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Abstract

The �nite sample theory using higher order asymptotics provides better approximations
of the bias and mean squared error (MSE) for a class of estimators. Rilston, Srivastava and
Ullah (1996) provided the second-order bias results of conditional mean regression. This paper
develops new analytical results on the second-order bias up to order O

�
N�1� and MSE up to

order O
�
N�2� of the conditional quantile regression estimators. First, we provide the general

results on the second-order bias and MSE of conditional quantile estimators. The second-
order bias result enables an improved bias correction and thus to obtain improved quantile
estimation. In particular, we show that the second-order bias are much larger towards the tails
of the conditional density than near the median, and therefore the bene�t of the second order
bias correction is greater when we are interested in the deeper tail quantiles, e.g., for the study of
�nancial risk management. The higher order MSE result for the quantile estimation also enables
us to better understand the sources of estimation uncertainty. Next, we consider three special
cases of the general results, for the unconditional quantile estimation, for the conditional quantile
regression with a binary covariate, and for the instrumental variable quantile regression (IVQR).
For each of these special cases, we provide the second-order bias and MSE to illustrate their
behavior which depends on certain parameters and distributional characteristics. The Monte
Carlo simulation indicates that the bias is larger at the extreme low and high tail quantiles,
and the second-order bias corrected estimator has better behavior than the uncorrected ones
in both conditional and unconditional quantile estimation. The second-order bias corrected
estimators are numerically much closer to the true parameters of the data generating processes.
As the higher order bias and MSE decrease as the sample size increases or as the regression error
variance decreases, the bene�ts of the �nite sample theory are more apparent when there are
larger sampling errors in estimation. The empirical application of the theory to the predictive
quantile regression model in �nance highlights the bene�t of the proposed second-order bias
reduction.
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1 Introduction

Over the last six decades, Professor Kosaraju Leela Krishna, popularly known as �KLK�among his

students and colleagues at the Delhi School of Economics (DSE), contributed immensely through

his teaching and research interests in the �elds of Applied Econometrics, Industrial Economics,

Economics of Productivity, and Empirics of Trade, and wrote research papers on a variety of topics.

In fact, a product of University of Chicago, KLK has been a founding econometrician guiding and

mentoring both Ph.D. and M.Phil. students at the DSE, and has been a charismatic guide showing

how to use econometrics tools for doing high quality practical work and answering deeper economic

and policy questions. All these made him very popular among all scholars. He is amongst the most

distinguished economists in India, which is also re�ected in the honors and awards he received from

many organizations, including founding Managing Editor of the Journal of Quantitative Economics,

President of The Indian Econometric Society (1996-1997), PJ Thomas Foundation Economist of

the Year Award (2015-2016), and Distinguished Service Award from University of Delhi, among

others. Our paper contributes to the �nite sample behavior of the quantile estimators, which are

robust and in recent years frequently used in applied economics and econometrics work, instead of

estimating only the mean estimator.

It is well known that the large sample properties of an estimator and a test statistic may not

imply their �nite sample behavior. In fact, the use of the �rst-order asymptotic theory for small or

even moderately large samples may give misleading results. There has been signi�cant literature on

analytical ��nite sample properties�of econometric estimators and test statistics over the past six

decades.1 See, among others, Nagar (1959), Sargan (1974, 1976), Basmann (1974), Phillips (1977),

Rothenberg (1984) for linear models, and Amemiya (1980), Chesher and Spady (1989), Cordeiro

and McCullagh (1991), Newey and Smith (2004), Rilstone, Srivastava and Ullah (RSU, 1996), Bao

and Ullah (2007), and Ullah (2004) for non-linear models.

The �nite sample theory has been developed extensively for the mean regression models, which

provides a better approximation of the bias and mean squared error (MSE) and thus improves

�nite sample inference. It also enables us to examine quality of instruments and to understand

1We refer the �nite sample properties to the higher order asymptotic approximations, in the sense it provides
better approximation in small or even moderately large sample. The �nite sample properties in this paper is not the
exact moment or exact distributional properties. See Ullah (2004).
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what a¤ects the behavior of estimators and how to improve it from correcting for the higher order

bias. In particular, RSU (1996) developed the second-order bias and mean squared error (MSE) of

a class of nonlinear estimators in conditional mean regression models with i.i.d. samples. Bao and

Ullah (2007) extended the RSU results for time series dependent observations.

However, unlike in the mean regression models for which both the �rst-order asymptotic theory

and the �nite sample (higher-order asymptotic) theory have been fully developed, the quantile

regression literature has been almost entirely based on the �rst-order asymptotic theory. The

quantile literature has been either on the �rst-order asymptotic expansion (Koenker and Bassett

1978) or on determining the order of the higher order remainder term in the �rst-order asymptotic

expansion of the quantile estimators (Bahadur 1966, Kiefer 1967, Jureckova and Sen 1987, 1996,

He and Shao 1996, De Angelis, Hall, and Young 1993, and Chapter 4 of David and Nagaraja 2003).

In this paper, unlike in the existing quantile literature mentioned above, we extend the RSU

results for the quantile regressions focusing on the second-order terms. We derive the analytical

expressions of the second-order bias up to the order O
�
N�1� and the MSE up to the order O �N�2�

for quantile regression estimators, using the higher-order asymptotic expansions. The challenge to

study the �nite sample properties of quantile estimators is due to the non-di¤erentiability of the

objective function for the quantile estimation. While dealing with the non-di¤erentiable problem is

common in mathematics and physics, this has been rarely explored for the �nite sample properties

of the quantile regression. Phillips (1991) used the Dirac delta functions for the median regres-

sion estimators. Whang (2006) and Otsu (2008) used moment smoothing for empirical likelihood

quantile regression. The related idea of smoothing non-di¤erentiable objective functions has been

used for quantile regression by Kaplan and Sun (2017) and Fernandes et al. (2017). We also use

the properties of the Dirac delta function and obtain the �nite sample properties for the quantile

regression estimators in the second-order bias and MSE. We show that the second-order bias result

enables an improved bias correction and thus to obtain improved quantile estimation and predic-

tion. We also consider three special cases of the general results, for the unconditional quantile

estimation, for the conditional quantile regression with a binary covariate, and for the instrumental

variable quantile regression (IVQR). For each of these special cases, we provide the second-order

bias and MSE to illustrate their behavior which depends on certain parameters and distributional
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characteristics. Among many interesting �ndings, we �nd that the second-order bias is much larger

towards the tails of the conditional density than near the median, and therefore the bene�t of the

second order bias correction is greater when we are interested in the deeper tail quantiles, e.g., for

the study of �nancial risk management. The higher order MSE result for the quantile estimation

also enables us to better understand the sources of estimation uncertainty.

The paper is organized as follows. In Section 2, we present the notations, the moment condition

of the quantile regression, and the assumptions used in this paper. In Section 3, we develop the

high-order asymptotic expansion of quantile estimators, and derive the second-order bias of condi-

tional quantile estimators. In Section 4, we derive the second-order MSE of conditional quantile

estimators. Section 5 provides three examples for illustrations, which include the unconditional

quantile estimation, the conditional quantile regression with a binary covariate, and the IVQR

estimation. Section 6 presents Monte Carlo simulations. In Section 7, an empirical application is

presented for the predictive quantile regression model for the �nancial returns. Section 8 contains

the conclusion.

2 Conditional Quantile Estimators

2.1 Check Loss Function

Consider a random variable y from the distribution F (�): Let fi (�) denote the conditional density;

for i = 1; : : : ; N: f
(j)
i (�) denotes the jth-order derivative of fi(�) for j � 1. The jth-order partial

derivatives of a matrix A(�) is de�ned as rj�A(�). If A(�) is a k � 1 vector, r
j
�A(�) is a k � kj

matrix. For a matrix A, kAk denotes the usual norm, [trace (AA0)]1=2 : If A is a k � 1 vector,

according to Appendix A; kAk = (A0A)1=2 : The Kronecker product is de�ned in the usual way. For

an m� n matrix A and a p� q matrix B; we have A
B as an mp� nq matrix. The X = E(X)

denotes the expectation of a random vector X.

Given � 2 (0; 1); the �-quantile q� of y with distribution function F (y) is de�ned as

q� = inffy : F (y) � �g:

The quantile can be considered as the inverse of the distribution function. The quantile q� is the

value such that � percent of the mass of the distribution is less than q�; which can be obtained
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from

q� = argmin
q
E[L�(q)];

where the check loss function is de�ned as

L�(q) = [�� 1(y � q < 0)] � (y � q) :

For the random variable (y; x) with the conditional distribution function F (yjx); the conditional

quantile function q� is

q� (x) = inffy : F (yjx) � �g:

As a function of x, the quantile regression function can be nonlinear. We consider a simple linear

model, i.e. q� (x) = x0��; where the quantile estimators �� varies across �: Then the linear quantile

regression model is

yi = x
0
i�� + ui; (1)

where yi is a scalar and xi is a k � 1 vector, ui is the error de�ned to be the di¤erence between yi

and its conditional �-quantile x0i��: To simplify the notation, we use � to denote �� hereafter.

The k � 1 vector quantile coe¢ cients � can be obtained by solving

min
�
E [L�(�)] = E

�
�� 1(y < x0�)

�
�
�
y � x0�

�
: (2)

Following Elliott, Komunjer, and Timmermann (2005), we assume that the conditional �-quantile

of y; x0�; is identi�ed on the parameter space �; that is, for any �1; �2 2 � we have x0�1 = x
0�2

a.s. �P , if and only if �1 = �2: The check loss function L�(�) = [�� 1(y < x0�)] (y � x0�) is

continuously di¤erentiable on �nA, where A = f� 2 � : y = x0�g: Let r1�E[L�(�)] denote the

gradient of E[L�(�)] on �nA: By the law of iterated expectations,

r1�E[L�(�)] = Efr1�L�(�)E[1(� 2 Ac)]g+ Efr1�L�(�)E[1(� 2 A)]g;

where E[1(� 2 Ac)] = 1; and E[1(� 2 A)] = 0: Therefore, E[L�(�)] is continuously di¤erentiable

on �: Then we can write the population moment condition as

r1�E[L�(�)] = E[�r1�1(y � x0� < 0)(y � x0�)] + E[(�� 1(y < x0�))(�x)]: (3)
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Let 1(y�x0� < 0) � �(x0�� y) a Heaviside unit step function. Then by the de�nition of the Dirac

delta function in Appendix B,

r1�1(y � x0� < 0) = r1��(x0� � y) =
d�(x0� � y)
d(x0� � y)

d(x0� � y)
d�

= x0�(x0� � y):

See Gelfand and Shilov (1964). The �rst term of the equation (3) can be written as E[x0�(x0� �

y)(y � x0�)]; which equals zero.

According to the property of Dirac delta function in Appendix B, we have �(x0��y) = �(y�x0�)

and

E[x0�(x0� � y)(y � x0�)] = E[x0�(y � x0�)(y � x0�)]

= E
�
x0E

�
�(y � x0�)(y � x0�)jx

��
= E

�
x0
Z +1

�1
�(y � x0�)(y � x0�)f(y)dy

�
= E

�
x0(x0� � x0�)f(x0�)

�
= 0:

where f(x0�) � f(x0�jx) is the conditional density of y evaluated at y = x0�:

Thus, the moment condition can be written as

r1�E[L�(�)] = E[(�� 1(y < x0�))(�x)] = E[s(�)] = 0; (4)

where the score function s(�) � [�� 1(y < x0�)] (�x): The score function s(�) � [�� 1(y < x0�)] (�x)

is a special case of the score of the form s(�) � [�� 1(y < x0�)] (�z) with some instrument variable

z = x for an IVQR. With z = x; the moment condition gives the conditional quantile regression.

With z = 1; the moment condition gives the unconditional quantile regression. The main results

of the paper are of the second-order bias and MSE for various quantile estimators satisfying the

above moment condition (4).

2.2 Assumptions

Denoting si(�) � [�� 1(yi < x0i�)] (�xi); the sample moment condition can be written as

	N (�) =
1

N

NX
i=1

si(�): (5)
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A class of estimators b� can be written as a solution to a set of moment equations of the form
	N (b�) = 1

N

NX
i=1

si(b�) = 0; (6)

where si(�) is a known k�1 vector-valued function of the observable k-dimensional random vectors

xi and a parameter vector � 2 Rk with true value �0 such that E[si(�)] = 0 holds only at � = �0

for all i.

In this paper, we assume the moment condition 	N (b�) = 0 holds exactly as in Phillips (1991,
Equation 4). Also, following Phillips (1991, Assumption A1), we require the conditional density

f (y) to be analytic. These assumptions are usually unimportant for the �rst-order asymptotic

theory but could matter for higher-order results. Nevertheless there will be gains to make these

strong assumptions. Not only do they help in developing generalized Taylor series but also they

facilitate the derivations of the higher-order results, for example, to demonstrate that the second-

order bias is much larger towards the tails of the conditional density than near the median and

therefore provide useful insights on the �nite sample bias when we are interested in the deeper tail

quantiles.

RSU (1996) developed the second-order bias and MSE of a class of estimators. These results

apply for both normal and non-normal errors. The moment equation 	N (�) can be the �rst-order

condition of some optimization criteria. The estimators can be the maximum likelihood (ML),

least square (LS), or Generalized Method of Moments (GMM) estimators. In RSU (1996), their

Assumptions A-C are su¢ cient for b� to have an asymptotically normal distribution. To obtain
the stochastic expansion of b�, the RSU�s Assumptions A-C are assumed to hold along with the
p
N -consistency of b�. For the RSU�s (1996) results to hold for the quantile model, we make some

modi�cations to their Assumptions A-C as follows.

Assumption A. The jth-order derivative of si(�) exists in a neighborhood of �0 and is continuous

with probability 1, and E
h
jjxijjj+1 f (j�1)i (0jxi)

i2
<1; for j � 1; where f (0)i (0jxi) = fi(0jxi) is the

conditional density of ui evaluated at ui = 0:

Assumption B. For some neighborhood of �0;
�
Er1�	N (�)

��1
= O(1).

Assumption C. For any "! 0; rj (�) =
rj�1� si(�)�rj�1� si(�0)�r

j
�si(�0) (� � �0)

 = k� � �0k !
6



0 as � ! �0; E
h
supk���0k<" rj (�)

i
<1; with probability 1, andN�1PN

i=1r
j
�si(�0)

p! E
h
rj�si(�0)

i
for j � 1; where r0�si(�) = si(�):

Assumptions A-C are related to the conditions in Komunjer (2005) but include other primitive

conditions. The conditions in Komunjer (2005) are stated to obtain the asymptotic normality of

conditional quantile estimators to handle the non-smoothness of the quantile objective function.

See also Huber (1976), Pollard (1985), Pakes and Pollard (1989), Newey and McFadden (1994),

Andrews (1994), Chen, Linton, and van Keilegom (2003), and Chernozhukov and Hong (2003). In

this paper, Assumption C requires conditions of the higher order stochastic equicontinuity for the

higher order stochastic expansion. Let us discuss these assumptions in some details.

First, we discuss Assumption A. We restrict the conditional quantile model that x0i�; the condi-

tional �-quantile of yi; is identi�ed on �; and E[L(�)] is continuously di¤erentiable on �: Then the

sample moment condition 	N (�) is continuously di¤erentiable on �: In this case, for every � 2 �;

r1�	N (�) exists and is continuous with probability 1, so that the second-order and third-order

derivatives of 	N (�) exist and are continuous with probability 1. By the de�nition of the Dirac

delta function in Appendix B, we have r1�1(yi � x0i� < 0) = x0i�(x0i� � yi): Note that � is a k � 1

vector, where xi is a k � 1 vector, si(�) is a k � 1 vector, �(x0i� � yi) is a scalar.

The �rst-order derivative of a k � 1 vector si(�) with respect to a k � 1 vector � is a k � k

matrix r1�si(�). Then the �rst-order derivative of si(�) exists and is continuous with probability

1,

r1�si(�) = r1�[(�� 1(yi < x0i�))(�xi)]

= xir1��(x0i� � yi)

= xi
d�(x0i� � yi)
d(x0i� � yi)

d(x0i� � yi)
d�

= xix
0
i�(x

0
i� � yi):

We can show that locally at any �; the di¤erence between the sample mean of the �rst derivative of

the score function and its expected value converges in probability to zero, i.e., 1N
PN
i=1 xix

0
i�(x

0
i��
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yi)� E [xix0i�(x0i� � yi)]
p! 0: Using the properties in Appendixes A and B, we obtain

E
r1�si(�0)2 = E

�xix0i �(x0i�0 � yi)�2
= E

h�
tr
�
xix

0
ixix

0
i

��1=2
�(yi � x0i�0)

i2
= E

h�
x0ixix

0
ixi
�1=2

E
�
�(yi � x0i�0)jxi

�i2
= E

�
x0ixi

Z +1

�1
�(yi � x0i�0)fi(yi)dyi

�2
= E

h
kxik2 fi(x0i�0)

i2
< 1:

The second-order derivative of a k � 1 vector si(�) with respect to a k � 1 vector � is a k � k2

matrix r2�si(�). The second order derivative of si(�) exists and is continuous with probability 1,

r2�si(�) = r1�[xix0i�(x0i� � yi)] =
�
xix

0
i

�

r1��(x0i� � yi);

where the derivative of a scalar �(x0i� � yi) with respect to a k � 1 vector � is a 1 � k row vector

r1��(x0i� � yi): We denote

r1��(x0i� � yi) =
d�(x0i� � yi)
d(x0i� � yi)

d(x0i� � yi)
d�

= x0i�
(1)(x0i� � yi);

where �(1)(x0i� � yi) is a scalar. Then we can rewrite the second-order derivative of si(�) as

r2�si(�) =
�
xix

0
i

�

r1��(x0i� � yi) =

�
xix

0
i

�

 x0i�(1)(x0i� � yi):

We can show that locally at any �; the di¤erence between the sample mean of the second derivative

of the score function and its expected value converges in probability to zero, i.e., 1
N

PN
i=1 (xix

0
i)


x0i�
(1)(x0i� � yi)� E

h
(xix

0
i)
 x0i�(1)(x0i� � yi)

i
p! 0: Using the properties in Appendixes A and B,
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we obtain

E
r2�si(�0)2 = E

(xix0i)
 x0i�(1)(x0i�0 � yi)2
= E

�xix0i�
 x0iE h�(1)(x0i�0 � yi)jxii2
= E

�xix0i�
 x0i�Z +1

�1
�(1)(x0i�0 � yi)fi(yi)dyi

�2
= E

�xix0i�
 x0i��Z +1

�1
�(1)(yi � x0i�0)fi(yi)dyi

�2
= E

�xix0i�
 x0i�Z +1

�1
�(yi � x0i�0)f

(1)
i (yi)dyi

�2
= E

h
f
(1)
i (x0i�0)

�xix0i�
 x0ii2
= E

h
f
(1)
i (x0i�0)

�
tr
���
xix

0
i

�

 x0i

� ��
xix

0
i

�

 xi

��	1=2i2
= E

h
f
(1)
i (x0i�0)

�
tr
��
xix

0
ixix

0
i

�


�
xix

0
i

���1=2i2
= E

h
f
(1)
i (x0i�0)

�
tr
�
x0ixix

0
ixix

0
ixi
��1=2i2

= E
h
f
(1)
i (x0i�0)

�
x0ixi

�3=2i2
= E

h
f
(1)
i (x0i�0) kxik

3
i2

< 1:

The third-order derivative of a k � 1 vector si(�) with respect to a k � 1 vector � is a k � k3

matrix r3�si(�). The third order derivative of si(�) exists and is continuous with probability 1.

r3�si(�) = r2�[xix0i�(x0i� � yi)] =
�
xix

0
i

�

r2��(x0i� � yi);

where the derivative of a 1�k row vector r1��(x0i�� yi) with respect to a k� 1 vector � is a 1�k2

row vector r2��(x0i� � yi): We denote

r2��(x0i� � yi) = r1�x0i�(1)(x0i� � yi) = x0i 

d�(1)(x0i� � yi)
d(x0i� � yi)

d(x0i� � yi)
d�

= x0i 
 x0i�(2)(x0i� � yi);

where �(2)(x0i� � yi) is a scalar. Then we can rewrite the third-order derivative of si(�) as

r3�si(�) =
�
xix

0
i

�

r2��(x0i� � yi) =

�
xix

0
i

�

 x0i 
 x0i�(2)(x0i� � yi):

We can show that locally at any �; the di¤erence between the sample mean of second derivative

of score function and its expected value converges in probability to zero, i.e. 1
N

PN
i=1 (xix

0
i)
 x0i 
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x0i�
(2)(x0i�� yi)�E

h
(xix

0
i)
 x0i 
 x0i�(2)(x0i� � yi)

i
p! 0: Using the the properties in Appendixes A

and B, we obtain

E
r3�si(�0)2 = E

�xix0i�
 x0i 
 x0i�(2)(x0i�0 � yi)2
= E

�xix0i�
 x0i 
 x0iE h�(2)(x0i�0 � yi)jxii2
= E

�xix0i�
 x0i 
 x0i Z +1

�1
�(2)(yi � x0i�0)fi(yi)dyi

2
= E

�xix0i�
 x0i 
 x0i Z +1

�1
�(yi � x0i�0)f

(2)
i (yi)dyi

2
= E

n
f
(2)
i (x0i�0)

�xix0i�
 x0i 
 x0io2
= E

n
fi
(2)(x0i�0)tr

���
xix

0
i

�

 x0i 
 x0i

� ��
xix

0
i

�

 xi 
 xi

��1=2o2
= E

h
fi
(2)(x0i�0)tr

��
xix

0
ixix

0
i

�


�
x0i 
 x0i

�
(xi 
 xi)

�1=2i2
= E

h
fi
(2)(x0i�0)tr

��
xix

0
ixix

0
i

�

 x0ixi 
 x0ixi

�1=2i2
= E

h
fi
(2)(x0i�0)tr

��
x0ixix

0
ixi
�
x0ixix

0
ixi
�1=2i2

= E
h
fi
(2)(x0i�0)

�
x0ixix

0
ixi
�i2

= E
h
fi
(2)(x0i�0)

�
x0ixi

�2i2
= E

h
fi
(2)(x0i�0) kxik

4
i2

< 1:

Since the conditional density of yi given xi evaluated at yi = x0i� is the same as the conditional

density of ui given xi evaluated at ui = 0: If we use fi (0jxi) to denote the conditional density of ui

given xi evaluated at ui = 0; then the conditions we observe above can be written as

E
r1�si(�0)2 = E

h
kxik2 fi(0jxi)

i2
<1;

E
r2�si(�0)2 = E

h
kxik3 f (1)i (0jxi)

i2
<1;

E
r3�si(�0)2 = E

h
kxik4 fi(2)(0jxi)

i2
<1:

Combining the conditions in one single equation, we have E
h
jjxijjj+1 f (j�1)i (0jxi)

i2
<1; and it is

easy to show that this condition applies for j � 1; with f (0)i (0jxi) = fi(0jxi).

Next, let us discuss Assumption B. For some neighborhood of �0;
�
Er1�	N (�)

��1
= O(1) is

10



required to obtain the stochastic expansion of b� � � in Section 3. That is
�
Er1�	N (�)

��1
=

�
E
�
xix

0
i�(x

0
i� � yi)

���1
=

�
E
�
xix

0
ifi(x

0
i�)
���1

= O(1):

Lastly, we discuss the Assumption C. To derive the second-order bias and MSE of the quan-

tile estimators, we use the higher order Taylor expansion of the gradient 	N (�) around �0; which

satis�es 	N (b�) = 0: This approach requires 	N (�) and the derivatives of 	N (�) to be su¢ ciently
smooth, which is not the case with the quantile regression. In general, Assumption C requires the

stochastic equicontinuity conditions to handle the expansion of discontinuous and non-smooth ob-

jective function. This problem has been discussed in many papers in the literature, including Huber

(1976), Pollard (1985), Newey and McFadden (1994), and Andrews (1994). The basic insight of

these papers is that smoothness of the objective function can be replaced by smoothness of its limit

if the remainder term is small enough. Therefore, those stochastic equicontinuity conditions do not

require di¤erentiability of the objective function, but require that the remainder term of the expan-

sion can be controlled in a particular way over a neighborhood of �0: Besides of those stochastic

conditions discussed in the literature mentioned above, in this paper we need additional smooth-

ness and dominating conditions for higher moments of the quantile objective function. Assumption

C in this paper extends the conditions in Theorem 7.3 in Newey and McFadden (1994), gives a

version of the stochastic equicontinuity for the Lipschitz moment function, and allows for moments

of the objective function to be Lipschitz at �0 and di¤erentiable with probability 1, rather than

continuously di¤erentiable. Assumption C in this paper restricts the remainder to be well behaved

uniformly near the true parameter �0, and this uniformity property requires that higher moments

of the objective function be Lipschitz at �0 with an integrable Lipschitz constant with probability

1.

3 Second-order Bias of Quantile Estimators

Following RSU(1996), we de�ne the second-order bias for a class of estimators in general as follows.

For a class of estimators �, the second-order bias is the expection of the asymptotic distribution of

11



�b� � �� up to the second-order, i.e., of order O �N�1� :
To obtain the second-order bias for quantile estimator, we implement the Taylor�s expansion of

	N (b�) = 0 around �0 up to the second order,
0 = 	N +r	N (b� � �0) + 12r2	N h(b� � �0)
 (b� � �0)i+ op �N�1� ; (7)

where 	N = 	N (�0) : The ordinary stochastic expansion of b� is obtained from equation (7).

However, a di¢ culty arises from the derivatives of the moment condition. Using the properties of

the delta function in Appendix B or in Phillips (1991, p. 455), we can rewrite (7) as

0 = 	N +r	N (b� � �0) + �r	N �r	N� (b� � �0) + 12r2	N h(b� � �0)
 (b� � �0)i+ op �N�1�
� A1 +A2 +A3 +A4 + op

�
N�1� ; (8)

where r	N
p! r	N , and r2	N

p! r2	N ; that is

r	N =
1

N

NX
i=1

xix
0
i�(x

0
i� � yi)

p! E
�
xix

0
ifi(0jxi)

�
= r	N ;

r2	N =
1

N

NX
i=1

�
xix

0
i

�

 x0i�(1)(x0i� � yi)

p! E
h�
xix

0
i

�

 x0if

(1)
i (0jxi)

i
= r2	N :

To see the order of each of these terms, we �rst recall the asymptotic distribution of the quantile

regression estimator when the �-quantile is linear in xi,

p
N(b� � �0) d! N(0; V�); (9)

where

V� = �(1� �)
"
1

N

NX
i=1

E[fi(0jxi)xix0i)
#�1

E(xix
0
i)

"
1

N

NX
i=1

E(fi(0jxi)xix0i)
#�1

;

and fi(0jxi) is the density of ui conditional on xi evaluated at ui = 0: See e.g. Koenker (2005).

Since the quantile estimator is
p
N -consistent, we can obtain that the orders of both A1 = 	N and

A2 = r	N (b� � �0) are Op �N�1=2� :
We recall the following result. Let

b� � �0 = a�1=2 +RN ; (10)

12



where a�1=2 is a random sequence of Op
�
N�1=2� ; and RN is the remainder term of higher order.

Bahadur (1966) and Kiefer (1967) established the celebrated results on the order of RN , that is

RN = Op

�
n�3=4 (log log n)3=4

�
: (11)

See Koenker (2005 pp. 122-123), and also Jureckova and Sen (1987, 1996 pp. 196-202), He and

Shao (1996), van der Vaart (1998 p. 310), and Portnoy (2012). Note that (11) implies that

RN = Op

�
N�3=4+"

�
for some small " > 0: (12)

Below we use this result to obtain Lemma 1(b). In the following Lemma 1 and 2, we discuss A3

and A4. Our goal of this section is to obtain the expression of the bias term E
�b� � �0� up to the

second-order i.e., of order O
�
N�1� ; which will be discussed in Lemma 3.

Lemma 1. Let

A3 =
�
r	N �r	N

�
(b� � �0)

=
�
r	N �r	N

�
a�1=2 +

�
r	N �r	N

� h
(b� � �0)� a�1=2i

� A31 +A32: (13)

Then,

(a) A31 = Op(N�7=6);

(b) A32 is smaller than Op(N�1); i.e. A32 = op
�
N�1� : �

Proof:

(a) According to Phillips (1991, p. 457), the term VN = r	N � r	N = Op
�
N�1=3� : We

obtain that
p
Na�1=2 = N(0; V�) is bounded and has zero mean. The term

p
NA31 will

contribute to
p
NA3 through the variance of

p
Na�1=2; and will produce an adjustment of

Op
�
N�1=3N�1=3� ; that is pNA31 = Op �N�2=3� : Then A31 is Op �N�7=6� :

(b) By (11), RN is the remainder term of order smaller than a�1=2: Since RN is not of zero

mean, because E (RN ) is the high-order bias of quantile estimators, then A32 = VNRN =

Op
�
N�1=3�3=4+"� is smaller than Op(N�1); i.e. A32 = op

�
N�1� : �

13



Lemma 2. Let

A4 =
1

2
r2	N

h
(b� � �0)
 (b� � �0)i

=
1

2
r2	N

h
(b� � �0)
 (b� � �0)i+ 12 �r2	N �r2	N� h(b� � �0)
 (b� � �0)i

� A41 +A42: (14)

Then,

(a) A41 = Op(N�1);

(b) A42 is smaller than Op(N�1); i.e. A42 = op
�
N�1� : �

Proof:

(a) By (10), A41 can be written as

A41 =
1

2
r2	N

nh
(b� � �0)� a�1=2 + a�1=2i
 h(b� � �0)� a�1=2 + a�1=2io

=
1

2
r2	N

�
a�1=2 
 a�1=2

�
+
1

2
r2	N

�
a�1=2 


h
(b� � �0)� a�1=2i�

+
1

2
r2	N

�h
(b� � �0)� a�1=2i
 a�1=2�

+
1

2
r2	N

�h
(b� � �0)� a�1=2i
 h(b� � �0)� a�1=2i� ; (15)

Recall that r2	N = E
h
(xix

0
i)
 x0if

(1)
i (0jxi)

i
= O(1): Only the �rst term in equation (15) is

1
2r

2	N
�
a�1=2 
 a�1=2

�
= Op

�
N�1� ; and the rest three terms in equation (15) are smaller

than Op
�
N�1� :

(b) Since r2	N �r2	N is smaller than Op (1) ; then A42 is smaller than Op(N�1). �

Given the Lemma 1 and 2, the equation (8) can be written as

0 = A1 +A2 +A31 +A41 + op
�
N�1�

= 	N +r	N (b� � �0) + �r	N �r	N� a�1=2 + 12r2	N �a�1=2 
 a�1=2�+ op �N�1� :(16)
The term r	N in an ordinary Taylor expansion, equation (7), is not invertible, because the deriva-

tive of moment condition, r	N = 1
N

PN
i=1 xix

0
i�(x

0
i��yi); involves the delta function and (r	N )

�1

14



is not bounded. Now in the equation (16), the Taylor expansion of quantile regression, r	N is

invertible, because
�
r	N

��1
is bounded by Assumption B. In equation (16), we keep the term A31

even though it is Op(N�7=6) by Lemma 1, because we found that the �expectation�of A31 become

Op(N
�1); which we will discuss in the following Lemma.

Solve for b� � �0 in equation (16) to obtain
b� � �0 = �r	N

�1
	N �r	N

�1 �r	N �r	N� a�1=2 � 12r	N�1r2	N �a�1=2 
 a�1=2�+ op �N�1�
= �Q	N �QVNa�1=2 �

1

2
QH2

�
a�1=2 
 a�1=2

�
+ op

�
N�1� (17)

� B1 +B2 +B3 + op
�
N�1� ;

where Hj = rj	N ; for j = 1; 2; Q = H1
�1
; VN = H1 � H1: Note that multiplying equation (17)

by
p
N gives a generalization of equation (15) of Phillips (1991, p. 457) for general �. In order to

compute the bias of b�, that is E �b� � �0� ; we now examine the expectations of the three terms
B1; B2; B3 in (17).

Lemma 3.

(a) B1 � a�1=2 = �Q	N = Op
�
N�1=2� ; and E (B1) = 0;

(b) B2 � �QVNa�1=2 = Op
�
N�7=6� ; and E (B2) = O �N�1� ;

(c) B3 � �1
2QH2

�
a�1=2 
 a�1=2

�
= Op

�
N�1� ; and E (B3) = O �N�1� : �

Proof: Suppose xi and ui both are not identically distributed, but independent across i = 1; :::; N:

Suppose yi has the conditional density function fi (yjx) : To simplify the notation, we use fi (y) to

denote fi (yjx).

(a) In equation (17), only the �rst term, B1; is Op
�
N�1=2� ; and it should be that a�1=2 = B1:

Since 	N is the sample moment condition and Q is bounded, then E (B1) = E
�
a�1=2

�
=

E (�Q	N ) = �QE (	N ) = 0:

(b) By Lemma 1, A31 =
�
r	N �r	N

�
a�1=2 = VNa�1=2 = Op(N

�7=6): Since Q is bounded,

then B2 � �QVNa�1=2 = Op
�
N�7=6� : We have

H1 = r1�	N = r1�
1

N

NX
i=1

si =
1

N

NX
i=1

r1�si =
1

N

NX
i=1

xix
0
i�(x

0
i� � yi);
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H1 = Er1�	N = E
1

N

NX
i=1

�
xix

0
i�(x

0
i� � yi)

�
=

1

N

NX
i=1

E
�
xix

0
i�(x

0
i� � yi)

�
=

1

N

NX
i=1

E
�
xix

0
iE
�
�(x0i� � yi)jxi

��
=

1

N

NX
i=1

E

�
xix

0
i

Z +1

�1
�(yi � x0i�0)fi(yi)dyi

�

=
1

N

NX
i=1

E
�
xix

0
ifi(x

0
i�)
�
;

Q =
�
H1
��1

=

 
1

N

NX
i=1

E[fi(x
0
i�)xix

0
i]

!�1
;

VN = H1 �H1 =
1

N

NX
i=1

xix
0
i�(x

0
i� � yi)�

1

N

NX
i=1

E[fi(x
0
i�)xix

0
i];

	N ; si and a�1=2 are all k � 1 vectors. H1; H1; Q; and VN are all k � k matrixes, H2; H2

and WN are all k� k2 matrixes. H3 and H3 are k� k3 matrixes. Using the the properties in

Appendix B, we have

E
�
VNa�1=2

�
= �E

��
H1 �H1

�
Q	N

�
= �E (H1Q	N )� E (	N )

= �E
"
1

N

NX
i=1

xix
0
i�(x

0
i� � yi)Q	N

#

= �E
"
1

N

NX
i=1

xix
0
iE
�
�(x0i� � yi)Q	N jxi

�#

= � 1

N2

NX
i=1

E

�
xix

0
i

Z +1

�1
�(x0i� � yi)Q(�� 1(yi < x0i�))(�xi)fi(yi)dyi

�

= � 1

N2

NX
i=1

E

"
�xix0iQxi�

R +1
�1 �(x0i� � yi)f(yi)dyi

+xix
0
iQxi

R +1
�1 �(x0i� � yi)�(x0i� � yi)fi(yi)dyi

#

= � 1

N2

NX
i=1

E

�
�xix0iQxi�fi(x0i�) +

1

2
xix

0
iQxifi(x

0
i�)

�

= �
�
1

2
� �

�
1

N2

NX
i=1

E
�
xix

0
iQxifi(x

0
i�)
�
:

Then, E (B2) = E
�
�QVNa�1=2

�
= O

�
N�1� :
16



(c) By Lemma 2, A41 = 1
2r

2	N
�
a�1=2 
 a�1=2

�
= 1

2H2
�
a�1=2 
 a�1=2

�
= Op

�
N�1� : Since Q

and H2 are bounded, then B3 = Op
�
N�1� : We have

H2 = r2�	N =
1

N

NX
i=1

�
xix

0
i

�

 x0i�(1)(x0i� � yi);

H2 = Er2�	N = E
1

N

NX
i=1

h�
xix

0
i

�

 x0i�(1)(x0i� � yi)

i
=

1

N

NX
i=1

E
h�
xix

0
i

�

 x0i�(1)(x0i� � yi)

i
=

1

N

NX
i=1

E
h�
xix

0
i

�

 x0iE

�
�(1)(x0i� � yi)jxi

�i
=

1

N

NX
i=1

E

��
xix

0
i

�

 x0i

Z +1

�1
�(1)(x0i� � yi)fi(yi)dyi

�

= � 1
N

NX
i=1

E

��
xix

0
i

�

 x0i

Z +1

�1
�(1)(yi � x0i�)fi(yi)dyi

�

=
1

N

NX
i=1

E

��
xix

0
i

�

 x0i

Z +1

�1
�(yi � x0i�)f

(1)
i (yi)dyi

�

=
1

N

NX
i=1

E
h�
xix

0
i

�

 x0if

(1)
i (x0i�)

i
;

Then, E (B3) = �1
2QH2

�
a�1=2 
 a�1=2

�
= O

�
N�1� : �

From equation (17), note that the bias of quantile estimators b� is
E
�b� � �0� = E (B1) + E (B2) + E (B3) + o

�
N�1�

= E (�Q	N ) + E
�
�QVNa�1=2

�
+ E

�
�1
2
QH2

�
a�1=2 
 a�1=2

��
+ o

�
N�1�(18)

� B
�b��+ o �N�1� :

Given the above results in Lemma 3, we de�ne the second-order bias of quantile estimators as

follows.

De�nition 1. Let E
�b� � �0� = B �b��+ o �N�1� : Then B �b�� will be called �the second-order

bias of quantile estimators b� up to O(N�1)�.
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Theorem 1. In the quantile regression model, suppose xi and ui both are not identically distributed,

but independent across i = 1; :::; N; the second-order bias up to O(N�1) of the quantile estimatorsb� is
B
�b�� = E

�
�QVNa�1=2 �

1

2
QH2

�
a�1=2 
 a�1=2

��
=

�
1

2
� �

�
Q
1

N2

NX
i=1

E
�
xix

0
iQxifi(0jxi)

�
��(1� �)

2
Q
1

N

NX
i=1

E[
�
xix

0
i

�

 x0if

(1)
i (x0i�)]

1

N2

NX
i=1

(Q
Q)E (xi 
 xi) ; (19)

where Q =
�
1
N

PN
i=1E[xix

0
ifi(0jxi)]

��1
and fi (0jxi) is the conditional density of ui given xi

evaluated at ui = 0: �

Proof: By Lemma 3, the second-order bias of quantile estimators b� up to O(N�1) is

B
�b�� = Q

�
�VNa�1=2 �

1

2
H2
�
a�1=2 
 a�1=2

��
=

�
1

2
� �

�
Q
1

N2

NX
i=1

E
�
xix

0
iQxifi(x

0
i�)
�

��(1� �)
2

Q
1

N

NX
i=1

E[
�
xix

0
i

�

 x0if

(1)
i (x0i�)]

1

N2

NX
i=1

(Q
Q)E (xi 
 xi) ;

where Q =
�
1
N

PN
i=1E[xix

0
ifi(x

0
i�)]

��1
;and fi(x0i�) is the conditional density of yi given xi evalu-

ated at yi = x0i�; which is the same as fi (0jxi) ; the conditional density of ui given xi evaluated at

ui = 0: �

Corollary 1. When xi~i.i.d and ui~i.i.d, the expression of the second-order bias of b� up to
O(N�1) can be simpli�ed as

B
�b�� = 1

N
Q

��
1

2
� �

�
E
�
xix

0
iQxi

�
f(0)� �(1� �)

2
E[
�
xix

0
i

�

 x0i]f (1)(0) (Q
Q)E (xi 
 xi)

�
;

where Q = (E (xix0i) f(0))
�1 ; and f (0) is the density of ui evaluated at the ui = 0: �

Remark: When xi~i.i.d and ui~i.i.d, and k = 1; we observe that xi; 	N ; si; d; H1; H1; Q; VN ;

H2; H2; WN ; H3; H3 are all scalars, and the second-order bias of b� up to O(N�1) can be rewritten

as

B
�b�� = 1

N

�
1

2
� �

�
E
�
x3i
��

E
�
x2i
��2
f(0)

� 1

N

�(1� �)
2

E
�
x3i
�
f (1)(0)�

E
�
x2i
��2
[f(0)]3

:
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The quantile estimator b� is unbiased if xi follows a symmetric distribution with E �x3i � = 0. If ui
follows a symmetric distribution, the median estimator is unbiased. The second-order bias of b� is
larger at the tails of a distribution. The second-order bias of b� goes to zero as the sample size goes
to in�nity.

4 The MSE of Quantile Estimators

To derive the MSE up to O
�
N�2� ; we take the high order Taylor�s expansion as

0 = 	N +r	N (b� � �0) + �r	N �r	N� (b� � �0) + 12r2	N h(b� � �0)
 (b� � �0)i
+
1

6
r3	N

h
(b� � �0)
 (b� � �0)
 (b� � �0)i+ op �N�3=2

�
� A1 +A2 +A3 +A4 +A5 + op

�
N�3=2

�
: (20)

Our goal of this section is to obtain the expression of the MSE E
�b� � �0�2 up to the order

O
�
N�2� ; therefore, we �rst need to obtain the stochastic expression of b� � �0 up to the order of

O
�
N�3=2� : By Lemma 3, b���0 = B1+B2+B3+op �N�1� ; where B1 = a�1=2 = Op �N�1=2� ; B2 =

Op
�
N�7=6� ; B3 = Op �N�1� : Let B3 � a�1; then b� � �0 = a�1=2 + a�1 +Op �N�7=6� : We discuss

A3; A4; A5 in equation (20) in the following lemmas.

Lemma 4. A32 =
�
r	N �r	N

�
[B2 +B3] + op

�
N�4=3� : �

Proof: According to Phillips (1991), r	N �r	N = Op
�
N�1=3� : By Lemma 1,

A32 =
�
r	N �r	N

� h
(b� � �0)� a�1=2i : By Lemma 3, b���0 = B1+B2+B3+ op �N�1� : Since

B1 = a�1=2 = Op
�
N�1=2� ; B2 = Op

�
N�7=6� and B3 = a�1 = Op

�
N�1� are not of zero mean,

then we have

A32 =
�
r	N �r	N

� h
(b� � �0)� a�1=2i

=
�
r	N �r	N

� �
B2 +B3 + op

�
N�1��

=
�
r	N �r	N

�
[B2 +B3] + op

�
N�4=3

�
;

where
�
r	N �r	N

�
B2 = Op

�
N�3=2� ; and �r	N �r	N�B3 = Op �N�4=3� : �

Lemma 5.
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(a) A41 = 1
2r

2	N
�
a�1=2 
 a�1=2

�
+ 1

2r
2	N

��
a�1=2 
 a�1

�
+
�
a�1 
 a�1=2

��
+ op

�
N�3=2� ;

(b) A42 = 1
2

�
r2	N �r2	N

� �
a�1=2 
 a�1=2

�
+ op

�
N�3=2� : �

Proof:

(a) By Lemma 2, A41 can be written as

A41 =
1

2
r2	N

h
(b� � �0)
 (b� � �0)i

=
1

2
r2	N

nh
(b� � �0)� a�1=2 + a�1=2i
 h(b� � �0)� a�1=2 + a�1=2io

=
1

2
r2	N

�
a�1=2 
 a�1=2

�
+
1

2
r2	N

�
a�1=2 


h
(b� � �0)� a�1=2i�

+
1

2
r2	N

�h
(b� � �0)� a�1=2i
 a�1=2�

+
1

2
r2	N

�h
(b� � �0)� a�1=2i
 h(b� � �0)� a�1=2i�

=
1

2
r2	N

�
a�1=2 
 a�1=2

�
+
1

2
r2	N

h
a�1=2 


�
a�1 +Op

�
N�7=6

��i
+
1

2
r2	N

h�
a�1 +Op

�
N�7=6

��

 a�1=2

i
+Op

�
N�2�

=
1

2
r2	N

�
a�1=2 
 a�1=2

�
+
1

2
r2	N

��
a�1=2 
 a�1

�
+
�
a�1 
 a�1=2

��
+ op

�
N�3=2

�
:

(b)

A42 =
1

2

�
r2	N �r2	N

� h
(b� � �0)
 (b� � �0)i

=
1

2

�
r2	N �r2	N

� ��
a�1=2 +Op

�
N�1��
 �a�1=2 +Op �N�1���

=
1

2

�
r2	N �r2	N

� �
a�1=2 
 a�1=2

�
+ op

�
N�3=2

�
Since r2	N � r2	N is greater than Op

�
N�1=2� ; the �rst term in A42 is greater than

Op(N
�3=2). �
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Lemma 6. Let

A5 =
1

6
r3	N

h
(b� � �0)
 (b� � �0)
 (b� � �0)i

=
1

6
r3	N

h
(b� � �0)
 (b� � �0)
 (b� � �0)i

+
1

6

�
r3	N �r3	N

� h
(b� � �0)
 (b� � �0)
 (b� � �0)i

=
1

6
r3	N

�
(a�1=2 +Op

�
N�1�)
 (a�1=2 +Op �N�1�)
 (a�1=2 +Op �N�1�)�

+
1

6

�
r3	N �r3	N

� h
(b� � �0)
 (b� � �0)
 (b� � �0)i

=
1

6
r3	N

�
a�1=2 
 a�1=2 
 a�1=2

�
+ op

�
N�3=2

�
= A51 + op

�
N�3=2

�
;

�

Proof: Since r3	N �r3	N is smaller than Op (1) ; then the results in Lemma 6 follows. �

In Lemma 4, 5, and 6, we have discussed each term in equation (20). Now the equation (20)

can be written as

0 = 	N +r	N (b� � �0) + �r	N �r	N� �a�1=2 + a�1�
+
1

2
r2	N

�
a�1=2 
 a�1=2

�
+
1

2
r2	N

��
a�1=2 
 a�1

�
+
�
a�1 
 a�1=2

��
+
1

2

�
r2	N �r2	N

� �
a�1=2 
 a�1=2

�
+
1

6
r3	N

�
a�1=2 
 a�1=2 
 a�1=2

�
+ op

�
N�3=2

�
: (21)

The equation (21) is invertible as a higher-order Taylor expansion of quantile regression, because�
r	N

��1
is bounded. Given the results in Lemma 3(b), we have B2 � �QVNa�1=2 = Op

�
N�7=6� ;

then B2B02 = Op
�
N�7=3� : However, we found that E (B2B02) = O �N�2� ; which we will discuss in

the following Lemma.
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Solve for b� � �0 in equation (16) to obtain
b� � �0 = �r	N

�1
	N �r	N

�1 �r	N �r	N� �a�1=2 + a�1�
�1
2
r	N

�1r2	N
�
a�1=2 
 a�1=2

�
� 1
2
r	N

�1r2	N
��
a�1=2 
 a�1

�
+
�
a�1 
 a�1=2

��
�1
2
r	N

�1
�
r2	N �r2	N

� �
a�1=2 
 a�1=2

�
�1
6
r	N

�1r3	N
�
a�1=2 
 a�1=2 
 a�1=2

�
+ op

�
N�3=2

�
= f�Q	Ng+

�
�QVNa�1=2

	
+

�
�1
2
QH2

�
a�1=2 
 a�1=2

��
+

�
�QVNa�1 �

1

2
QWN

�
a�1=2 
 a�1=2

��
+

�
�1
2
QH2

��
a�1=2 
 a�1

�
+
�
a�1 
 a�1=2

��
� 1
6
QH3

�
a�1=2 
 a�1=2 
 a�1=2

��
+op

�
N�3=2

�
;

� B1 +B2 +B3 +B4 +B5 + op

�
N�3=2

�
; (22)

where Hj = rj	N ; for j = 1; 2; 3; Q = H1
�1
; VN = H1 � H1; WN = H2 � H2: Note that the

equation (22) is the same as the expression in RSU (1996 p. 390 Eq. A.17).

Lemma 7.

(a) B1 = Op
�
N�1=2� ; B2 = Op

�
N�7=6� ; B3 = Op

�
N�1� ; B4 = Op

�
N�4=3� ; and B5 =

Op
�
N�3=2� ;

(b) B1B01 = Op
�
N�1� ; and E (B1B01) = O �N�1� ;

(c) B1B02 = B2B
0
1 = Op

�
N�5=3� ; and E (B1B02) = E (B2B01) = O �N�2� ;

(d) B1B03 = B3B
0
1 = Op

�
N�3=2� ; and E (B1B03) = E (B3B01) = O �N�2� ;

(e) B1B04 = B4B
0
1 = Op

�
N�11=6� ; and E (B1B04) = E (B4B01) = O �N�2� ;

(f) B2B02 = Op
�
N�7=3� ; and E (B2B02) = O �N�2� ;

(g) B1B05 = B5B
0
1 = Op

�
N�2� ; and E (B1B05) = E (B5B01) = O �N�2� ;

(h) B3B03 = Op
�
N�2� ; and E (B3B03) = O �N�2� : �

Proof: Suppose k = 1; xi and ui are not identically distributed, but independent across i =

1; :::; N: Let d = Q	N = 1
N

PN
i=1 di, di = Qsi; VN = 1

N

PN
i=1

�
r1si �r1si

�
= 1

N

PN
i=1 Vi;
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WN = 1
N

PN
i=1

�
r2si �r2si

�
= 1

N

PN
i=1Wi; then di; Vi; and Wi are not identically distributed,

but independent across i = 1; :::; N: The expected values of Vidj ; Widj ; and ViWj are all zero for

i 6= j: Then we have

E
�
B1B

0
1

�
= d2i ;

E
�
B1B

0
2 +B2B

0
1

�
= �2QVid2i ;

E
�
B1B

0
3 +B3B

0
1

�
= QH2d3i ;

E
�
B1B

0
4 +B4B

0
1

�
= 2Q2V 2i d

2
i + 4Q

2ViVjdidj � 9Q2H2Vidid2j + 3QWidid2j

= 2Q2V 2i d
2
i + 4Q

2Vidi
2 � 9Q2H2 Vidid2i + 3QWidid2i

E
�
B2B

0
2

�
= 2Q2ViVjd1d2 +Q

2V 2i d
2
i = 2Q

2Vidi
2
+Q2V 2i d

2
i ;

E
�
B1B

0
5 +B5B

0
1

�
= 3Q2H2

2
d2i d

2
j �QH3d2i d2j

= 3Q2H2
2
d2i
2
�QH3d2i

2

E
�
B3B

0
3

�
=
3

4
Q2H2

2
d2i d

2
j � 3Q

2H2Vidid2j =
3

4
Q2H2

2
d2i
2
� 3Q2H2 Vidid2i ;

d2i = Q2E(s2i )

=
1

N2

NX
i=1

Q2E
�
x2i (�� 1(yi < x0i�))2

�
=

1

N
Q2
h
(�� 1)2 �+ �2 (1� �)

i
E
�
x2i
�

=
1

N
�(1� �)Q2E

�
x2i
�
;

d3i = Q3E
�
s3i
�

= � 1

N3

NX
i=1

Q3E
�
x3i (�� 1(yi < x0i�))3

�
= � 1

N2
Q3
h
(�� 1)3 �+ �3(1� �)

i
E
�
x3i
�

= � 1

N2
�(1� �)(2�� 1)Q3E

�
x3i
�
;
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V 2i = E
h�
H1 �H1

�2i
= E

h
H2
1 � 2H1H1 +H1

2
i

= E
�
H2
1

�
� 2H1

2
+H1

2

= E
�
H2
1

�
�H1

2

=
1

N2

NX
i=1

E
h
x4i
�
�(x0i� � yi)

�2i� 1

N2

NX
i=1

�
E
�
x2i fi(x

0
i�)
��2

=
1

N2

NX
i=1

E

�
x4i

Z +1

�1

�
�(x0i� � yi)

�2
fi(yi)dyi

�
� 1

N2

NX
i=1

�
E
�
x2i fi(x

0
i�)
��2
;

Vidi
2
=

1

N3

NX
i=1

�
1

2
� �

�2
Q2
�
E
�
x3i f(x

0
i�)
��2
;

Vid2i = E
��
H1 �H1

�
Q2	2N

�
;

E
�
H1	

2
N

�
= E

" 
1

N

NX
i=1

x2i �(x
0
i� � yi)

!
	2N

#

=
1

N3

NX
i=1

E
�
x2iE

�
�(x0i� � yi)s2i jxi

��
=

1

N3

NX
i=1

E

�
x4i

Z +1

�1
�(xi� � yi)(�� 1(yi < x0i�))2fi(yi)dy

�

=
1

N3

NX
i=1

E

�
�2x4i

Z +1

�1
�(xi� � yi)fi(yi)dyi + (1� 2�)x4i

Z +1

�1
�(xi� � yi)�(xi� � yi)fi(yi)dyi

�

=
1

N3

NX
i=1

E
�
�2x4i fi(xi�)

�
+

1

N2

NX
i=1

E

�
(1� 2�)1

2
x41fi(xi�)

�

=
1

N3

NX
i=1

�
�2 � �+ 1

2

�
E
�
x4i fi(x

0
i�)
�
:

H3 = r3�	N =
1

N

NX
i=1

x4i �
(2)(x0i� � yi);
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H3 = Er3�	N = E
1

N

NX
i=1

h
x4i �

(2)(x0i� � yi)
i

=
1

N

NX
i=1

E
h
x4i �

(2)(x0i� � yi)
i

=
1

N

NX
i=1

E
h
x4iE

�
�(2)(x0i� � yi)jxi

�i
=

1

N

NX
i=1

E

�
x4i

Z +1

�1
�(2)(x0i� � yi)fi(yi)dyi

�

=
1

N

NX
i=1

E

�
x4i

Z +1

�1
�(x0i� � yi)f

(2)
i (yi)dyi

�

=
1

N

NX
i=1

E[x4i f
(2)
i (x0i�)];

Wi = H2 �H2 =
1

N

NX
i=1

x3i �
(1)(x0i� � yi)�

1

N

NX
i=1

E[x3i f
(1)
i (x0i�)];

Widi = E
��
H2 �H2

�
Q	N

�
= QE (H2	N )�QH2E (	N )

=
1

N

NX
i=1

QE
h
x3i �

(1)(x0i� � yi)	N
i

=
1

N2

NX
i=1

QE
h
x3iE

�
�(1)(x0i� � yi)

�
�� 1(yi < x0i�)

�
(�xi)jxi

�i
= � 1

N2

NX
i=1

QE
h
x4iE

�
�(1)(x0i� � yi) (�� � (xi� � yi)) jxi

�i
= � 1

N2

NX
i=1

�QE

�
x4i

Z +1

�1
�(1)(x0i� � yi)f(yi)dyi

�

+
1

N2

NX
i=1

QE

�
x4i

Z +1

�1
�(1)(x0i� � yi)� (xi� � yi) f(yi)dyi

�

= � 1

N2

NX
i=1

�QE
h
x4i f

(1)(x0i�)
i
+

1

N2

NX
i=1

QE

�
�x4i

Z +1

�1

�
�(x0i� � yi)

�2
f(yi)dyi

�

+
1

N2

NX
i=1

QE

�
x4i

Z +1

�1
�(x0i� � yi)� (xi� � yi) f (1)(yi)dyi

�

=
1

N2

NX
i=1

�
1

2
� �

�
QE

h
x4i f

(1)(x0i�)
i
� 1

N2

NX
i=1

QE

�
x4i

Z +1

�1

�
�(x0i� � yi)

�2
f(yi)dyi

�
:

�
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From equation (22), note that the MSE of quantile estimator b� is
E
�b� � �0��b� � �0�0 = E

�
B1B

0
1

�
+ E

�
B1B

0
2 +B2B

0
1

�
+ E

�
B1B

0
3 +B3B

0
1

�
+ E

�
B1B

0
4 +B4B

0
1

�
+E

�
B2B

0
2

�
+ E

�
B1B

0
5 +B5B

0
1

�
+ E

�
B3B

0
3

�
+ op

�
N�2�

� M
�b��+ op �N�2� : (23)

Given the above results in Lemma 7, we de�ne the MSE of quantile estimators up to O(N�2) as

follows.

De�nition 2. Let E
�b� � �0��b� � �0�0 = M �b�� + op �N�2� : Then M �b�� will be called �the

MSE of quantile estimators b� up to O(N�2)�.

Theorem 2. In the quantile regression model, suppose xi and ui both are not identically distributed,

but independent across i = 1; :::; N; when k = 1, the MSE up to O(N�2), of the quantile estimatorb� is
M
�b�� =

1

N
�(1� �)Q2E

�
x2i
�
� 2 1

N3

NX
i=1

Q3
�
�2 � �+ 1

2

�
E
�
x4i fi(0jxi)

�
+ 2

1

N3

NX
i=1

�(1� �)Q2E
�
x2i
�

� 1

N3

NX
i=1

�(1� �)(2�� 1)Q4E
h
x3i fi

(1)(0jxi)
i
E
�
x3i
�
+ 6

1

N3

NX
i=1

�
1

2
� �

�2
Q4
�
E
�
x3i fi(0jxi)

��2
+3

1

N3

NX
i=1

�(1� �)Q4
�
1

2
� �

�
E
h
x4i fi

(1)(0jxi)
i
E
�
x2i
�

�3 1
N3

NX
i=1

�(1� �)Q4
�
E
�
x2i fi(0jxi)

��2
E
�
x2i
�

�12 1
N3

NX
i=1

�
1

2
� �

�
�(1� �)Q5E

h
x3i fi

(1)(0jxi)
i
E
�
x3i fi(0jxi)

�
E
�
x2i
�

+
15

4

1

N3

NX
i=1

�2(1� �)2Q6
�
E
h
x3i fi

(1)(0jxi)
i�2 �

E
�
x2i
��2

� 1

N3

NX
i=1

�2(1� �)2Q5E
h
x4i fi

(2)(0jxi)
i �
E
�
x2i
��2

; (24)

where Q =
�
1
N

PN
i=1E

�
x2i fi(0jxi)

���1
. �

Proof: For simplicity, we derive the MSE of quantile estimator up to O(N�2) for k = 1. It follows

the same procedure obviously to obtain the MSE for k > 1: Suppose xi and ui are not identically
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distributed, but independent across i = 1; :::; N: Then si; di; Vi;and Wi are all independent across i.

By the results of Lemma 7, the MSE of the quantile estimator b� up to O �N�2� can be written as
M
�b�� = d2i � 2Q

�
Vid2i �

1

2
H2d3i

�
+ 6Q2Vidi

2
+ 3Q2V 2i d

2
i

+3QWidid2i � 12Q
2H2 Vidid2i +

15

4
Q2H2

2
d2i
2
�QH3d2i

2
;

Since the conditional density of yi given xi evaluated at yi = x0i� is the same as the conditional

density of ui given xi evaluated at ui = 0: We use fi (0jxi) to denote the conditional density of ui

given xi evaluated at ui = 0: The above results complete the proof of the Theorem 2. �

Corollary 2.1. The MSE of the quantile estimator b� up to O �N�1� equals the asymptotic variance
of b�. �

Proof: From Theorem 2, we observe that the MSE of b� up to O(N�1) for quantile estimator for

i.i.d. case when k = 1 can be simpli�ed as

MSE
�b�� = d2i = 1

N
� (1� �)Q2E

�
x2i
�
:

The asymptotic distribution of the quantile regression estimator when the �-quantile is linear in

xi, is given by equation (9). We can prove that V�; the asymptotic variance of b� equals N times

the MSE of b� up to O(N�1): Since 1(ui < 0) is Bernoulli with mean � and variance �(1��); then

we can have

E
�
	N (�)	N (�)

0� = E

" 
1

N

NX
i=1

si

! 
1

N

NX
i=1

s0i

!#

=
1

N2

NX
i=1

E
�
sis

0
i

�
=

1

N2

NX
i=1

E
�
(�� 1(ui < 0))2xix0i

�
=

1

N2

NX
i=1

E
�
xix

0
iE[(�� 1(ui < 0))2jxi]

�
=

� (1� �)
N2

NX
i=1

E
�
xix

0
i

�
:
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The MSE of b� up to O(N�1) can be derived by substituting the result above,

MSE
�b�� = E(a�1=2a

0
�1=2) = E(Q	N	

0
NQ) = QE

�
	N (�)	N (�)

0�Q
=

"
1

N

NX
i=1

E(f(0jxi)xix0i)
#�1

�(1� �)
N

E(xix
0
i)

"
1

N

NX
i=1

E(f(0jxi)xix0i)�1
#

=
V�
N
;

The asymptotic variance is

V� = N �MSE
�b�� = � (1� �)" 1

N

NX
i=1

E(f(0jxi)xix0i)
#�1

E
�
xix

0
i

� " 1
N

NX
i=1

E(f(0jxi)xix0i)
#�1

:

�

Corollary 2.2. When xi~i.i.d. and ui~i.i.d., and k = 1, the expression of the MSE of b� up to
O(N�2) can be simpli�ed as

M(b�) =
1

N
�(1� �)Q2E

�
x2i
�
� 2 1

N2
Q3
�
�2 � �+ 1

2

�
E
�
x4i
�
f(0) + 2

1

N2
�(1� �)Q2E

�
x2i
�

� 1

N2
�(1� �)(2�� 1)Q4f (1)(0)

�
E
�
x3i
��2

+ 6
1

N2

�
1

2
� �

�2
Q4f(0)2

�
E
�
x3i
��2

+3
1

N2
�(1� �)

�
1

2
� �

�
Q4E

�
x4i
�
f (1)(0)E

�
x2i
�
� 3 1

N2
�(1� �)Q4

�
E
�
x2i
��3

(f(0))2

�12�(1� �)
�
1

2
� �

�
Q5E

�
x2i
� �
E
�
x3i
��2

f(0)

+
15

4

1

N2
�2(1� �)2Q6f (1)(0)

�
E
�
x3i
��2 �

E
�
x2i
��2

� 1

N2
�2(1� �)2Q5f (2)(0)E

�
x4i
� �
E
�
x2i
��2

;

where Q =
�
E
�
x2i
�
f(0)

��1
: When xi~i.i.d. and ui~i.i.d., the asymptotic variance of b� is V� =

N �MSE(b�) = �(1� �) (E(xix0i))�1 =(f(0))2. �

5 Illustrations

In this section, we consider three special cases of the general results on the conditional quantile

regression from the previous section: namely, (1) the unconditional quantile estimation, (2) the

conditional quantile regression with a binary independent variable, and (3) the instrumental variable

quantile regression (IVQR). For these cases we illustrate the second-order bias and MSE with several

di¤erent distributions to highlight the merits of using the higher-order terms in bias and MSE.
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5.1 Unconditional Quantile Estimator

We consider a special case of the model with xi = 1; i.e., the model without any covariate, which

gives the unconditional quantile estimator.

Proposition 3. In the quantile regression model with xi = 1; the second-order bias up to O(N�1),

of the unconditional quantile estimators b� is
B
�b�� = 1

N

�
1

2
� �

�
Q� 1

N

�(1� �)
2

Q3f (1)(0); (25)

and the MSE up to O(N�2), of the unconditional quantile estimators b� is
M
�b�� =

1

N
�(1� �)Q2 + 1

N2

�
7�2 � 7�� 3

2

�
Q2 � 7 1

N2
�(1� �)

�
1

2
� �

�
Q4f (1)(�)

+
15

4

1

N2
�2(1� �)2Q6

�
f (1)(�)

�2
� 1

N2
�2(1� �)2Q5f (2)(�); (26)

where Q = [f(0)]�1; f(0) is the unconditional density of ui evaluated at ui = 0; f (1)(0) and

f (2)(0) are the �rst and second derivatives of the unconditional density of ui evaluated at ui = 0,

respectively. �

Proof: See Appendix C. �

Corollary 3.1. In the quantile regression model with xi = 1 and yi following the normal distri-

bution N(�; �2); the second-order bias up to O(N�1), of the unconditional quantile estimators b�
is

B
�b�� = 1

N

�
1

2
� �

�
Q� 1

N

�(1� �)
2

Q2
�
�� + �
�2

�
; (27)

and the MSE up to O(N�2), of the unconditional quantile estimators b� is
M
�b�� =

1

N
�(1� �)Q2 + 1

N2

�
7�2 � 7�� 3

2

�
Q2 � 7 1

N2
�(1� �)

�
1

2
� �

�
Q3
�� + �
�2

+
15

4

1

N2
�2(1� �)2Q4

�
�� + �
�2

�2
� 1

N2
�2(1� �)2Q4 (�� + �)

2 � �2
�4

; (28)

where Q =
h

1p
2��

exp
�
� (���)2

2�2

�i�1
: �

Proof: If yi follows normal distribution N(�; �2); then the unconditional density, the �rst and

second derivatives of the unconditional density are

f(yi) =
1p
2��

exp

 
�(yi � �)

2

2�2

!
;

29



f (1)(yi) =
1p
2��

�
�y + �
�2

�
exp

 
�(yi � �)

2

2�2

!
=
�yi + �
�2

f(yi);

f (2)(yi) =
1p
2��

 
(�yi + �)2 � �2

�4

!
exp

 
�(yi � �)

2

2�2

!
=
(�yi + �)2 � �2

�4
f(yi):

Thus,

Q = [f(�)]�1 =

"
1p
2��

exp

 
�(� � �)

2

2�2

!#�1
:

Based on Proposition 3, the second-order bias of b� up to O(N�1) and the MSE up to O(N�2) can

be obtained. �

Remark: We discover several other interesting properties from the expression of second-order bias:

(i) when
������� ��� is high, Q is large; (ii) when � is high,

���B(b�)��� is large; (iii) when j� � �j is large,���B �b����� is large.
Corollary 3.2. If yi follows a symmetric distribution, then the median estimator is unbiased.

When yi follows the normal distribution N(�; �2); the MSE up to O(N�2) at the median, of the

unconditional quantile estimators b� is
M
�b�� = ��2

2N
� 13��

2

2N2
+
�2�2

4N2
: (29)

and non-negative MSE requires N � 13� �=2: �

Proof: Since at the median of yi, we have � = �: It is obvious that the bias is zero at the median.

At the median, we also have f(�) = f (�) = 1p
2��
: Then the MSE at the median is

M(b�) =
1

N
�(1� �)Q2 + 1

N2
(7�2 � 7�� 3

2
)Q2 � 1

N2
�2(1� �)2Q4 (�� + �)

2 � �2
�4

=
1

N

1

4
2��2 � 1

N2

13

4
2��2 +

1

N2

1

16
4�2�4

1

�2

=
��2

2N
� 13��

2

2N2
+
�2�2

4N2
:

�

Corollary 3.3. In the quantile regression model with xi = 1 and yi following the exponential

distribution with density f(yi) = � exp (��yi) ; � > 0; the second-order bias up to O(N�1), of the

unconditional quantile estimators b� is
B
�b�� = 1

N

�
1

2
� �

�
Q+

1

N

�(1� �)
2

�Q2; (30)
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which is always non-positive, and the MSE up to O(N�2), of the unconditional quantile estimatorsb� is
M
�b�� = 1

N
�(1��)Q2+ 1

N2
(7�2�7�� 3

2
)Q2+7

1

N2
�(1��)

�
1

2
� �

�
�Q3+

11

4

1

N2
�2(1��)2�2Q4:

(31)

where Q = [� exp (���)]�1 : �

Proof: If yi follows the exponential distribution exp(�); then the unconditional density, the �rst

and second derivatives of the unconditional density are

f(yi) = � exp (��yi) ;

f (1)(yi) = ��2 exp (��yi) = ��f(yi);

f (2)(yi) = �3 exp (��yi) = �2f(yi):

Thus,

Q = [f(�)]�1 = [� exp (���)]�1 :

Based on Proposition 3, the second-order bias of b� up to O(N�1) and the MSE up to O(N�2) can

be obtained. �

Corollary 3.4. When yi follows the exponential distribution exp(�) with � > 0; at the median,

the second-order bias of the unconditional quantile estimator is

B
�b�� = 1

2N�
; (32)

and the MSE up to O(N�2); of the unconditional quantile estimators is

M
�b�� = 1

N�2
� 13

N2�2
+

11

4N2�2
: (33)

�

Proof: Since at the median of yi; we have � = 1
� ln(2); f(�) = � exp(� ln(2)) = �

2 ; then the

second-order bias and the MSE at the median can be obtained. �
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5.2 Conditional Quantile Estimator with Binary Independent Variable

We consider the conditional quantile regression in Section 2, but now with xi following the Bernoulli

distribution Bernoulli(p):

Proposition 4. In the quantile regression model with xi following the Bernoulli distribution

Bernoulli(p); the second-order bias up to O(N�1), of the conditional quantile estimator b� is
B
�b�� = 1

N

�
1

2
� �

�
Q� 1

N

�(1� �)
2

Q3p2f (1)(0) (34)

and the MSE up to O(N�2), of the conditional quantile estimators b� is
M
�b�� =

1

N
�(1� �)Q2p� 1

N2

�
� (1� �) (4 + p) + 1

2

�
Q2 � 7 1

N2
�(1� �)

�
1

2
� �

�
Q4p2f (1)(0)

+
15

4

1

N2
�2(1� �)2Q6p4

�
f (1)(0)

�2
� 1

N2
�2(1� �)2Q5p3f (2)(0); (35)

where Q = [pf(0)]�1: f(0) = f (uijxi = 1) evaluated at ui = 0; f (1)(0) = f (1) (uijxi = 1) and

f (2)(0) = f (2) (uijxi = 1) evaluated at ui = 0. �

Proof: See Appendix C. �

Remark: The second-order bias of b� is large at tails of a distribution. The second-order bias
of b� goes to zero as N ! 1. When p is small, the second-order bias of b� is large at tails of a
distribution. If ui follows a symmetric distribution, the median estimator is unbiased.

Corollary 4.1. In the quantile regression model with xi following the Bernoulli distribution Bernoulli(p)

and yijxi following the normal distribution N(�; �2); the second-order bias up to O(N�1) of the

conditional quantile estimators b� is
B
�b�� = 1

N

�
1

2
� �

�
Q� 1

N

�(1� �)
2

Q2p
�� + �
�2

(36)

and the MSE up to O(N�2) of the conditional quantile estimators b� is
M
�b�� =

1

N
�(1� �)Q2p� 1

N2

�
� (1� �) (4 + p) + 1

2

�
Q2 � 7 1

N2
�(1� �)

�
1

2
� �

�
Q3p

�� + �
�2

+
1

N2
�2(1� �)2Q4p2

"
15

4

�
�� + �
�2

�2
� (�� + �)

2 � �2
�4

#
; (37)
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where Q =
h

1p
2��
p exp

�
� (���)2

2�2

�i�1
: �

Proof : If yijxi follows the normal distribution N(�; �2); then

f(yijxi = 1) =
1p
2��

exp

 
�(yi � �)

2

2�2

!
;

f (1)(yijxi = 1) =
1p
2��

�
�yi + �
�2

�
exp

 
�(yi � �)

2

2�2

!
=
�yi + �
�2

f(yijxi = 1);

f (2)(yijxi = 1) =
1p
2��

 
(�yi + �)2 � �2

�4

!
exp

 
�(yi � �)

2

2�2

!
=
(�yi + �)2 � �2

�4
f(yijxi = 1):

Based on Proposition 4, the second-order bias of b� up to O(N�1) and the MSE up to O(N�2) can

be obtained �

Remark: We discover several other interesting properties from the expression of the second-order

bias: (i) when
������� ��� is high, Q is large; (ii) when � is high,

���B �b����� is large; (iii) when j� � �j is
large,

���B �b����� is large; and (iv) when p is small, ���B �b����� is large.
Corollary 4.2. If yijxi follows a symmetric distribution, then the median is unbiased. When yijxi

follows the normal distribution N(�; �2); the MSE up to O(N�2) at the median, of the conditional

quantile estimators b� is
M
�b�� = ��2

2Np
� ��2

2N2p
� 3��2

N2p2
+
�2�2

4N2p4
; (38)

and non-negative MSE requires N � 15
2p �

�
2p3
: �

Proof: Since at the median of yi, we have f(�) = f (�) = 1p
2��
; then the MSE up to O(N�2) is

M
�b�� =

1

N
�(1� �)Q2p� 1

N2

�
� (1� �) (4 + p) + 1

2

�
Q2 +

1

N2
�2(1� �)2Q4p2

"
�(�� + �)

2 � �2
�4

#

=
1

N

1

4

2��2

p
� 1

N2

�
p

4
+
3

2

�
2��2

p2
+

1

N2

1

16

4�2�4

p4
1

�2

=
��2

2Np
� ��2

2N2p
� 3��2

N2p2
+
�2�2

4N2p4
:

�
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Corollary 4.3. In the quantile regression model with xi following the Bernoulli distribution

Bernoulli(p) and yijxi following the exponential distribution, f (yijxi) = � exp(��yi) with � > 0;

the second-order bias up to O(N�1) of the conditional quantile estimators b� is
B
�b�� = 1

N

�
1

2
� �

�
Q+

1

N

�(1� �)
2

�Q2p; (39)

which is always non-positive, and the MSE up to O(N�2) of the conditional quantile estimators b�
is

M
�b�� =

1

N
�(1� �)Q2p� 1

N2

�
� (1� �) (4 + p) + 1

2

�
Q2 + 7

1

N2
�(1� �)

�
1

2
� �

�
Q3p�

+
11

4

1

N2
�2(1� �)2Q4p2�2; (40)

where Q = [p� exp (���)]�1 : �

Proof: If yijxi follows the exponential distribution, then

f(yijxi = 1) = � exp (��yi) ;

f (1)(yijxi = 1) = ��2 exp (��yi) = ��f(yijxi = 1);

f (2)(yijxi = 1) = �3 exp (��yi) = �2f(yijxi = 1);

and

Q =
�
E[x21f(x

0
1�)]

��1
= (pE[f(�)])�1 = [pf(�)]�1 = [p� exp (���)]�1 :

Based on Proposition 4, the second-order bias of b� up to O(N�1) and the MSE up to O(N�2) can

obtained �

Corollary 4.4. When yijxi follows the exponential distribution, f (yijxi) = � exp(��yi) with

� > 0; at the median, the second-order bias of the conditional quantile estimator is

B
�b�� = 1

2Np�
; (41)

and the MSE up to O(N�2) of the conditional quantile estimators is

M
�b�� = 1

Np�2
� 1

N2p�2
� 13

4N2p2�2
; (42)

and non-negative MSE requires N � 1 + 13
4p : �

Proof: Since at the median of yi; we have � = 1
� ln(2); f(�) = � exp(�� ln(2)) =

�
2 ; Q = [pf(�)]

�1 =

2
p� ; then the second-order bias and the MSE at the median of yi can be obtained. �
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5.3 Instrumental Variable Quantile Regression

Consider the quantile model where the explanatory variable xi is endogenous and zi is the instru-

mental variable

yi = x0i� + ui; (43)

xi = �zi + vi; (44)

where yi is a scalar, xi is a k � 1 vector, and zi is an l � 1 vector. E (xiui) 6= 0; E (uijzi) = 0: We

consider the case when l = k below. When l = k = 1; the k � l matrix � becomes a scalar : The

k� 1 vector quantile estimators b� can be written as a solution to a set of moment equations of the
form

	N (b�) = 1

N

NX
i=1

si(b�) = 0; (45)

where si(�) � [�� 1(yi < x0i�)] (�zi):

Proposition 5. In the instrumental variable quantile regression (IVQR) model, suppose xi~i.i.d.

and ui~i.i.d., the second-order bias, up to O(N�1), of the quantile estimators b� is
B
�b�� = 1

N
Q

��
1

2
� �

�
E
�
zix

0
iQzif(0)

�
� � (1� �)

2
E
h�
zix

0
i

�

 x0if (1)(0)

i
(Q
Q)E (zi 
 zi)

�
;

(46)

where Q = (E[zix0if(0)])
�1 : When k = 1, the MSE up to O(N�2) of the quantile estimator b� is

M
�b�� =

1

N
� (1� �)Q2E

�
z2i
�
� 2 1

N2
Q3
�
�2 � �+ 1

2

�
E
�
z3i xi

�
f(0) + 2

1

N2
�(1� �)Q2E

�
z2i
�

� 1

N2
� (1� �) (2�� 1)Q4E

�
zix

2
i

�
E
�
z3i
�
f (1)(0) + 6

1

N2

�
1

2
� �

�2
Q4
�
E
�
z2i xi

�
f(0)

�2
+3

1

N2
� (1� �)Q4

�
1

2
� �

�
E
�
z2i x

2
i

�
E
�
z2i
�
f (1)(0)

�3 1
N2
� (1� �)Q4

�
E
�
x2i
�
f(0)

�2
E
�
z2i
�

(47)

�12 1
N2

�
1

2
� �

�
�(1� �)Q5E[zix2i ]E

�
z2i xi

�
E
�
z2i
�
f(0)f (1)(0)

+
15

4

1

N2
�2 (1� �)2Q6

�
E
�
zix

2
i

�
f (1)(0)

�2 �
E
�
z2i
��2

� 1

N2
�2 (1� �)2Q5E[zix3i ]

�
E
�
z2i
��2

f (2)(0); (48)
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where Q = (E[zixi]f(0))
�1 : �

Proof: See Appendix C. �

Remark: When k = 1; we observe that xi; 	N ; si; di; H1; H1; Q; Vi; H2; H2; Wi; H3; H3 are all

scalars, and the second-order bias of b� up to O(N�1) can be rewritten as

B(b�) = 1

N

�
1

2
� �

�
Q2E

�
z2i xif(0)

�
� 1

N

�(1� �)
2

Q3E[zix
2
i f
(1)(0)]E

�
z2i
�
;

where Q = (E[zixif(0)])
�1 :

The second-order bias of b� is larger at the tails of a distribution. When the instrumental variable
is weak, the second-order bias of b� is larger. If ui follows a symmetric distribution, the median
estimator is unbiased. The second-order bias of b� goes to zero as the sample size goes to in�nity.
�

Corollary 5. The MSE of the quantile estimator b� up to O(N�1) equals the asymptotic variance

of b�. �

Proof: From Theorem 2, we observe that the MSE of b� up to O(N�1) for the quantile estimator

for the i.i.d. case when k = 1 can be simpli�ed as

M
�b�� = 1

N
d2i =

1

N
Q2� (1� �)E

�
z2i
�
:

Under the i.i.d. assumption, the asymptotic distribution of the quantile regression estimator when

the �-quantile is linear in xi, is as follows,

p
N(b� � �) d! N(0; V�);

where

V� = �(1� �)[E(f(0)zix0i)]�1(Eziz0i)[E(f(0)zix0i)]�1;

and f(0jxi) is the density of ui conditional on xi evaluated at ui = 0: See Chernozhukov and Hansen

(2006). We can prove that V�; the asymptotic variance of b�; equals the N times the MSE of b� up
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to O(N�1): Since 1(ui < 0) is Bernoulli with mean � and variance �(1� �); then we can have

E
�
	N (�)	N (�)

0� = E

" 
1

N

NX
i=1

si

! 
1

N

NX
i=1

s0i

!#

=
1

N2

NX
i=1

E
�
sis

0
i

�
=

1

N2

NX
i=1

E
�
(�� 1(ui < 0))2ziz0i

�
=

1

N2

NX
i=1

E
�
ziz

0
iE[(�� 1(ui < 0))2jxi]

�
=

�(1� �)
N2

NX
i=1

E(ziz
0
i):

Under the i.i.d. assumption, the MSE of b� up to O(N�1) can be derived by substituting the result

above,

MSE
�b�� = E(a�1=2a

0
�1=2) = E(Q	N	

0
NQ) = QE

�
	N (�)	N (�)

0�Q
=

"
1

N

NX
i=1

E(f(0jxi)zix0i)
#�1

�(1� �)
N2

NX
i=1

E(ziz
0
i)

"
1

N

NX
i=1

E(f(0jxi)zix0i)�1
#

= [E(f(0)zix
0
i)]
�1�(1� �)

N
E(ziz

0
i)[E(f(0)zix

0
i)]
�1

=
V�
N
;

where f(0) is the density of ui evaluated at ui = 0: The asymptotic variance V� = N �MSE(b�) =
�(1� �)[E(f(0)ziz0i)]�1E(ziz0i)[E(f(0)ziz0i)]�1: �

6 Monte Carlo Simulation

6.1 Simulation Design

Now we give some numerical calculation to the second-order bias and MSE. In the quantile regres-

sion model yi = xi� + ui; the error term ui satis�es E [�� 1(yi < x0i�)jxi] = 0: The � conditional

quantile of ui given xi is zero. We consider two data generating processes (DGP).

In the �rst DGP (DGP1), the error term ui is normally distributed with the CDF F (�); whose

standard deviation is �u and mean is set to be ���1(�)�u; with � (�) denoting the standard normal
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CDF. Then we note that

F (0) =

Z 0

�1
f(u)du =

Z 0

�1

1p
2��u

exp

"
�
�
u�

�
���1(�)�u

�	2
2�2u

#
du

=

Z ��1(�)�u

�1

1p
2��u

exp

�
� z2

2�2u

�
dz

=

Z ��1(�)

�1

1p
2�
exp

�
�w

2

2

�
dw

= �(��1(�))

= �:

Therefore, we generate the error term ui from the normal distribution N(���1(�)�u; �2u). To allow

hetroskedasticity, ui can be set depending on xi:

In the second DGP (DGP2), the error term ui is uniformly distributed with the CDF F (�) on

[a; b] with a = �
��1b. Then we note that

F (0) =

Z 0

�1
f(u)du =

Z 0

a

1

b� adu = �
a

b� a = �:

Therefore, we generate the error term ui from the uniform distribution on [a; b] ; where a = ��R;

b = R(1��); and the range R = b� a: Also to allow hetroskedasticity, ui can be set depending on

xi:

We simulate xi from several di¤erent distributions. Then, yi is simulated from yi = xi� + ui:

We consider � 2 f0:05; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 0:95g ; � = 0; N 2 f60; 100g : We use

the Matlab package by Roger Koenker to estimate the models. The results are presented with the

averaged values across 10,000 simulations. Note that when k = 1; xi; 	N ; si; d; H1; H1; Q; V; H2;

H2; W; H3; H3 are all scalars. In all the tables, for each �, the �rst row is for bias and the second

row is for the MSE of the quantile estimator. For each panel, the �rst column presents the second-

order bias and MSE derived by theorems, propositions, and corollaries, the second column presents

the bias and MSE of b�, and the third column presents the bias and MSE of the bias-corrected
estimator e� � b� �B �b��.

Tables 1-8 present the results for DGP1. We use the Matlab package by Roger Koenker to

estimate the model. Table 1 shows the results in Theorems 1 and 2 when there is hetroskedasticity,

�ui = 0:1xi; 0:5xi;. Tables 2-5 show the results in Corollary 1, when xi~i.i.d. and ui~i.i.d.. Tables
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2 and 3 compares the results when �u 2 f0:1; 0:5g : In Tables 1, 2, 3, xi is generated from the

exponential distribution with f(xi) = exp(�xi). Tables 4 and 5 show the results when xi is

generated from two di¤erent normal mixture distributions in Marron and Wand (1992): in Table

4, xi is generated from the Skewed Unimodal Density 1
5N (0; 1) +

1
5N
�
1
2 ;
�
2
3

�2�
+ 3

5N
�
13
12 ;
�
5
9

�2�
;

while in Table 5 xi is generated from the Strongly Skewed Density
7X
l=0

1
8N
�
3
h�
2
3

�l � 1i ; �23�2l� :
See Marron and Wand (1992, page 717, Fig 1, #2 and #3) for shapes of these two normal mixture

densities.

Table 6 shows the simulation results for Proposition 3 with unconditional quantile regression.

Table 7 shows the results in Proposition 4 with binary independent variable with p = 0:3: Note

that the unconditional quantile estimation is a special case of the conditional quantile estimation

with binary independent variable with p = 1:

Table 8 presents the results for IVQR for which we use the Matlab package by Chernozhukov and

Hansen (2006) to estimate the IVQR model. In the simulation of IVQR, ui is generated from DGP1

(normal); vi is simulated from vi = wi + cui such that v is contaminated by the structural error u

and thus v becomes endogenous; where wi is from N(0; 0:25); c = 0:5; zi is from the exponential

distribution, f(xi) = exp(�xi); xi is simulated from xi = zi + vi; where  2 f0:5; 0:9g ; yi is

simulated from yi = xi� + ui; where � = 0:

6.2 Simulation Results

From the results for DGP1 reported in Table 1-8, we �nd that the analytically derived second-order

bias is numerically close to the Monte Carlo simulated bias, the estimator e� � b� � B �b�� with
the second-order-bias-correction is numerically close to the true parameter value � = 0 of the data

generation. The Monte Carlo simulation results show that the second-order bias corrected estimator

has better behavior than the uncorrected estimator b�. The results for DGP2 are qualitatively similar
to those for DGP1. The results for DGP2 are made available in the Supplemental Appendix (Tables

10-13) on the authors�website. From the simulation results, our conclusions are summarized as

follows:

1. If xi is generated from the standard normal distribution, the bias is close to zero. That

is because the expressions of the second-order bias contain the third-moment of xi. If the
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distribution of xi is symmetric, the second-order bias will go to zero. Therefore, we simulate

xi from several asymmetric distributions. Since the exponential distribution and the two

mixture normal distributions are all asymmetric, the bias-corrected estimator e� is closer to
the true �0 than the uncorrected estimator b�:

2. The �rst column for each sample size N shows that the bias is zero at the median, and the

bias is larger at deeper tail quantiles.

3. When the sample size is increasing, the bias becomes smaller. The quantile estimators are

asymptotically unbiased.

4. When �u is larger, the quantile estimator has larger bias.

5. In the IVQR, the bias is larger with weaker instruments.

7 Empirical Application

In this section, we demonstrate the bene�t of the second-order-bias-correction in the predictive

quantile regression model for �nancial returns. We predict conditional quantiles of the stock re-

turns conditioning on the lagged dividend yields. There is extensive literature on the stock return

prediction. See Lewellen (2004) and Zhu (2013) among many others. To examine the e¤ect of the

second-order-bias-correction in the predictive quantile regression, we consider a linear predictive

quantile model for the h-period ahead portfolio return yt+h

yt+h = x
0
t� + ut+h; t = 1; : : : ; T (49)

where yt is the return, and xt is a k � 1 vector of predictor variables such as dividend yield or the

T-bill rate. We consider k = 1 here. Given � 2 (0; 1); the predictive quantile regression estimatorb� (�) is obtained by solving
min
�
E[L�(�)] = E[

�
�� 1(yt+h < x0t�)

� �
yt+h � x0t�

�
]: (50)

The data are monthly from Amit Goyal�s website. Welch and Goyal (2008) provide detailed

descriptions of the data. yt+h is the future h-period returns on the S&P 500 Index, de�ned as

yt+h = (Pt+h � Pt)=Pt; where Pt is the the S&P 500 Index. The dividend yield xt is the ratio of
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the previous 12-month sum of dividends paid on the S&P 500 Index. Following Ang and Bekaert

(2007), Paye and Timmermann (2006) and Goyal and Welch (2003), we use the data after the

1951 Treasury Accord period, from January 1952 to December 1989 (total 456 months). The

application uses a rolling window sample of T = 100 observations. We predict future h-period

returns using the dividend yield. We consider three di¤erent horizons h 2 f1; 3; 12g : Table 9

presents the predictive quantile results for h = 1 in the out-of-sample average over the 344 rolling

windows (344 = 456� 100� 12, with 12 observations used for taking lags for h = 12). The results

for h = 3; 12 are made available in the Supplemental Appendix (Tables 14, 15) for space reason as

they are very similar to Table 9.

For each level of �, the �rst column presents the quantile estimator of b�. The second column
presents the second-order bias B

�b�� derived in Theorem 1, where the conditional density and

derivative of density are estimated by nonparametric approach. The third column presents the

second-order bias corrected quantile estimators e� = b� � B �b��. The fourth column presents

the the mean squared error M
�b�� up to O(N�1) (which is the asymptotic variance) obtained

by the �rst term in Theorem 2. The last column presents the the mean squared error M
�b��

up to O(N�2) derived in Theorem 2, where the conditional density and derivatives of density

are estimated by nonparametric approach. There are literatures discussed ways to estimating

the distribution function. A whole methodology known as kernel distribution function estimation

(KDFE) has been explored since Nadaraya (1964). An improvement of this kind of method can be

found in Sheather and Jones (1991).

From these results our �ndings are summarized as follows:

1. The magnitude of the second-order bias and MSE are larger towards the tails of the stock

return distribution.

2. There are upward bias at lower quantiles and downward bias at upper quantiles.

3. The MSE up to O(N�1) is smaller than the MSE up to O(N�2): Hence, the statistical

signi�cance of the predictive ability of the predictor (dividend yield) can be over-stated if the

(�rst-order) asymptotic variance is used.
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8 Conclusions

This paper develops analytical results on the second-order bias and MSE of the quantile regression

estimators. The results show that while the median is unbiased for a symmetric distribution, and

the other quantiles are biased, with larger bias at deeper tails of any distribution. The higher order

MSE gives further insights on how the e¢ ciency of quantile estimators behave. The Monte Carlo

simulation indicates the improvement of quantile estimation and quantile prediction by the second-

order-bias-correction. The theoretical results are applied to the predictive quantile regression model

for �nancial returns. We �nd that the quantile estimators with the second-order bias correction

behave better than the uncorrected ones, and the bias is larger at extremely low and high quantiles of

stock returns. It is shown that the second-order-bias-correction improves the accuracy of estimation

and prediction of the conditional quantiles, especially in tails.

9 Appendix

9.1 Appendix A. Properties of a vector norm

Let A be a k � 1 vector.

1. jjAjj = [tr (AA0)]1=2 = (A0A)1=2 :

2. jjAA0jj = [tr (AA0AA0)]1=2 = [tr (A0AA0A)]1=2 = (A0AA0A)1=2 = A0A = jjAjj2 :

3. jj(AA0)
A0jj = ftr ([(AA0)
A0] [(AA0)
A])g1=2 = [tr ((AA0AA0)
 (A0A))]1=2 = [tr (A0AA0AA0A)]1=2

= (A0A)3=2 = jjAjj3 :

4. jj(AA0)
A0 
A0jj = tr([(AA0)
A0 
A0] [(AA0)
A
A])1=2 = tr[(AA0AA0)
 (A0 
A0) (A
A)]1=2

= tr[(AA0AA0)
A0A
A0A]1=2 = tr[(A0AA0A)A0AA0A]1=2 = (A0AA0A) = (A0A)2 = kAk4

9.2 Appendix B. Properties of the Dirac delta function

The Heaviside unit step function is de�ned as �(z) = 0 for z < 0; �(z) = 1 for z � 0: The Dirac

delta function is de�ned as �(z) = d�(z)=dz; where �(z) = 0 for z < 0; �(z) =1 for z = 0; �(z) = 0

for z > 0: The Dirac delta function � (z) has the following properties.

1.
R +1
�1 �(z)dz = 1:
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2.
R +1
�1 �(z � a)f(z)dz = f(a); where f : R! R is a real function di¤erentiable around a 2 R:

3.
R +1
�1 �(n)(z � a)f(z)dz = (�1)n

R +1
�1 �(z � a)f (n)(z)dz = (�1)nf (n)(a); for n = 1; 2; : : : :

4. �(z) = �(�z); �(1)(�z) = ��(1)(z); �(2)(�z) = �(2)(z):

5. �(z)�(z) = 1
2�(z): See Raju (1982).

6. �(z)�(1)(z) = 1
2�
(1)(z)� (�(z))2 :

9.3 Appendix C: Proofs

Proof of Proposition 3: If the linear quantile regression model is yi = �+ui; where yi is a scalar, ui is

the error de�ned to be the di¤erence between yi and its �-quantile �; we call b� as the unconditional
quantile estimators. Given the de�nition of the check loss function, the quantile estimators b� can
be obtained by solving

min
�
E[L�(�)] = E[(�� 1(yi < �))(yi � �)]:

We can show that E[L(�)] is continuously di¤erentiable on �: Then can write the population

moment condition as

r1�E[L�(�)] = E[�r1�1(yi � � < 0)(yi � �)]� E[�� 1(yi < �)]:

By the de�nition of Dirac delta function in Appendix B, we have 1(yi � � < 0) = �(� � yi): Then

r1�1(yi � � < 0) = �(� � yi):

According to properties of the Dirac delta function in Appendix B, we have �(��yi) = �(yi��) and

E[�(� � yi)(yi � �)] = E[�(yi � �)(yi � �)]

=

Z +1

�1
�(yi � �)(yi � �)f(yi)dyi

= (�� � �)f(�)

= 0:

Thus, the moment condition can be written as

r1�E[L�(�)] = �E[�� 1(yi < �)] = E[si(�)];
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where si(�) = � (�� 1(yi < �)) : The sample moment condition can be written as

	N (�) =
1

N

NX
i=1

si(�): (51)

The second-order bias up to O(N�1) is

B
�b�� = 1

N
Q

�
Vidi �

1

2
H2
�
di 
 di

��
;

where

H1 = r1�si = r1�(1(yi < �)) = �(� � yi);

H2 = r2�si = ��(1)(� � yi);

H3 = r3�si = �(2)(� � yi);

H1 = Er1�si = E [�(� � yi)] =
Z +1

�1
�(yi � �)f(yi)dyi = f (�) ;

H2 = Er2�si = �E
h
�(1)(� � yi)

i
= �f (1) (�) ;

H3 = Er3�si = E
h
�(2)(� � yi)

i
= f (2) (�) ;

Q =
�
H1
��1

= [f(�)]�1;

V = H1 �H1 = �(� � yi)� f(�);

W = H2 �H2 = ��(1)(� � yi) + f (1)(�);

di = Qsi = �[f(�)]�1(�� 1(yi < �)):

f(�) is the unconditional density of yi evaluated at yi = �: f (1)(�) and f (2)(�) are the �rst and

second derivative of the unconditional density of yi evaluated at yi = �, respectively. Since 	N ; si;

di; H1; H1; Q; Vi; H2; H2; Wi; H3; H3 are all scalars, then

Vidi = E
��
H1 �H1

�
Qsi
�

= QE (H1si)� E (si)

= Q

�
�
Z +1

�1
�(� � yi)(�� 1(yi < �))f(yi)dyi

�
= Q

�
�
Z +1

�1
�(� � yi)�f(yi)dyi +

Z +1

�1
�(� � yi)1(yi < �)f(yi)dyi

�
=

�
1

2
� �

�
Q [f(�)] :
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d1 
 d1 = Q2E
�
s2i
�
= Q2

h
(�� 1)2 �+ �2 (1� �)

i
= � (1� �)Q2:

Therefore, the second-order bias of b� up to O(N�1);of the unconditional quantile estimators b� can
be written as

B
�b�� =

1

N
Q

�
Vidi �

1

2
H2
�
di 
 di

��
=

1

N

�
1

2
� �

�
Q2 [f(�)]� 1

N

� (1� �)
2

Q3f (1)(�)

=
1

N

�
1

2
� �

�
Q� 1

N

� (1� �)
2

Q3f (1)(�);

where Q = [f(�)]�1: Since the unconditional density of yi evaluated at yi = � is the same as the

unconditional density of ui evaluated at ui = 0; if we use f (0) to denote the unconditional density

of ui evaluated at ui = 0; then the second-order bias of b� up to O(N�1) of the unconditional

quantile estimators b� can be written as
B
�b�� = 1

N

�
1

2
� �

�
Q� 1

N

� (1� �)
2

Q3f (1)(0);

where Q = [f(0)]�1:

If xi = 1; the MSE up to O(N�2) of the unconditional quantile estimators b� can be simpli�ed
as

M
�b�� =

1

N
� (1� �)Q2 � 2 1

N2

�
�2 � �+ 1

2

�
Q3f(�) + 2

1

N2
� (1� �)Q2

� 1

N2
� (1� �) (2�� 1)Q4f (1)(�) + 6 1

N2

�
1

2
� �

�2
Q4 (f(�))2

+3
1

N2
� (1� �)Q4

��
1

2
� �

�
f (1)(�)� (f(�))2

�
� 12 1

N2

�
1

2
� �

�
� (1� �)Q5f (1)(�)f(�)

+
15

4

1

N2
�2 (1� �)2Q6

�
f (1)(�)

�2
� 1

N2
�2 (1� �)2Q5f (2)(�)

=
1

N
�(1� �)Q2 � 2 1

N2

�
�2 � �+ 1

2

�
Q2 + 2

1

N2
�(1� �)Q2 � 1

N2
�(1� �)

�
1

2
� �

�
Q4f (1)(�)

+3
1

N2

�
3�2 � 3�+ 1

2

�
Q2 � 12 1

N2

�
1

2
� �

�
�(1� �)Q4f (1)(�)

+
15

4

1

N2
�2(1� �)2Q6

�
f (1)(�)

�2
� 1

N2
�2(1� �)2Q5f (2)(�)

=
1

N
�(1� �)Q2 + 1

N2

�
7�2 � 7�� 3

2

�
Q2 � 7 1

N2
�(1� �)

�
1

2
� �

�
Q4f (1)(�)

+
15

4

1

N2
�2(1� �)2Q6

�
f (1)(�)

�2
� 1

N2
�2(1� �)2Q5f (2)(�);
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where Q = [f(�)]�1: Since the unconditional density of yi evaluated at yi = � is the same as the

unconditional density of ui evaluated at ui = 0; if we use f (0) to denote the unconditional density

of ui evaluated at ui = 0; then we observe the MSE with the expression in Proposition 3. �

Proof of Proposition 4: If xi follows the Bernoulli distributionBernoulli(p); then E(xi) = E(xix0i) =

E(xix
0
ixi) = E ((xix

0
i)
 x0i) = p;where j = 1; 2; 3; � � � . Thus,

Q =
�
E[xix

0
if(x

0
i�)]

��1
= (pE[f(�)])�1 = [pf(�)]�1;

E[xix
0
ixif(x

0
i�)] = pE[f(�)] = pf(�);

E[
�
xix

0
i

�

 x0if (1)(x0i�)] = pE[f (1)(�)] = pf (1)(�):

Based on Theorem 1, the second-order bias up to O(N�1), of the conditional quantile estimatorsb� is
B
�b�� =

1

N

�
1

2
� �

�
Q2E

�
xix

0
ixif(x

0
i�)
�
� 1

N

�(1� �)
2

Q3E[
�
xix

0
i

�

 x0if (1)(x0i�)]E

�
x2i
�

=
1

N

�
1

2
� �

�
Q� 1

N

�(1� �)
2

Q3p2f (1)(�);

where Q = [pf(�)]�1: Based on Theorem 2, the MSE up to O(N�2), of the conditional quantile
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estimators b� is
M
�b�� =

1

N
�(1� �)Q2p� 2 1

N2
Q3
�
�2 � �+ 1

2

�
pf(�) + 2

1

N2
�(1� �)Q2p

� 1

N2
�(1� �)(2�� 1)Q4p2f (1)(�) + 6 1

N2

�
1

2
� �

�2
Q4 (pf(�))2

+3
1

N2
�(1� �)Q4

��
1

2
� �

�
p2f (1)(�)� p3 (f(�))2

�
�12 1

N2

�
1

2
� �

�
�(1� �)Q5p3f (1)(�)f(�)

+
15

4

1

N2
�2(1� �)2Q6p4

�
f (1)(�)

�2
� 1

N2
�2(1� �)2Q5p3f (2)(�)

=
1

N
�(1� �)Q2p� 2 1

N2
Q2
�
�2 � �+ 1

2

�
+ 2

1

N2
�(1� �)Q2p

� 1

N2
�(1� �)(2�� 1)Q4p2f (1)(�) + 6 1

N2

�
1

2
� �

�2
Q2

+3
1

N2
�(1� �)Q4

�
1

2
� �

�
p2f (1)(�)� 3 1

N2
�(1� �)Q2p

�12 1
N2

�
1

2
� �

�
�(1� �)Q4p2f (1)(�)

+
15

4

1

N2
�2(1� �)2Q6p4

�
f (1)(�)

�2
� 1

N2
�2(1� �)2Q5p3f (2)(�)

=
1

N
�(1� �)Q2p� 1

N2

�
� (1� �) (4 + p) + 1

2

�
Q2 � 7 1

N2
�(1� �)

�
1

2
� �

�
Q4p2f (1)(�)

+
15

4

1

N2
�2(1� �)2Q6p4

�
f (1)(�)

�2
� 1

N2
�2(1� �)2Q5p3f (2)(�);

where Q = [pf(�)]�1: Since the conditional density of yi given xi evaluated at yi = x0i� is the

same as the conditional density of ui given xi evaluated at ui = 0: If we use f (0jxi) to denote the

conditional density of ui given xi evaluated at ui = 0; then we observe the second-order bias and

MSE with the expression in Proposition 4. �

Proof of Proposition 5: The moment condition is

	N (�) =
1

N

NX
i=1

si(�) (52)

where si(�) = (�� 1(yi < x0i�))(�zi): Since xi are assumed to be i.i.d., then si and di are i.i.d. as

well. Similarly, Vi and Wi are i.i.d. matrices. We have

H1 = r1�si = r1�[(�� 1(yi < x0i�))(�zi)] = zix0i�(x0i� � yi);

H2 = r2�si = �
�
zix

0
i

�

 x0i�(1)(x0i� � yi);
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H3 = r3�si =
�
zix

0
i

�

 x0i 
 x0i�(2)(x0i� � yi);

H1 = Er1�si = E
�
zix

0
i�(x

0
i� � yi)

�
= E

�
zix

0
iE
�
�(x0i� � yi)jxi; zi

��
= E

�
zix

0
i

Z +1

�1
�(yi � x0i�)f(yi)dy

�
= E

�
zix

0
if(x

0
i�)
�
;

H2 = Er2�si = �E
h�
zix

0
i

�

 x0i�(1)(x0i� � yi)

i
= E

h�
zix

0
i

�

 x0if (1)(x0i�)

i
;

H3 = Er3�si = E
h�
zix

0
i

�

 x0i 
 x0i�(2)(x0i� � yi)

i
= E[

�
zix

0
i

�

 x0i 
 x0if (2)(x0i�)];

Q =
�
H1
��1

=
�
E[zix

0
if(x

0
i�)]

��1
;

V1 = H1 �H1 = zix0i�(x0i� � yi)� E[f(x0i�)zix0i];

Wi = H2 �H2 = �
�
zix

0
i

�

 x0i�(1)(x0i� � yi) + E[

�
zix

0
i

�

 x0if (1)(x0i�)];

di = Qsi = Q(�� 1(yi < x0i�))(�zi);

where f(x01�) is the density of yjx; z; at the point y1 = x01�: We observe that 	N ; si and di are all

k� 1 vectors. H1; H1; Q; and Vi are all k� k matrices, H2; H2 and Wi are all k� k2 matrices. H3

and H3 are k � k3 matrices. Then we have

Vidi = E
��
H1 �H1

�
Qsi
�

= E (H1Qsi)� E (si)

= E
�
zix

0
i�(x

0
i� � yi)Qsi

�
= E

�
zix

0
iE
�
�(x0i� � yi)Qsijxi

��
= E

�
zix

0
i

Z +1

�1
�(x0i� � yi)Q(�� 1(yi < x0i�))(�zi)f(yi)dyi

�
= E

�
�zix0iQzi�

Z +1

�1
�(x0i� � yi)f(yi)dyi + zix0iQzi

Z +1

�1
�(x0i� � yi)�(x0i� � yi)f(yi)dyi

�
= E

�
�zix0iQzi�f(x0i�) +

1

2
zix

0
iQzif(x

0
i�)

�
=

�
1

2
� �

�
E
�
zix

0
iQzif(x

0
i�)
�
:
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di 
 di = E [(Qsi 
Qsi)]

= E [(Q
Q) (si 
 si)]

= (Q
Q)E [(si 
 si)]

= (Q
Q)E [E (si 
 sijxi)]

= (Q
Q)E
�
(zi 
 zi)E

�
(�� 1(yi < x0i�))2jzi

��
= (Q
Q)E (zi 
 zi)

h
(�� 1)2 �+ �2 (1� �)

i
= �(1� �) (Q
Q)E (zi 
 zi) :

Therefore, the second-order bias of b� up to O(N�1) can be rewritten as

B
�b�� =

1

N
Q

�
Vidi �

1

2
H2
�
di 
 di

��
=

1

N
Q

��
1

2
� �

�
E
�
zix

0
iQzif(x

0
i�)
�
� �(1� �)

2
E
h�
zix

0
i

�

 x0if (1)(x0i�)

i
(Q
Q)E (zi 
 zi)

�
;

where Q = (E[zix0if(x
0
i�)])

�1 :When xi~i.i.d. and ui~i.i.d., f(0jxi; zi) = f (0) : Since the density of

yi evaluated at yi = x0i� is the same as the density of ui evaluated at ui = 0; we use f (0) to denote

the conditional density of ui evaluated at ui = 0: Then the second-order bias of b� up to O(N�1)

can be rewritten as

B
�b�� = 1

N
Q

��
1

2
� �

�
E
�
zix

0
iQzif(0)

�
� �(1� �)

2
E
h�
zix

0
i

�

 x0if (1)(0)

i
(Q
Q)E (zi 
 zi)

�
;

where Q = (E[zix0if(0)])
�1 :

When l = k = 1; the MSE up to O(N�2) can be written as

M
�b�� =

1

N
d2i � 2

1

N2
Q

�
Vid2i �

1

2
H2d3i

�
+ 6

1

N2
Q2Vidi

2
+ 3

1

N2
Q2V 2i d

2
i

+3
1

N2
QWidid2i � 12

1

N2
Q2H2Vidid2i +

15

4

1

N2
Q2H2

2
d2i
2
� 1

N2
QH3d2i

2
;

where we have

Vid2i = E
��
H1 �H1

�
Q2s2i

�
= Q2E

�
H1s

2
i

�
�QE

�
s2i
�
;
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E(H1s
2
i ) = E

�
zixi�(x

0
i� � yi)s2i

�
= E

�
zixiE

�
�(x0i� � yi)s2i jxi

��
= E

�
z3i xi

Z +1

�1
�(xi� � yi)(�� 1(yi < x0i�))2f(yi)dyi

�
= E

�
�2z3i xi

Z +1

�1
�(xi� � yi)f(yi)dyi + (1� 2�)z3i xi

Z +1

�1
�(xi� � yi)�(xi� � yi)f(yi)dyi

�
= E

�
�2z3i xif(xi�)

�
+ E

�
(1� 2�)1

2
z3i xif(xi�)

�
=

�
�2 � �+ 1

2

�
E
�
z3i xif(x

0
i�)
�
:

d2i = Q2E(s2i )

= Q2E
�
z2i (�� 1(yi < x0i�))2

�
= Q2

h
(�� 1)2 �+ �2 (1� �)

i
E
�
z2i
�

= �(1� �)Q2E
�
z2i
�
;

d3i = Q3E(s3i )

= Q3E
�
z3i (�� 1(yi < x0i�))3

�
= Q3

h
(�� 1)3 �+ �3(1� �)

i
E
�
z3i
�

= �(1� �)(2�� 1)Q3E
�
z3i
�
;

Vidi
2
=

�
1

2
� �

�2
Q2
�
E
�
z2i xif(x

0
i�)
��2

V 2i = E
h�
H1 �H1

�2i
= E

h
H2
1 � 2H1H1 +H1

2
i

= E
�
H2
1

�
� 2H1

2
+H1

2

= E
�
H2
1

�
�H1

2

= E
h
z2i x

2
i

�
�(x0i� � yi)

�2i� �E �zixif(x0i�)��2
= E

�
z2i x

2
i

Z +1

�1

�
�(x0i� � yi)

�2
f(yi)dyi

�
�
�
E
�
zixif(x

0
i�)
��2
;
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Widi = E
��
H2 �H2

�
Qsi
�

= QE (H2si)�QH2E (si)

= QE
h
zix

2
i �
(1)(x0i� � yi)si

i
= QE

h
zix

2
iE
�
�(1)(x0i� � yi)

�
�� 1(yi < x0i�)

�
(�zi)jxi

�i
= �QE

h
z2i x

2
iE
�
�(1)(x0i� � yi) (�� � (xi� � yi)) jxi

�i
= ��QE

�
z2i x

2
i

Z +1

�1
�(1)(x0i� � yi)f(yi)dyi

�
+QE

�
z2i x

2
i

Z +1

�1
�(1)(x0i� � yi)� (xi� � yi) f(yi)dyi

�
= ��QE

h
z2i x

2
i f
(1)(x0i�)

i
+QE

�
�z2i x2i

Z +1

�1

�
�(x0i� � yi)

�2
f(yi)dyi

�
+QE

�
z2i x

2
i

Z +1

�1
�(x0i� � yi)� (xi� � yi) f (1)(yi)dyi

�
=

�
1

2
� �

�
QE

h
z2i x

2
i f
(1)(x0i�)

i
�QE

�
z2i x

2
i
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�1

�
�(x0i� � yi)

�2
f(yi)dyi

�
:

Therefore, the MSE up to O(N�2) can be written as

M
�b�� =

1

N
�(1� �)Q2E

�
z2i
�
� 2 1

N2
Q3
�
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E
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zix
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i

�
f (1)(0)

�2 �
E
�
z2i
��2

� 1

N2
�2(1� �)2Q5E[zix3i ]

�
E
�
z2i
��2

f (2)(x0i�);

where Q = (E (zixi) f(x
0
i�))

�1 : Since the density of yi evaluated at yi = x0i� is the same as the

density of ui evaluated at ui = 0; if we use f (0) to denote the density of ui evaluated at ui = 0;

then we observe the MSE with the expression in Proposition 5. �
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Table 1: Bias correction and MSE with xi generated from exponential distribution, DGP 1, allowing
hetroskedasticity

�ui = 0:1xi; N = 60 �ui = 0:5xi; N = 60

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0027 0.0023 -0.0004 0.0135 0.0203 0.0067
0.0000 0.0018 0.0018 0.0002 0.0447 0.0443

0.1 0.0016 0.0018 0.0002 0.0080 0.0087 0.0008
0.0006 0.0012 0.0012 0.0155 0.0291 0.0290

0.2 0.0008 0.0013 0.0005 0.0042 0.0081 0.0039
0.0006 0.0008 0.0008 0.0162 0.0205 0.0204

0.3 0.0005 0.0002 -0.0003 0.0023 0.0025 0.0002
0.0006 0.0007 0.0007 0.0151 0.0169 0.0169

0.4 0.0002 0.0003 0.0001 0.0011 0.0014 0.0003
0.0006 0.0007 0.0007 0.0145 0.0159 0.0159

0.5 0.0000 -0.0001 -0.0001 0.0000 0.0005 0.0005
0.0006 0.0006 0.0006 0.0143 0.0155 0.0155

0.6 -0.0002 -0.0001 0.0001 -0.0011 0.0002 0.0013
0.0006 0.0006 0.0006 0.0145 0.0160 0.0160

0.7 -0.0005 -0.0005 -0.0001 -0.0023 -0.0018 0.0006
0.0006 0.0007 0.0007 0.0151 0.0174 0.0174

0.8 -0.0008 -0.0012 -0.0003 -0.0042 -0.0038 0.0003
0.0006 0.0008 0.0008 0.0162 0.0207 0.0207

0.9 -0.0016 -0.0017 -0.0001 -0.0080 -0.0093 -0.0014
0.0006 0.0012 0.0012 0.0155 0.0302 0.0301

0.95 -0.0027 -0.0034 -0.0007 -0.0135 -0.0208 -0.0072
0.0000 0.0017 0.0017 0.0002 0.0434 0.0430

Notes: This table present the simulation results, when ui is generated from normal distribution,

xi is generated form exponential distribution, when allowing hetroskedasticity. For each level of

�, the �rst row is for bias and the second row is for the MSE of the quantile estimator. For each

panel, the �rst column presents the second-order bias and MSE derived by Theorem 1 and 2, the

second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂, the

third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60, and the results are computed from

10,000 Monte Carlo replications.
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Table 2: Bias correction and MSE with xi generated from exponential distribution, DGP 1, �u = 0:5
�u = 0:5; N = 60 �u = 0:5; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0086 0.0092 0.0005 0.0052 0.0060 0.0009
0.0038 0.0102 0.0101 0.0036 0.0059 0.0059

0.1 0.0051 0.0051 0.0000 0.0031 0.0032 0.0002
0.0044 0.0067 0.0067 0.0030 0.0038 0.0038

0.2 0.0027 0.0039 0.0013 0.0016 0.0023 0.0007
0.0037 0.0046 0.0045 0.0024 0.0026 0.0026

0.3 0.0015 0.0009 -0.0006 0.0009 0.0017 0.0008
0.0033 0.0039 0.0039 0.0021 0.0023 0.0023

0.4 0.0007 0.0000 -0.0007 0.0004 0.0010 0.0006
0.0031 0.0036 0.0036 0.0019 0.0021 0.0021

0.5 0.0000 0.0000 0.0000 0.0000 -0.0002 -0.0002
0.0031 0.0035 0.0035 0.0019 0.0020 0.0020

0.6 -0.0007 0.0002 0.0009 -0.0004 0.0006 0.0010
0.0031 0.0036 0.0036 0.0019 0.0021 0.0021

0.7 -0.0015 -0.0012 0.0003 -0.0009 -0.0002 0.0007
0.0033 0.0040 0.0040 0.0021 0.0023 0.0023

0.8 -0.0027 -0.0025 0.0001 -0.0016 -0.0021 -0.0005
0.0037 0.0045 0.0045 0.0024 0.0027 0.0027

0.9 -0.0051 -0.0051 0.0000 -0.0031 -0.0040 -0.0009
0.0044 0.0065 0.0065 0.0030 0.0038 0.0038

0.95 -0.0086 -0.0094 -0.0008 -0.0052 -0.0063 -0.0011
0.0038 0.0101 0.0100 0.0036 0.0059 0.0058

Notes: This table present the simulation results, when ui is generated from normal distribution

with �u = 0:5, xi is generated form exponential distribution, ui and xi both are i.i.d.. For each

level of �, the �rst row is for bias and the second row is for the MSE of the quantile estimator. For

each panel, the �rst column presents the second-order bias and MSE derived by by Corollary 1 and

2.2, the second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂,

the third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed

from 10,000 Monte Carlo replications.
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Table 3: Bias correction and MSE with xi generated from exponential distribution, DGP 1, �u = 0:1
�u = 0:1; N = 60 �u = 0:1; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0017 0.0021 0.0004 0.0010 0.0009 -0.0002
0.0002 0.0004 0.0004 0.0001 0.0002 0.0002

0.1 0.0010 0.0011 0.0001 0.0006 0.0008 0.0002
0.0002 0.0003 0.0003 0.0001 0.0002 0.0002

0.2 0.0005 0.0007 0.0002 0.0003 0.0004 0.0001
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.3 0.0003 0.0003 0.0000 0.0002 0.0002 0.0001
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.4 0.0001 0.0001 0.0000 0.0001 0.0003 0.0002
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.5 0.0000 -0.0002 -0.0002 0.0000 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.6 -0.0001 0.0000 0.0002 -0.0001 0.0000 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.7 -0.0003 -0.0003 0.0000 -0.0002 -0.0002 0.0000
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.8 -0.0005 -0.0005 0.0001 -0.0003 -0.0003 0.0000
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.9 -0.0010 -0.0010 0.0000 -0.0006 -0.0007 -0.0001
0.0002 0.0003 0.0003 0.0001 0.0002 0.0002

0.95 -0.0017 -0.0020 -0.0003 -0.0010 -0.0010 0.0000
0.0002 0.0004 0.0004 0.0001 0.0002 0.0002

Notes: This table present the simulation results, when ui is generated from normal distribution

with �u = 0:1, xi is generated form exponential distribution, ui and xi both are i.i.d.. For each

level of �, the �rst row is for bias and the second row is for the MSE of the quantile estimator. For

each panel, the �rst column presents the second-order bias and MSE derived by by Corollary 1 and

2.2, the second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂,

the third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed

from 10,000 Monte Carlo replications.
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Table 4: Bias correction and MSE with xi generated from mixture normal distribution (skewed
unimodal), DGP 1, �u = 0:5

�u = 0:5; N = 60 �u = 0:5; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0058 0.0046 -0.0012 0.0035 0.0027 -0.0007
0.0119 0.0174 0.0173 0.0079 0.0105 0.0104

0.1 0.0034 0.0018 -0.0016 0.0021 0.0014 -0.0006
0.0089 0.0111 0.0111 0.0055 0.0065 0.0065

0.2 0.0018 0.0018 0.0000 0.0011 0.0017 0.0006
0.0065 0.0077 0.0077 0.0040 0.0047 0.0047

0.3 0.0010 0.0013 0.0003 0.0006 0.0000 -0.0006
0.0057 0.0067 0.0067 0.0034 0.0039 0.0039

0.4 0.0005 0.0015 0.0011 0.0003 0.0010 0.0007
0.0053 0.0061 0.0061 0.0032 0.0036 0.0036

0.5 0.0000 -0.0014 -0.0014 0.0000 -0.0006 -0.0006
0.0052 0.0060 0.0060 0.0031 0.0035 0.0035

0.6 -0.0005 -0.0013 -0.0008 -0.0003 -0.0002 0.0001
0.0053 0.0061 0.0061 0.0032 0.0036 0.0036

0.7 -0.0010 -0.0005 0.0005 -0.0006 -0.0004 0.0002
0.0057 0.0067 0.0067 0.0034 0.0040 0.0040

0.8 -0.0018 -0.0020 -0.0002 -0.0011 -0.0016 -0.0005
0.0065 0.0077 0.0077 0.0040 0.0047 0.0047

0.9 -0.0034 -0.0032 0.0003 -0.0021 -0.0018 0.0002
0.0089 0.0113 0.0113 0.0055 0.0067 0.0067

0.95 -0.0058 -0.0055 0.0003 -0.0035 -0.0029 0.0006
0.0119 0.0175 0.0174 0.0079 0.0103 0.0102

Notes: This table present the simulation results, when ui is generated from normal distribution

with �u = 0:5, xi is generated form mixture normal distribution, ui and xi both are i.i.d.. For each

level of �, the �rst row is for bias and the second row is for the MSE of the quantile estimator. For

each panel, the �rst column presents the second-order bias and MSE derived by Corollary 1 and

2.2, the second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂,

the third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed

from 10,000 Monte Carlo replications.
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Table 5: Bias correction and MSE with xi generated from mixture normal distribution (strongly
skewed), DGP 1, �u = 0:5

�u = 0:5; N = 60 �u = 0:5; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 -0.0030 -0.0023 0.0006 -0.0018 -0.0027 -0.0009
0.0033 0.0070 0.0070 0.0021 0.0040 0.0040

0.1 -0.0017 -0.0012 0.0005 -0.0010 -0.0010 0.0000
0.0024 0.0043 0.0043 0.0015 0.0026 0.0026

0.2 -0.0009 -0.0008 0.0002 -0.0005 0.0001 0.0007
0.0017 0.0030 0.0030 0.0010 0.0018 0.0018

0.3 -0.0005 -0.0013 -0.0008 -0.0003 0.0000 0.0003
0.0015 0.0025 0.0025 0.0009 0.0016 0.0016

0.4 -0.0002 -0.0002 0.0001 -0.0001 -0.0005 -0.0003
0.0014 0.0024 0.0024 0.0008 0.0014 0.0014

0.5 0.0000 0.0003 0.0003 0.0000 0.0001 0.0001
0.0013 0.0023 0.0023 0.0008 0.0014 0.0014

0.6 0.0002 0.0010 0.0008 0.0001 0.0000 -0.0001
0.0014 0.0024 0.0024 0.0008 0.0014 0.0014

0.7 0.0005 0.0001 -0.0004 0.0003 0.0011 0.0008
0.0015 0.0026 0.0026 0.0009 0.0016 0.0016

0.8 0.0009 0.0003 -0.0006 0.0005 -0.0001 -0.0007
0.0017 0.0030 0.0030 0.0010 0.0019 0.0019

0.9 0.0017 0.0021 0.0004 0.0010 0.0005 -0.0005
0.0024 0.0044 0.0043 0.0015 0.0027 0.0027

0.95 0.0030 0.0010 -0.0020 0.0018 0.0015 -0.0003
0.0033 0.0069 0.0069 0.0021 0.0040 0.0040

Notes: This table present the simulation results, when ui is generated from normal distribution

with �u = 0:5, xi is generated form mixture normal distribution, ui and xi both are i.i.d.. For each

level of �, the �rst row is for bias and the second row is for the MSE of the quantile estimator. For

each panel, the �rst column presents the second-order bias and MSE derived by Corollary 1 and

2.2, the second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂,

the third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed

from 10,000 Monte Carlo replications.
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Table 6: Bias correction and MSE in unconditional quantile model, DGP 1, �u = 0:5
�u = 0:5; N = 60 �u = 0:5; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0058 -0.0166 -0.0223 0.0035 -0.0149 -0.0183
0.0183 0.0177 0.0179 0.0110 0.0114 0.0115

0.1 0.0034 0.0117 0.0083 0.0020 0.0039 0.0019
0.0126 0.0105 0.0104 0.0075 0.0068 0.0068

0.2 0.0018 0.0141 0.0124 0.0011 0.0080 0.0070
0.0090 0.0082 0.0081 0.0053 0.0050 0.0050

0.3 0.0010 0.0104 0.0094 0.0006 0.0054 0.0048
0.0078 0.0070 0.0070 0.0045 0.0043 0.0043

0.4 0.0005 0.0073 0.0069 0.0003 0.0053 0.0050
0.0072 0.0066 0.0066 0.0042 0.0040 0.0040

0.5 0.0000 0.0002 0.0002 0.0000 0.0006 0.0006
0.0070 0.0060 0.0060 0.0041 0.0036 0.0036

0.6 -0.0005 -0.0087 -0.0083 -0.0003 -0.0045 -0.0042
0.0072 0.0067 0.0066 0.0042 0.0040 0.0039

0.7 -0.0010 -0.0083 -0.0073 -0.0006 -0.0064 -0.0058
0.0078 0.0070 0.0070 0.0045 0.0043 0.0043

0.8 -0.0018 -0.0148 -0.0130 -0.0011 -0.0087 -0.0077
0.0090 0.0083 0.0083 0.0053 0.0050 0.0050

0.9 -0.0034 -0.0100 -0.0066 -0.0020 -0.0045 -0.0024
0.0126 0.0108 0.0108 0.0075 0.0066 0.0066

0.95 -0.0058 0.0147 0.0205 -0.0035 0.0133 0.0167
0.0183 0.0177 0.0179 0.0110 0.0112 0.0113

Notes: This table present the simulation results for unconditional quantile regression with

xi = 1, when ui is generated from normal distribution with �u = 0:5, ui is i.i.d.. For each level

of �, the �rst row is for bias and the second row is for the MSE of the quantile estimator. For

each panel, the �rst column presents the second-order bias and MSE derived by Proposition 3, the

second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂, the

third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed

from 10,000 Monte Carlo replications.
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Table 7: Bias correction and MSE with binary independent variable, DGP 1, p = 0:3, �u = 0:5
�u = 0:5; N = 60 �u = 0:5; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0192 -0.0138 -0.0330 0.0115 0.0169 0.0054
0.0402 0.0656 0.0665 0.0294 0.0364 0.0362

0.1 0.0113 0.0116 0.0003 0.0068 0.0099 0.0031
0.0337 0.0414 0.0413 0.0219 0.0246 0.0246

0.2 0.0059 0.0115 0.0056 0.0035 0.0075 0.0040
0.0260 0.0286 0.0285 0.0162 0.0168 0.0168

0.3 0.0033 0.0058 0.0025 0.0020 0.0036 0.0016
0.0228 0.0253 0.0253 0.0140 0.0150 0.0150

0.4 0.0015 0.0064 0.0048 0.0009 0.0033 0.0024
0.0214 0.0233 0.0232 0.0130 0.0136 0.0136

0.5 0.0000 0.0012 0.0012 0.0000 0.0003 0.0003
0.0209 0.0204 0.0204 0.0128 0.0124 0.0124

0.6 -0.0015 -0.0091 -0.0076 -0.0009 -0.0028 -0.0019
0.0214 0.0229 0.0228 0.0130 0.0136 0.0136

0.7 -0.0033 -0.0052 -0.0019 -0.0020 -0.0051 -0.0031
0.0228 0.0248 0.0247 0.0140 0.0146 0.0146

0.8 -0.0059 -0.0109 -0.0050 -0.0035 -0.0096 -0.0060
0.0260 0.0291 0.0290 0.0162 0.0174 0.0174

0.9 -0.0113 -0.0146 -0.0033 -0.0068 -0.0090 -0.0022
0.0337 0.0405 0.0403 0.0219 0.0250 0.0249

0.95 -0.0192 0.0140 0.0332 -0.0115 -0.0160 -0.0045
0.0402 0.0668 0.0677 0.0294 0.0366 0.0364

Notes: This table present the simulation results when ui is generated from normal distribution

with �u = 0:5, xi is binary and xi=1 with probability 0.3, ui is i.i.d.. For each level of �, the �rst

row is for bias and the second row is for the MSE of the quantile estimator. For each panel, the

�rst column presents the second-order bias and MSE derived by Proposition 4, the second column

presents the Monte Carlo simulation bias and MSE of quantile estimators �̂, the third column

presents the Monte Carlo simulation bias and MSE of the bias corrected quantile estimators ~�

where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed from 10,000

Monte Carlo replications.
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Table 8: Bias correction for IVQR, �u = 0:5, N = 60

 = 0:5  = 0:9

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0155 0.1260 0.1105 0.0094 0.0215 0.0121
0.1 0.0093 0.0700 0.0607 0.0055 0.0070 0.0015
0.2 0.0050 0.0355 0.0305 0.0029 0.0025 -0.0004
0.3 0.0029 0.0235 0.0206 0.0017 0.0015 -0.0002
0.4 0.0014 0.0220 0.0206 0.0008 0.0020 0.0012
0.5 0.0000 0.0255 0.0255 0.0000 0.0005 0.0005
0.6 -0.0014 -0.0176 -0.0162 -0.0008 -0.0041 -0.0033
0.7 -0.0029 -0.0084 -0.0055 -0.0016 -0.0107 -0.0091
0.8 -0.0043 -0.0425 -0.0383 -0.0028 -0.0102 -0.0074
0.9 -0.0014 -0.0499 -0.0485 -0.0046 -0.0177 -0.0131
0.95 -0.0255 -0.0859 -0.0604 -0.0052 -0.0380 -0.0328

Notes: This table present the simulation results for IVQR, when ui is generated from normal

distribution with �u = 0:5; vi is generated by vi = wi+ cui, where wi is from N(0,0.25), c=0.5; zi is

from exponential distribution with mean 1; xi is generated from xi = zi + ui, where  = 0:5; 0:9;

yi is generated from yi = xi� + ui, where � = 0. For each level of �, the numbers are bias

of IVQR estimator. For each panel, the �rst column presents the second-order bias derived by

Proposition 5, the second column presents the Monte Carlo simulation bias IVQR estimators �̂,

the third column presents the Monte Carlo simulation bias of the bias corrected IVQR estimators
~� where ~� = �̂ � B(�̂). We set N=60, 100, and the results are computed from 1,000 Monte Carlo

replications.
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Table 9: Application of second-order bias reduction to the predictive quantile regression, h = 1

� �̂ B(�̂) ~� AsyMSE MSE(�̂)

0.05 21.4330 0.0418 21.3912 0.0806 0.6401
0.1 22.6019 0.0254 22.5765 0.0652 0.3325
0.2 24.2561 0.0133 24.2428 0.0550 0.2426
0.3 25.4255 0.0075 25.4180 0.0529 0.2550
0.4 26.4911 0.0033 26.4878 0.0499 0.2494
0.5 27.4588 -0.0001 27.4589 0.0497 0.2756
0.6 28.4041 -0.0037 28.4078 0.0498 0.2975
0.7 29.5814 -0.0078 29.5891 0.0557 0.4831
0.8 30.7923 -0.0139 30.8062 0.0585 0.9343
0.9 32.4173 -0.0239 32.4412 0.0667 2.7309
0.95 33.4169 -0.0363 33.4532 0.0648 3.1295

Notes: For each level of �, the �rst column presents the quantile estimators b�. The second
column presents the second-order bias B

�b�� derived in Theorem 2. The third column presents the
second-order bias corrected quantile estimators e� � b� � B �b��. The fourth column presents the
MSE up to O

�
N�1�. The last column presents the MSE up to O �N�2� derived in Theorem 2.
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10 Supplemental Appendix

This appendix is not intended for publication and will be made available on the authors�webpage.

It presents additional results that are not reported in the paper for space concern. Included in the

Supplemental Appendix are:

1. the simulation results (Tables 10, 11, 12, 13) for DGP2 as described in the Monte Carlo

section (Section 6), and

2. the empirical results (Tables 14, 15) to predictive quantile regression for forecast horizons

h = 3; 12 as discussed in the application section (Section 7).

10.1 Additional Monte Carlo results for DGP2

In DGP2, the error term ui is uniformly distributed with the CDF F (�) on [a; b], then a = �
��1b.

We have

F (0) =

Z 0

�1
f(u)du =

Z 0

a

1

b� adu = �
a

b� a = �:

Therefore, we generate the error term ui from uniform distribution on [a; b] ; where a = ��R;
b = R(1 � �); and the range R = b � a: The simulation results for DGP2 are presented in Tables
10, 11, 12, 13.

1. Tables 10-11 show the results with the range R = 4; 10; respectively. For these two tables,

xi is generated from exponential distribution, f(xi) = exp(�xi). These two tables are to be
compared with Tables 2-3 in the paper. As we see from Tables 2-3 that the quantile regression

estimator has larger bias when �u is larger (�u = 0:5 in Table 2 is larger than �u = 0:1 in

Table 3), the same is observed from Tables 10-11 (�u =
q

R2

12 =
q

102

12 � 2:89 in Table 11 is

larger than �u =
q

42

12 � 1:15 in Table 10).

2. Table 12 shows the results with R = 4 when xi is generated from the Skewed Unimodal

Density 1
5N (0; 1) +

1
5N
�
1
2 ;
�
2
3

�2�
+ 3

5N
�
13
12 ;
�
5
9

�2�
, one of mixture normal distributions in

Marron and Wand (1992). This table is to be compared with Table 4 in the paper.

3. Table 13 shows the results with R = 4 when xi is generated from the Strongly Skewed

Density
7X
l=0

1
8N
�
3
h�
2
3

�l � 1i ; �23�2l�, another mixture normal distribution in Marron and
Wand (1992). This table is to be compared with Table 5 in the paper.
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Table 10: Bias correction and MSE with xi generated from exponential distribution, DGP 2, R = 4
R = 4; N = 60 R = 4; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0450 0.0384 -0.0066 0.0270 0.0226 -0.0044
0.0063 0.0114 0.0100 0.0038 0.0054 0.0049

0.1 0.0400 0.0342 -0.0058 0.0240 0.0221 -0.0019
0.0105 0.0156 0.0144 0.0066 0.0086 0.0081

0.2 0.0300 0.0256 -0.0044 0.0180 0.0176 -0.0004
0.0173 0.0228 0.0222 0.0114 0.0132 0.0129

0.3 0.0200 0.0197 -0.0003 0.0120 0.0120 0.0000
0.0222 0.0279 0.0275 0.0147 0.0164 0.0163

0.4 0.0100 0.0089 -0.0011 0.0060 0.0064 0.0004
0.0251 0.0304 0.0303 0.0167 0.0188 0.0188

0.5 0.0000 -0.0008 -0.0008 0.0000 -0.0002 -0.0002
0.0261 0.0310 0.0310 0.0174 0.0189 0.0189

0.6 -0.0100 -0.0090 -0.0010 -0.0060 -0.0048 0.0012
0.0251 0.0303 0.0302 0.0167 0.0185 0.0185

0.7 -0.0200 -0.0174 0.0026 -0.0120 -0.0122 0.-0002
0.0222 0.0273 0.0270 0.0147 0.0166 0.0164

0.8 -0.0300 -0.0266 0.0034 -0.0180 -0.0171 0.0009
0.0173 0.0223 0.0216 0.0114 0.0138 0.0135

0.9 -0.0400 -0.0341 0.0059 -0.0240 -0.0224 0.0016
0.0105 0.0156 0.0145 0.0066 0.0088 0.0083

0.95 -0.0450 -0.0364 0.0086 -0.0270 -0.0245 0.0025
0.0063 0.0107 0.0094 0.0038 0.0058 0.0053

Notes: This table present the simulation results, when ui is generated from uniform distribution

with the range R = 4, xi is generated form exponential distribution, ui and xi both are i.i.d.. For

each level of �, the �rst row is for bias and the second row is for the MSE of the quantile estimator.

For each panel, the �rst column presents the second-order bias and MSE derived by Corollary 1 and

2.2, the second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂,

the third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed

from 10,000 Monte Carlo replications.
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Table 11: Bias correction and MSE with xi generated from exponential distribution, DGP 2, R = 10
R = 10; N = 60 R = 10; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.1125 0.0967 -0.0158 0.0675 0.0583 -0.0092
0.0394 0.0712 0.0621 0.0237 0.0342 0.0309

0.1 0.1000 0.0873 -0.0127 0.0600 0.0574 -0.0026
0.0654 0.0989 0.0915 0.0416 0.0544 0.0512

0.2 0.0750 0.0680 -0.0070 0.0450 0.0426 -0.0024
0.1082 0.1426 0.1380 0.0710 0.0847 0.0829

0.3 0.0500 0.0477 -0.0023 0.0300 0.0290 -0.0010
0.1388 0.1766 0.1743 0.0920 0.1018 0.1009

0.4 0.0250 0.0192 -0.0058 0.0150 0.0164 0.0014
0.1571 0.1882 0.1879 0.1046 0.1115 0.1112

0.5 0.0000 -0.0003 -0.0003 0.0000 -0.0051 -0.0051
0.1632 0.1960 0.1960 0.1088 0.1208 0.1208

0.6 -0.0250 -0.0314 -0.0064 -0.0150 -0.0083 0.0067
0.1571 0.1886 0.1877 0.1046 0.1155 0.1155

0.7 -0.0500 -0.0464 0.0036 -0.0300 -0.0324 -0.0024
0.1388 0.1721 0.1700 0.0920 0.1040 0.1030

0.8 -0.0750 -0.0671 0.0079 -0.0450 -0.0369 0.0081
0.1082 0.1445 0.1401 0.0710 0.0818 0.0805

0.9 -0.1000 -0.0903 0.0097 -0.0600 -0.0550 0.0050
0.0654 0.0984 0.0904 0.0416 0.0544 0.0514

0.95 -0.1125 -0.0947 0.0178 -0.0675 -0.0605 0.0070
0.0394 0.0695 0.0608 0.0237 0.0356 0.0319

Notes: This table present the simulation results, when ui is generated from uniform distribution

with the range R = 10, xi is generated form exponential distribution, ui and xi both are i.i.d.. For

each level of �, the �rst row is for bias and the second row is for the MSE of the quantile estimator.

For each panel, the �rst column presents the second-order bias and MSE derived by Corollary 1 and

2.2, the second column presents the Monte Carlo simulation bias and MSE of quantile estimators �̂,

the third column presents the Monte Carlo simulation bias and MSE of the bias corrected quantile

estimators ~� where ~� = �̂ � B(�̂). We set � = 0 and N = 60; 100, and the results are computed

from 10,000 Monte Carlo replications.
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Table 12: Bias correction and MSE with xi generated from mixture normal distribution (skewed
unimodal), DGP 2, R = 4

R = 4; N = 60 R = 4; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 0.0303 0.0276 -0.0027 0.0181 0.0159 -0.0022
0.0088 0.0159 0.0152 0.0056 0.0081 0.0078

0.1 0.0269 0.0246 -0.0023 0.0161 0.0151 -0.0010
0.0173 0.0228 0.0222 0.0109 0.0132 0.0130

0.2 0.0202 0.0196 -0.0006 0.0121 0.0095 -0.0025
0.0314 0.0388 0.0384 0.0197 0.0219 0.0218

0.3 0.0135 0.0100 -0.0034 0.0080 0.0072 -0.0009
0.0414 0.0479 0.0478 0.0259 0.0292 0.0292

0.4 0.0067 0.0060 -0.0007 0.0040 0.0030 -0.0010
0.0474 0.0547 0.0547 0.0296 0.0344 0.0344

0.5 0.0000 -0.0014 -0.0014 0.0000 0.0011 0.0011
0.0494 0.0569 0.0569 0.0309 0.0349 0.0349

0.6 -0.0067 -0.0033 0.0034 -0.0040 -0.0016 0.0024
0.0474 0.0537 0.0537 0.0296 0.0326 0.0326

0.7 -0.0135 -0.0121 0.0014 -0.0080 -0.0085 -0.0005
0.0414 0.0478 0.0476 0.0259 0.0286 0.0286

0.8 -0.0202 -0.0225 -0.0023 -0.0121 -0.0095 0.0025
0.0314 0.0379 0.0374 0.0197 0.0220 0.0219

0.9 -0.0269 -0.0249 0.0020 -0.0161 -0.0145 0.0016
0.0173 0.0234 0.0228 0.0109 0.0135 0.0133

0.95 -0.0303 -0.0258 0.0045 -0.0181 -0.0173 0.0008
0.0088 0.0155 0.0148 0.0056 0.0080 0.0078

Notes: This table present the simulation results, when ui is generated from uniform distribution

with the range R = 4, xi is generated form mixture normal distribution, ui and xi both are i.i.d..

For each level of �, the �rst row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the �rst column presents the second-order bias and MSE derived by

Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias and MSE of

quantile estimators �̂, the third column presents the Monte Carlo simulation bias and MSE of the

bias corrected quantile estimators ~� where ~� = �̂ �B(�̂). We set � = 0 and N = 60; 100, and the

results are computed from 10,000 Monte Carlo replications.
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Table 13: Bias correction and MSE with xi generated from mixture normal distribution (strongly
skewed), DGP 2, R = 4

R = 4; N = 60 R = 4; N = 100

� �̂formula �̂ ~� �̂formula �̂ ~�

0.05 -0.0153 -0.0128 0.0025 -0.0092 -0.0081 0.0011
0.0029 0.0062 0.0061 0.0017 0.0031 0.0030

0.1 -0.0136 -0.0110 0.0026 -0.0082 -0.0085 -0.0003
0.0050 0.0091 0.0090 0.0030 0.0050 0.0049

0.2 -0.0102 -0.0105 -0.0002 -0.0062 -0.0053 0.0009
0.0085 0.0156 0.0155 0.0052 0.0087 0.0087

0.3 -0.0068 -0.0051 0.0017 -0.0041 -0.0027 0.0014
0.0110 0.0192 0.0192 0.0068 0.0116 0.0116

0.4 -0.0034 -0.0035 -0.0001 -0.0021 -0.0008 0.0012
0.0125 0.0222 0.0222 0.0078 0.0133 0.0133

0.5 0.0000 0.0001 0.0001 0.0000 -0.0009 -0.0009
0.0130 0.0226 0.0226 0.0081 0.0138 0.0138

0.6 0.0034 0.0026 -0.0008 0.0021 0.0015 -0.0005
0.0125 0.0222 0.0222 0.0078 0.0131 0.0131

0.7 0.0068 0.0067 -0.0001 0.0041 0.0024 -0.0017
0.0110 0.0194 0.0194 0.0068 0.0116 0.0116

0.8 0.0102 0.0087 -0.0015 0.0062 0.0064 0.0002
0.0085 0.0151 0.0150 0.0052 0.0088 0.0087

0.9 0.0136 0.0130 -0.0006 0.0082 0.0070 -0.0012
0.0050 0.0090 0.0089 0.0030 0.0052 0.0051

0.95 0.0153 0.0139 -0.0014 0.0092 0.0082 -0.0010
0.0029 0.0059 0.0057 0.0017 0.0031 0.0030

Notes: This table present the simulation results, when ui is generated from uniform distribution

with the range R = 4, xi is generated form mixture normal distribution, ui and xi both are i.i.d..

For each level of �, the �rst row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the �rst column presents the second-order bias and MSE derived by

Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias and MSE of

quantile estimators �̂, the third column presents the Monte Carlo simulation bias and MSE of the

bias corrected quantile estimators ~� where ~� = �̂ �B(�̂). We set � = 0 and N = 60; 100, and the

results are computed from 10,000 Monte Carlo replications.
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10.2 Additional results in empirical application of predictive quantile regres-
sions for h = 3; 12

In Section 7 for the empirical application on the predictive quantile regression for stock returns, we

present the results only for forecast horizon h = 1 (one month ahead) to save space in the paper.

See Table 9. Here in this appendix, we present additional results for forecast horizon h = 3 (three

months ahead) in Table 14 and for h = 12 (12 months ahead) in Table 15.

Table 14: Second-order bias reduction in predictive quantile regression, h = 3

� �̂ B(�̂) ~� AsyMSE MSE(�̂)

0.05 21.6167 0.0421 21.5746 0.0796 0.5784
0.1 22.7921 0.0257 22.7665 0.0656 0.3275
0.2 24.4771 0.0136 24.4636 0.0558 0.2485
0.3 25.6484 0.0076 25.6408 0.0539 0.2628
0.4 26.7110 0.0034 26.7076 0.0512 0.2596
0.5 27.6863 -0.0002 27.6865 0.0510 0.2873
0.6 28.6523 -0.0038 28.6562 0.0510 0.3198
0.7 29.8833 -0.0079 29.8912 0.0567 0.5243
0.8 31.1202 -0.0139 31.1341 0.0597 0.9344
0.9 32.6784 -0.0240 32.7024 0.0663 2.6087
0.95 33.7131 -0.0367 33.7499 0.0665 3.1980

Notes: For each level of �, the �rst column presents the quantile estimators b�. The second
column presents the second-order bias B

�b�� derived in Theorem 2. The third column presents the
second-order bias corrected quantile estimators e� � b� � B �b��. The fourth column presents the
MSE up to O

�
N�1�. The last column presents the MSE up to O �N�2� derived in Theorem 2.
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Table 15: Second-order bias reduction in predictive quantile regression, h = 12

� �̂ B(�̂) ~� AsyMSE MSE(�̂)

0.05 22.5823 0.0443 22.5380 0.0847 0.5048
0.1 23.9541 0.0254 23.9287 0.0684 0.3481
0.2 25.6044 0.0137 25.5907 0.0559 0.2746
0.3 26.7643 0.0078 26.7565 0.0534 0.2974
0.4 27.7779 0.0035 27.7744 0.0522 0.3282
0.5 28.7469 -0.0003 28.7472 0.0522 0.3738
0.6 29.7894 -0.0039 29.7932 0.0526 0.4567
0.7 30.9788 -0.0079 30.9868 0.0560 0.6295
0.8 32.3023 -0.0141 32.3164 0.0666 1.1107
0.9 33.9143 -0.0247 33.9390 0.0676 2.5825
0.95 34.9662 -0.0375 35.0037 0.0677 3.0623

Notes: For each level of �, the �rst column presents the quantile estimators b�. The second
column presents the second-order bias B

�b�� derived in Theorem 2. The third column presents the
second-order bias corrected quantile estimators e� � b� � B �b��. The fourth column presents the
MSE up to O

�
N�1�. The last column presents the MSE up to O �N�2� derived in Theorem 2.
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