ +K) matrix L∗T has a block-triangular structure

as follows:

L∗T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×(dx+dx∗) 0(dx+K)×((T−4)dx+(T−4)dx∗) 0(dx+K)×(dx+dx∗) E(X∗T,T−1X∗′T,T−1)
0(2dx+dx∗+K)×(dx+dx∗) 0(2dx+dx∗+K)×((T−4)dx+(T−4)dx∗) E(X∗T,T−2X∗′T,T−2)

⋮ ⋰
0((T−2)dx+(T−3)dx∗+K)×(dx+dx∗) E(X∗T,2X∗′T,2)

E(X∗T,1X∗′T,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 2’ (Identification and over-identification for general T ). The parameters of interest are

(δ∗′, γK′)′.
(i) The parameters are identified if and only if the L∗T matrix defined above has full column

rank.

(ii) If more than one matrix that consists of (T − 1)dx + (T − 2)dx∗ +K distinct rows from L∗T

has full rank, then the parameters are over-identified.

Corollary 3’ (Identification with time-invariant variables in xt for general T ). (δ∗′, γK′)′ is identi-
fied if the second moment matrix of (x′1,∆x̄∗2′1 ,∆x̄2′1,1, . . . ,∆x̄

∗τ ′
1 ,∆x̄τ ′1,1, . . . ,∆x̄

∗T−1′
1 ,∆x̄T−1′1,1 ,∆q̄K′1 )′

has full rank.

Corollary 4’ (Identification with time-invariant variables in xt for general T ). (δ∗′, γK′)′ is iden-

tified if: (i) the second moment matrix of (x′T−1,∆q̄K′T−1)′ has full rank (i.e., dx +K); and (ii) the

second moment matrix of (x′t,∆x̄∗t+1′t )′ has full rank (i.e, dx + dx∗) for all t = 1, . . . , T − 2.

D.2 Estimation

We use ∆x̄∗ to collectively denote all ∆x̄τ1,t and ∆x̄∗τt (t = 1, . . . , T − 2, t < τ ≤ T − 1). Redefine the

moment functions as We need to redefine the moment functions using the above notation:

m∗T−1(D,δ∗, γK , p,∆η̄,∆x̄∗,∆q̄K) ≡ −v∗T−1(D,δ∗, γK , p,∆η̄,∆x̄∗,∆q̄K)X∗T,T−1, and

m∗t (D,δ∗, γK , p,∆η̄,∆x̄∗,∆q̄K) ≡ −v∗t (D,δ∗, γK , p,∆η̄,∆x̄∗,∆q̄K)X∗T,t,

where v∗T−1(D,δ∗, γK , p,∆η̄,∆x̄∗,∆q̄K) ≡ yT−1−x′T−1∆T−1−β∆q̄K′T−1γ
K and v∗t (D,δ∗, γK , p,∆η̄,∆x̄∗,∆q̄K) ≡

yt − x′t∆t − ∑T−1
τ=t+1 β

τ−t∆x̄∗τ ′t δ∗0,τ − ∑T−1
τ=t+1 β

τ−t∆x̄τ ′1,t∆τ − βT−t∆q̄K′t γK for t = 1, . . . , T − 2. Let

m∗(D,δ∗, γK , p,∆η̄,∆x̄∗,∆q̄K) be the stack of the moment functions m∗t (D,δ∗, γK , p,∆η̄,∆x̄∗,
∆q̄K) for t = T − 1, . . . ,1 (in that order). δ∗ and γK can still be estimated through the steps in
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Section 3.2, provided that we replace ∆x̄τt with ∆x̄∗τt in the collection of “dependent variables” ∆x̄

in step (II) (now denoted as ∆x̄∗) and let

(δ̂∗′, γ̂K′)′ ≡ argmin
δ∗∈R(T−1)dx+(T−2)dx∗ ,γK∈RK

m̄N(δ∗, γK)′W ∗
Nm̄N(δ∗, γK), (D.1)

where m̄∗N(δ∗, γK) ≡ 1
N ∑

N
i=1 m̂

∗(Di, δ
∗, γK), m̂∗(D,δ∗, γK) ≡ m∗(D,δ∗, γK , p̂, ∆̂η̄, ∆̂x̄∗, ∆̂q̄K) and

W ∗
N is a symmetric weighting matrix of conformable dimensions that converges in probability to a

positive definite matrixW ∗ as N →∞. Note that the “regressors” of the nonparametric regressions

in step (II) are still st, including time-invariant variables in xt.

Proposition 3’ (Asymptotic distribution of δ̂∗ with time-invariant variables in xt). Under As-

sumptions 1 to 5 and the regularity conditions in Section 5 of Newey (1994a), we have

√
N (δ̂∗ − δ∗) d.Ð→ N (0, V ∗) ,

where V ∗ ≡ E(ψδ∗(Di)ψ′δ∗(Di)), and ψδ∗(⋅) is the first (T − 1)dx + (T − 2)dx∗ coordinates of the

following influence function ψ∗(⋅):

ψ∗(D) ≡ −(L∗′T W ∗L∗T )−1L∗′T W ∗α∗(D),

in which

α∗(D) ≡ αη(D) + αx∗(D) + αq(D) + αp,direct(D) + αp,indirect(D),

αx∗(D) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βX∗T,T−2,0δ
∗′
0,T−2,0 [(

aT−2
pT−2,0

− 1−aT−2
1−pT−2,0 )x

∗
T−1 −∆x̄∗T−1T−2,0]

⋮
∑T−1

τ=t+1 β
τ−tX∗T,t,0δ

∗′
0,τ,0 [( at

pt,0
− 1−at

1−pt,0 )x
∗
τ −∆x̄∗τt,0]

⋮
∑T−1

τ=2 β
τ−1X∗T,1,0δ

∗′
0,τ,0 [( a1

p1,0
− 1−a1

1−p1,0 )x
∗
τ −∆x̄∗τ1,0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(dx+K)×1

βX∗T,T−2,0∆
′
T−2,0 [(

aT−2
pT−2,0

− 1−aT−2
1−pT−2,0 )pT−1,0xT−1 −∆x̄

T−1
1,T−2,0]

⋮
∑T−1

τ=t+1 β
τ−tX∗T,t,0∆

′
τ,0 [( at

pt,0
− 1−at

1−pt,0 )pτ,0xτ −∆x̄
τ
1,t,0]

⋮
∑T−1

τ=2 β
τ−1X∗T,1,0∆

′
τ,0 [( a1

p1,0
− 1−a1

1−p1,0 )pτ,0xτ −∆x̄
τ
1,1,0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and αη(D), αq(D), αp,direct(D) and αp,indirect(D) are the same as those defined above in eq. (C.2),

eq. (C.4), eq. (C.5) and eq. (C.6), respectively, except the only difference that XT,t,0 is replaced by

X∗T,t,0 for t = 1, . . . , T − 1 in every occurrence. Note that again, the influence function consists of

only the “adjustment terms” since m∗0(D) ≡m0(D,δ∗0 , γK0 , p0,∆η̄0,∆x̄∗0 ,∆q̄K0 ) = 0.
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A consistent estimator of V ∗ is provided in eq. (38), with relevant objects replaced by their “∗”

counterparts whenever applicable. Again, its consistency can be justified by a proposition that is

essentially the same as Proposition 4, which we omit here for conciseness.

E Proofs of the Results in Section 4.1

Proof of Lemma 4. By the definition of ∆r̄Kt and the Cauchy-Schwarz inequality, we have

E((∆r̄Kt )2) = E([∆E(rK(xT , zT ) ∣ xt, zt)]2)

= E([E(rK(xT , zT ) ∣ xt, zt, at = 1) −E(rK(xT , zT ) ∣ xt, zt, at = 0)]2)

≤ 2E([E(rK(xT , zT ) ∣ xt, zt, at = 1)]2)

+ 2E([E(rK(xT , zT ) ∣ xt, zt, at = 0)]2). (E.1)

Under the conditions (i) to (iv) of this lemma and by Theorem 8 (p. 90) in Lorentz (1966), we have

sup
s∈S
∣rK(s)∣ ≤ C1K

−m
ds ,

for some constant C1. By this uniform bound of ∣rK(s)∣ and the Jensen’s inequality, we have

[E(rK(xT , zT ) ∣ xt, zt, at = a)]2 ≤ E(∣rK(xT , zT )∣2 ∣ xt, zt, at = a)

≤ C2
1K
− 2m

ds for a = 0,1. (E.2)

Combining eq. (E.1) and eq. (E.2), we get

E((∆r̄Kt )2) ≤ 4C2
1K
− 2m

ds ,

and the result of the lemma follows. ∎

Proof of Theorem 3. It is easy to see that the probability limit of the linear MD estimators (δ̂, γ̂K)′

is (δK′pseudo, γ
K′
pseudo)

′ = (L′WL)−1L′WR. Recalling the definitions of R and ∆r̄Kt (t = 1, . . . , T − 1),
we get

XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

δKpseudo − δ
γKpseudo − γK

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXXX
≤ λmax ((L′WL)−1)

√
λmax(LL′)λmax(W )

XXXXXXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E(XT,T−1∆r̄
K
T−1)

⋮
E(XT,1∆r̄

K
1 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXXXXXX

=
√
λmax(LL′)λmax(W )
λmin (L′WL)

¿
ÁÁÀT−1
∑
t=1
∥E(XT,t∆r̄Kt )∥

2

≤ C2

¿
ÁÁÀT−1
∑
t=1
∥E(XT,t∆r̄Kt )∥

2

≤ C3K
−m

ds

¿
ÁÁÀT−1
∑
t=1
∥
√

E(X2
T,t)∥
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≤ C4K
−m

ds ,

where C2 is some constant. In the above, the first inequality holds by the Cauchy-Schwarz inequality

and the properties of eigenvalues, the first equality holds by the property of eigenvalues and the

definition of the Frobenius norm, the second inequality holds by the conditions on the eigenvalues

of L′L and W , the third inequality holds by the Cauchy-Schwarz inequality and Lemma 4, and the

last inequality holds by finite second moments of qK(xT , zT ) and xt for t = 1, . . . , T − 1. Then, the
result of the proposition follows. ∎

F Generating Simulation Sample

To generate a simulation sample from the model specified in Section 5.1 is not a trivial task, because

all the state variables in our parameterization are continuous. In this appendix, we provide details

on the three steps we took to solve the dynamic programming (DP) problem to generate a simulation

sample. Section F.1 describes how to discretize the choice-specific VAR(1) state transition processes,

so the DP problem with continuous state variables can be approximated by a DP problem with

discrete states. Section F.2 explains how to solve the DP problem with discrete states backwardly.

Section F.3 describes how to draw a simulation sample forwardly.

F.1 Efficient Discretization of States and State Transition Distributions

In general, randomly drawing state variables st from their stationary distribution is not efficient,

especially when ds is large, because most of the draws will end up in regions with low probabilities.

In addition, the VAR(1) processes of st in our model depend on whether at = 0 or at = 1 is chosen.

The original DP problem in Section 5.1 involves a 3 × 1 vector of continuous state variables

si,t, whose transition is governed by two choice-specific VAR(1) processes.34 Let f(st+1 ∣ at = a) for
a = 0,1 denote the density function of the stationary distribution of st+1 when at = a. The choice

at = 1 is a “reset” choice such that the distribution of the next-period state variables st+1 does not

depend on the current state variables st, that is, f(st+1 ∣ st, at = 1) = f(st+1 ∣ at = 1). It is tempting

to separately discretize the two choice-specific VAR(1) processes, but this will result in complicated

choice-specific discretized state transition matrices.

To make the discretized state transition matrices simple, we impose the restriction that the

stationary distributions of the state variables to be the same across both choices: f(st+1 ∣ at = 1) =
f(st+1 ∣ ai,t = 0). We first discretize the VAR(1) process when at = 0 by using the “EDS” method,

proposed by Maliar and Maliar (2015) and specialized for a VAR(1) process by Gordon (2021) to

obtain a discrete grid of st values that consists of only 1000 points but approximates the stochastic

34Our method can handle larger ds, but we chose ds = 3 because simulating the sequences of state variables and

choices to implement the HM estimator puts a rapidly increasing strain on memory as ds increases.
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behavior of the original VAR(1) process well.35 Let s⃗ = (s1, . . . , s1000)′ denote the 1000 “EDS” grid

points, and each point sj (j = 1, . . . ,1000) is to a vector of (x1, x2, z)′ values. The “EDS” method

also gives us the discretized state transition matrix fdis(st+1 = sj ∣st = sj
′
, at = 0) and the stationary

probability mass function fdis(st+1 = sj ∣ at = 0), for ∀j, j′ = 1, . . . ,1000. This probability mass

function equals to each row of the state transition matrix fdis(st+1 = sj ∣st = sj
′
, at = 1) when at = 1,

because f(st+1 ∣ st, at = 1) = f(st+1 ∣ at = 0).

F.2 Solving the Model Backwardly with the Discrete States

Having obtained the discrete states and discrete state transition matrices, we can solve the dis-

cretized DP problem backwardly.

F.2.1 t = 3 (Decision Terminal period)

We start from the terminal period. First, the choice-specific expected payoff in period t = 3 is

v3(a, sj) = u3(a, xj) = δa,3,0 + δa,3,1xj1 + δa,3,2x
j
2, for j = 1, . . . ,1000, (F.1)

where xj = (xj1, x
j
2)′ is the first 2×1 subvector of sj , and we get a vector v⃗3(a) ≡ (v3(a, s1), . . . , v3(a, s1000))′

using this formula. Then, the CCPs in period t is

pt(sj) =
exp vt(1, sj)

exp vt(0, sj) + exp vt(1, sj)
, for j = 1, . . . ,1000. (F.2)

Let t = 3 in eq. (F.2) and we get a vector p⃗3 ≡ (p3(s1), . . . , p3(s1000))′. Lastly, the expected optimal

payoff in period t (i.e., the value of the integrated value function) is (see Arcidiacono and Miller,

2011, for example)

V̄t(sj) = vt(0, sj)) − ln(1 − pt(sj)), for j = 1, . . . ,1000. (F.3)

Let t = 3 in eq. (F.3) and we get a vector ⃗̄V3 ≡ (V̄3(s1), . . . , V̄3(s1000))′.

F.2.2 t = 2

The choice-specific expected payoff in non-terminal period t is

vt(a, sj) = ut(a, xj) + βE(V̄t+1(sj
′) ∣ st = sj , at = a), (F.4)

where ut(a, xj) is computed in a similar way as u3(a, xj) in eq. (F.1). For t = 2, the second

term in eq. (F.4) can be numerically computed using the vector ⃗̄V3 obtained in Section F.2.1

and the choice-specific discrete state transition matrices fdis(st+1 ∣ st, at) obtained in Section F.1.

Let v⃗2(a) ≡ (v2(a, s1), . . . , v2(a, s1000))′. Let t = 2 in eq. (F.2) eq. (F.3) and plug in v2(a, sj)
for j = 1, . . . ,1000, then we get a vector p⃗2 = (p2(s1), . . . , p2(s1000))′ and another vector ⃗̄V2 ≡
(V̄2(s1), . . . , V̄2(s1000))′ = v⃗2(0) − ln(1 − p⃗2).

35The number of points is up to the researchers’ choice.
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F.2.3 t = 1

Let t = 1 in eq. (F.4), in which again the second term can be numerically computed using the vector
⃗̄V2 obtained in Section F.2.2 and the choice-specific discrete state transition matrices fdis(st+1 ∣st, at)
obtained in Section F.1. We let v⃗1(a) ≡ (v1(a, s1), . . . , v1(a, s1000))′. Let t = 1 in eq. (F.2) and we

get p⃗1 = (p1(s1), . . . , p1(s1000))′. ⃗̄V1 is unnecessary since t = 1 is the sample initial period.

F.3 Simulate A Sample Forwardly with the Original State Space

Section F.2 gives the solution of the DP problem on the discrete “EDS” grid points s1, . . . , s1000

– the CCP vectors p⃗1, p⃗2, p⃗3. Before simulating a sample, however, we need to interpolate CCPs

for any continuous value of s using p⃗t as observations. In particular, for each t = 1,2,3, we regress

ln(pt(sj)/(1 − pt(sj))) on a power series of xj1, x
j
2 and zj (j = 1, . . . ,1000) to get the approximated

CCP function p̃t(x1, x2, z).
Then we simulate a sample forwardly. For period t = 1, we first generate N = 250 random draws

of s1 = (x1,1, x1,2, z1)′ from the stationary distribution of s1, which is the same across the choices

0 and 1. We then evaluate the approximated CCP function p̃1(x1,1, x1,2, z1) at the s1 draws and

randomly generate a choice a1 for each draw. For period t = 2, we first generate random draws

of s2 from choice-specific VAR(1) processes based on the s1 and a1 values. We then evaluate the

approximated CCP function p̃2(x2,1, x2,2, z2) at the s2 draws and randomly generate a choice a2

for each draw. For period t = 3, repeat what we did for t = 2 with all time indices increased by one.

55


	Introduction
	A Nonstationary Dynamic Binary Choice Model
	Model
	Brief Review of the HM Estimators

	Identification and Estimation
	Identification
	Collapse of Iterated Conditional Means
	Transformation into a Linear System
	Identification of the Linear System

	Estimation

	Sensitivity of Estimation to assu:V-T
	Bias in Estimation from Imposing assu:V-T
	Reducing Sensitivity of Estimation to assu:V-T

	Simulation Experiments
	Model Specification and Parameterization
	Results If Researchers Know T = Tend = 3
	Results If Researchers Do Not Know T = Tend

	Concluding Remarks
	Proofs of eq:lifetime-payoff and eq:Vbar-t+1 in sec:model
	Proofs of the Results in sub:ID
	Influence Function (D) in prop:asy
	Basic Terms in the Influence Function
	Adjustment Terms in the Influence Function
	Adjustment Term for Estimated siunitxunit-deprecatedࡡ爠barbar Functions
	Adjustment Term for Estimated siunitxunit-deprecatedࡡ爠barbarx Functions
	Adjustment Term for Estimated siunitxunit-deprecatedࡡ爠barbarqK Functions
	Adjustment Terms for Estimated CCPs


	Accommodating Time-Invariant Variables in xt
	Identification
	Estimation

	Proofs of the Results in sub:NP-VT
	Generating Simulation Sample
	Efficient Discretization of States and State Transition Distributions
	Solving the Model Backwardly with the Discrete States
	t = 3 (Decision Terminal period)
	t = 2
	t = 1

	Simulate A Sample Forwardly with the Original State Space


