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Abstract

We propose a model for interval-valued time series that specifies the conditional joint dis-
tribution of the upper and lower bounds as a mixture of truncated bivariate normal distri-
butions. It preserves the interval natural order and provides great flexibility on capturing
potential conditional heteroscedasticity and non-Gaussian features. The standard EM al-
gorithm applied to truncated mixtures does not provide a closed-form solution in the M
step. A new EM algorithm solves this problem. The model applied to the interval-valued
IBM daily stock returns exhibits superior performance over competing models in-sample and
out-of-sample evaluation. A trading strategy showcases the usefulness of our approach.

Key Words : interval-valued data, mixture transition model, EM algorithm, truncated normal

distribution.

JEL Classification: C01, C32, C34.

2



1 Introduction

Interval data refers to data sets where the observation is an interval in contrast to a single

point. Intervals arise in a variety of situations. There are instances when the data is di-

rectly collected in interval format. A standard example is survey design that avoids asking

participants about private or sensitive information, e.g. income, and the answer is provided

in interval format, e.g. [$50K, $100K]. In these cases, interval data is the only data format

available to the researchers. In other instances, intervals arise as a result of aggregating data.

The data may be collected at the individual level, e.g., gas prices in a gas station, but the

research question deals with a larger unit, e.g., gas prices at the county level. Rather than

providing an average of gas station prices, aggregating the data in interval format for each

county is more informative because it preserves the internal price variation of each county.

Aggregating the data into intervals may also provide information on volatility, which is par-

ticularly useful in financial markets e.g. daily max/min price interval provides information

on both the price level and the daily price volatility. Finally, intervals can also arise because

there is uncertainty on the measurement of the variable of interest. Regardless of the data

generation mechanism of intervals, we define an interval-valued time series (ITS) as a collec-

tion of interval data observed over time as opposed to the classical point-valued time series

(PTS) where the observations are scalars ordered over time.

The defining feature of an interval is the order of its bounds, i.e., the upper bound cannot

be smaller than the lower bound. A formal modeling of ITS with the bound restriction

was introduced by González-Rivera and Lin (2013), who propose a constrained regression

model (GL) that preserves the natural order of the interval. They assume that the bivariate

errors of the system of bounds follow a bivariate truncated normal distribution, where the

truncation encloses the constraint that the upper bound is not smaller than the lower bound.

However, this distributional assumption is restrictive as the consistency of the estimators

heavily depends on it.

Conditional heteroscedasticity and non-Gaussian behavior such as flat stretches, bursts, out-

liers, and change points (see Le et al., 1996; Wong and Li, 2000) are also important features
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that, to the best of our knowledge, have not been explicitly modeled in ITS. 1 These features

open the field for models capable of generating more flexible predictive densities. Non-

Gaussian features have been extensively considered in the PTS literature. Particularly, Le et

al. (1996) propose a Mixture Transition Distribution (MTD) model for univariate PTS that

accounts for non-Gaussian features. Their idea is to specify the conditional distribution of

the variable of interest as a mixture distribution. The fact that MTD is able to handle con-

ditional heteroscedasticity is noted and discussed by Berchtold and Raftery (2002). MTD

is further generalized by Wong and Li (2000) under the name of Mixture Autoregressive

(MAR), and by Hassan and Lii (2006), who extend MTD to marked point processes under

a bivariate setting.

In this paper, we propose a model for ITS in the spirit of the MTD model and its extensions.

We specify the joint conditional distribution of the upper bound (xt) and lower bound (yt) as

a mixture of truncated bivariate normal distributions, where for each component the bivariate

normal distribution is truncated at xt ≥ yt. For each component, the pseudo location of the

truncated bivariate normal distribution is a linear function of the information set. 2 This

model provides several advantages. First, it preserves the natural order of ITS, that is,

the upper bound is not smaller than the lower bound for all the observations in the ITS.

Second, the model captures conditional heteroskedasticity as the covariance matrix of the

process becomes time-varying due to the dynamic truncation and the mixture framework.

Third, the mixture distribution provides great flexibility to approximate the underlying

true conditional bivariate distribution of the lower/upper bounds, and hence improving the

quality of density forecast.3

For mixture models, the maximum likelihood estimator (MLE) does not have a closed-form

solution because of the complexity of the likelihood function. The standard approach to

find the MLE is to implement the EM algorithm due to its simplicity and monotonicity

in the likelihood (Dempster et al., 1977). The EM algorithm is based on the idea of data

augmentation.4 Specifically, it finds the MLE that maximizes the target likelihood function

by maximizing a pseudo complete likelihood function derived from data augmentation. By

construction, the pseudo complete likelihood function is easier to maximize (usually it has
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closed form solutions) than the target likelihood function. However, when the components of

the mixture are subject to truncation, the data augmentation techniques in the standard EM

algorithm to estimate mixture models (see Hamilton, 1990; Le et al., 1996; Hassan and Lii,

2006) do not provide closed-form solutions when maximizing the pseudo complete likelihood

function in the M step. To overcome this problem, we propose a new EM algorithm that

considers two data augmentation processes. 5 A first augmentation brings latent variables

that will suggest from which component of the mixture the observation will truly come and,

conditional on this step, a second augmentation provides additional latent variables that will

suggest whether the observation to be generated is invalid and then falls into the truncated

region.

Monte Carlo simulations indicate that the new EM algorithm performs well in finite samples.

Even with a small sample size (T = 200), the parameter estimates are precise. As expected,

the standard errors of the parameter estimates decrease when the sample size increases. The

standard errors also differ across components of the mixture. Standard errors in components

with large weights tend to be smaller than those in components with smaller weights. This is

also expected because there is less information available for components with smaller weights.

Hence, a larger sample size would be desirable to estimate precisely the parameters of those

components. The Monte Carlo simulations also provide some evidence on the asymptotic

normality of the MLE. For a restricted version of the TMT model, simulation results show

that the density of the ML estimator departs from normality in small samples, but as the

sample size increases, we observe a gradual approach towards normality.

We apply the model to the ITS of the IBM daily stock returns. In sample, the model

fits well the data. We identify four components with the first two explaining 75% of the

dynamics of the series and capturing periods of low volatility. It is the fourth component,

which has the smaller weight, the one to capture high volatility periods. Out-of-sample, the

proposed mixture model outperforms the best competing model (VAR(7)-DCC-t density) on

approximating the underlying conditional distribution. To demonstrate the usefulness of the

model, we apply a trading strategy developed by González-Rivera et al. (2020) that exploits

the probability distribution of high/low return forecasts. Based on the density forecasts of
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the proposed mixture model, the trading strategy delivers higher profits or smaller losses

than those based on the density forecasts of the best competing model.

As an alternative procedure to our modeling strategy to avoid the truncation of the density,

we could model the upper bound (xt) and the log of the range of the interval (log(xt − yt)),

by employing a bivariate Gaussian mixture distribution (e.g., the MAR model by Wong

and Li (2000) ). However, this procedure creates new econometric problems, when we need

to recover the range of the interval. The predicted value of range will require some bias

corrections that depend on the assumed range distribution. Furthermore, it is not trivial

to obtain the joint distribution of the upper and lower bounds and to build the prediction

regions from the joint distribution of the upper bound and log of the range. See González-

Rivera et al. (2020) for a bootstrap approach that accomplishes such transformation.

The organization of the paper is as follows. In Section 2, we introduce the truncated mixture

transition model and discuss some properties. In Section 3, we estimate the model by MLE

and provide a new EM algorithm. In Section 4, we perform Monte Carlo simulations, and

in Section 5, we apply our model to ITS of the IBM daily stock returns and implement

a trading strategy to show the usefulness of our proposed model. We conclude in Section

6. In Appendix, we provide the technical details of the EM algorithm, a discussion of the

stationary condition, and the consistency of the ML estimator.

2 The Truncated Mixture Transition Model

2.1 Definition

Interval time series data has the following format

{ (xt, yt), t = 1, . . . T },

where xt is the upper bound and yt the lower bound of the interval observed at time t and

it is required that xt > yt. Denote the vector Yt = (xt, yt)
′. We say that Yt is generated by a

truncated mixture transition (TMT (P,Q)) model if the conditional density function of the
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process can be written as

f(Yt|F t−1) =
P∑
j=1

αjfj(Yt|Y t−1
t−Q), (2.1)

P∑
j=1

αj = 1, αj > 0, j = 1, . . . , P,

where F t−1 is the information set up to time t−1, P is the number of components, assumed

to be fixed, Q is the number of lags in each component,6 and Y t−1
t−Q = (Yt−Q, Yt−Q+1, ..., Yt−1).

The function fj(Yt|Y t−1
t−Q) is a truncated bivariate normal probability density, truncated at

xt > yt so that the upper bound is not smaller than the lower bound. The truncated density

has the following functional form (see e.g. Nath, 1972)

fj(Yt|Y t−1
t−Q) =

1

2π
√
|Σj|Ft,j

exp[−1

2
(Yt − µt,j)′Σ−1

j (Yt − µt,j)], (2.2)

where the pseudo location is a linear function of the information set, i.e., µt,j = Cj+Bj,1Yt−1+

... + Bj,QYt−Q, with constant vector Cj (2 × 1) and matrices Bj,r (2 × 2) (r = 1, ..., Q); Σj

(2 × 2) is a positive semi-definite matrix, and |Σj| is the determinant of Σj. We denote

Aj = (Cj, Bj,1, ..., Bj,Q), and hence the parameter set of the model is Ψ = {αj, Aj, Σj|∀j}.

The functional form (2.2) differs from a bivariate normal distribution in the normalization

term Ft,j = 1 − Φ(
−w′µt,j√
w′Σjw

), which represents the cumulative distribution of the truncated

area (xt ≥ yt), with Φ being the standard normal cumulative distribution function and

w = (1,−1)′.

According to Extreme Value Theory, extreme processes, i.e. max/min, asymptotically follow

a generalized extreme value (GEV) distribution. In Lin and González-Rivera (2019), the

marginal conditional means of the maximum and minimum returns are modeled based on

results involving GEV distributions. However, as they do not consider the joint modeling

of the extremes, the interval constraint cannot be guaranteed. The TMT model provides a

framework to accommodate these issues. The finite mixture of truncated normal densities

provides a flexible approximation to the GEV distribution because the data, via information

selection criteria, determines the number of components and the weight of each component

in the mixture as well as the dynamic truncation in each component. The idea of using finite
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mixture distributions to approximate certain distributions is not uncommon, particularly for

Bayesian inference (see Shephard, 1994; Chib et al., 2002; and Nakajima et al., 2017).

2.2 Conditional moments

From (2.1) and (2.2), we obtain the conditional mean of Yt as:

E(Yt|F t−1) =
P∑
j=1

αj(M
1
o,t,j + µt,j), (2.3)

where

M1
o,t,j =

Σjw√
w′Σjw

φ(
−w′µt,j√
w′Σjw

)

1− Φ(
−w′µt,j√
w′Σjw

)
, (2.4)

and φ is the standard normal density function. The termM1
o,t,j represents the mean shift after

the truncation takes place (see Nath, 1972, for moments of truncated normal distribution).

If there is no truncation, the term M1
o,t,j = 0. Then for the component j, the conditional

mean is no longer µt,j but a nonlinear function of Y t−1
t−Q. The natural order of interval time

series is also preserved at the conditional mean level, i.e., w′E(Yt|F t−1)) ≥ 0 (see Appendix

A.1).

An important feature of TMT model (2.1) is that captures conditional heteroscedasticity.

The conditional variance is time varying and is calculated as follows

V (Yt|F t−1) (2.5)

=E(YtY
′
t |F t−1)− E(Yt|F t−1)E(Yt|F t−1)′

=
P∑
j=1

αj(M
2
o,t,j + µt,j(M

1
o,t,j)

′ +M1
o,t,jµ

′
t,j + µt,jµ

′
t,j)

−(
P∑
j=1

αj(M
1
o,t,j + µt,j))(

P∑
j=1

αj(M
1
o,t,j + µt,j))

′,
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where

M2
o,t,j = Σj +

Σjww
′Σj

w′Σjw

−w′µt,j√
w′Σjw

φ(
−w′µt,j√
w′Σjw

)

1− Φ(
−w′µt,j√
w′Σjw

)
. (2.6)

If there is no truncation, in addition to M1
o,t,j = 0, we have M2

o,t,j = Σj and, for each

component j, its variance becomes constant.

3 Maximum Likelihood Estimation: EM algorithm

We discuss the estimation of the TMT model (2.1) by maximum likelihood (ML).7 Our goal

is to estimate Ψ by maximizing the likelihood function:

L(Ψ) = 1
T−Q

T∑
t=Q+1

log[
P∑
j=1

αjfj(Yt|Y t−1
t−Q, Aj, Σj)]. (3.1)

It is obvious that a closed-form solution is not achievable by maximizing (3.1). The likelihood

functions of mixture models are usually non-concave, and often have several local maxima

(see e.g. Redner and Walker, 1984). Dempster et al. (1977) propose the expectation max-

imization (EM) algorithm, which has been widely applied to find the ML estimators for

mixture models due to its simplicity and monotonicity property. The statistical properties

of EM algorithm have been studied extensively (see Wu, 1983; Meng, 1994; McLachlan and

Krishnan, 2007; and Balakrishnan et al., 2017).

Lee and Scott (2010) apply the EM algorithm to a truncated normal mixture model with

each component truncated in a rectangular fashion, e.g., s ≤ Yt ≤ k, where s and k are

vectors with the same dimension as Yt. Although our model has a different type of truncation

(xt ≥ yt, or w′Yt ≥ 0) , their arguments can be adapted to derive an EM algorithm. However,

this modified EM algorithm will not provide a closed-form solution in the M step, mainly

due to the truncation term ( φ(.)
1−Φ(.)

) in the density function (see Appendix A.2 for details).

As a result, numerical maximization is needed in the M step (see Lange, 1995) and thus,

the simplicity of the EM algorithm is lost. In the following section, we propose a new EM

algorithm that solves this problem.
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3.1 A new EM algorithm

As with any EM algorithm, we begin with the data augmentation procedure. Unlike the

data generating process specified by the model, where only the observation Yt is generated

at time t, the data augmentation involves generating additional latent data.8 To obtain the

observation Yt, we first generate a latent variable zt from a multinomial distribution that

will indicate the component of the mixture distribution from which the observation would be

coming from. Specifically, zt = (zt1, zt2, ..., ztP ), where ztj ∈ {0, 1} is the indicator variable

such that ztj = 1 if Yt is generated from component j and 0 otherwise. Next, conditional

on zt, we generate another latent variable nt from a geometric distribution that indicates

the number of invalid draws (xt < yt) from the respective component before a valid draw

(xt ≥ yt) arrives. The valid (nt + 1)th draw is then treated as the tth observation (Yt).

Clearly, the data (Yt) is augmented by introducing zt, nt, and all the invalid draws. Denote

Y A
t = {Yt,1, Yt,2, ..., Yt,nt , Yt,nt+1} as all the draws at time t. We now formalize the above data

augmentation process (i.e., pseudo complete data generating process thereafter).

Let zt follow a multinomial distribution:

g(zt|Ψ) =
P∏
j=1

α
ztj
j . (3.2)

where
∏P

j=1 α
ztj
j = αzt11 αzt22 · · ·α

ztP
P . Given the role nt plays in the above pseudo complete data

generating process, it is natural to specify its distribution, conditional on zt, as a geometric

distribution, a discrete probability distribution that describes the number of failures before

the first occurrence of success, i.e.,

q(nt|zt, Ψ) =
P∏
j=1

[
(1− Ft,j)ntFt,j

]ztj
, (3.3)

where Ft,j = 1 − Φ(
−w′µt,j√
w′Σjw

) is the cumulative distribution function of the truncated area

(xt ≥ yt) for component j at time t, and represents the probability of obtaining a valid draw

from the bivariate normal distribution. Then, the conditional density of Y A
t is specified as
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follows,

h(Y A
t |zt, nt, Ψ) =

P∏
j=1

[
fNt,j(Yt,nt+1)

Ft,j

nt∏
k=1

(
fNt,j(Yt,k)

1− Ft,j
)

]ztj
, (3.4)

where fNt,j(.) is the bivariate normal density of component j at time t.

Next, we construct the joint density function of the pseudo complete data ({Y A
t , zt, nt}), i.e.,

l(Y A
t , zt, nt|Ψ) = g(zt|Ψ)q(nt|zt, Ψ)h(Y A

t |zt, nt, Ψ)

=
P∏
j=1

[
αjf

N
t,j(Yt,nt+1)

nt∏
k=1

fNt,j(Yt,k)

]ztj
, (3.5)

so that we write the pseudo complete log-likelihood function as follows

LC(Ψ) =
1

T −Q

T∑
t=Q+1

P∑
j=1

ztj[logαj + log fNt,j(Yt,nt+1) +
nt∑
k=1

log fNt,j(Yt,k)]. (3.6)

E Step. The above likelihood (3.6) is replaced with its conditional expectation (see Appendix

A.3 for details),

Q(Ψ |Ψ l)

=E[LC(Ψ)|Y, Ψ l]

=
1

T −Q

T∑
t=Q+1

P∑
j=1

z̃tj[logαj + log fNt,j(Yt,nt+1) + ñt,j(

ˆ
log fNt,j(Yt,k)(

fN,lt,j (Yt,k)

1− F l
t,j

)dYt,k)], (3.7)

where ñt,j = E(nt|ztj = 1, Y, Ψ l) =
1−F lt,j
F lt,j

, fN,lt,j (.) and F l
t,j are respectively fNt,j(.) and Ft,j

conditional on Ψ l (the parameter set of the previous (lth) iteration).

z̃tj = P (ztj = 1|Y, Ψ l)

=
P (ztj = 1, Yt|Ψ l)

P (Yt|Ψ l)

=
αljf

l
t,j(Yt)∑P

r=1 α
l
rf

l
t,r(Yt)

. (3.8)

M Step. By maximizing Q(Ψ |Ψ l), we obtain the iterated rules for Ψ (see Appendix A.4 for
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details)

αl+1
j =

∑T
t=Q+1 z̃tj

T −Q
, (3.9)

Al+1
j = (X̄ ′jȲj + X̃ ′jM̃

1
d′,T̄,j)

′(X̄ ′jX̄j + X̃ ′jX̃j)
−1, (3.10)

Σl+1
j =

∑T
t=Q+1 z̃tj[(Yt − A

l+1
j Xt−1)(Yt − Al+1

j Xt−1)′ + ñt,jM
2
d′,t,j]∑T

t=Q+1 z̃tj(1 + ñt,j)
, (3.11)

where M̃1
d′,T̄,j

= (M̃1
d′,Q+1,j, ..., M̃

1
d′,T,j)

′, and M̃1
d′,t,j =

√
z̃tjñt,j(M

1
d,t,j + µlt,j).

M2
d′,t,j = M2,l

d,t,j + (µlt,j − µl+1
t,j )(M1,l

d,t,j)
′ + (M1,l

d,t,j)(µ
l
t,j − µl+1

t,j )′ + (µlt,j − µl+1
t,j )(µlt,j − µl+1

t,j )′.

M1,l
d,t,j and M2,l

d,t,j are respectively M1
d,t,j and M2

d,t,j conditional on Ψ l,

M1
d,t,j =

−Σjw√
w′Σjw

φ(
w′µt,j√
w′Σjw

)

1− Φ(
w′µt,j√
w′Σjw

)
, (3.12)

M2
d,t,j = Σj +

Σjww
′Σj

w′Σjw

w′µt,j√
w′Σjw

φ(
w′µt,j√
w′Σjw

)

1− Φ(
w′µt,j√
w′Σjw

)
. (3.13)

Furthermore, µlt,j = C l
j +Bl

j,1Yt−1 + ...+Bl
j,QYt−Q.

X̄j =
√
z̃jτ

1+2Q
1 �X, and X = (τ 1

T−Q, (Y
T−1
Q )′, ..., (Y T−Q

1 )′), where τ ba is a vector of ones with

dimension a× b.

X̃j =
√

(z̃j � ñj)τ 1+2Q
1 � X, z̃j = (z̃Q+1,j, ..., z̃T,j)

′, ñj = (ñQ+1,j, ...ñT,j)
′, Ȳj =

√
z̃jτ 2

1 �

(Y T
Q+1)′, and X ′t−1 = (1, Y ′t−1, ..., Y

′
t−Q). The operator � is the Hadamard product.

Repeat E step and M step until convergence. Clearly, the new EM algorithm provides a

closed-form solution. Furthermore, the constraints on parameters are satisfied by construc-

tion, i.e., Σl+1 is positive semi-definite,
∑P

j=1 α
l+1
j = 1, and αl+1

j > 0. Note that Aj has an

iterated rule that resembles the formula of the maximum likelihood estimates of the parame-

ters of a vector autoregressive model (V AR). When truncation is not in present, it becomes

Al+1
j = (X̄ ′jȲj)

′(X̄ ′jX̄j)
−1. Therefore, (3.10) can be viewed as applying V AR estimation to

the pseudo complete sample.
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4 Monte Carlo Simulations

4.1 Finite Sample Performance of the EM Algorithm

We perform Monte Carlo simulations to evaluate the finite sample performance of the pro-

posed EM algorithm to estimate the parameters of the TMT model.

In Table 1, we show the design of three data generating processes: DGP 1 and DGP 2 are

TMT (2, 1) and DGP 3 is TMT (3, 1)). Specifically, DGP 1 considers two components with

the binding constraint (xt ≥ yt) in one component but not in the other component. The

constraint is not binding at time t if w′µt,j = w′(Cj +Bj,1Yt−1 + ...+Bj,QYt−Q)� 0 and Σj

is relatively small, while it is binding otherwise.9 Intuitively, when a significant portion of

the bivariate density is truncated, i.e., substantial areas of the bivariate contours are above

the 45-degree line, the constraint is said to be binding. DGP 2 considers the case where

the constraint is binding in both components. DGP 3 considers three components with a

non-binding restriction in the first component while binding in the other two components.

For these two components, we also consider a low persistence process in one component and

a high persistence process in the other. To visualize the constraint, we plot the truncations

in DGP 3 in Figure 1. For each component at time t, we are re-centering the component’s

probability density to the origin (i.e., shifting the density by µt,j, where µt,j = Cj+Bj,1Yt−1 +

...+Bj,QYt−Q). The truncation line, previously the 45 degree line, becomes time-varying as

it has also been shifted by µt,j. In Figure 1, the grey lines are the 45-degree truncation lines

that were shifted at each time t. In panels (a) and (b), we show how the binding constraints

significantly truncate the bivariate densities while is panel (c) there is no truncation because

the constraint is not binding.

For each DGP, the data are generated as follows. First, we set the parameters as in Table

1. Second, we define ηt,j to be the weight for component j at time t before the truncation

is imposed such that the truncation delivers a new component weight αj.
10 The relationship

between αj and ηt,j is the following: αj =
ηt,jFt,j∑P
j=1 ηt,jFt,j

. Notice that αj is fixed while ηt,j

changes with time. Third, independent random draws (e.g. 1000 draws) are extracted from
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the bivariate normal mixture distribution (with component weight ηt,j). Fourth, we keep the

draws that satisfy the constraint xt ≥ yt, from which one is randomly selected as the actual

observation at time t. Repeat the above steps until we generate a sample with desired size.11

We initialize the EM algorithm by randomly choosing 50 initial values of the parameter

vector. 12 For each initial value of the parameter vector, we run the EM algorithm separately.

We choose the values that achieve the highest likelihood. We consider two sample sizes

(T = 200 and T = 1, 000) and we run 100 Monte Carlo replications.

We summarize the Monte Carlo results in Tables 2, 3 and 4. Across all the experiments,

the EM algorithm performs satisfactorily. Even in small samples, the estimates are rather

precise. As the sample size increases, the point estimates are closer to the true parameter

values and the standard errors become smaller, as we expected. Whether the constraint is

binding or not does not seem to affect the estimation results in any particular fashion. The

same can be said whether there is low or high persistence in the conditional means.

Across Tables 2-4, it is interesting to observe that the standard errors of the estimates are

smaller in those components whose weight α is the larger. For example, in Table 4, the

standard errors for C, B, and Σ are the smallest for the first component that has the largest

component weight of 0.5, and they increase for the second and third component that have

smaller weights, 0.3 and 0.2 respectively. A possible explanation is that with a smaller

component weight, relatively fewer observations would be generated from this component

and hence less information is available to accurately estimate this component. As the sample

size becomes larger, such differences in standard errors across components shrink since all

the standard errors decrease with a large sample size. This suggests that a relatively large

sample size would be desirable for more accurate estimation when small components are

present.

In summary, Monte Carlo results seem to suggest that the proposed EM algorithm works

very efficiently identifying the component weights, the dynamics of the conditional means

in each component, and the dynamic truncation (binding or not binding constraints) in

the bivariate density of each component. The two factors that contribute to more efficient

estimates are the sample size and the weight of each component in the mixture. A larger
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sample size and a large weight provide more information and consequently, we obtain smaller

standard errors.

4.2 Asymptotic Normality of the MLE

We aim to provide evidence of the asymptotic normality of the ML estimator based on the

proposed EM algorithm. This is particularly challenging in a simulation setting because we

are facing the “label switching” issue, that is, in the mixture model it is not possible to

identify to which component the parameter estimates belong. Though Yao (2013) proposed

some methods to mitigate the label switching issue in simulation experiments, it is not fully

eliminated and, to the best of our knowledge, there is not a satisfactory solution in the

current literature. Therefore, we only consider a special case of the TMT model where the

label switching issue does not exist.

We introduce a restricted version of the TMT model, RTMT (P ), where we impose the

restriction that in each component, there is only one lag, that is, the pseudo location looks

like µt,j = Cj+Bj,jYt−j and the matrix B is restricted such that Bj,r = 0 for r 6= j. Obviously,

the restricted model does not suffer from the label switching issue as each component has

different lags. We consider a RTMT (2), with parameter values set as DGP 1 in Table 1

with the discussed restriction. The first component that only includes regressor Yt−1 in the

pseudo location has a weight of 0.6. The second component only includes regressor Yt−2 in

the pseudo location and has a weight of 0.4. We perform 500 Monte Carlo simulations and

we obtain the ML estimators by implementing the proposed proposed EM algorithm.13 We

also consider small and large samples (T = 50 and T = 500).

We present the simulation results in Figures 2 to 5 where we plot histograms of the parameter

estimates and QQ plots. 14 The common feature in the four figures is that in small samples

the estimators depart from normality but, as the sample size increases, we observe a gradual

approach towards normality. In Figure 2, the histogram and QQ Plot of the estimate of

the constant vectors Cj display fatter right and left tails than those of a normal density.

However, in Figures 3 to 5, the approach towards normality when T = 500 is more evident,
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and even in the small sample T = 50 environment, the normal density seems to be a good

approximation for the density of the ML estimators of the pseudo location parameters and

the weight parameter.

5 Empirical Application

We model the interval-valued time series of the IBM daily stock returns. The high/low

returns are calculated as the percentage change of the highest/lowest daily price with respect

to the closing price of the previous day. The high return at time t is rhigh,t = 100× (Phigh,t−

Pclose,t−1)/Pclose,t−1 and similarly the low return rlow,t = 100 × (Plow,t − Pclose,t−1)/Pclose,t−1.

Consequently, the interval-valued time series satisfies rhigh,t ≥ rlow,t. In Figure 6, we plot

the time series from 2004/1/1 to 2018/4/1 (3584 observations); in blue, the high returns and

in red, the low returns. As in any financial time series, heteroscedasticity is a very salient

feature with high and low volatility periods in both bounds and low returns that tend to be

more volatile than high returns.

5.1 In-sample Evaluation

We estimate and evaluate the in-sample performance of the models with the entire sample

from 1/1/2014 to 4/1/2018. We start by considering a TMT model with a maximum of

seven components and four lags. That is, P = {2, ..., 7}, and Q = {1, 2, 3, 4}, for a total of

28 specifications.15 We select the best models by the BIC. The selected model is a TMT (4, 2)

and we report the estimation results in Table 5.16. We observe that the first two components

account for 75% of the dynamics of the series and the first three components for 90% and are

components with relative small volatility (small Σ) while the fourth component has a lower

weight (about 9%) but captures periods of high volatility (large Σ). Components 1 and 2

seem to have less persistence than components 3 and 4. In most cases, the upper bound

is positively affected by its own lags while negatively affected by the lags of lower bound.

Similarly, the lower bound is positively affected by its own lags while negatively affected by
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the lags of upper bound. The standard errors for the parameter estimates (C, B, and Σ)

increase for components with smaller weights. This aligns with the observation from Section

4.

In summary, the importance of the estimation results shown in Table 5 lies on their contribu-

tions to our understanding of the dynamic truncations in the conditional density warranted

by the data as well as the estimation of the conditional means, variances, and correlation.

We proceed to analyze these features.

In Figure 7, we show the time-varying truncations (as explained in the simulation section

4.1) in the bivariate density of each component after re-centering (shifted by µt,j for each t

and each j). The truncations are very different across components; the interval constraint is

not binding for components 1 and 2 but it is for components 3 and 4, which means that the

time-varying heteroscedasticity is driven mainly by these last two components.

In Figure 8, we plot the fitted conditional means (2.3) together with the realized data.

The persistency in the data seems to be well captured by the model. We also plot the

fitted conditional variances and correlation coefficients (2.5) of the high/low returns. The

conditional variances are capturing the volatility clustering in the data very well. The

contemporaneous conditional correlations between low and high returns tend to be very high

and positive, around 0.8, in low volatility periods and substantially lower in high volatility

times.

In Figure 9, we plot two estimated conditional densities of the bivariate process, one in

Dec. 18, 2008 and the other in Dec. 29, 2017, to illustrate the flexibility of the truncated

normal mixture distribution. The shapes are rather different. In 2008, the density seems to

be bimodal and very asymmetric; in contrast in 2017, the density is unimodal and mostly

symmetric. The number of components and the truncations provide enough flexibility to

adapt to the time-varying conditional density of the data.

We also consider a more parsimonious specification of the model, the restricted model

RTMT (P ), as described in Section 4.2. We consider up to seven components (P = {1, ..., 7})

for RTMT . We also compare the TMT and RTMT models with five other models. For
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all models, the number of lags in the conditional means is selected by BIC. We set up a

linear vector autoregressive, V AR, model as the benchmark. We consider two multivariate

GARCH models to account for conditional heteroskedasticity in the data, one with a con-

ditional normal density for the errors (V AR − DCC − N) and the other with a Student-t

density (V AR − DCC − t). We also estimate the one-component model proposed by GL.

Notice that V AR, V AR − DCC − N , and V AR − DCC − t models cannot preserve the

natural order of the ITS. In-sample comparison of the six models is summarized in Table 6.

The worst performer is the V AR(7), with the largest BIC and the smallest log-likelihood,

though it is the most parsimonious. It is clear that modeling the heteroscedasticity in

the data with either of the two multivariate GARCH models improves the performance, in

particular when we fit the Student-t to the errors. Neither of these three models considers the

natural order of the high/low interval. Among the models that satisfy the interval restriction,

the GL(7), one-component model, does not seem to capture enough heteroscedasticity and

suggests the need for the introduction of more components. The RTMT (5) and TMT (4, 2)

are the best performers with the smallest BIC and the largest log-likelihood though there is

an increase in the number of parameters to estimate.

5.2 Out-of-sample Evaluation

We split the data into an in-sample period (from 1/1/2004 to 12/31/2013) for model esti-

mation and an out-of-sample period (from 1/1/2014 to 4/1/2018) for model evaluation. We

focus on comparing two of the best models, TMT (4, 2) and V AR(7)−DCC−t, according to

the analysis in Section 5.1. As we mention before, the TMT model considers the restriction

in the interval bounds but the V AR−DCC − t does not.17

Both models are estimated recursively. We construct the one-step-ahead density forecasts

in the out-of-sample period. First, we evaluate the density forecasts following Diebold et

al. (1998) and Diebold et al. (1999) by obtaining the corresponding probability integral

transformations (PITs) of the densities associated with rhigh,t, rlow,t, and rhigh,t|rlow,t. 18

If the density forecasts coincide with the underlying true conditional densities, then the

18



PITs should be i.i.d. (i.e., identically and independently distributed) uniformly distributed,

U(0, 1). In Figures 10 and 11, we plot the PITs for TMT (4, 2) and V AR(7) − DCC −

t.19 The TMT (4, 2) model seems to generate density forecasts that better approximate

the underlying true conditional densities when compared with those from the V AR(7) −

DCC − t model because its PITs are closer to the uniform distribution. For the V AR(7)−

DCC − t, there is a clear rejection of uniformity. To assess the dependence of the PITs, we

plot the autocorrelation functions of the PITs and those of their squares, third, and fourth

powers in Figures 12 and 13.20 The main difference between these two figures lies in the

slightly significant autocorrelations in plots (b) and (d) of the TMT model compared to

those generated by the V AR −DCC − t model. It seems that there is slight advantage of

the V AR−DCC − t specification on explicitly modeling the heteroscedasticity in the data.

For both models, plots (a) and (c) do not exhibit any autocorrelation statistically different

from zero.

We also evaluate the density forecasts by a battery of powerful tests, called the Generalized

AutoContour (G-ACR) tests, introduced by Gonzalez-Rivera, Senyuz, and Yoldas (2011)

and generalized to multivariate densities by Gonzalez-Rivera and Sun (2015). In Figure

14, we plot the PITs of rlow,t against those of rhigh,t|rlow,t for both models. If the density

forecasts coincide with the underlying true conditional densities, the points in the plots

should be uniformly distributed across the area of the unit square and show no dependency.

It is clear that comparing the unit squares from the two models, the unit square from the

V AR(7)−DCC−t does not exhibit a uniform distribution of the PITs in the square as there

are missing points in the lower region of the square. This is not the case for the TMT (4, 2)

model. We also conduct formal G-ACR tests to test the null hypothesis that the density

forecasts coincide with the underlying true conditional densities. We report the results in

Tables 7 and Table 8. The null hypothesis cannot be rejected for the TMT model at the 1%

significance level except for a few lags and autocontour levels while it is strongly rejected for

the V AR(7)−DCC − t model. Such results are consistent with those observed in the plots

of Figure 14.
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5.3 A Trading Strategy

To demonstrate the usefulness of our model, particularly the density forecasts, we apply a

trading strategy developed by González-Rivera et al. (2020). The trading strategy exploits

the probability distribution of high/low return forecasts. Consider the ratio st =
|Ot−r̂low,t,1|
|r̂high,t,1−Ot| ,

where Ot is the opening return at day t, calculated using the opening price at day t with

respect to the closing price at day t− 1, and r̂high,t,1 and r̂low,t,1are the one-step ahead high

and low return forecasts, respectively. If st < 1, then the return is more likely to go up than

down in the next day. If this is observed for several days, it is reasonable to believe that

the market is forming an upward trend and a “buy alert signal” should be generated. A

similar argument can be applied to the “sell alert signal.” Figure 15 illustrates the proposed

trading strategy. Note that st is the absolute value of the slope of any line that connects point

A ≡ (Ot, Ot) and any other point below the 45◦ line. The slope of line AB is equal to (minus)

one and it is perpendicular to the 45◦ line. Hence the area under the 45◦ line is divided into

two areas by the line AB: st > 1 to the left of line AB, and st < 1 to the right of line AB. With

the predicted probability distribution of high/low return forecasts, the probabilities of st < 1

and st > 1 can be computed through numerical integration. Note that González-Rivera et

al. (2020) compute the probabilities of st < 1 and st > 1 using the Bootstrap method. They

count the number of Bootstrap realizations within the prediction region to approximate the

probabilities, while we directly integrate over the predicted probability distribution. The

trading strategy then consists of the following steps:

• At day t, plot Figure 1 based on Ot. Given the one-step-ahead predictive density of

high and low returns, calculate Prob(st < 1) and Prob(st > 1). If Prob(st < 1) >

Prob(st > 1), a “buy alert signal” is generated.

• If the “buy alert signal” is observed for m consecutive days beginning with day t, buy

the asset on day t+m− 1 using the closing price on that day.

• After buying the asset, on any other day d,watch for the “sell alert signal”; that is

Prob(st < 1) < Prob(st > 1). If the “sell alert signal” is observed for m consecutive

days from day d, sell the asset on day d + m − 1 using the closing price on that day.

20



Otherwise, hold the asset.

We evaluate this trading strategy over the out-of-sample period (January 1, 2014, to April

1, 2018) for TMT (4, 2) and V AR(7)−DCC− t models.. For the implementation, the choice

of m should not be too small because it will introduce substantial noise in trading, but it

should not be too large either because we could miss profitable trades. We consider m = 4

and 5. We apply a transaction cost of 0.1%, and we annualize the profit/loss for each trade

because each trade will have a different holding period. The annualized return is calculated

as ARt =
(
Pclose,t+j−Pclose,t

Pclose,t
− 0.001

)(
365
j

)
, where Pclose,t+j (j > 0) and Pclose,t are the closing

prices for the selling and buying days, respectively. The investor can buy the asset again

before the previous bought asset is sold. At the end of the evaluation period, if there are

still assets that have not been sold, these assets will not be considered when calculating the

profits.

Table 9 reports the average of ARt. TMT model achieves on average higher profit than

V AR − DCC − t for m = 4. For m = 5, although both models incur losses, loss from the

TMT model is on average less than V AR − DCC − t. Figure 16 plots the histograms of

profits/losses over trades for two models. It is interesting to see that the TMT model is

able to pick up a few very profitable trades on the right tails of the histograms while the

V AR−DCC − t model misses them.

6 Conclusions

We have proposed a truncated mixture transition model for the interval-valued time series

that guarantees the natural order of the data (upper bound greater than lower bound).The

model enjoys great flexibility in terms of both parameter and density specifications and cap-

tures data features such as heteroscedasticity and non-Gaussianity. However, the standard

EM algorithm to estimate truncated mixture models does not provide closed-form solutions

in the M step. Therefore, we have proposed a new EM algorithm with a novel data augmen-

tation process that encloses a closed-form solution in the M step. We prove the consistency of

the maximum likelihood estimator and simulation results indicate good convergence prop-
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erties of the estimator in small and large samples. We have illustrated the performance

of the model with an application to the IBM daily high/low stock returns and provided

evaluation metrics in-sample and out-of-sample. We have also offered a comparison with

several competing specifications and have shown the advantages of the truncated mixture

transition model in generating the best density forecasts among the models considered and

implemented a trading strategy that delivers better results when density forecasts are based

on those generated by the truncated mixture model.
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Figure Legends

Figure 1: Trading Strategy Comparison for IBM average annualized returns over the out-of-

sample period from January 1, 2014 to April 1, 2018.

Figure 2: Histogram and QQ plot of the first element of C1 (true value is -2). T = 50 in top

panel and T = 500 in bottom panel. The solid curves in the histograms are normal densities.

Figure 3: Histogram and QQ plot of the first element of B1,1 (true value is 0.7). T = 50

in top panel and T = 500 in bottom panel. The solid curves in the histograms are normal

densities.

Figure 4: Histogram and QQ plot of α1 (true value is 0.6). T = 50 in top panel and T = 500

in bottom panel. The solid curves in the histograms are normal densities.

Figure 5: Histogram and QQ plot of the first element of Σ1 (true value is 0.4). T = 50

in top panel and T = 500 in bottom panel. The solid curves in the histograms are normal

densities.

Figure 6: Daily IBM high/low stock returns (2004/1/1 to 2018/4/1).

Figure 7: Truncations in the bivariate density of each component of the model TMT (4, 2).

Figure 8: Estimated conditional mean, variance and correlation of daily IBM high/low stock

returns (2004/1/1 to 2018/4/1).

Figure 9: Estimated conditional bivariate density contours.

Figure 10: PITs from TMT (4, 2) density forecasts.

Figure 11: PITs from VAR(7)-DCC-t density forecasts.

Figure 12: ACF of functions of PITs extracted from the rlow,t densities generated by TMT (4, 2)

model. pt is the PIT and p̄ is the sample mean of pt.

Figure 13: ACF of functions of PITs extracted from the rlow,t densities generated by VAR(7)-

DCC-t model. pt is the PIT and p̄ is the sample mean of pt.

Figure 14: G-ACR plots for TMT(4,2) and VAR(7)-DCC-t models.
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Figure 15: Buy and sell signals from trading strategy.

Figure 16: Histograms of the annualized trading returns over the out-of sample period from

January 1, 2014 to April 1, 2018.

Figure 17: Inverse Mill Ratio.
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Appendix

A.1 Proof of w′E(Yt|F t−1)) ≥ 0

It is sufficient to show that w′M1
o,t,j + w′µt,j ≥ 0 for all j. Thus, it suffices to prove that

φ(
−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)
≥ −w′µj√

w′Σjw
.

Let λ =
−w′µj√
w′Σjw

. When λ ≤ 0, the above inequality obviously holds.

When λ > 0, 1− Φ(λ) = 1
2
erfc( λ√

2
), where erfc is the complementary error function defined

as erfc(z) = 2√
π

´∞
z

exp(−t2)dt. In addition, φ(λ) = 1√
2π

exp(−λ2

2
). The inequality becomes

1√
2π

exp(−λ
2

2
) ≥ 1

2
erfc(

λ√
2

)λ.

Using the property of erfc function: erfc(z) ≤ 2√
π

exp(−z2)

z+
√
z2+ 4

π

, when z > 0, we have

1√
π

exp(−λ2

2
)λ

λ√
2

+
√

λ2

2
+ 4

π

≥ 1

2
erfc(

λ√
2

)λ.

With this upper bound of 1
2
erfc( λ√

2
)λ, and it suffices to show that

1√
2π

exp(−λ
2

2
) ≥ 1√

π

exp(−λ2

2
)λ

λ√
2

+
√

λ2

2
+ 4

π

⇐⇒ 1 ≥ 1

1
2

+
√

1
4

+ 2
πλ2

,

which obviously holds when λ > 0 .
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A.2 The EM algorithm for truncated normal mixture model

Lee and Scott (2010) apply the EM algorithm to the multivariate truncated normal mixture

model with each component truncated by a rectangle, e.g., s ≤ Y ≤ k, where s and k are

vectors with the same dimension as Y . We adapt their arguments to derive the EM algorithm

as below. To demonstrate, the derivations are made without specifying the dynamics of

µj. The idea remains the same when such dynamics are added. The parameter set to be

estimated is denoted as Θ = {αj, µj, Σj|∀j}.

It is not difficult to derive the pseudo complete log-likelihood function for Θ:

LC(Θ) =
1

T

T∑
t=1

P∑
j=1

ztj logαj +
1

T

T∑
t=1

P∑
j=1

ztj log fj(Yt|µj, Σj), (6.1)

where T is the sample size. The EM algorithm begins by initializing the parameter set, Θ0,

followed by the E and M steps.

E Step: Because ztj is not observed, LC(Θ) is replaced with its conditional expectation

(Q(Θ|Θl)) conditional on the the observed data (Y ) and the parameter set from the previous

iteration (Θl).

Q(Θ|Θl) = E(LC(Θ)|Y,Θl) =
1

T

T∑
t=1

P∑
j=1

z̃tj logαj +
1

T

T∑
t=1

P∑
j=1

z̃tj log fj(Yt|µj, Σj), (6.2)

z̃tj ≡ E(ztj|Yt, Θl)

= P (ztj|Yt, Θl)

=
P (ztj, Yt, Θ

l)

P (Yt, Θl)

=
αljfj(Yt|µlj, Σl

j)∑P
k=1 α

l
kfk(Yt|µlj, Σl

j)
. (6.3)
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M Step:

αl+1
j =

∑T
t=1 z̃tj
T

, (6.4)

µl+1
j =

∑T
t=1 z̃tjYt∑T
t=1 z̃tj

− vj(µl+1
j , Σl+1

j ), (6.5)

Σl+1
j =

∑T
t=1 z̃tj(Yt − µ

l+1
j )(Yt − µl+1

j )
′∑T

t=1 z̃tj
+ Ij(µ

l+1
j , Σl+1

j ), (6.6)

where vj(µ
l+1
j , Σl+1

j ) and Ij(µ
l+1
j , Σl+1

j )are nonlinear functions of µl+1
j and Σl+1

j . Details are

discussed in appendix A.2.1.

A.2.1 Derivation of the EM algorithm

Let Y follows a truncated bivariate normal distribution:

f(Y ) =
1

2π
√
|Σ|[1− Φ( −w

′µ√
w′Σw

)]
exp[−1

2
(Y − µ)′Σ−1(Y − µ)], (6.7)

Denote Y o = Y − µ, and its first and second moments are given as (Nath 1972):

M1
o = Σw√

w′Σw

φ( −w
′µ√

w′Σw
)

1−Φ( −w
′µ√

w′Σw
)
,

M2
o = Σ + Σww′Σ

w′Σw
−w′µ√
w′Σw

φ( −w
′µ√

w′Σw
)

1−Φ( −w
′µ√

w′Σw
)
.

In E step, the conditional expectation of the pseudo complete log-likelihood function can be

obtained:

Q(Θ|Θl) = E(LC(Θ)|Y,Θl) =
1

T

T∑
t=1

P∑
j=1

z̃tj

[
logαj − log 2π − 1

2
log |Σj|

− 1

2
(Yt − µj)′Σ−1

j (Yt − µj)− log(1− Φ(
−w′µj√
w′Σjw

))

]
,

where 1− Φ(
−w′µj√
w′Σjw

) = 1√
π

´∞
−w′µj√
2w′Σjw

exp(−t2)dt.
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First, take the derivative of log(1− Φ(
−w′µj√
w′Σjw

)) with respect to µj

∂

∂µj

[
log(1− Φ(

−w′µj√
w′Σjw

))

]
=

1

1− Φ(
−w′µj√
w′Σjw

)

{
1√
π

w√
2
√
w′Σjw

exp(−(
−w′µj√

2
√
w′Σjw

)2)

}

=
φ(

−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)

w√
w′Σjw

=
ww′M1

o,j

w′Σjw
,

where M1
o,j is M1

o with µ = µj and Σ = Σj.

Next, take the derivative of Q(Θ|Θl) with respect to µj

∂

∂µj
[Q(Θ|Θl)] =

1

T

T∑
t=1

z̃tj

[
Σ−1
j Yt −Σ−1

j µj −
ww′M1

o,j

w′Σjw

]
= 0.

rearrange the above equation gives:

µj =

∑T
t=1 z̃tjYt∑T
t=1 z̃tj

-vj(µj,Σj),

where vj(µj, Σj) =
Σjww

′M1
o,j

w′Σjw
.

Now, take derivative of Q(Θ|Θl) with respect to Σj to obtain:

w′M2
o,jw = w′Σjw + w′Σjw(

−w′µj√
w′Σjw

)[
φ(

−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)
],

where M2
o,j is M2

o with µ = µj and Σ = Σj.
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Next, take derivative of log(1− Φ(
−w′µj√
w′Σjw

)) with respect to Σj

∂

∂Σj

[log(1− Φ(
−w′µj√
w′Σjw

))] =
1

1− Φ(
−w′µj√
w′Σjw

)

{
1√
π

[
w′µj

2
√

2(w′Σjw)
3
2

ww′ exp(−(
−w′µj√

2
√
w′Σjw

)2)]

}

=
1

2
(
−w′µj√
w′Σjw

)(
φ(

−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)
)(
−ww′

w′Σjw
)

=
1

2

w′M2
o,jw − w′Σjw

w′Σjw
(
−ww′

w′Σjw
)

=
1

2
w[

1

w′Σjw
−

w′M2
o,jw

(w′Σjw)2
]w′.

Then, take the derivative of Q(Θ|Θl) with respect to Σj

∂

∂Σj

[Q(Θ|Θl)] =
1

T

T∑
t=1

z̃tj

{
−1

2
Σ−1
j +

1

2
Σ−1
j (Yt − µj)(Yt − µj)′Σ−1

j

−1

2
w[

1

w′Σjw
−

w′M2
o,jw

(w′Σjw)2
]w′
}

= 0.

Some linear algebra properties were used: ∂ log |A|
∂A

= (A′)−1 and ∂x′A−1x
∂A

= −A−1xx′A−1.

Finally, it can be shown that:

Σj =

∑T
t=1 z̃tj(Yt − µj)(Yt − µj)′∑T

t=1 z̃tj
+ Ij(µj, Σj),

where Ij(µj, Σj) = Σjw[ 1
w′Σjw

− w′M2
o,jw

(w′Σjw)2
]w′Σj.
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A.3 E step of the new EM algorithm

E[LC(Ψ)|Y, Ψ l]

=Ez,n|Y,Ψ l{E[LC(Ψ)|z, n, Y, Ψ l]}

=Ez,n|Y,Ψ l{E[
1

T

T∑
t=Q+1

P∑
j=1

ztj(logαj + log fNt,j(Yt,nt+1) +
nt∑
k=1

log fNt,j(Yt,k))|z, n, Y, Ψ l]}

=Ez,n|Y,Ψ l{
1

T

T∑
t=Q+1

P∑
j=1

ztj(logαj + log fNt,j(Yt,nt+1) + ntE[log fNt,j(Yt,k)|z, n, Y, Ψ l])}

=Ez|Y,Ψ l{
1

T

T∑
t=Q+1

P∑
j=1

ztj(logαj + log fNt,j(Yt,nt+1) + E(nt|z, Y, Ψ l)E[log fNt,j(Yt,k)|z, n, Y, Ψ l])}

=Ez|Y,Ψ l{
1

T

T∑
t=Q+1

P∑
j=1

ztj(logαj + log fNt,j(Yt,nt+1)+

(
∞∑
nt=0

nt

P∏
h=1

[(1− F l
t,h)

ntF l
t,h]

zth)(

ˆ
log fNt,j(Yt,k)

P∏
m=1

(
fN,lt,m(Yt,k)

1− F l
t,m

)ztmdYt,k))}

=
1

T

T∑
t=Q+1

P∑
j=1

Ez|Y,Θl{ztj(logαj + log fNt,j(Yt,nt+1)+

(
∞∑
nt=0

nt

P∏
h=1

[(1− F l
t,h)

ntF l
t,h]

zth)(

ˆ
log fNt,j(Yt,k)

P∏
m=1

(
fN,lt,m(Yt,k)

1− F l
t,m

)ztmdYt,k))}

=
1

T

T∑
t=Q+1

P∑
j=1

P (ztj|Y, Ψ l)[logαj + log fNt,j(Yt,nt+1)+

1− F l
t,j

F l
t,j

(

ˆ
log fNt,j(Yt,k)(

fN,lt,j (Yt,k)

1− F l
t,j

)dYt,k)]

=
1

T

T∑
t=Q+1

P∑
j=1

z̃tj[logαj + log fNt,j(Yt,nt+1) + ñt,j(

ˆ
log fNt,j(Yt,k)(

fN,lt,j (Yt,k)

1− F l
t,j

)dYt,k)],

where Ez,n|Y,Ψ l(.) takes the joint expectation of z and n conditional on Y and Ψ l. Law of

iterated expectation E(Y |X) = E[E(Y |Z,X)|X] was used.
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A.4 M step of the new EM algorithm

To begin with, we derive the first two moments for Y coming from the invalid truncation

area (x < y), whose density has the following form:

f(Y, µ,Σ) =
1

2π
√
|Σ|[1− Φ( w′µ√

w′Σw
)]

exp[−1

2
(Y − µ)′Σ−1(Y − µ)]. (6.8)

Let Y d = Y − µ. Then, the first and second moments of Y d =

xd
yd

 are:

M1
d = −Σw√

w′Σw

φ( w′µ√
w′Σw

)

1−Φ( w′µ√
w′Σw

)
,

M2
d = Σ + Σww′Σ

w′Σw
w′µ√
w′Σw

φ( w′µ√
w′Σw

)

1−Φ( w′µ√
w′Σw

)
.

• It is not difficult to take the derivative of (3.7) with respect to αj, subject to the

restriction that
∑P

j=1 αj = 1. One can obtain αl+1
j =

∑T
t=Q+1 z̃tj

T−Q .

• Next, take the derivative of (3.7) with respect to Σ−1
j .

∂Q(Ψ |Ψ l)
∂Σ−1

j

=
1

T −Q

T∑
t=Q+1

z̃tj[
1

2
Σj −

1

2
(Yt − µl+1

t,j )(Yt − µl+1
t,j )′+

ñt,j

ˆ
(
1

2
Σj −

1

2
(Yt,k − µl+1

t,j )(Yt,k − µl+1
t,j )′)(

fN,lj (Yt,k)

1− F l
j

)dYt,k] = 0

⇒
T∑

t=Q+1

z̃tjΣj −
T∑

t=Q+1

z̃tj(Yt − µl+1
t,j )(Yt − µl+1

t,j )′ +
T∑

t=Q+1

z̃tjñt,jΣj −
T∑

t=Q+1

z̃tjñt,jM
2
d′,t,j = 0

⇒Σl+1
j =

∑T
t=Q+1 z̃tj[(Yt − µ

l+1
t,j )(Yt − µl+1

t,j )′ + ñt,jM
2
d′,t,j]∑T

t=Q+1 z̃tj(1 + ñt,j)
,

where µl+1
t,j = Al+1

j Xt−1, M2
d′,t,j = M2,l

d,t,j + (µlt,j −µl+1
t,j )(M1,l

d,t,j)
′+ (M1,l

d,t,j)(µ
l
t,j −µl+1

t,j )′+ (µlt,j −

µl+1
t,j )(µlt,j − µl+1

t,j )′, M1,l
d,t,j and M2,l

d,t,j are M1
d and M2

d with µ = µlt,j, Σ = Σl
j.

• Finally, take the derivative of (3.7) with respect to Aj.

Notice that maximizing Q(Ψ |Ψ l) is equivalent to minimizing the following expression for the
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purpose of taking derivative with respect to Aj:

L(A) =
T∑

t=Q+1

P∑
j=1

z̃tj[(Yt − AjXt−1)′Σ−1
j (Yt − AjXt−1) +

ñt,j

ˆ Tr

((Yt,k − AjXt−1)′Σ−1
j (Yt,k − AjXt−1))(

fN,lt,j (Yt,k)

1− F l
t,j

)dYt,k]

=
P∑
j=1

{[vec(Ȳj)− (I2 ⊗ X̄j)vec(A′j)]
′(Σ−1

j ⊗ IT−Q)[vec(Ȳj)− (I2 ⊗ X̄j)vec(A′j)] +

ˆ
[vec(Ỹj)− (I2 ⊗ X̃j)vec(A′j)]

′(Σ−1
j ⊗ IT−Q)[vec(Ỹj)− (I2 ⊗ X̃j)vec(A′j)]f

l
j(Ỹj)dỸj},

where Ỹj =
√

(z̃j � ñj)τ � Yk, and Yk = (YQ+1,k, ..., YT,k)
′. Take the derivative of L(A) with

respect to vec(A′j):

∂L(A)

∂vec(A′j)

=− 2(I2 ⊗ X̄j)(Σ
−1
j ⊗ IT−Q)vec(Ȳj) + 2(I2 ⊗ X̄j)

′(Σ−1
j ⊗ IT−Q)(I2 ⊗ X̄j)vec(A′j)+ˆ

[−2(I2 ⊗ X̃j)(Σ
−1
j ⊗ IT−Q)vec(Ỹj) + 2(I2 ⊗ X̃j)

′(Σ−1
j ⊗ IT−Q)(I2 ⊗ X̃j)vec(A′j)]f(Ỹj)dỸj

=− (I2 ⊗ X̄j)
′(Σ−1

j ⊗ IT−Q)vec(Ȳj) + (I2 ⊗ X̄j)
′(Σ−1

j ⊗ IT−Q)(I2 ⊗ X̄j)vec(A′j)−

(I2 ⊗ X̃j)
′(Σ−1

j ⊗ IT−Q)vec(M̃1
d′,T̄,j) + (I2 ⊗ X̃j)

′(Σ−1
j ⊗ IT−Q)(I2 ⊗ X̃j)vec(A′j)

=− [(Σ−1
j ⊗ X̃ ′j)vec(M̃1

d′,T̄,j) + (Σ−1
j ⊗ X̄ ′j)vec(Ȳj)] + [(Σ−1

j ⊗ X̄ ′jX̄j) + (Σ−1
j ⊗ X̃ ′jX̃j)]vec(A′j)

=− [vec(X̃ ′jM̃
1
d′,T̄,jΣ

−1
j ) + vec(X̄ ′jȲjΣ

−1
j )] + [Σ−1

j ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)]vec(A′j)

=− (Σ−1
j ⊗ I2)vec(X̃ ′jM̃

1
d′,T̄,j + X̄ ′jȲj) + [Σ−1

j ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)]vec(A′j)

=0.

Then, we can write down vec(A′j) as:

vec(A′j)

=[Σ−1
j ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)]

−1(Σ−1
j ⊗ I2)vec(X̃ ′jM̃

1
d′,T̄,j + X̄ ′jȲj)

=(I2 ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)
−1)vec(X̃ ′jM̃

1
d′,T̄,j + X̄ ′jȲj)

=vec[(X̄ ′jX̄j + X̃ ′jX̃j)
−1(X̃ ′jM̃

1
d′,T̄,j + X̄ ′jȲj)].
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Therefore, we have

Al+1
j = (X̃ ′jM̃

1
d′,T̄,j + X̄ ′jȲj)

′(X̄ ′jX̄j + X̃ ′jX̃j)
−1.

A.5 Discussion of Stationarity Conditions

Deriving the stationarity conditions is not straightforward as the model is highly nonlinear

and the errors (if we write the conditional mean of the model in a regression form) are

dependent due to the time-varying truncations. We notice that the TMT model can be

interpreted as a special case of a nonlinear autoregressive model with Markov switching, for

which the stability problem has been studied by Yao and Attali (2000). However, their results

cannot be directly applied as the identically and independently distributed assumption does

not hold for the TMT model. The truncation imposed on the distribution of the error term

varies over time as a function of the information set, rendering heteroscedastic and dependent

errors. Nevertheless, we provide some heuristic and theoretical reasoning to understand

stationarity conditions of the model.

Suppose the TMT model has only one component and no truncation (i.e., it becomes a

standard bivariate V AR model). If the process generated from this model is stationary, we

would expect the process generated from the model with truncation (i.e., one component

TMT ) to be also stationary because imposing the truncation would not introduce any de-

terministic or stochastic trend to the process. The same reasoning could be extended to the

multiple components case. Because the component weights are fixed, positive, and sum up

to one, we have a convex combination of stationary processes, which would also be expected

to be stationary. If the process generated from a bivariate mixture autoregressive model is

stationary, it is reasonable to expect that the process generated from the TMT model is

also stationary. The stationarity conditions for the mixture autoregressive model have been

studied (see Wong and Li, 2000; Fong et al., 2007).

Another perspective is to analyze the nonlinearity of the model to understand whether it

can be approximated by a linear relationship under certain conditions. The nonlinearity of

the TMT model comes from the truncation, which is the inverse Mills ratio (IMR), φ(x)
1−Φ(x)

,
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see equation (2.4). IMR is approximately linear for some range of x (see Figure 17 for a plot

of IMR).

We analyze IMR into two parts: (a) when IMR goes towards zero on the left side, we have

the case where the interval constraint is not binding. In this case, the model looks like a

standard VAR. Equations 2.3 and 2.5 are linear. (b) when the interval constraint is binding,

we move to right side of Figure 15 and IMR is mostly linear. This makes equations 2.3

and 2.5 linear in these components. Overall, when we have a mixture of components, some

with binding constraints, equations 2.3 and 2.5 can be approximately linear. Hence, a stable

solution can be found.

We now demonstrate the above reasoning with a simple example. For a TMT model with

only one component and binding interval constraint, the regression form of the model can

be written as follows

Yt = µt +
Σw√
w′Σw

φ( −w
′µt√

w′Σw
)

1− Φ( −w
′µt√

w′Σw
)

+ εt

where εt =

εu,t
εl,t

 follows a truncated normal distribution such that w′εt≥w′G, where G =

µt + Σw√
w′Σw

φ(
−w′µt√
w′Σw

)

1−Φ(
−w′µt√
w′Σw

)
, and E(εt) = 0. When the constraint is binding, we can approximate

IMR with a Taylor expansion, expanded at −w′µt√
w′Σw

= 0.

φ( −w
′µt√

w′Σw
)

1− Φ( −w
′µt√

w′Σw
)

=
φ(0)

1− Φ(0)
+ S(0)

[
−w′µt√
w′Σw

]
where S(0) is the first derivative of IMR evaluated at zero. S(0) ' 0.6, and φ(0)

1−Φ(0)
' 0.8.

Then,

Yt = µt +
Σw√
w′Σw

[
0.8 + 0.6

[
−w′µt√
w′Σw

]]
+ εt

= C +BYt−1 +
Σw√
w′Σw

[
0.8 + 0.6

[
−w′(C+BYt−1)√

w′Σw

]]
+ εt

= Λ +HYt−1 + εt

where Λ = C + Σw√
w′Σw

[
0.8− 0.6 w′C√

w′Σw

]
and H = B − 0.6Σww′B√

w′Σw
are functions of the model
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parameters. The stationary condition would be all values of z satisfying |I − Hz| lying

outside of the unit circle.

A.6 Consistency of the ML estimator

We discuss the consistency of the ML estimator. Let ϑj = {Aj, Σj} for j = 1, ..., P . The

following parameter restrictions are necessary to ensure that the same TMT model cannot

be obtained by relabeling the components.

α1 > α2 > ... > αP > 0 and ϑi = ϑj only if 1 ≤ i = j ≤ P. (6.9)

The following theorem shows that under some regular conditions, the MLE is consistent. We

begin by imposing the following assumptions:

Assumption 1. The process {Yt} is generated from (2.1) and is strictly stationary and

ergodic.

Assumption 2. The true parameter set, Ψ0, is an interior point of Ξ, where Ξ is a compact

subset of {Ψ ∈ (0, 1)P−1 × R(5+4Q)P : 6.9 holds and Σj are positive definite ∀j}.

Assumption 3. E(‖Yt‖2) <∞, where ‖.‖ is the Euclidean norm.

These assumptions are fairly regular in the literature. Assumption 1 is the most challenging

because the model is highly nonlinear, nevertheless we provide an extensive discussion on

the stationarity of the model in Appendix A.5. Assumptions 2 and 3 are sufficient to ensure

the uniform convergence of the likelihood function.

The following theorem establishes the strong consistency of ML estimator.

Theorem 1. Under Assumptions 1,2 and 3, the maximum likelihood estimator Ψ̂ =

argmax
Ψ∈Ξ

L(Ψ) is strongly consistent, that is Ψ̂ → Ψ0 a.s.

39



Proof of Theorem 1.

To proof consistency, we will need to show that the finite mixtures of truncated normal

distributions are identifiable. The identification of mixture distributions and models have

been extensively studied in the literature (see e.g., Teicher (1963), Yakowitz and Spragins

(1968), Leroux (1992)). We introduce a lemma that shows the finite mixtures of truncated

normal distributions are identifiable up to the label switching.

Lemma 1. Let ν = (µ,Σ), and suppose that Λ = {F (Y, ν); ν ∈ R6, Y ∈ R2} is the family

of cumulative distribution functions whose density is given by

f(Y, ν) =
1

2π
√
|Σ|[1− Φ( −w

′µ√
w′Σw

)]
exp[−1

2
(Y − µ)′Σ−1(Y − µ)]. (6.10)

Then, the family of finite mixtures of Λ is identifiable up to label switching. That is,∑P
i=1 αif(Y, νi) =

∑P
j=1 αjf(Y, νj) implies that for each 1 ≤ i ≤ P , there is some j such that

αi = αj and vi = vj assuming that α′is and v′is are respectively distinct.

Proof of Lemma 1.

First, we define distributions that belong to the exponential family for later use.

If, for some σ−finite measure µ,

dG(Y, τ) = a(τ)b(Y ) exp[τ ′h(Y )]dµ(Y ), (6.11)

for Y ∈ Rn, τ(m × 1), and h(Y ) (m × 1), where a(τ) > 0, b(Y ) ≥ 0 and a, b, hj, for

j = 1, 2, . . . ,m are all measurable, then G is called an exponential family member.

Let H(Y ) =
∑P

i=1 αiG(Y, τi) be the finite mixtures. Denote G the class of all n-dimensional

cdf’s G and H the induced class of mixtures of H. Barndorff-Nielsen (1965, Corollary 3) shows

that H is identifiable up to label switching if (a) µ is n-dimensional Lebesgue measure, (b)

functions hj, j = 1, 2, . . . ,m, are all continuous, and (c) the set {y : y = h(Y ), b(Y ) > 0, Y ∈

Rn} contains a nonempty open set.21

The truncated normal distribution F (Y, ν) whose density is given by 6.10 belongs to expo-
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nential family as after re-parameterized it can be written as:

dF (Y, τ)

dµ(Y )
=

1

2π
√
|Σ|[1− Φ( −w

′µ√
w′Σw

)]
exp[−1

2
(Y − µ)′Σ−1(Y − µ)]

= a(τ)b(Y ) exp[τ ′h(Y )],

where µ is two-dimensional Lebesgue measure. τ =
(
Σ−1µ, −1

2
~(Σ−1)

)
, a(τ) =

{√
|Σ|[1−

Φ( −w
′µ√

w′Σw
)] exp(1

2
µ′Σ−1µ)

}−1

, b(Y ) = 1
2π

, and h(Y ) =
(
Y, ~(Y Y ′)

)′
.

The image of the mapping h: R2 → R6, for x ≥ y is the set Ω = {h(Y ), x ≥ y}, which

contains an open set Ω′ = {h(Y ), x > y}. In addition, the map from τ to ν is unique.

Lemma 1 follows. 2

Now, we proceed to prove Theorem 1. It is straightforward to see that L(Ψ) is a measurable

function of data for each Ψ ∈ Ξ, and continuous in Ψ . Therefore, it suffices to show that (a)

the log-likelihood follows a uniform strong law of large numbers: sup
Ψ∈Ξ
| L(Ψ)−E[L(Ψ)] |→ 0

a.s. as T → ∞; (b) the identification condition: E[L(Ψ)] ≤ E[L(Ψ0)], and E[L(Ψ)] =

E[L(Ψ0)] implies Ψ = Ψ0. (see Amemiya (1973, Lemma 3)).

Let L(Ψ) = 1
T−P

∑
t l(Ψ). By Assumption 1 and continuity of l(Ψ), l(Ψ) is stationary and

ergodic (see Krengel (1985, Proposition 4.3)), and hence E[L(Ψ)] = E[l(Ψ)]. To verify (a),

it suffices to show that E[sup
Ψ∈Ξ
| l(Ψ) |] < ∞ (see Rao (1962) or Straumann and Mikosch

(2006 Theorem 2.7)). Kalliovirta et al. (2016) prove that the above inequality holds for the

likelihood in their model. We adapt similar procedures here. It can be obtained that

l(Ψ) = log{
P∑
j=1

αj(2π)−1|Σj|−1/2

exp[−1

2
(Yt − AjXt−1)′Σ−1

j (Yt − AjXt−1)]/[
1

2
erfc(−w′AjXt−1/

√
2w′Σjw)]},

where w = (1,−1)′. Assumption 2 implies that, ∆ ≥ |Σj| ≥ δ, ∀j for some δ > 0, and ∆ <

∞, and that w′Σjw ≥ γ, ∀j for some γ > 0. Furthermore, exp[−1
2
(Yt − AjXt−1)′Σ−1

j (Yt −

AjXt−1)] ≤ 1. In addition, when −w′AjXt−1/
√

2w′Σjw ≤ 0, erfc(−w′AjXt−1/
√

2w′Σjw) ≥

1, and thus l(Ψ) ≤ log(π−1δ−1/2). When −w′AjXt−1/
√

2w′Σjw > 0, using the inequality
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erfc(x) ≥ 1
2

exp(−2x2) to get (see Chang et al. (2011, Theorem 2)):

erfc(−w′AjXt−1/
√

2w′Σjw) ≥ 1

2
exp(−w′AjXt−1X

′
t−1A

′
jw/w

′Σjw)

≥ 1

2
exp[−1

γ
tr(Xt−1X

′
t−1A

′
jww

′Aj)]

≥ 1

2
exp[−1

γ
tr(Xt−1X

′
t−1)tr(A′jww

′Aj)]

≥ 1

2
exp[−κ

γ
X ′t−1Xt−1],

where the last inequality holds by compactness of Ξ (Assumption 2). That is, tr(A′jww
′Aj) ≤

κ, ∀j for some 0 < κ <∞. Now, it can be seen that

l(Ψ) ≤ log{
P∑
j=1

αj(2π)−1δ−1/24 exp[
κ

γ
X ′t−1Xt−1]}

= log(2π−1δ−1/2) +
κ

γ
X ′t−1Xt−1.

Therefore, regardless of the value of−w′AjXt−1/
√

2w′Σjw, l(Ψ) ≤ log(2π−1δ−1/2)+κ
γ
X ′t−1Xt−1.

On the other hand, it can be seen that

(Yt − AjXt−1)′Σ−1
j (Yt − AjXt−1)

=tr[(Yt − AjXt−1)(Yt − AjXt−1)′Σ−1
j ]

≤tr[(Yt − AjXt−1)(Yt − AjXt−1)′]tr(Σ−1
j )

=(Yt − AjXt−1)′(Yt − AjXt−1)tr(Σ−1
j )

≤(1 + Y ′t Yt +X ′t−1Xt−1)ρ,

where the first inequality holds because both (Yt−AjXt−1)(Yt−AjXt−1)′ and Σ−1
j are positive

semi-definite. The second last inequality is implied by Cauchy-Schwarz inequality and As-

sumption 2 (tr(Σ−1
j ) ≤ ρ, ∀j for some 0 < ρ <∞). Furthermore, erfc(−w′AjXt−1/

√
2w′Σjw) ≤

2, thus

l(Ψ) ≥ log{
P∑
j=1

αj(2π)−1∆−1/2 exp[−1

2
(1 + Y ′t Yt +X ′t−1Xt−1)ρ]}

= G1 −
1

2
ρ(1 + Y ′t Yt +X ′t−1Xt−1),

for some finite G1. Overall, G1 − 1
2
ρ(1 + Y ′t Yt + X ′t−1Xt−1) ≤ l(Ψ) ≤ log(2π−1δ−1/2) +
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κ
γ
X ′t−1Xt−1, from which E[sup

Ψ∈Ξ
| l(Ψ) |] < ∞ holds because X ′t−1Xt−1 = 1 + Y ′t−1Yt−1 + ... +

Y ′t−QYt−Q, and E(Y ′t Yt) <∞ for all t by Assumption 3.

Now, we verify (b). Let s(Y t−1
t−Q, Ψ0) be the stationary distribution of Y t−1

t−Q, then

E[L(Ψ)]− E[L(Ψ0)]

=

¨
s(Y t−1

t−Q, Ψ0)[
P∑
j=1

αj,0fj(Yt|Y t−1
t−Q, Aj,0, Σj,0)] log

∑P
j=1 αjfj(Yt|Y

t−1
t−Q, Aj, Σj)∑P

j=1 αj,0fj(Yt|Y
t−1
t−Q, Aj,0, Σj,0)

dYtdY
t−1
t−Q

=

ˆ
s(Y t−1

t−Q, Ψ0){
ˆ

[
P∑
j=1

αj,0fj(Yt|Y t−1
t−Q, Aj,0, Σj,0)] log

∑P
j=1 αjfj(Yt|Y

t−1
t−Q, Aj, Σj)∑P

j=1 αj,0fj(Yt|Y
t−1
t−Q, Aj,0, Σj,0)

dYt}dY t−1
t−Q,

where the inner integral is the negative Kullback-Leibler divergence between two mixture

densities:
∑P

j=1 αjfj(Yt|Y
t−1
t−Q, Aj, Σj) and

∑P
j=1 αj,0fj(Yt|Y

t−1
t−Q, Aj,0, Σj,0). Therefore, E[L(Ψ)]−

E[L(Ψ0)] ≤ 0 and the equality holds if and only if

P∑
j=1

αjfj(Yt|Y t−1
t−Q, Aj, Σj) =

P∑
j=1

αj,0fj(Yt|Y t−1
t−Q, Aj,0, Σj,0).

By the identification result from Lemma 1 and the parameter restrictions in equation 6.9, we

have that αj = αj,0, Σj = Σj,0 and AjXt−1 = Aj,0Xt−1 for all j, where AjXt−1 = Aj,0Xt−1

implies either that Aj = Aj,0 or that Xt−1 takes values only on a 2(Q − 1) dimensional

hyperplane. The latter is impossible as {Xt−1} takes values on H ⊂ R2Q, where H has

positive Lebesque measure. Therefore, αj = αj,0, Σj = Σj,0 and Aj = Aj,0 for all j.
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Notes

1. Though the model proposed by GL produces conditional heteroskedasticity as a byproduct,

its main focus is the modeling of the conditional mean of ITS.

2. The pseudo location parameter of a truncated bivariate normal distribution can be inter-

preted as the location parameter of the bivariate normal distribution without truncation.

It is called pseudo because it no longer represents the mean (location) of the truncated

distribution after the truncation is imposed.

3. In Lin and González-Rivera (2019), the extremes (min/max) are modeled following distribu-

tional results provided by the Extreme Value Theory. The authors show that the conditional

mean of the extremes are non-linear functions of the moments of the underlying process and

propose a non-parametric modeling strategy. In the same vein, here we are proposing a very

flexible approach with a semi-parametric bent to approximate the true density of the ex-

tremes, which asymptotically falls within the family of bivariate Generalized Extreme Value

(GEV) distributions. The flexibility comes from the ability of the data guiding the number

of components and the weight of each component in the mixture and the dynamic truncation

in each component.

4. The idea of data augmentation has also been explored extensively in Bayesian inference.

For example, Albert and Chib (1993) introduced latent variables in the Probit model to

facilitate the posterior sampling. Chib (1992) applied data augmentation techniques for

Bayesian Tobit censored regression models. More recently, Polson et al. (2013) constructed

a new data augmentation algorithm for Bayesian Logit model. It is worth noting that the

EM algorithm was introduced earlier (1977) than the above Bayesian literature. Tanner

and Wong (2010) attributed the widespread application of MCMC methods in Bayesian

computation to the data augmentation idea in EM algorithm together with the Markov

Chain simulation from the statistical physics literature.

5. Note that the data augmenting processes are different from the data generating process,

which is specified by the model. See section 3 for details.

6. The analysis in this paper can be modified to accommodate the case where Q is allowed to

be component specific.
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7. The consistency of the ML estimator is discussed in Appendix A.6.

8. As pointed out in the introduction, the data augmentation process differs from the data gen-

erating process. The later is assumed to generate the data Yt while the former is constructed

to facilitate the ML estimation of the parameters of the model.

9. In our simulations, we fix B and play with the values of C to allow the restriction to be

binding or not.

10. The objective is to recover the bivariate normal mixture distribution prior to the truncation,

from which we can draw random samples by using the existing Matlab packages.

11. From the observations that satisfy the constraint, we start collecting from the 101th obser-

vation on (the initial 100 observations are discarded, known as the burn-in period) until the

completion of the desired sample size.

12. Elements of α are uniformly selected from (0, 1) and sum up to one. Elements of B are

uniformly selected from (−1, 1). Elements of C and off-diagonal elements of L are uniformly

selected from (−3, 3), where L is the Cholesky decomposition lower triangle matrix of Σ =

LL′. Diagonal elements of L are uniformly selected from (0, 3). For DGP 3, we choose 200

initial points to account for a higher dimensional parameter space.

13. Differently from Section 5.1, here we use the parameters’ true values as the initial values

for EM algorithm instead of adopting the random initial value approach discussed in that

section.

14. Because of space considerations, we present results for a few parameters of the model. Results

for the rest of the parameters are similar and are available upon request.

15. When only one component is involved ( TMT (1, Q) ) turns out to be the same as that of

GL, which will be discussed separately in the following discussion.

16. Standard errors are calculated using the block bootstrap (Politis and White, 2004)

17. Within the in-sample period, the best model selected by BIC is the TMT (4, 2).
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18. The PITs from the forecast densities of rhigh,t and rlow,t are needed to evaluate their marginal

densities and those of rlow,t and rhigh,t|rlow,t for the evaluation of the joint densities.

19. The two horizontal lines represent the 95% confidence interval.

20. Let pt be the PIT of the corresponding density forecast of rlow,t. Panels (a) to (d) show their

sample autocorrelations of (pt − p̄), (pt − p̄)2,(pt − p̄)3,and (pt − p̄)4 respectively, where p̄ is

the sample mean of pt. ACF plots for rhigh,t and rhigh,t|rlow,t for the two models considered

provide similar information. These results are not reported but are available upon request.

21. Their results are built for the general mixtures of exponential families, and can be applied

here for the finite mixtures.
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Tables

Table 1

DGP α C B Σ

1
NB 0.6

−2
−2

0.7 −0.1
−0.1 0.7

0.4 0.3
0.3 0.4

B 0.4
2
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

2
B 0.6

2
2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

B 0.4
0
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

3

B 0.5
2
2

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

NB 0.3
2
0

0.3 −0.4
−0.4 0.3

0.4 0.3
0.3 0.4

B 0.2
−2
−2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

Table 1: Data Generating Processes (DGP 1 - DGP 3). B and NB denote binding and not
binding interval constraint, respectively.
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Table 2

DGP 1 α C B Σ

True
0.6

−2
−2

0.7 −0.1
−0.1 0.7

0.4 0.3
0.3 0.4

0.4
2
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

EM
0.6036

(0.0319)

−1.9644
(0.4446)
−2.0041
(0.3235)

0.6939 −0.1061
(0.0644) (0.0766)
−0.1023 0.6891
(0.0730) (0.0595)

0.3957 0.2997
(0.0560) (0.0476)
0.2997 0.4015

(0.0476) (0.0661)
(T=200)

0.3964
(0.0319)

1.9385
(0.7890)
0.0510

(0.4026)

0.1054 −0.7978
(0.0801) (0.0383)
−0.7941 0.1185
(0.0632) (0.1738)

0.4177 0.3006
(0.2974) (0.0986)
0.3006 0.4096

(0.0986) (0.1867)

EM
0.6011

(0.0152)

−2.0037
(0.0625)
−2.0038
(0.0615)

0.6995 −0.1023
(0.0099) (0.0141)
−0.1012 0.6985
(0.0102) (0.0144)

0.4011 0.3006
(0.0234) (0.0212)
0.3006 0.3987

(0.0212) (0.0261)
(T=1000)

0.3989
(0.0152)

2.0073
(0.0734)
0.0038

(0.0785)

0.0983 −0.8009
(0.0127) (0.0163)
−0.8016 0.0989
(0.0133) (0.0170)

0.3937 0.2931
(0.0253) (0.0230)
0.2931 0.3916

(0.0230) (0.0280)

Table 2: Simulation results for DGP 1. Standard errors in parenthesis.
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Table 3

DGP 2 α C B Σ

True
0.6

2
2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

0.4
0
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

EM
0.6012

(0.0415)

1.9462
(0.2226)
2.0131

(0.2178)

0.2349 −0.1332
(0.1950) (0.1854)
−0.0790 0.1753
(0.2044) (0.1960)

0.4023 0.2879
(0.0723) (0.0568)
0.2879 0.3944

(0.0568) (0.0728)
(T=200)

0.3988
(0.0415)

−0.0130
(0.2122)
0.0219

(0.2326)

0.1034 −0.8003
(0.2689) (0.2610)
−0.7720 0.0607
(0.2643) (0.2704)

0.3748 0.2805
(0.0747) (0.0718)
0.2805 0.3878

(0.0718) (0.0945)

EM
0.5990

(0.0177)

1.9644
(0.1349)
2.0605

(0.1935)

0.2187 −0.1178
(0.0863) (0.0838)
−0.1280 0.2271
(0.1189) (0.1173)

0.4085 0.3002
(0.0353) (0.0306)
0.3002 0.4203

(0.0306) (0.0523)
(T=1000)

0.4010
(0.0177)

−0.0088
(0.1269)
0.0208

(0.1076)

0.0967 −0.7971
(0.1268) (0.1127)
−0.8237 0.1233
(0.1111) (0.1003)

0.3978 0.2940
(0.0386) (0.0322)
0.2940 0.3983

(0.0322) (0.0462)

Table 3: Simulation results for DGP 2. Standard errors in parenthesis.
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Table 4

DGP 3 α C B Σ

True

0.5
2
2

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

0.3
2
0

0.3 −0.4
−0.4 0.3

0.4 0.3
0.3 0.4

0.2
−2
−2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

0.5078
(0.0427)

1.9985
(0.1535)
1.9867

(0.1433)

0.0978 −0.8027
(0.0551) (0.0687)
−0.7980 0.0972
(0.0515) (0.0642)

0.3910 0.2908
(0.0665) (0.0560)
0.2908 0.3911

(0.0560) (0.0594)
EM

(T=200)
0.2932

(0.0378)

2.0114
(0.1505)
0.0055

(0.1390)

0.2991 −0.3892
(0.0640) (0.0771)
−0.4047 0.3111
(0.0610) (0.0753)

0.3665 0.2736
(0.0887) (0.0746)
0.2736 0.3664

(0.0746) (0.0792)

0.1990
(0.0294)

−2.0138
(0.2691)
−1.8540
(0.4928)

0.2002 −0.1047
(0.0892) (0.1025)
−0.1382 0.2350
(0.1145) (0.1285)

0.3873 0.2917
(0.0944) (0.0820)
0.2917 0.4110

(0.0820) (0.1459)

0.5000
(0.0178)

2.0026
(0.0583)
1.9920

(0.0574)

0.0990 −0.8016
(0.0223) (0.0247)
−0.7969 0.0953
(0.0220) (0.0249)

0.3966 0.2995
(0.0272) (0.0228)
0.2995 0.3991

(0.0228) (0.0253)
EM

(T=1000)
0.3001

(0.0167)

1.9968
(0.0710)
−0.0054
(0.0707)

0.3008 −0.3987
(0.0273) (0.0304)
−0.3983 0.2990
(0.0263) (0.0308)

0.3907 0.2963
(0.0334) (0.0274)
0.2963 0.3986

(0.0274) (0.0334)

0.1999
(0.0115)

−1.9983
(0.0954)
−2.0139
(0.1007)

0.2003 −0.0987
(0.0298) (0.0437)
−0.0960 0.1996
(0.0310) (0.0427)

0.3886 0.2914
(0.0483) (0.0382)
0.2914 0.3906

(0.0382) (0.0493)

Table 4: Simulation results for DGP 3. Standard errors in parenthesis.
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Table 5

Component α C B1 B2 Σ

1
0.4184

(0.0428)

0.3916
(0.0535)
−0.2864
(0.0688)

0.0681 −0.1033
(0.0331) (0.0412)
−0.0683 0.0801
(0.0411) (0.0501)

−0.0276 0.0327
(0.0368) (0.0370)
−0.1285 0.1480
(0.0402) (0.0397)

0.1838 0.1600
(0.0230) (0.0195)
0.1600 0.1909

(0.0195) (0.0204)

2
0.3635

(0.0450)

0.3678
(0.0859)
−0.4786
(0.0886)

0.1758 −0.1563
(0.0781) (0.0829)
−0.0843 0.1641
(0.0819) (0.1001)

0.0152 −0.0857
(0.0442) (0.0587)
−0.2135 0.1674
(0.0531) (0.0856)

0.5367 0.5165
(0.0883) (0.0832)
0.5165 0.7006

(0.0832) (0.0840)

3
0.1323

(0.0508)

0.4125
(0.1946)
−0.1677
(0.1054)

0.6549 −0.5425
(0.1715) (0.1354)
−0.1510 0.1473
(0.0973) (0.0821)

0.1157 −0.2460
(0.1214) (0.0968)
0.1101 −0.2316

(0.0632) (0.0693)

0.3476 0.1228
(0.0819) (0.0606)
0.1228 0.1778

(0.0606) (0.0617)

4
0.0857

(0.0189)

0.1484
(0.3580)
−0.9836
(0.4077)

0.1015 −0.1265
(0.1948) (0.1856)
−0.1358 0.3614
(0.1980) (0.1778)

0.5265 −0.3146
(0.2271) (0.1736)
−0.0414 0.2858
(0.2525) (0.1805)

5.9263 5.4043
(0.8068) (0.7199)
5.4043 6.2028

(0.7199) (0.8251)

Table 5: Estimation results of the TMT (4, 2). Standard errors in parentheses.
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Table 6

Model Log-likelihood Number of parameters BIC
V AR(7) -8604 30 17,454

V AR(7)−DCC −N -8155 39 15,991
V AR(7)−DCC − t -7367 40 15,061

GL(7) -8486 33 17,243
RTMT (5) -6975 49 14,352
TMT (4, 2) -6833 55 14,117

Table 6: In-Sample Evaluation of Competing Models
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Table 7

G-ACR t-statistics
lag

1 2 3 4 5

alpha

0.01 -0.47 0.10 -0.18 0.39 -1.03
0.05 1.40 -0.16 2.02 2.38 0.46
0.1 1.45 0.03 1.47 1.56 0.73
0.2 0.88 0.53 1.51 1.22 1.41
0.3 2.30 2.21 2.74 2.50 2.67
0.4 2.68 2.14 2.44 2.23 2.62
0.5 2.47 2.45 2.79 2.27 2.61
0.6 2.73 2.71 3.38 2.91 2.53
0.7 1.99 1.83 2.64 2.14 1.83
0.8 1.01 0.62 0.99 0.70 0.53
0.9 1.50 1.42 1.93 1.56 1.40
0.95 1.53 1.53 1.62 1.52 1.51
0.99 1.45 1.45 1.45 1.45 1.45

C-statistic 17.69 17.39 24.56 22.30 17.47

Table 7: G-ACR Tests for TMT (4, 2) Model. The 1% and 5% critical values for the t-statistic
are 2.58 and 1.96 respectively. The 1% and 5% critical values for the C-statistic
are 27.69 and 22.36. Critical values are based on the asymptotic distributions of
the corresponding statistic.
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Table 8

G-ACR t-statistics
lag

1 2 3 4 5

alpha

0.01 -2.17 -1.60 -2.17 -1.60 -3.01
0.05 -0.76 -1.00 -0.15 -0.14 0.82
0.1 3.38 2.63 2.90 3.41 4.51
0.2 6.90 6.49 7.65 7.18 8.16
0.3 10.07 10.29 10.87 10.18 10.71
0.4 10.94 11.20 11.50 11.10 11.22
0.5 11.39 11.82 11.85 11.74 11.68
0.6 9.63 9.61 9.69 9.68 9.57
0.7 8.70 8.64 8.83 8.67 8.52
0.8 7.71 7.59 7.64 7.68 7.57
0.9 4.99 5.06 5.05 4.98 4.97
0.95 3.72 3.72 3.81 3.71 3.71
0.99 1.45 1.45 1.45 1.45 1.45

C-statistic 177.59 186.69 190.22 175.75 185.23

Table 8: G-ACR Tests for VAR(7)-DCC-t Model. The 1% and 5% critical values for the
t-statistic are 2.58 and 1.96. The 1% and 5% critical values for C-statistic are
27.69 and 22.36. Critical values are based on the asymptotic distributions of the
corresponding statistic.
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Table 9

m 4 5
TMT 17.23% -7.50%

VAR-DCC-t 5.23% -12.56%

Table 9: Trading Strategy Comparison for IBM average annualized returns over the out-of-
sample period from January 1, 2014 to April 1, 2018.
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Figures

Figure 1

(a) Binding with high persistence (b) Binding with low persistence

(c) Non-binding

Figure 1: Truncated areas in the conditional densities of DGP 3.
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Figure 2

Figure 2: Histogram and QQ plot of the first element of C1 (true value is -2). T = 50 in
top panel and T = 500 in bottom panel. The solid curves in the histograms are
normal densities.
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Figure 3

Figure 3: Histogram and QQ plot of the first element of B1,1 (true value is 0.7). T = 50 in
top panel and T = 500 in bottom panel. The solid curves in the histograms are
normal densities.
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Figure 4

Figure 4: Histogram and QQ plot of α1 (true value is 0.6). T = 50 in top panel and T = 500
in bottom panel. The solid curves in the histograms are normal densities.
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Figure 5

Figure 5: Histogram and QQ plot of the first element of Σ1 (true value is 0.4). T = 50 in
top panel and T = 500 in bottom panel. The solid curves in the histograms are
normal densities.
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Figure 6
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Figure 6: Daily IBM high/low stock returns (2004/1/1 to 2018/4/1).
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Figure 7

(a) First component (b) Second component

(c) Third component (d) Fourth component

Figure 7: Truncations in the bivariate density of each component of the model TMT (4, 2).

62



Figure 8
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(a) Estimated Conditional Mean
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Figure 8: Estimated conditional mean, variance and correlation of daily IBM high/low stock
returns (2004/1/1 to 2018/4/1).
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Figure 9
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(a) 12/18/2008
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(b) 12/29/2017

Figure 9: Estimated conditional bivariate density contours.
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Figure 10

Figure 10: PITs from TMT (4, 2) density forecasts.
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Figure 11

Figure 11: PITs from VAR(7)-DCC-t density forecasts.
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Figure 12
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Figure 12: ACF of functions of PITs extracted from the rlow,t densities generated by
TMT (4, 2) model. pt is the PIT and p̄ is the sample mean of pt.
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Figure 13
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Figure 13: ACF of functions of PITs extracted from the rlow,t densities generated by VAR(7)-
DCC-t model. pt is the PIT and p̄ is the sample mean of pt.
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Figure 14
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Figure 14: G-ACR plots for TMT(4,2) and VAR(7)-DCC-t models.
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Figure 15

Figure 15: Buy and sell signals from trading strategy.
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Figure 16

(a) VAR-DCC-t (m=4) (b) TMT (m=4)

(c) VAR-DCC-t (m=5) (d) TMT (m=5)

Figure 16: Histograms of the annualized trading returns over the out-of sample period from
January 1, 2014 to April 1, 2018.
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Figure 17

Figure 17: Inverse Mill Ratio.
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