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Abstract

In this paper, we construct a class of strictly consistent scoring functions based on
the Bregman divergence measure, which jointly elicit the mean and variance. We use
the scoring functions to develop a novel out-of-sample forecast encompassing test in
volatility predictive models. We show the encompassing test is asymptotically normal.
Simulation results demonstrate the merits of the proposed Bregman scoring functions
and the forecast encompassing test. The forecast encompassing test exhibits a proper
size and good power in finite samples. In an empirical application, we investigate the
predictive ability of macroeconomic and financial variables in forecasting the equity
premium volatility.
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1 Introduction

Over the past thirty years, the academic discourse surrounding volatility has been notably
expansive. In the contemporary scholarly landscape, there is a discernible surge in investi-
gations specifically aimed at forecasting volatility. Most papers in the literature on volatility
forecast comparison, e.g., Hansen and Lunde (2006) and Patton (2011), use a loss function
that assumes that the conditional mean is zero and uses the realized variance as a proxy for
the true volatility. However, the rankings of volatility models can change depending on the
validity of the zero mean assumption and the finite sample quality of the realized variance
as a proxy.

In statistical analysis, a functional, such as the mean or the quantile, is referred to as elic-
itable if it possesses the ability to be uniquely derived from the scoring function. When
this occurs, the scoring function in question is termed a strictly consistent scoring function
for this functional. Gneiting (2011) points out that the mean or expectation is elicitable,
but the variance does not hold this characteristic. This implies that if volatility lacks elic-
itability, we cannot compare or rank the forecasts of volatility. In other words, we cannot
do backtesting for the forecast of volatility. Lambert et al. (2008) propose that even when
an univariate functional lacks elicitability, there exists the potential for a multivariate vec-
tor to be higher-order elicitable. Given that the construct of variance hinges on the mean,
and both the mean and expectation are deemed elicitable, it logically follows that a vector
incorporating the mean and variance is higher-order elicitable. Thus, it becomes feasible to
identify a strictly consistent scoring function that simultaneously addresses the mean and
variance. In this paper, we use the strictly consistent scoring function for mean and variance
jointly, which is derived from the Bregman divergence function.

Moreover, we found that the commonly used Gaussian predictive likelihood function is
a strictly consistent scoring function since it elicits the same conditional mean and variance
as the proposed scoring functions from Bregman divergence. This is because the first-order
conditions of the Gaussian predictive likelihood function can be shown to be a nonsingular
linear transformation of the first-order conditions from the Bregman scoring functions. The
Gaussian log-likelihood function is therefore a strictly consistent scoring function for mean
and variance jointly. In addition, we note that the MSE and QLIKE functions of Patton
(2011) are special cases of our proposed scoring functions when the mean return is zero
and the variance proxy is the squared return.

Out-of-sample forecast comparison is widely used in many fields because it is suggested to
test Granger-causality, which is used to determine whether some independent variables can
predict the dependent variable (Ashley et al., 1980; Diebold & Mariano, 1995). Many pa-
pers focus on out-of-sample tests for equal predictive accuracy and encompassing (Diebold
& Mariano, 1995; Clark & McCracken, 2001; Clark & West, 2006, 2007). Diebold and
Mariano (1995) introduce Diebold-Mariano (DM) statistics for comparing predictive accu-
racy when two models are not nested. Clark and McCracken (2001) and Clark and West
(2006, 2007) prove that DM statistics have a downward bias for mean regression when two
models are nested. In this paper, we extend Clark and McCracken (2001) and Clark and
West (2006, 2007) from a mean regression to volatility regression. We also find out DM
statistic has a bias for two nested mode models. We propose an out-of-sample test based on
the forecast encompassing (ENC) principle. We define the test statistic to be ENC. We will



show that the ENC statistic has a zero mean, correct the size, and increase the power.

Our contributions in this paper are twofold. First, we propose scoring functions that do
not require the zero mean assumption or use a proxy for the unknown true variance. We
derive a class of strictly consistent scoring functions from which both the mean and the
variance are jointly elicitable. This higher order elicitability as referred to as the Osband
principle has been further studied in Fissler and Ziegel (2016) that derived a scoring func-
tion that jointly elicits a conditional partial moment (expected shortfalls) together with the
corresponding conditional quantiles (value-at-risk). Similarly, we adopt the Osband prin-
ciple to construct a strictly consistent scoring function for the pair of mean and variance
using the Bregman divergence measures. We use the proposed strictly consistent scoring
functions to jointly evaluate the mean and volatility forecasts, incorporating the unknown
conditional mean (which may be non-zero and time-varying) and without using a proxy for
the unknown conditional variance. Second, in order to compare nested volatility forecast
models, we develop a new test for Granger-causality based on the forecast encompassing
and forecast combination of the competing models, using the proposed Bregman-based
strictly scoring functions for a vector of the conditional mean and variance. We derive
the asymptotic distribution of the test statistic. The simulation results demonstrate that the
Bregman-based scoring functions produce consistent and robust rankings of the volatility
forecast models without having to assume zero mean and without needing to use a proxy.
The simulation results demonstrate that the forecast encompassing statistics to compare the
nested volatility forecast models has good size and power in finite samples.

The structure of this paper unfolds as follows: Section 2 revisits the foundational as-
pects of elicitability, including its definitions, related lemmas, and theorems. The Breg-
man divergence function is showcased in Section 3 as a strictly consistent scoring func-
tion for both mean and variance. In Section 4, we delve into the forecast encompassing
test within volatility regression, whilst establishing that the ENC for volatility converges
towards asymptotic standard normality. Monte Carlo simulations are implemented in Sec-
tion 5, showing the encompassing statistic’s ability to rectify bias within DM statistics and
improve statistical power. In section 6, we present empirical analysis. Section 7 is the
conclusion.

2 Elicitability

We denote an observation domain O ⊆ R, the cumulative distribution of measure F . Let F
be a class of distribution function on the observation domain O and A be an action domain.
We define Γ : F → A to be a functional.

Definition 1: (Gneiting (2011), Fissler and Ziegel (2016)) A scoring function is an F
intergrable function S : A×O → R. It is strictly F-consistent for some function Γ if

EFS(Γ(F ), F ) = EFS(γ, F ), (1)

for all F ∈ F and for all γ ∈ A. In this paper, F is defined to be the conditional distribution
of yt+1 given xt. The F is defined as follows,

F ≡ Ft+1(y) = Pr (yt+1 < y|xt) .



Definition 2: (Gneiting (2011), Fissler and Ziegel (2016)) A functional Γ : F → A is
called elicitable, if there exists a scoring function S that is strictly F-consistent for Γ.

Definition 3: (Gneiting (2011), Fissler and Ziegel (2016)) An identification function is
an F integrable function V : A×O → R. It is a strict F- identificantion function for Γ if
EV (γ, F ) = 0 holds if and only if γ = Γ(F ).

There is a relation between strictly consistent scoring function S and strict identifi-
cation function V . There is a nonnegative function h : R → R such that

d

dγ
S (γ, y) = h (γ)V (γ, y) . (2)

Thus, the strict identification function can be obtained by the derivatives of the strictly con-
sistent scoring function. A statistical functional is elicitable if there exists a scoring function
such that the correct forecast of the functional is the unique minimizer of the expected score
(Fissler & Ziegel, 2016). Many statistical functionals are elicitable such as expectation, ra-
tios of expectations, quantiles (Value-at-Risk), and expectiles. However, some functional
are not elicitable such as variance, mode, or Expected Shortfall (Conditional Value-at-Risk)
(Gneiting, 2011). Those functionals are not elicitable because we cannot find out a correct
forecast for each functional that is the unique minimizer of its expected score. Therefore,
we cannot do backtest to compare the forecasts of those functionals with their realized
scores.

3 Bregman Divergence Scoring Functions

Osband (1985) point out that a non-elicitable functional can be a component of an elic-
itable functional. In other words, for example, variance is not elicitable, but there exists a
2-elicitable functional of mean and variance. Moreover, Fissler and Ziegel (2016) propose
a strictly consistent scoring function for joint Value-at-Risk (VaR) and Expected Shortfall
(ES).

Definition 4: (Fissler and Ziegel (2016)) A functional Γ : F → A ⊆ Rk is called k-
elicitable if there exists a strictly F-consistent scoring function for Γ. Let k1, . . . , kl ≥ 1
and let Γm : F → Am ⊆ Rkm be a km-elicitable functional, m ∈ {1, . . . , l}. Then
the functional Γ = (Γ1, . . . ,Γl) : F → A is k elicitable where k = k1 + · · · + kl and
A = A1 × · · · ×Al ⊆ Rk.

Remark: A functional Γ : F → A ⊆ R2 is called 2-elicitable if there exists a strictly
F-consistent scoring function for Γ. Let Γm : F → Am ⊆ R be a elicitable func-
tional, m ∈ {1, 2}. Then the functional Γ = (Γ1,Γ2) : F → A is 2 elicitable where
A = A1 ×A2 ⊆ R2.

Definition 5: (Fissler and Ziegel (2016)) An identification function is an F-integrable func-
tion V . V is a strict F-identification function for Γ if ∂V (γ, F ) = 0 holds if and only if
γ = Γ(F ) for all F ∈ F and for all γ ∈ A.



Theorem 1: (Osband’s principle)(Fissler and Ziegel (2016)) Let Γ : F → A ⊆ Rk be a sur-
jective, elicitable and identifiable functional with a strict F-identification function V : A×
O → Rk and a strictly F-consistent scoring function S : A × O → R. If the ES(γ, F ) is
continuously differentiable, there exists a matrix-valued function h : int(A) → Rk×k such
that for l ∈ {1, . . . , k}

∂lES(γ, F ) =
k∑

m=1

hlm(γ)EVm(γ, F ), (3)

for all γ ∈ int(A) and F ∈ F . We denote the l-th partial derivative of the loss function
S(γ, F ) with respect to γ as ∂lS. hlm is a continuous function obtained after taking the l-th
partial derivative with respect to γ for m = 1, . . . , k. Theorem 1 shows the relationship
between a strictly consistent scoring function and strict identification function for many γ.

Remark: When k is 2 in Theorem 1 and only first partial derivative is needed, then there
exists a matrix-valued function h : int(A) → R2×2 such that for l ∈ {1, . . . , k}

∂ES(γ, F ) = h1(γ)EV1(γ, F ) + h2(γ)EV2(γ, F ),

where ∂S is the first partial derivative of the loss function S(γ, F ) with the respect to func-
tional γ.

Osband (1985) points out that a non-elicitable functional can be a component of an elic-
itable functional. Gneiting (2011) states that variance alone is not elicitable, but there exists
a 2-elicitable functional of joint mean and variance. Brehmer (2017) explains how to get
the strictly consistent scoring function of mean and variance. In order to find out the strictly
consistent scoring function of joint mean and variance, we need to use the bijection function
and the strictly consistent scoring function of the ratios of the expectation.

Savage (1971) shows that the mean is elicitable and the strictly consistent scoring func-
tion for the mean is

S (γ, y) = f1(y)− f1(γ)− f ′
1(γ)(y − γ), (4)

where f1 is a strictly convex and differentiable function. Banerjee et al. (2005) refer to
Equation (4) as a Bregman function. Gneiting (2011) shows that the functional of the ratios

of expectations Γ(F ) =
EF [r(y)]
EF [s(y)]

is elicitable. The strictly consistent scoring function is

of the form

S (γ, y) = s(y) (f2(y)− f2(γ))− f ′
2(γ) (r(y)− γs(y)) + f ′

2(y) (r(y)− ys(y)) , (5)

where f2 is a strictly convex and differentiable function. We can get the strictly consistent
scoring function for the second moment when we choose r(y) = y2 and s(y) = 1 in
Equation (5). We can omit all terms that do not depend on γ from the strictly consistent
scoring function, hence, ignoring the last term in Equation (5) we get:

S(γ, y) = f2(y)− f2(γ)− f ′
2(γ)(y

2 − γ). (6)



Theorem 2: (Fissler and Ziegel (2016)) Let λm be positive real numbers, m ∈ {1, . . . , k}.
The scoring function S is strictly F-consistent for Γ if and only if it is of the form

S (γ1, . . . , γk, y) :=
k∑

m=1

λmSm (γm, y) , (7)

where Sm : Am × O → R are strictly F-consistent scoring function for Γm. Theorem
2 indicates that the summation of strictly F-consistent scoring function is a strictly F-
consistent scoring function.

Remark: When we have a vector with two elicitable functionals [Γ1,Γ2]
′, the strictly con-

sistent scoring function for this vector of functionals is

S (γ1, γ2, y) = S1 (γ1, y) + S2 (γ2, y) , (8)

Let Γ1 be the mean functional and Γ2 be the second moment functional, the strictly consis-
tent scoring function of the mean and second moment jointly is

S (γ1, γ2, y) := f1(y)− f1 (γ1)− f ′
1 (γ1) (y − γ1) + f2(y)− f2 (γ2)− f ′

2 (γ2)
(
y2 − γ2

)
,

where f1 and f2 are strictly convex and differentiable functions.

Theorem 3: (Osband (1985)). Suppose that the class F is concentrated on the domain
A, and let g : A → A′ be a one-to-one mapping. Then the following holds: (a) If Γ
is elicitable, then Γg = g ◦ Γ is elicitable. (b) If S is consistent for Γ, then the scoring
function

Sg(γg, y) = S
(
g−1(γ), y

)
is consistent for Γg. (c) If S is strictly consistent for Γ, then Sg is strictly consistent for Γg.

Define the sets A :=
{
(γ1, γ2) | γ2 ≥ γ21

}
and A′ := R × [0,∞) ⊂ R2 with a bijec-

tion g : A → A′ given by γ = (γ1, γ2) 7→
(
γ1, γ2 − γ21

)
. According to Theorem 3, the

inverse of g is given by g−1 : A′ → A, γg = (γ1, γ3) 7→ γ = (γ1, γ2) . Define Γ3 be
the variance functional. The functional we want to get is (Γ1,Γ3)

′ can now be written as
g
(
(Γ1,Γ2)

′) and it is elicitable. Then, we transfer from (Γ1,Γ2)
′ to (Γ1,Γ3)

′, and get the
strictly consistent scoring function of (Γ1,Γ3)

′ as follows:

Sg (γ1, γ3, y) = S
(
g−1
1 (γ1, γ2), g

−1
2 (γ1, γ2), y

)
= f1(y)− f1 (γ1)− f ′

1 (γ1) (y − γ1) + f2(y)− f2
(
γ2 + γ21

)
− f ′

2

(
γ2 + γ21

) [
y2 −

(
γ2 + γ21

)]
,

(9)

where f1 and f2 are strictly convex and differential functions.

Theorem 4: Denote Sg (γ1, γ3, y) as the strictly consistent scoring function of mean and



variance with f1(z) = z2 and f2(z) = −log(z),

Sg (γ1, γ3, y) = (y − γ1)
2 − log(y2) + log

(
γ3 + γ21

)
+

y2

γ3 + γ21
− 1. (10)

We will use the Sg as the strictly consistent scoring function to test predictive ability in
predictive volatility models.

From Definition 5 and Theorem 1, we know that strict identification functions can be ob-
tained from the derivatives of the strictly consistent scoring function with respect to the
functionals,

EFm ≡∂EFSg(γg, Y )

∂γg
= h(γg)EFV(γg, Y ) = 0,

EFm1 ≡
∂EFSg(γ1, γ3, Y )

∂γ1

=h11(γ1, γ3)EFV1(γ1, γ3, Y ) + h12(γ1, γ3)EFV2(γ1, γ3, Y )

=0,

EFm2 ≡
∂EFSg(γ1, γ3, Y )

∂γ3

=h21(γ1, γ3)EFV1(γ1, γ3, Y ) + h22(γ1, γ3)EFV2(γ1, γ3, Y )

=0,

where
m = (m1,m2)

′ , γg = (γ1, γ3)
′ ,

V(γ1, γ3, Y ) =

[
V1(γ1, γ3, Y )
V2(γ1, γ3, Y )

]
,

h(γ1, γ3) =
[
h11(γ1, γ3) h12(γ1, γ3)
h21(γ1, γ3) h22(γ1, γ3)

]
.

The γg is a vector of γ1 and γ3. The m is a vector of two martingale differences m1 and m2.
The m is obtained by the first derivative of the conditional expectation of strictly consistent
scoring function with respect to the vector of functionals, so m is equal to zero. Moreover,
the conditional expectation is conditioning on the past xt. Thus, the m1 is the martingale
difference for the mean and m2 is the martingale difference for the volatility. The m is
the martingale difference for the vector of mean and volatility, and is the product of the
strict identification functions V and the functions h. The V(γ1, γ3, Y ) is a vector of strict
identification functions for mean and variance. The h(γ1, γ3) is a matrix of the functions of
functionals.

The scoring function of mean and variance from Bregman divergence Sg is

Sg (γ1, γ3, y) = (y − γ1)
2 − log(y2) + log

(
γ3 + γ21

)
+

y2

γ3 + γ21
− 1.



Thus, the martingale differences for the mean and volatility are derivative of the strictly
consistent scoring function with respect to the functionals:

EFm1 =
∂EFSg

∂γ1
= EF

[
−2 (y − γ1) +

2γ1
γ3 + γ21

−
2γ1

(
y2
)(

γ3 + γ21
)2
]
= 0,

EFm2 =
∂EFSg

∂γ3
= EF

[
1

γ3 + γ21
−

(
y2
)(

γ3 + γ21
)2
]
= 0,

where m1 is the martingale difference sequence of the mean and m2 is the martingale dif-
ference sequence of the volatility. The m1 and m2 are martingale difference sequences
because the expectations of the first-order conditions are taken with respect to the condi-
tional distribution F . The martingale difference m can be presented as the product of the
identification function V and the function of functionals h as follows:

EFm = h(γ1, γ3)EFV(γ1, γ3, y)

=

[
h11(γ1, γ3) h12(γ1, γ3)
h21(γ1, γ3) h22(γ1, γ3)

]
EF

[
V1(γ1, γ3, Y )
V2(γ1, γ3, Y )

]
=

[
−2 2γ1

(γ3+γ1)
2

0 1
(γ3+γ1)

2

]
EF

[
y − γ1

γ3 + γ21 − y2

]
= 0.

Then, we can derive the vector of γ1 and γ3 as follows:[
γ1
γ3

]
=

[
EF (y)

EF (y − EF (y))
2

]
.

Therefore, the scoring function Sg(γ1, γ3, y) elicits γ1 (mean) and γ3 (variance) jointly.

4 Forecast Encompassing Approach

In this section, we introduce the models, describe the encompassing test for the volatility
predictive regression, and demonstrate that the encompassing statistic used in this paper is
asymptotically normal under certain assumptions.

4.1 Model

In this paper, we propose a new approach to test the out-of-sample predictive ability of a
variable in volatility modelling. Since the new approach is based on the encompassing prin-
ciple, we first develop the framework of the forecast encompassing approach.

We have two models. One model is without conditioning on x and the other model is
with conditioning on x. The volatility of the distribution F1 = FY (Y ) of Model 1 is Γ(F1).
The conditional volatility of the conditional distribution F2 = FY |X(Y |X) of Model 2 is



the functional Γ(F2). The two nested models are

Model 1 : yt+1 = µt+1 + u1,t+1 (11)

σ2
1,t+1 = ω1 + α1u

2
1,t + β1σ

2
1,t (12)

Model 2 : yt+1 = µt+1 + u2,t+1 (13)

σ2
2,t+1 = ω2 + α2u

2
2,t + β2σ

2
2,t + δ2x

2
t , (14)

where σ2
1,t+1 and σ2

2,t+1 are conditional variances of Model 1 and Model 2. We consider
the same conditional mean model for µt+1 for both Model 1 and Model 2. The dependent
variable yt+1 is a scalar. All the parameters are estimated based on in-sample observations
minimizing the loss function in Equation (10). Then we can get the volatilities σ̂2

1,t+1

and σ̂2
2,t+1 using the estimated parameters. We use µt+1 to represent γ1,t+1 and σ2

t+1 to
represent γ3,t+1, so we have the Bregman loss function

Sg

(
µt+1, σ

2
t+1, yt+1

)
= (yt+1 − µt+1)

2−log(y2t+1)+log
(
σ2
t+1 + µ2

t+1

)
+

y2t+1

σ2
t+1 + µ2

t+1

−1.

Using the out-of-sample forecast encompassing approach in predictive models, we check
if the predictor xt has the predictive ability for the dependent variable yt+1. If the predic-
tor xt has the predictive ability for the dependent variable yt+1, we select it and use this
predictor in the regression to forecast yt+1. We use nested regression models with one pre-
dictor xt in the large model, so our out-of-sample forecast encompassing approach is an
out-of-sample Granger-causality test. If the predictor xt has the predictive ability for the
dependent variable yt+1, this predictor Granger causes yt+1 in volatility regression.

4.2 Out-of-sample forecast encompassing test

We now introduce the out-of-sample forecast encompassing test for the predictive ability of
a predictor. The models in the equations (12) and (14) are nested. Due to the asymptotic
non-normality of DM statistic for the nested models, we may not use the Diebold-Mariano
(DM) statistic by Diebold and Mariano (1995) to test the predictive ability of xt for yt+1.

Thus, we develop the encompassing statistic and prove that the encompassing statistic is
asymptotically normal. In order to find the encompassing statistic for the volatility, we
combine two models (Model 1 and Model 2) with weights (1 − λ) and λ. We define the
moment function for the combined model as a derivative of the expectation of loss function
for the combined model with respect to the weight λ. The moment function is the encom-
passing statistic we developed using the encompassing principle.

Based on the out-of-sample forecast encompassing principle, we combine Model 1 and
Model 2 with weight (1− λ) and λ, respectively. Then, the null and alternative hypotheses
are

H0 : λ = 0 and H1 : λ ̸= 0.

Under the null hypothesis λ = 0, the combined model is Model 1, which means that xt does
not Granger-cause yt+1. Under the alternative λ ̸= 0, the combined model combines Model
1 and Model 2 with weights (1− λ) and λ, which implies that xt Granger-causes yt+1. As



mentioned in the previous subsection, we consider the out-of-sample encompassing test, so
xt has the predictive ability for yt+1 under the alternative hypothesis.

To find out the optimal weight λ and get the encompassing statistic under the null hypoth-
esis, we estimate the weight λ by minimizing the expectation of least squares loss function
with combined volatility σ2

c,t+1. We use the weight λ to combine volatilities in two models
so that σ2

c,t+1 = (1− λ)σ2
1,t+1 + λσ2

2,t+1. Thus, we obtain λ from

λ = argmin
λ

EFSg(µt+1, σ
2
c,t+1, yt+1), (15)

where Sg(µt+1, σ
2
c,t+1, yt+1) = (yt+1−µt+1)

2−log(y2t+1)+log
(
µ2
t+1 + σ2

c,t+1

)
+

y2t+1

µ2
t+1+σ2

c,t+1

−1 is the Bregman loss function. The encompassing principle is based on the moment func-
tion with respect to λ. We define Mc as the moment function that takes a derivative of the
expectation of loss function for a combined model with respect to the weight λ. Thus, Mc

is the moment function of the combined model, which is defined as

Mc ≡
∂EF

[
Sg(µt+1, σ

2
c,t+1, Yt+1)

]
∂λ

= 0. (16)

The moment function Mc can be derived as follows:

Mc ≡
∂EF

[
Sg(µt+1, σ

2
c,t+1, yt+1)

]
∂λ

=EF

(
∂Sg(µt+1, σ

2
c,t+1, yt+1)

∂σ2
c,t+1

)(
∂σ2

c,t+1

∂λ

)
.

(17)

From the equation above, we can see that the moment function Mc can be presented in the
product of two parts. The first part of Equation (17) is a derivative of the loss function with
respect to the conditional volatility for the combined model σ2

c,t+1. We refer to the first
derivative as the generalized residual function (Gourieroux et al., 1987) of the conditional
volatility for the combined model. We define hc,t+1 as a function of σ2

c,t+1:

hc,t+1 =
1

(µ2
t+1 + σ2

c,t+1)
2
.

Let Vc,t+1 be the strict identification function of variance for the combined model σ2
c,t+1:

Vc,t+1 = (µ2
t+1 + σ2

c,t+1)
2 − y2t+1.

We use hc,t+1Vc,t+1 to denote the generalized residual function of the conditional volatility
for the combined model. The second part of Equation (17) is a derivative of the condi-
tional volatility for the combined model σ2

c,t+1 with respect to weight λ. We call the second
derivative to be the test function of the conditional volatility. The test function of the con-
ditional volatility is denoted as νt+1. Thus, the moment function Mc is the expectation of
the product of the generalized residual function hc,t+1Vc,t+1 and the test function νt+1.

Note that hc,t+1Vc,t+1 = 1
µ2
t+1+σ2

c,t+1
− y2t+1

(µ2
t+1+σ2

c,t+1)
2 , and νt+1 = σ2

2,t+1 − σ2
1,t+1. If

λ = 0, σ2
c,t+1 = σ2

0,t+1, σ2
c,t+1 = σ2

1,t+1, hc,t+1 = h1,t+1 and Vc,t+1 = V1,t+1, where



h1,t+1V1,t+1 is the generalized residual function of model 1. Thus, under the null hypothe-
sis, we have the moment function Mc to be

Mc = EF

(
1

µ2
t+1 + σ2

1,t+1

−
y2t+1

(µ2
t+1 + σ2

1,t+1)
2

)(
σ2
2,t+1 − σ2

1,t+1

)
= EF (h1,t+1V1,t+1) (νt+1)

= M1 = 0,

where M1 is the moment function under the null hypothesis (Model 1). The Mc is the mo-
ment function for finding the optimal weight λ by minimizing the expectation of the scoring
function for the combined model Sg(µt+1, σ

2
c,t+1, yt+1), so Mc is the first order condition

of the expectation of the scoring function with respect to the weight, which is equal to zero.

Based on the out-of-sample forecast encompassing principle, we separate the observations
into two parts: in-sample observations and out-of-sample observations. The number of
in-sample observations is defined as R, and the number of out-of-sample observations
is defined as P . The total number of observations is R + P = T + 1. We estimate
ω̂1, α̂1, β̂1, ω̂2, α̂2, β̂2 and δ̂2 by using the in-sample observations from 1 to R. And then,
we estimate σ̂2

1,t+1 = ω̂1 + α̂1u
2
1,t + β̂1σ

2
1,t and σ̂2

2,t+1 = ω̂2 + α̂2u
2
2,t + β̂2σ

2
2,t + δ̂2xt by

using out-of-sample observations from R+1 to T +1. Then, we use one step ahead method
to estimate M0 by M̂R,P using the out-of-sample observations from R + 1 to T + 1. The
M̂R,P is defined as

M̂R,P ≡ P−1
T∑

t=R

(
ĥ1,t+1V̂1,t+1ν̂t+1

)
p→ M0 = 0, (18)

under H0, as R,P → ∞ and P/R → ∞. Under the null hypothesis, λ = 0, we obtain
σ2
c,t+1 = σ2

1,t+1, hc,t+1 = h1,t+1 and Vc,t+1 = V1,t+1. Thus, E(M̂R,P ) = 0, so M̂R,P
p→ 0

as R,P→∞.

In order to get the encompassing statistic for the volatility, we consider endowing Model 1
and Model 2 with the weight 1−λ and λ, respectively, and find out the property of optimal
weight λ. In order to test if xt has the predictive ability on yt+1, we standardize the M̂R,P

to the ENC statistic. The ENC statistic is ENCR,P ≡ Q̂−0.5
R,P

√
PM̂R,P , where Q̂R,P is a

consistent estimator for QR,P = var
(√

PM̂R,P

)
.

4.3 Asymptotic Normality of ENC

We prove the asymptotic normality property of the ENC statistic. The following assump-
tions are used to obtain the limiting distribution in Proposition 2 and its asymptotic normal-
ity property in Proposition 3. These assumptions are only sufficient but not necessary and
sufficient.

Assumption 1: The parameter estimates θ̂i,t, i = 1, 2, t = R, . . . , T, satisfy θ̂i,t − θi =

Bi(t)Hi(t) =

(
R−1

t∑
j=t−R+1

qi,j

)−1(
R−1

t∑
j=t−R+1

κi,j

)
, where q1 = 1, q2 = E

(
x2t
)
,



and κi is the derivative of the loss function with respect to the parameter vector θ, θ =
(ω, α, β, δ)′.

Assumption 2: Let Ut = [k2,tV2,t , x′t − Ex′t, κ′2,t, vec
(
κ2,tκ

′
2,t − Eκ2,tk′2,t

)
,

vec (q2,t − Eq2,t)′
]
. (a) EUt = 0, (b) Eq2,t < ∞ is p.d., (c) Eu2t = σ2. (d) Define Ũt

the nonredundant elements of Ut, then R−1E

(
t∑

j=t−R+1

Ũj

)(
t∑

j=t−R+1

Ũj

)′

= Ω < ∞

is positive definite.

Assumption 3: (a) Eκ2,tκ′2,t = σ2Eq2,t, (b) E (κ2,t | κ2,t−j , q2,t−j , j = 1, 2, . . .) = 0.

Assumptions 2 and 3 allow the application of an invariance principle and are sufficient for
joint weak convergence of partial sums and averages of these partial sums to Brownian mo-
tion and integrals of Brownian motion.

Assumption 4: limP,R→∞ P/R ≡ π → ∞.

In order to get accurate out-of-sample forecasts, it is essential to select an optimal
in-sample window. Inoue et al. (2017) find out the optimal window size by minimizing
the conditional mean squared forecast error in a time-varying predictive regression model.
They show that the optimal window size satisfies R = O(T 2/3). The out-of-sample win-
dow P has a faster divergent rate than the in-sample window R. This result is consistent
with Assumption 4.

We can get the ENC statistics by standardizing the estimated moment function M̂R,P , then
we have the following main theorem:

Theorem 5: Suppose Assumptions 1-3 hold. Then

ENCR,P =

√
PM̂R,P√

avar
(√

PM̂R,P

)
=

∑T
t=R ct+1√∑T

t=R c2t+1 − PC̄2

d→
∫ 1
ξ [W (s)−W (s− ξ)] dW (s)√∫ 1

ξ [W (s)−W (s− ξ)]2 ds
,

under H0, where ξ = R/T , ct+1 = ĥ1,t+1V̂1,t+1ν̂t+1, C̄ = 1/P
∑T

t=R ct+1 and W (s) is a
standard Wiener process, s ∈ (0, 1).

Theorem 6: Suppose Assumptions 1-4 hold. Then ENCR,P
d→ N(0, 1) under H0.

ENCR,P =

√
PM̂R,P√

avar
(√

PM̂R,P

) d−→ N(0, 1) under H0 as R,P → ∞.



5 Monte Carlo Simulations

We divide the simulation results into two parts. First, we confirm the theoretical prop-
erties of ENCR,P in finite sample: we examine size and power properties, as well as asymp-
totic distribution of the proposed statistics. Second, we estimate the optimal combination
weight, λ, and examine the performance of the combined model.

5.1 Simulation Design

In order to examine the finite sample properties of the asymptotic distribution of the forecast
encompassing test, we simulate data from the following DGP. We generate the variable xt
to be an AR(1) process. We generate yt+1 as follows:

yt+1 = µt+1 + ut+1,

σ2
t+1 = ω + αu2t + βσ2

t + δx2t ,

where xt = ρxt−1+vt, vt
iid∼ N(0, σ2

v), ρ = 0.5, σv = 1, µt+1 = 0.1, α = 0.05, β = 0.75,
and ω = (1 − α − β)σ2

u − δσ2
v/(1 − ρ). We set δ = 0 for the size of the test and δ = 0.5

for the power of the test. In the simulation, we set the number of in-sample observations
R ∈ {60, 120, 240} and the number of out-of-sample forecasts P ∈ {48, 240, 1200}.

We compare the ENC statistic with the DM, CCS, and CCS2 statistics. The ENC statis-
tic is

ENCR,P ≡ Q̂−0.5
R,P

√
PM̂R,P ,

where QR,P = var
(√

PM̂R,P

)
. The DM statistic is

DMR,P ≡ Ŝ−0.5
R,P

√
PD̂R,P ,

where D̂R,P = P−1
∑T

t=R

(
Sg(µt+1, σ

2
1,t+1, yt+1)− Sg(µt+1, σ

2
2,t+1, yt+1)

)
and SR,P =

var
(√

PD̂R,P

)
. The CCS statistic (Chao et al., 2001) is

CCSR,P ≡ Ŵ−0.5
1,R,P

√
PẐ1,R,P ,

where Ẑ1,R,P = P−1
∑T

t=R ĥ1,t+1V̂1,t+1xt and W1,R,P = var
(√

PẐ1,R,P

)
. The CCS2

statistic is
CCS2R,P ≡ Ŵ−0.5

2,R,P

√
PẐ2,R,P ,

where Ẑ2,R,P = P−1
∑T

t=R ĥ1,t+1V̂1,t+1x
2
t and W2,R,P = var

(√
PẐ2,R,P

)
. Q̂R,P ,

ŜR,P , Ŵ1,R,P and Ŵ2,R,P are consistent estimators of QR,P = var
(√

PMR,P

)
, SR,P =

var
(√

PDR,P

)
, W1,R,P = var

(√
PZ1,R,P

)
, and W2,R,P = var

(√
PZ2,R,P

)
, respec-

tively. We use rolling windows to estimate θ̂ = [ω̂i,t, α̂i,t, β̂i,t, δ̂t], where i = 1, 2, and then
predict one step ahead dependent variable ŷt+1 and calculate the forecast mean and variance
µ̂t+1 and σ̂2

t+1, then obtain DMR,P ,ENCR,P , CCSR,P , and and CCS2R,P statistics. We
repeat this procedure 2000 times and get the asymptotic distribution of DMR,P ,ENCR,P ,
CCSR,P , and CCS2R,P and the size and power.



5.2 Simulation Results

Table 1 examines the size properties of four statistics of interest (ENCR,P , DMR,P , CCSR,P

and CCS2R,P ). We consider the statistic values at the 5% nominal level. For P = 240,
the ENCR,P statistic shows good size across all repeats, staying relatively close to the
0.05 mark. Meanwhile, DMR,P tends to undervalue, and CCSR,P and CCS2R,P fluctuate
around the ideal mark. At P = 480 and P = 1200, we notice a similar trend where the
ENCR,P statistic maintains good size, particularly evident with P = 480 where it hovers
very close to 0.05 across all repeats.

Table 2 examines the power properties of the statistics. We notice that the power increases
as the R and P values increase. Particularly, ENCR,P and CCS2R,P move towards the
value of 1 as P increases, indicating improved power. At P = 1200, these statistics portray
high power, with ENCR,P nearing or exceeding 0.9 in the higher R values, showing a very
substantial power.

Notably, ENCR,P performs well in terms of both size and power. In contrast, CCSR,P can
achieve good size properties but exhibits poor power, whereas CCS2R,P has good power
but poor performance in terms of size. DMR,P has the worst performance for both size and
power estimation.

Figures 1-2 verify asymptotic normality of ENCR,P : ENC statistics for the GARCH model
have proper size and good power properties. The distributions of ENC for GARCH models
are asymptotically normal under the null hypothesis.

Table 3 and Table 4 report the estimated combination weight, λ̂R,P , and the out-of-sample
forecast error loss of the combined model. The latter (σ2

c,t+1) consistently has the lowest
forecast error loss compared to the individual models (σ2

1,t+1 and σ2
2,t+1) across different

R and P values. This is an indication that the combined model is superior and presents a
better alternative for forecasting.

6 Empirical Analysis

In the empirical application, we study predictive ability of financial and macroeconomic
variables in forecasting conditional volatility of the equity premium. The data is sourced
from Welch and Goyal (2008) and spans a period from January 1926 to December 2018.
The dataset comprises a total of 1116 monthly observations. The observations include a
variable yt+1, which represents equity premium, and a variable xt, which represents differ-
ent financial measures such as the inflation rate (INFL), book-to-market ratio (BM), stock
variance (SVAR), or long-term return (LTR). Recall that the number of in-sample obser-
vations is defined as R, the number of out-of-sample observations is defined as P . The
total number of observations is R + P = T + 1. We consider three cases: ξ = R

T =
{1/4, 2/4, 3/4}.

Table 5 illustrates the Granger-causality relationships in the volatility model using Welch-
Goyal dataset. Four predictors, xt (INFL, BM, SVAR, and LTR) are investigated for their
predictive ability to forecast the volatility of yt+1 (equity premium). The table comprises
three different risk-to-premium ξ = R

T ratios and utilizes four statistical measures, namely



DM (one-sided test), and ENC, CCS, and CCS2 (two-sided tests). A p-value less than 0.05
indicates that the null hypothesis is rejected, and the predictor has predictive ability. For
instance, for the INFL and LTR predictors all p-values associated with the ENC are less
than 0.05. This suggests that these two variables have predictive ability to forecast volatil-
ity of the equity premium. For BM and SVAR, the results are significant for ξ = 1/4. This
suggests varying effectiveness of these two predictors in the context of forecasting volatility
of the equity premium.

Table 6 reports the estimated optimal combination weight and explores the performance
of the combined models at various ξ ratios. The optimal weights, denoted by λ̂P , vary
across different ξ ratios. The combined model always obtains the lowest out-of-sample
forecast error loss compared to Model 1 and Model 2.

7 Conclusion

In this paper we have developed a novel approach for joint estimation and forecasting of
the mean and volatility using scoring functions. In contrast to the existing literature, our
framework does not require an assumption of zero mean or a proxy for an unknown true
variance. We develop an out-of-sample forecast encompassing test to determine if a predic-
tor has predictive ability to forecast volatility of the target variable. We prove that our ENC
statistic is asymptotically normal under the null hypothesis. In the Monte-Carlo simulation,
we demonstrate that the ENC statistic, compared with the DM statistic and other statistics,
has the correct size under the null hypothesis of no Granger-causality of the covariate, and
good power under the alternative hypothesis of Granger-causality of the covariate. We show
that the asymptotic distributions of ENC statistics are standard normal under H0 in a finite
sample. We apply our method to the empirical application using the Welch-Goyal dataset
that contains macroeconomic and financial variables. We find that inflation and long-term
return Granger-cause equity premium in volatility, whereas book-to-market ratio and stock
variance have varying predictive effectiveness depending on the length of in-sample and
out-of-sample windows.
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Table 3: Combining Volatility Models

R = 240, P = 240 R = 240, P = 480 R = 240, P = 1200

λ̂R,P -0.1683 0.0056 0.0098
E[Sg(µ, σ

2
1, y)] 2.2420 2.2719 2.2766

E[Sg(µ, σ
2
2, y)] 2.2618 2.3167 2.4678

E[Sg(µ, σ
2
c , y)] 2.2373 2.2689 2.2756

Repeat=2000, δ = 0.

Table 4: Combining Volatility Models

R = 240, P = 240 R = 240, P = 480 R = 240, P = 1200

λ̂R,P 1.0723 0.8672 0.8142
E[Sg(µ, σ

2
1, y)] 2.3178 2.4677 2.3387

E[Sg(µ, σ
2
2, y)] 2.2617 2.4189 2.3291

E[Sg(µ, σ
2
c , y)] 2.2614 2.4169 2.2796

Repeat=2000, δ = 0.1.
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