Boosting GMM with Many Instruments When Some Are Invalid or Irrelevant *

HAO HAO^{\dagger} and TAE-HWY LEE ${ }^{\ddagger}$

September 20, 2023

Abstract

When the endogenous variable is an unknown function of observable instruments, its conditional mean can be approximated using the sieve functions of observable instruments. We propose a novel instrument selection method, Double-criteria Boosting (DB), that consistently selects only valid and relevant instruments from a large set of candidate instruments. Monte Carlo compares GMM using DB with other methods such as GMM using Lasso and shows DB-GMM gives lower bias and RMSE. In the empirical application to automobile demand, the DB-GMM estimator is suggesting a more elastic estimate of the price elasticity of demand than the standard 2SLS estimator.

JEL Classification: C1, C5
Key Words: Causal inference with high dimensional instruments, Irrelevant instruments, Invalid instruments, Instrument Selection, Machine Learning, Boosting.

Word count - abstract: 98 words
Word count - paper (8 tables included): about 10,000 words

[^0]
I Introduction

According to Berry, Levinsohn, and Pakes (1995, BLP henceforth), the two-stage least squares (2SLS) estimators of the logit demand function are inconsistent with the profit maximization behavior of firms because the estimated price elasticities of demand for a large number of cars are too small to make sense. Later, Chernozhukov, Hansen, and Spindler (2015) show that the inconsistency in the 2SLS estimation can be resolved by including high order polynomials and interaction terms of the instrumental variable (IV) and control variables. These additional instruments and control variables help to capture the neglected nonlinearity.

However, the resulting high dimensionality of the instruments and control variables may cause collinearity problem. In the generalized method of moments (GMM) estimation, highly correlated instruments can make a singular weighting matrix.

In addition, Bekker (1994) shows that the 2SLS estimator becomes inconsistent when the number of instruments is too large relative to the number of observations. Hence, the consistency of 2SLS estimators fails if instruments are in high dimension.

Another challenge with high dimensional instruments is the possible existence of weakly relevant instruments (weak instruments). According to Phillips (1989) and Staiger and Stock (1997), when instruments are weakly correlated with the endogenous variable, the 2SLS estimator fails the consistency because the asymptotic distribution of the estimator will be Cauchy-like (not normally distributed and has no moments), and the inference will be invalid. Similar problems arise in GMM estimation as proved in Stock and Wright (2000). The asymptotic distribution of weakly identified parameters is not asymptotically normal.

Hence, an instrument selection procedure is necessary in order to ensure the consistency of these estimators. Different approaches have been developed, such as the least absolute shrinkage and selection operator (Lasso), multiple testing, and information criteria.

While Lasso has advantage in variable selection, its estimator is biased. Belloni and Chernozhukov (2013) suggested the Post-Lasso estimation, which can reduce the bias in the estimator. Belloni, Chen, Chernozhukov, and Hansen (2012) apply Lasso and Post-Lasso for
the first stage prediction and instrument selection in a high dimensional IV regression model. Chernozhukov, Hansen, and Spindler (2015) apply Lasso and Post-Lasso to both the first and second stages of the 2SLS estimation when both instruments and control variables are in high dimension. Gillen, Moon, and Shum (2014) and Gillen, Montero, Moon, and Shum (2019) apply Lasso to select instruments and control variables for the BLP-type model.

Caner (2009), Caner and Zhang (2014) and Fan and Liao (2014) discuss the use of penalty for moment selection in GMM. Donald, Imbens, and Newey (2009) suggest a moment selection procedure by using an information criterion based on the asymptotic mean square error (MSE).

Different than traditional variable selection methods, Hartford, et al. (2017) applies machine learning techniques to the IV regression model. In particular, Ng and Bai (2009) consider L_{2} Boosting for instrument selection. Bühlmann (2006) proves that L_{2} Boosting achieves a consistent estimation on the regression function even when the number of regressors increases exponentially with the sample size. A simulation comparison between Lasso and L_{2} Boosting in Bühlmann (2006) shows that both methods share very similar properties, although, as discussed in Meinshausen (2007), Lasso may have poor performance on variable selection in a high-dimensional linear model with many irrelevant regressors.

However, the majority of these papers assume that instruments are "valid", such that instruments are not correlated with the structural error, and thus do not question the validity of instruments but only focus on the relevancy of instruments for endogenous variables.

Only a few recent papers have relaxed the validity assumption on the instruments. DiTraglia (2016) allows highly relevant but somewhat invalid moments to be selected because of the benefit in reducing the MSE even at the cost of bias. That may be reasonable for prediction but not for inference. To make correct statistical inference, the bias should be the first priority before improving the overall efficiency measured by the MSE. Hence, it is important to remove all invalid moments to avoid bias. By adding different types of penalties to the GMM objective function, Liao (2013) illustrates how to perform moment selection when some of the moments are invalid. Similarly, Caner, Han, and Lee (2017) extend the adaptive elastic net GMM estimation by allowing many invalid moments. Cheng and Liao (CL, 2015)
introduce the "Penalized GMM (PGMM)" method with a cleverly modified adaptive Lasso and show that PGMM is asymptotically oracle in selecting valid and relevant moments.

In this paper, we propose another selection algorithm based on boosting, which we call "Double-criteria Boosting (DB)". We show that DB is asymptotically oracle in selecting valid and relevant instruments from a set of high dimensional instruments that may be either (weakly) invalid or/and (weakly) irrelevant. DB is based on a ratio of two criteria, which will check both the validity and the relevancy of each candidate instrument. We prove that DB consistently selects only the valid and relevant instruments simultaneously. More importantly, we show that DB will not select a weakly valid instrument or a weakly relevant instrument(with the extent of 'weakness' being defined for the local-to-zero asymptotics). Furthermore, in proving the consistency of DB , we allow the endogenous variable to be an unknown nonlinear function of instruments, which we approximate by a set of sieve functions, e.g., polynomials of observable instruments as in Chernozhukov, Hansen, and Spindler (2015). Once DB selects instruments, we compute the GMM estimator using the selected instruments. The entire estimation process is referred as DB-GMM.

This paper is organized as follows. In Section II, we set up the structural model for the high dimensional IV regression, define validity and relevancy of instruments, and classify instruments in different categories. In Section III, we review the L_{2} Boosting selection procedure introduced by Ng and Bai (2009). Since the estimator is computed by GMM after instrument selection, we refer to their method as Boosting GMM (BGMM). In Section IV, we propose a new instrument selection method, DB. In Section V, Monte Carlo studies are presented to compare DB-GMM with other methods. Section VI is the empirical application that follows the design in Berry, Levinsohn, and Pakes (1995) and Chernozhukov, Hansen, and Spindler (2015) to demonstrate the merits of using the Double-criteria Boosting algorithm. Section VII concludes. All proofs are gathered in Section VIII (Appendix).

II Model

Consider an IV model as

$$
\begin{align*}
& y_{i}=\beta^{\prime} x_{i}+u_{i} \tag{1}\\
& x_{i}=E\left(x_{i} \mid w_{i}\right)+v_{i} . \tag{2}
\end{align*}
$$

For $i=1, \ldots, n, y_{i}$ is the scalar dependent variable, x_{i} is a $k \times 1$ vector of endogenous variables, and β is a $k \times 1$ vector of parameters. The conditional mean $E\left(x_{i} \mid w_{i}\right)$ is an unknown function of observable instruments w_{i}, where $w_{i}=\left(w_{1, i} \ldots w_{p, i}\right)^{\prime}$ is a $p \times 1$ vector. The two error terms u_{i} and v_{i} have dimensions of 1×1 and $k \times 1$ respectively and have the $(k+1) \times(k+1)$ variance-covariance matrix

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \Sigma_{12} \tag{3}\\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

According to Belloni, Chen, Chernozhukov, and Hansen (2012), the exact sparse model can be estimated by the "approximately sparse model" with an approximation error r_{i}. $E\left(x_{i} \mid w_{i}\right)$ can be approximated by a linear combination of sieve functions $h\left(w_{i}\right)=\left(h_{1}\left(w_{i}\right) \ldots h_{\ell_{n}}\left(w_{i}\right)\right)^{\prime}$ such that

$$
\begin{equation*}
E\left(x_{i} \mid w_{i}\right)=\sum_{j=1}^{\ell_{n}} \gamma_{j} h_{j}\left(w_{i}\right)+r_{i} \tag{4}
\end{equation*}
$$

where the parameter γ_{j} is a $k \times 1$ vector for each $j=1, \ldots, \ell_{n}$, and $r_{i}=\left(r_{1, i} \ldots r_{k, i}\right)^{\prime}$ is a $k \times 1$ vector of the approximation error. Since the functional form of $h_{j}(\cdot)$ is known, we define a sieve instrument $z_{j, i} \equiv h_{j}\left(w_{i}\right)$ and

$$
\begin{equation*}
\left(z_{1, i} \ldots z_{\ell_{n}, i}\right)^{\prime} \equiv\left(h_{1}\left(w_{i}\right) \ldots h_{\ell_{n}}\left(w_{i}\right)\right)^{\prime} . \tag{5}
\end{equation*}
$$

From Equations (2) and (4),

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}+r_{i}+v_{i} \tag{6}
\end{equation*}
$$

The validity and the relevancy of instruments are defined in a local asymptotic framework.

The moment function of each instrument $z_{j, i}$ for $j=1, \ldots, \ell_{n}$ is

$$
\begin{equation*}
g\left(z_{j, i}, \beta\right)=z_{j, i} u_{i} . \tag{7}
\end{equation*}
$$

The validity of each instrument depends on the moment condition,

$$
\begin{equation*}
E\left(g\left(z_{j, i}, \beta\right)\right)=E\left(z_{j, i} u_{i}\right)=\frac{b_{j}}{n^{\delta_{j}}} . \tag{8}
\end{equation*}
$$

And the relevancy of each instrument depends on the parameter,

$$
\begin{equation*}
\gamma_{j}=\frac{a_{j}}{n^{\alpha_{j}}} . \tag{9}
\end{equation*}
$$

Let $Z_{j}=\left(z_{j, 1} \ldots z_{j, n}\right)^{\prime}$ for $j=1, \ldots, \ell_{n}$. We define deferent degrees of validity and relevancy as stated below.

Definition 1 (Validity): The extent of validity depends on b_{j} and δ_{j} as follows: $\mathcal{V}_{1}=$ $\left\{j: b_{j}=0\right\} \cup\left\{j: b_{j} \neq 0\right.$ and $\left.\frac{1}{2}<\delta_{j}\right\}, \mathcal{V}_{2}=\left\{j: b_{j} \neq 0\right.$ and $\left.0<\delta_{j} \leq \frac{1}{2}\right\}$, and $\mathcal{V}_{3}=\left\{j: b_{j} \neq 0\right.$ and $\left.\delta_{j}=0\right\}$. Then, Z_{j} is said to be a strongly valid instrument if $j \in \mathcal{V}_{1}$, a weakly valid instrument if $j \in \mathcal{V}_{2}$, and Z_{j} an invalid instrument if $j \in \mathcal{V}_{3}$.

Definition 2 (Relevancy): The extent of relevancy depends on a_{j} and α_{j} as follows: $\mathcal{R}_{1}=\left\{j: a_{j}=0\right\}, \mathcal{R}_{2}=\left\{j: a_{j} \neq 0\right.$ and $\left.\alpha_{j}>0\right\}$, and $\mathcal{R}_{3}=\left\{j: a_{j} \neq 0\right.$ and $\left.\alpha_{j}=0\right\}$. Then, Z_{j} is said to be an irrelevant instrument if $j \in \mathcal{R}_{1}$, a weakly relevant instrument if $j \in \mathcal{R}_{2}$, and a strongly relevant instrument if $j \in \mathcal{R}_{3}$.

We partition the set of instruments into two subsets, \mathcal{S} and \mathcal{D}, following Cheng and Liao (2015). The "sure" set $\mathcal{S}=\left\{Z_{1}, \ldots, Z_{\ell_{\mathcal{S}}}\right\}$ includes the strongly valid and strongly relevant instruments that are initially selected, and $\ell_{\mathcal{S}}$ denotes the total number of instruments in \mathcal{S}. The "doubt" set $\mathcal{D}=\left\{Z_{\ell_{\mathcal{S}}+1}, \ldots, Z_{\ell_{n}}\right\}$ is the set of instruments that are not in \mathcal{S}, and we do not know the validity and relevancy of these instruments in \mathcal{D}. Hence, an instrument selection is needed for instruments in \mathcal{D}. We further partition \mathcal{D} into three subsets, $\mathcal{D}=\mathcal{A} \cup \mathcal{B}_{0} \cup \mathcal{B}_{1}$. The subset \mathcal{A} is a set of strongly valid and strongly relevant instruments that share the same properties as instruments in \mathcal{S}. The subset \mathcal{B}_{0} is a set of strongly valid but irrelevant or
weakly relevant instruments, and the subset \mathcal{B}_{1} is a set of invalid or weakly valid instruments that are not in $\mathcal{A} \cup \mathcal{B}_{0}$. Our goal is to select only instruments in \mathcal{A} but none from $\mathcal{B} \equiv \mathcal{B}_{0} \cup \mathcal{B}_{1}$. Table 1 summarizes each subset of the instruments according to Definitions 1 and 2.

III Boosting GMM (BGMM)

Ng and Bai (2009) propose a two-stage procedure for the high dimensional IV regression model, which we refer to as Boosting GMM (BGMM). At the first stage, instruments are selected through L_{2} Boosting. Then, with the selected instruments, the parameter of interest β is estimated by GMM at the second stage.

Referring to the model described in Section 2, \mathcal{S} includes all the strongly valid and strongly relevant instruments that are initially selected. The instruments in \mathcal{D} are the candidate instruments that will be selected by L_{2} Boosting. At each step $m=1, \ldots, \bar{M}$, where \bar{M} is the maximum iteration of L_{2} Boosting, we regress the "current residual" on each instrument in \mathcal{D}, and select the instrument that is most relevant to the "current residual". We denote $F_{m, i}=F_{m, i}\left(z_{i}\right)$ as the strong learner and $f_{m, i}=f_{m, i}\left(z_{i}\right)$ as the weak leaner for $i=1, \ldots, n$. The relationship between the weak learner and the strong learner is

$$
\begin{equation*}
F_{m, i}=F_{m-1, i}+c_{m} f_{m, i}, \tag{10}
\end{equation*}
$$

where $c_{m}>0$ is a learning rate. For simplicity, we assume the dimension of x_{i} to be $k=1$ and $\sigma_{2}^{2}=\Sigma_{22}$. If $k>1$, we repeat L_{2} Boosting for each variable in x_{i}.

L_{2} Boosting algorithm

The detail description of L_{2} Boosting is listed in Algorithm 1.

Algorithm 1 BGMM

1. When $m=0$, the initial weak learner of $X=\left(x_{1} \ldots x_{n}\right)^{\prime}$ using instruments in \mathcal{S} is

$$
\begin{equation*}
F_{0, i}=f_{0, i}=\hat{\gamma}_{0, \text { initial }}+\sum_{j=1}^{\ell_{\mathcal{S}}} \hat{\gamma}_{j, \text { initial }} z_{j, i} \tag{11}
\end{equation*}
$$

where $\hat{\gamma}_{0, \text { initial }}$ and $\hat{\gamma}_{j \text {,initial }}$ are the OLS estimators.
2. For each step $m=1, \ldots, \bar{M}$
(a) We compute the "current residual", $\hat{v}_{m, i}=x_{i}-F_{m-1, i}$.
(b) Next, we regress the current residual $\hat{v}_{m, i}$ on each instrument $z_{j, i}$, for $j=\ell_{\mathcal{S}}+$ $1, \ldots, \ell_{n}$. The estimators $\hat{\gamma}_{0}$ and $\hat{\gamma}_{j}$ are solved as

$$
\begin{equation*}
\left\{\hat{\gamma}_{0, j}, \hat{\gamma}_{j}\right\}=\min _{\gamma_{0}, \gamma_{j}} \sum_{i=1}^{n}\left(\hat{v}_{m, i}-\gamma_{0}-\gamma_{j} z_{j, i}\right)^{2} \tag{12}
\end{equation*}
$$

We select the instrument that has the minimum sum of squared residuals, such that

$$
\begin{equation*}
j_{m}=\arg \min _{j \in\left\{\ell_{S}+1, \ldots, \ell_{n}\right\}} \sum_{i=1}^{n}\left(\hat{v}_{m, i}-\hat{\gamma}_{0, j}-\hat{\gamma}_{j} z_{j, i}\right)^{2} . \tag{13}
\end{equation*}
$$

(c) The weak learner is

$$
\begin{equation*}
f_{m, i}=\hat{\gamma}_{0, j_{m}}+\hat{\gamma}_{j_{m}} z_{j_{m}, i}, \tag{14}
\end{equation*}
$$

where $z_{j_{m, i}}$ is the instrument that is selected.
(d) The strong learner $F_{m, i}$ is updated as

$$
\begin{equation*}
F_{m, i}=F_{m-1, i}+c_{m} f_{m, i}, \tag{15}
\end{equation*}
$$

with learning rate $c_{m}>0$.
3. We compute the GMM estimator using the selected instruments.
L_{2} Boosting controls over-fitting in two ways. First is to apply the learning rate c_{m} to the weak learner $f_{m, i}$ at each step. The learning rate controls the magnitude of benefit gain in each step, and a smaller learning rate will lead to more regularization in the L_{2} Boosting. Next, an early stopping rule is used to determine the optimal number of steps in L_{2} Boosting before over-fitting. The stopping rule we used in this paper is a version of AIC suggested in

Bühlmann (2006). Let $\hat{V}_{m}=\left(\begin{array}{lll}\hat{v}_{m, 1} \ldots \hat{v}_{m, n}\end{array}\right)^{\prime}, f_{m}=\left(\begin{array}{lll}f_{m, 1} & \ldots & f_{m, n}\end{array}\right)^{\prime}, F_{m}=\left(\begin{array}{lll}F_{m, 1} \ldots & F_{m, n}\end{array}\right)^{\prime}$, and $\mathbf{1}$ be an $n \times 1$ vector of ones. We define $\mathbf{Z}_{j_{m}}=\left[\mathbf{1} Z_{j_{m}}\right]$, and $P_{m}=\mathbf{Z}_{j_{m}}\left(\mathbf{Z}_{j_{m}}^{\prime} \mathbf{Z}_{j_{m}}\right)^{-1} \mathbf{Z}_{j_{m}}^{\prime}$ to be an $n \times n$ matrix. From Equation (14),

$$
\begin{align*}
\mathbf{1} \hat{\gamma}_{0, j_{m}}+Z_{j_{m}} \hat{\gamma}_{j_{m}} & =P_{m} \hat{V}_{m} \\
f_{m} & =P_{m}\left(X-F_{m-1}\right) . \tag{16}
\end{align*}
$$

Let $\mathbf{Z}_{S}=\left(Z_{1} \ldots Z_{\ell_{S}}\right)$. When $m=0, P_{j_{0}}=\mathbf{Z}_{S}\left(\mathbf{Z}_{S}^{\prime} \mathbf{Z}_{S}\right)^{-1} \mathbf{Z}_{S}^{\prime}$. Then the strong learner at each step m is

$$
\begin{aligned}
F_{m} & =F_{m-1}+c_{m} P_{m}\left(X-F_{m-1}\right) \\
& =\left[I_{n \times n}-\prod_{a=0}^{m}\left(I_{n \times n}-c_{j_{a}} P_{j_{a}}\right)\right] X=: B_{m} X .
\end{aligned}
$$

AIC is computed as

$$
\begin{equation*}
A I C_{c}(m)=\log \left(\hat{\sigma}_{2, m}^{2}\right)+\frac{1+\operatorname{trace}\left(B_{m}\right) / n}{1-\left(\operatorname{trace}\left(B_{m}\right)+2\right) / n} \tag{17}
\end{equation*}
$$

where $\log \left(\hat{\sigma}_{2, m}^{2}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{v}_{m, i}-c_{m} f_{m, i}\right)^{2}$. Then $\hat{M}=\arg \min _{m=1, \ldots, \bar{M}} A I C_{c}(m)$.

Consistency of L_{2} Boosting

Consider the following assumptions from Bühlmann (2006).

Assumption 1: The dimension of instruments satisfies $\ell_{n}=O\left(\exp \left(C n^{1-\eta}\right)\right), n \rightarrow \infty$, for some $0<\eta<1,0<C<\infty$.

Assumption 2: $\sup _{n \in \mathbb{N}} \sum_{j=1}^{\ell_{n}}\left|\gamma_{j}\right|<\infty$.
Assumption 3: $\sup _{1 \leq j \leq \ell_{n}, n \in \mathbb{N}}\left\|Z_{j}\right\|_{\infty}<\infty$, where $\left\|Z_{j}\right\|_{\infty}=\sup _{\omega \in \Omega}\left|Z_{j}(\omega)\right|$ and Ω denotes the underlying probability space.
Assumption 4: $E\left|v_{i}\right|^{s}<\infty$ for some $s>4 / \eta$ with η in Assumption 1.

In Assumption 1, the dimension of instruments is allowed to grow exponentially with respect to the number of observations. So instruments can be in a high dimension. Assumption 2 gives an L_{1}-norm sparseness condition that the sum of the coefficient γ_{j} for all
j is bounded. Hence, only finite number of instruments are strongly relevant. In addition, Assumption 2 can be generalized to $\sum_{j=1}^{\ell_{n}}\left|\gamma_{j}\right| \rightarrow \infty$ as $n \rightarrow \infty$, but additional restriction on ℓ_{n} is needed. In this case, all instruments may be relevant, but the contribution of very large proportion of instruments is small. Hence weakly relevant instruments are allowed in the model. Assumption 3 states that by restricting the growth rate of ℓ_{n}, the maximum realization of random variable Z_{j} under sample space Ω needs to be bounded. In Assumption 4, the existence of some higher moments of the error term v_{i} is needed, and the number of existing moments depends on η from Assumption 1. Thus the number of existing moments and the growth rate of ℓ_{n} are related.

According to Bühlmann (2006 Theorem 1), the L_{2} Boosting estimation converges to the conditional mean of x_{i} in quadratic mean under a linear model. We extend this result of Bühlmann (2006) to the case when $E\left(x_{i} \mid w_{i}\right)$ is nonlinear and is approximated by the approximately sparse model in Belloni, Chen, Chernozhukov, and Hansen (2012). Recall Equation (6)

$$
x_{i}=\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}+r_{i}+v_{i}
$$

where $\left\{z_{j, i}\right\}$ is a set of sieve instruments such as polynomials of instruments in w_{i}, and r_{i} is the approximation error. Here we make an additional assumption to control the relative size of the sparse approximation error r_{i} with respect to the size of the error term v_{i} and number of sieve instruments ℓ_{n}.

Assumption 5: When $E\left(x_{i} \mid w_{i}\right)=\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}+r_{i}$ is approximated by a linear function of sieve instruments $\left\{z_{j, i}\right\}$, the sparse approximation error r_{i} satisfies that $E\left(r_{i}^{2} \mid w_{i}\right) \leq$ $\sigma_{2}^{2}\left(\frac{\log \ell_{n}}{n}\right)$, where $\sigma_{2}^{2}=E\left(v_{i}^{2}\right)$.

Assumption 5 requires that the mean squared approximation error needs to be bounded by the product of the variance of v_{i} and $\frac{\log \left(\ell_{n}\right)}{n}$. We now state a theorem that L_{2} Boosting still works in the sense that $F_{m_{n, i}}$ converges to $E\left(x_{i} \mid w_{i}\right)$ in quadratic mean.

Theorem 1: Let $E\left(x_{i} \mid w_{i}\right)=\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}+r_{i}$ be approximated by a linear function of sieve instruments $\left\{z_{j, i}\right\}$. Under Assumptions 1-5, for some sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ with $m_{n} \rightarrow \infty$ sufficiently slowly as $n \rightarrow \infty$, the L_{2} Boosting estimation converges to the conditional mean of x_{i},

$$
E\left[\left.\frac{1}{n} \sum_{i=1}^{n}\left(F_{m_{n}, i}-E\left(x_{i} \mid w_{i}\right)\right)^{2} \right\rvert\, W\right]=o_{p}(1) \text { as } n \rightarrow \infty
$$

where $W=\left(\begin{array}{lll}W_{1} & \ldots & W_{p}\end{array}\right)$.
Proof: Appendix A.

However, L_{2} Boosting can only check for the relevancy of instruments but not the validity of instruments. Theorem 1 may still hold with the existence of invalid instruments. But a possible selection of weakly valid or invalid instruments by L_{2} Boosting will cause the BGMM estimators to be inconsistent for β. Hence, we develop a new boosting algorithm to select only relevant and valid instruments, which we discuss next.

IV Double-criteria Boosting GMM (DB-GMM)

We propose a new selection procedure, DB , that checks for both the relevancy and the validity of instruments. After the selection, we use GMM to compute the estimators, DB-GMM.

Double-criteria Boosting algorithm

The DB algorithm is described in Algorithm 2. The new selection algorithm (Algorithm 2) is similar to L_{2} Boosting (Algorithm 1) in the previous section, except Step 2(b), where the new objective function in Equation (24) is replacing by Equation (13). We now doubly minimize the invalidity (measured by Equation (21)) and minimize the irrelevancy (measured by the inverse of Equation (25)) of an instrument in each iteration, as we describe in details below.

First, we measure the invalidity based on the usual Lagrange Muliplier (LM) test statistic. It is now more convenient to use the correlation coefficient instead of using the covariance between Z_{j} and U as in the moment condition for Algorithm 1. Let

$$
\begin{equation*}
\rho_{j}=\frac{E\left(z_{j, i} u_{i}\right)}{\sqrt{E\left(z_{j, i}^{2}\right)} \sqrt{E\left(u_{i}^{2}\right)}}=\frac{d_{j}}{n^{\delta_{j}}} . \tag{18}
\end{equation*}
$$

where $d_{i}=\frac{b_{j}}{\sqrt{E\left(z_{j, i}^{2}\right)} \sqrt{E\left(u_{i}^{2}\right)}}$ and b_{j} defined in Equation (8).
We estimate ρ_{j} by using the initial 2 SLS estimator $\hat{\beta}_{\text {initial }}$, which is computed using the instruments in set \mathcal{S}. Then the residual with the initial 2SLS estimators,

$$
\begin{equation*}
\hat{u}_{i} \equiv y_{i}-\hat{\beta}_{\text {initial }} x_{i} \tag{19}
\end{equation*}
$$

is used to obtain the sample correlation coefficient between \hat{U} and each $Z_{j} \in \mathcal{D}$, that is

$$
\begin{equation*}
\hat{\rho}_{j}=\frac{\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{u}_{i}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} z_{j, i}^{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}}} \tag{20}
\end{equation*}
$$

Then we define the LM statistic measure for invalidity of z_{j} as

$$
\begin{equation*}
n R_{\mathcal{V}, j}^{2}=n \hat{\rho}_{j}^{2} . \tag{21}
\end{equation*}
$$

Similarly, we also define the LM statistic measure for relevancy of $z_{j}, n R_{\mathcal{R}, j}^{2}$, which we describe in Equation (25) inside Algorithm 2.

Algorithm 2 DB-GMM

1. When $m=0$, the initial weak learner of $X=\left(x_{1} \ldots x_{n}\right)^{\prime}$ using instruments in \mathcal{S} is

$$
\begin{equation*}
F_{0, i}=f_{0, i}=\hat{\gamma}_{0, \text { initial }}+\sum_{j=1}^{\ell_{\mathcal{S}}} z_{j, i} \hat{\gamma}_{j, \text { initial }}, \tag{22}
\end{equation*}
$$

where $\hat{\gamma}_{0, \text { initial }}$ and $\hat{\gamma}_{j \text {,initial }}$ are the OLS estimators.
2. For each step $m=1, \ldots, \bar{M}$
(a) The "current residual" is defined as $\hat{v}_{m, i}=x_{i}-F_{m-1, i}$.
(b) Next, we regress the current residual $\hat{v}_{m, i}$ on each instrument $z_{j, i}$, for $j \in$ $\left\{\ell_{\mathcal{S}}+1, \ldots, \ell_{n}\right\}$. The estimators $\hat{\gamma}_{0, j}$ and $\hat{\gamma}_{j}$ are solved as

$$
\begin{equation*}
\left\{\hat{\gamma}_{0, j}, \hat{\gamma}_{j}\right\}=\min _{\gamma_{0}, \gamma_{j}} \sum_{i=1}^{n}\left(\hat{v}_{m, i}-\gamma_{0}-\gamma_{j} z_{j, i}\right)^{2} . \tag{23}
\end{equation*}
$$

We select the instrument $z_{j_{m}, i}$ that gives the minimum ω_{j}, i.e.,

$$
\begin{equation*}
j_{m}=\arg \min _{j \in\left\{\ell_{S}+1, \ldots, \ell_{n}\right\}} \omega_{j} \equiv \frac{\left(n R_{\mathcal{V}, j}^{2}\right)^{r_{2}}}{\left(n R_{\mathcal{R}, j}^{2}\right)^{r_{1}}}, \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{\mathcal{R}, j}^{2}=1-\frac{\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\hat{\gamma}_{0, j}-\hat{\gamma}_{j} z_{j, i}\right)^{2}}{\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\bar{v}_{m}\right)^{2}} \tag{25}
\end{equation*}
$$

$\bar{v}_{m}=\frac{1}{n} \sum_{i=1}^{n} \hat{v}_{m, i}$, and r_{1} and r_{2} are the user selected constants such that $r_{1}, r_{2}>$ 0 .
(c) The weak learner is

$$
\begin{equation*}
f_{m, i}=\hat{\gamma}_{0, j_{m}}+\hat{\gamma}_{j_{m}} z_{j_{m}, i}, \tag{26}
\end{equation*}
$$

where $z_{j_{m}, i}$ is the instrument that is selected.
(d) The strong learner $F_{m, i}$ is updated as,

$$
\begin{equation*}
F_{m, i}=F_{m-1, i}+c_{m} f_{m, i}, \tag{27}
\end{equation*}
$$

with $c_{m}>0$.
3. We compute the GMM estimator using the selected instruments.

Remark 1: We introduce the selection criterion ω_{j} to check the validity and relevancy of each instrument Z_{j}. The user selected constants r_{1} and r_{2} are used to control the penalty on
the validity and relevancy. With a higher value in r_{2}, the invalid instrument will be punished more with a higher numerator in ω_{j}. On the other hand, a higher value in r_{1} will ensure the relevant instrument to obtain a higher denominator in ω_{j}, which leads to a smaller value in ω_{j}. In simulation and application, we report the results using $r_{1}=r_{2}=1$. We have experimented by simulation with different values of r_{2} with fixing $r_{1}=1$. (i) When $r_{1}>r_{2}$, the penalty on invalid instruments is weaker. The probability of selecting invalid instruments will be higher. Then the DB-GMM estimation may become more biased. Our simulation results confirm that the bias is larger when $r_{1}>r_{2}$ than when $r_{1}=r_{2}$. (ii) When $r_{1}<r_{2}$, the penalty on invalid instruments is stronger. The simulation results shows that the bias and the mean squared error (MSE) when $r_{1}<r_{2}$ are not significantly different from the default setting with $r_{1}=r_{2}$. This highlights the importance of removing invalid instruments by choosing r_{2} such that $r_{1} \leq r_{2}$, a feature of DB , that is absent in L_{2} Boosting.

Remark 2: Our selection criterion ω_{j} shares similar property as the information based adjustment in PGMM of Cheng and Liao (2015). However, for each j, PGMM only adds one Z_{j} in \mathcal{D} to \mathcal{S} to check the relevancy of the corresponding instrument. So the selection criterion of PGMM for each $Z_{j} \in \mathcal{D}$ is not relevant to the selection of other instruments. In Double-criteria Boosting, we update the current residual $\hat{v}_{m, i}$ at each DB iteration. Then the relevancy criterion $n R_{\mathcal{R}, j}^{2}$ is not only depended on \mathcal{S} but also on all the previously selected instruments.

Remark 3: The stopping rule in DB is the same as in L_{2} Boosting. As $R_{V, j}^{2}$ is computed based on the 2SLS estimation using only instruments in $\mathcal{S}, n R_{\mathcal{V}, j}^{2}$ is fixed at any iteration $m=1, \ldots, \bar{M}$. In addition, minimizing $\frac{1}{n R_{\mathcal{R}, j}^{2}}$ is the same as maximizing $n R_{\mathcal{R}, j}^{2}$. According to the definition, the maximization of $R_{\mathcal{R}, j}^{2}$ can be achieved by minimizing the ratio $\frac{\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\hat{\gamma}_{0, j}-\hat{\gamma}_{j} z_{j, i}\right)^{2}}{\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\bar{v}_{m}\right)^{2}}$. Since $\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\bar{v}_{m}\right)^{2}$ is the same for all j at each $m, \frac{\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\hat{\gamma}_{0, j}-\hat{\gamma}_{j} z_{j, i}\right)^{2}}{\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\bar{v}_{m}\right)^{2}} \propto$ $\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\hat{\gamma}_{0, j}-\hat{\gamma}_{j} z_{j, i}\right)^{2}$. Note that $\sum_{i=1}^{n}\left(\hat{v}_{m, i}-\hat{\gamma}_{0, j}-\hat{\gamma}_{j} z_{j, i}\right)^{2}$ is the criterion in Equation (13) for L_{2} Boosting. Hence, the same stopping rule is applied to DB.

Next, in Theorem 2, we prove that DB will only select the strongly valid and strongly relevant instruments in \mathcal{A}, and will not select any instrument in \mathcal{B}_{0} or \mathcal{B}_{1}, with probability
one asymptotically. In other words, DB will ensure that $\omega_{j_{m}}$ for all $Z_{j_{m}} \in \mathcal{A}$ will be smaller than ω_{j} for $Z_{j} \in \mathcal{B} \equiv \mathcal{B}_{0} \cup \mathcal{B}_{1}$, with probability approaching 1 (w.p.a.1) in each iteration m.

Theorem 2: Under Assumptions 1-5, in each iteration m, the selected instrument $Z_{j_{m}}$ is strongly valid and strongly relevant w.p.a. 1 as $n \rightarrow \infty$. That is,

$$
\operatorname{Pr}\left(\omega_{j_{m}}<\omega_{j}\right) \rightarrow 1 \text { for all } Z_{j} \in \mathcal{B} \text {, as } n \rightarrow \infty,
$$

and thus, the selected instrument $Z_{j_{m}} \in \mathcal{A}$.
Proof: Appendix B.

V Monte Carlo

To study the finite sample properties of different estimation methods under the high dimensional IV regression model, we consider the following three data generating processes (DGPs).

DGP 1 (Linear):

$$
\begin{align*}
y_{i} & =\beta x_{i}+u_{i}, \\
x_{i} & =\sum_{j=1}^{p} \gamma_{j} w_{j, i}+v_{i}=\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}+v_{i}, \tag{28}
\end{align*}
$$

where the endogenous variable x_{i} is a scalar $(k=1)$, and $z_{j, i}=w_{j, i}$. DGP 1 follows the design of DGP in Cheng and Liao (2015). We set $\beta=0$ as the true value, $n \in\{100,250\}$, and $p=\ell_{n}=52$. Let $z_{S, i}=\left(z_{1, i} z_{2, i}\right)^{\prime}$ be the strongly valid and strongly relevant instruments in \mathcal{S}. Let $z_{\mathcal{A}, i}=\left(z_{3, i} z_{4, i}\right)^{\prime}, z_{\mathcal{B}_{0}, i}=\left(\begin{array}{lll}z_{5, i} & \ldots & z_{28, i}\end{array}\right)^{\prime}$ and $z_{\mathcal{B}_{1}, i}=\left(z_{29, i} \ldots z_{52, i}\right)^{\prime}$ be the "doubt" instruments in \mathcal{D}. We set $\gamma_{1}=0.1, \gamma_{2}=0.3, \gamma_{3}=0.5, \gamma_{4} \in\{0.5,0.01\}$, and $\gamma_{j}=0$ for any $j \geq 5$. Then $z_{4, i}$ is a weakly relevant instrument if $\gamma_{4}=0.01$. In order to compute the invalid instrument $z_{\mathcal{B}_{1}, i}$, we first need to generate a strongly valid instrument $z_{\mathcal{B}_{1}, i}^{*}$. The
strongly valid instruments and error terms follow the normal distribution where

$$
\begin{align*}
\left(z_{S, i} z_{A, i} z_{\mathcal{B}_{0}, i} z_{\mathcal{B}_{1}, i}^{*}\right) & \sim N\left(0, \Sigma_{Z}\right) \tag{29}\\
\left(u_{i} v_{i}\right) & \sim N(0, \Sigma), \tag{30}
\end{align*}
$$

and $\Sigma=\left(\begin{array}{cc}0.5 & 0.6 \\ 0.6 & 1\end{array}\right)$. For Σ_{Z}, we consider two different cases. In the first case, it is exactly the same as in Cheng and Liao (2015), where $\Sigma_{Z}=\operatorname{diag}\left(\Sigma_{\mathcal{S} \cup \mathcal{A}}, \Sigma_{\mathcal{B}}\right) . \Sigma_{\mathcal{S} \cup \mathcal{A}}$ is a 4×4 Toeplitz matrix that each (i, j) element equals to $0.2^{|i-j|}$, and $\Sigma_{\mathcal{B}}$ is an $\left(\ell_{n}-4\right) \times\left(\ell_{n}-4\right)$ identity matrix. We denote the first case as "CL"in Table 3. In the second case, Σ_{Z} is an $\ell_{n} \times \ell_{n}$ Toeplitz matrix, where each (i, j) element equals to $a^{|i-j|}$ with $a \in\{0.5,0.9\}$. Lastly, following Cheng and Liao (2015), for $j=29, \ldots, 52$, the invalid instrument $z_{j, i}$ is generated as

$$
\begin{equation*}
z_{j, i}=z_{j, i}^{*}+c_{j} u_{i} \tag{31}
\end{equation*}
$$

where $z_{j, i}^{*}$ is the strongly valid instrument in $z_{\mathcal{B}_{1}, i}^{*}$, and

$$
\begin{equation*}
c_{j}=c_{0}+\frac{(j-29)\left(\bar{c}-c_{0}\right)}{\ell_{n} / 2-2} . \tag{32}
\end{equation*}
$$

So c_{j} increases from c_{0} to \bar{c} as j increases. We choose $c_{0}=0.2, \bar{c}=2.4$.

DGP 2 (Polynomials):

$$
\begin{align*}
y_{i} & =\beta x_{i}+u_{i} \\
x_{i} & =\sum_{j=1}^{p} \theta_{j}\left(w_{j, i}+w_{j, i}^{2}\right)+v_{i} \tag{33}
\end{align*}
$$

where x_{i} is a scalar, $\beta=0$, and $n \in\{100,250\}$ as in DGP 1 . Let $p=5$, then the observable strongly valid instruments are generated as

$$
\begin{equation*}
\left(w_{1, i} w_{2, i} w_{3, i} w_{4, i} w_{5, i}^{*}\right) \sim N\left(0, \Sigma_{W}\right), \tag{34}
\end{equation*}
$$

where Σ_{W} is a $p \times p$ Toeplitz matrix with each (i, j) element $a^{|i-j|}$ and $a \in\{0,0.5,0.9\}$. We set $\theta_{1}=\theta_{2}=0.1, \theta_{3}=0.5$, and $\theta_{4}=\theta_{5}=0$. So only the first three observable instruments
are strongly relevant to x_{i}. The error terms u_{i} and v_{i} are generated as

$$
\begin{equation*}
\left(u_{i} v_{i}\right) \sim N(0, \Sigma), \tag{35}
\end{equation*}
$$

where $\Sigma=\left(\begin{array}{cc}0.5 & 0.5 \\ 0.5 & 1\end{array}\right)$. To generate an invalid instrument, we contaminate $w_{5, i}^{*}$, which was constructed as a valid instrument in Equation (34), by adding the structural error u_{i}

$$
\begin{equation*}
w_{5, i}=w_{5, i}^{*}+u_{i} . \tag{36}
\end{equation*}
$$

DGP 3 (Exponential): The generation of variables in DGP 3 is similar as in DGP 2. The only difference is that x_{i} is generated as an additively separable exponential function of w_{i},

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{p} \theta_{j} \exp \left(w_{j, i}\right)+v_{i} \tag{37}
\end{equation*}
$$

In DGP 1, as $z_{j, i}=w_{j, i}$, all instruments are observable and the functional form of $h_{j}(\cdot)$ in Equation (4) is known. In DGP 2 and DGP 3, the functional form of x_{i} is unknown. We approximate x_{i} using sieve instruments $\left\{z_{j, i}\right\}$. We set $z_{j, i}=w_{j, i}$ for $j=1, \ldots, p$, and $z_{j, i}=h_{j}\left(w_{i}\right)$ for $j=p+1, \ldots, \ell_{n}$, where $h_{j}\left(w_{i}\right)$ is the polynomial of each instrument in w_{i} up to $4^{\text {th }}$ order. Let $z_{\mathcal{S}, i}=\left(z_{1, i} z_{2, i}\right)^{\prime}$.

Simulation results

In Tables 3 to 5, we compare the bias and root mean squared errors (RMSE) of DB-GMM with OLS, 2 SLS $^{\mathcal{S D}}$ (2SLS with all instruments in $\left.\mathcal{S} \cup \mathcal{D}\right), 2$ SLS $^{\mathcal{S}}(2$ SLS with only instruments in $\mathcal{S}), 2$ SLS $^{\mathcal{S A}}(2 \mathrm{SLS}$ with all strongly valid and strongly relevant instruments in $\mathcal{S} \cup \mathcal{A})$, BGMM, and PGMM. The user selected parameters in PGMM are the same as in Cheng and Liao (2015). We choose the learning rate for both boosting algorithms to be $c_{m}=0.01$ for all m.

DGP 1 is linear where all instruments are observable. Compared to the oracle result in the column of $2 \mathrm{SLS}^{\mathcal{S A}}$, the bias and the RMSE of the OLS estimation are higher because x_{i} is endogenous. As the correlation between instruments becomes stronger, the OLS estimation
has slight improvement in its bias and RMSE. The 2SLS ${ }^{\mathcal{S D}}$ estimation is also inconsistent because of the existence of invalid and irrelevant instruments. 2 SLS $^{\mathcal{S}}$ has lower bias but higher RMSE compared to 2 SLS ${ }^{\mathcal{S A}}$ because DGP 1 has only four strongly valid and strongly relevant instruments, and only two of them are included in \mathcal{S}. When the coefficient of the fourth instrument $\left(Z_{4} \in \mathcal{A}\right)$ reduces from 0.5 to 0.01 , the bias of $2 \mathrm{SLS}^{\mathcal{S}}$ is similar to the case when $\gamma_{4}=0.5$, but the RMSE is slightly higher due to existence of the weak instrument $\left(\gamma_{4}=0.01\right)$. BGMM has similar problem as in 2 SLS $^{\mathcal{S D}}$. Due to the inclusion of invalid instruments, BGMM has a higher bias and RMSE than OLS in most of cases. The bias and RMSE of OLS, 2SLS ${ }^{\mathcal{S D}}$, and BGMM become significantly worse when γ_{4} reduces to 0.01. Both of the last two methods, PGMM and DB-GMM, are able to check the validity and relevancy of the instruments. When $\gamma_{4}=0.5$ (strong instrument), PGMM has a lower bias than DB-GMM, but the RMSE of DB-GMM is always the smallest among all other methods (excluding the oracle 2 SLS ${ }^{\mathcal{S A}}$). When γ_{4} decreases to 0.01 , PGMM still has a lower bias than DB-GMM. However, the RMSE of PGMM now is lower than the RMSE of DBGMM in 3 out of 6 cases. In general, when the correlation between instruments increases (a increases), the results of all methods are improving. When $a=0.9$, the results of 2 SLS $^{\mathcal{S}}$, PGMM, and DB-GMM are very close to the oracle result. Because when instruments are highly correlated, selecting a few strongly valid and strongly relevant instruments will be as efficient as selecting all instruments in $\mathcal{S} \cup \mathcal{A}$.

In both DGP 2 and DGP 3, there are total of 125 sieve instruments. Because the sieve instruments Z are generated from the polynomial of w_{i}, high collinearity between instruments exists even when there has not been correlation between $w_{i}(a=0)$. In DGP 2, OLS is inconsistent due to the endogeneity. When $\ell_{n}>n$, the RMSE of 2 SLS $^{\mathcal{S D}}$ diverges, which confirms the theoretical result in Bekker (1994). If only instruments in \mathcal{S} are selected, the bias and RMSE of $2 \mathrm{SLS}^{\mathcal{S}}$ remain high because $2 \mathrm{SLS}^{\mathcal{S}}$ fails to capture any nonlinearity in the endogenous variable. The performance of BGMM is very stable across all cases even when $\ell_{n}>n$. PGMM fails for $\ell_{n}>n$, where the weighting matrix is not invertible during the estimation. It also fails when $a=0.9$ and $n=250$ because of the high collinearity among all sieve instruments. These problems can be solved by replacing the weighting matrix with
an identity matrix, which will cause the RMSE of PGMM to be strictly higher than the RMSE of DG-GMM. DB-GMM has the lowest bias and RMSE for most of the cases. The results in DGP 3 are very similar to DGP 2. Hence, we conclude that DB-GMM has the best performance in the nonlinear cases as demonstrated in the results of DGP 2 and DGP 3.

To control the over-fitting problem, a smaller learning rate in boosting leads to more regularization. In Table 6, we compare the estimation results of BGMM and DB-GMM with a set of learning rates, $c_{m} \in(0.01,0.05,0.1,1)^{\prime}$. In the cases of $\ell_{n}=250$, the DB-GMM estimations with $c_{m}=0.01$ are always less bias comparing to other learning rates. Table 7 reports the average number of optimal steps iterated and average number of instruments selected in BGMM and DB-GMM across different learning rates. Even though the optimal steps is the highest in most cases when $c_{m}=0.01$, the number of instruments selected are the smallest compared to other learning rates. These confirms our selection of $c_{m}=0.01$ in estimation of the above simulations.

VI Empirical Application

We apply DB-GMM to estimate the price elasticity of demand in automobile industry as described in BLP (1995). For simplicity, consider a homogeneous individual log utility function

$$
\begin{equation*}
\xi_{i t}=\varphi\left(w_{i t}, x_{i t}, u_{i t}, \beta\right)+\varepsilon_{i t}, \tag{38}
\end{equation*}
$$

where $\varphi\left(w_{i t}, x_{i t}, u_{i t}, \beta\right)=\varphi_{i t}$ is a function that includes all information on the product characteristics of car i in year t. The subscription it together denotes one car. Let $x_{i t}$ denote the price of each car $i t$, $w_{i t}$ be a vector of the observable market level product characteristics of a car $i t, u_{i t}$ be the unobservable product characteristics of a car it which cause the endogeneity in the price, and β be the parameters in $\varphi(\cdot)$. Applying the simple logit model, the market share $s_{i t}$ for each car it is calculated as

$$
\begin{equation*}
s_{i t}=\frac{\exp \left(\varphi_{i t}\right)}{1+\sum_{\forall i t} \exp \left(\varphi_{i t}\right)} \tag{39}
\end{equation*}
$$

Suppose $\varphi_{i t}$ is linearized in all of its components. The demand equation in terms of market share can be calculated as

$$
\begin{equation*}
y_{i t}=\beta_{0}+\beta_{\text {price }} x_{i t}+\beta_{w}^{\prime} w_{i t}+u_{i t} \tag{40}
\end{equation*}
$$

where $y_{i t}=\log \left(s_{i t}\right)-\log \left(s_{0 t}\right)$, and $s_{0 t}$ is the outside option in year t. The outside option refers to consumers' choosing to buy a used car or to use alternative transportations.

Since price is endogenous, by applying the "approximately sparse model" in Equation (4), we assume price is a linear combination of product characteristics and sieve functions of product characteristics such that

$$
\begin{equation*}
x_{i t}=\gamma_{0}+\gamma_{w}^{\prime} w_{i t}+\gamma_{1}^{\prime} h_{1}\left(w_{i t}\right)+\gamma_{2}^{\prime} h_{2}\left(w_{i t}, t\right)+\gamma_{3}^{\prime} h_{3}\left(w_{i t}\right)+v_{i t}, \tag{41}
\end{equation*}
$$

where $h_{1}\left(w_{i t}\right)$ is the set of quadratic and cubic terms of continuous variables in $w_{i t}$, and $h_{2}\left(w_{i t}, t\right)$ is the set of the first order interactions of all variables in $w_{i t}$ and time t. We generate additional instruments in $h_{3}\left(w_{i t}\right)$ as follows: 1) the sum of each characteristics of other cars that are produced by the same firm in the same year as car $i t$, and the count of these cars; 2) the sum of each characteristics of cars that are produced by other firms in the same year as car it, and the count of these cars. It is necessary to include instruments in $h_{3}\left(w_{i t}\right)$ because the product characteristics of competitive cars also influence the price.

The data used in BLP (1995) is obtained from annual issues of the Automotive News Market Data Book from 1971 to 1990. The product characteristics in the data set are weight, horsepower, length, width, miles per gallon ratio (MPG), and a dummy variable for air condition as a standard equipment. Price is obtained from the listed retail price of the base model in the unit of 1000 dollars of year 1983. In addition, the price of gasoline is also included in the data. With the given information, we calculate miles per dollar (MP\$) by MPG divided by the price per gallon. With treating each model of a car in each year as one car, there are total of 2217 cars included in the data set. Hence, the model in Equations (40) and (41) are estimated as if the data is cross-sectional (no time series) for it $=1, \ldots, 2217$.

We use the data set in Chernozhukov, Hansen, and Spindler (2015), who also study the automobile application in BLP (1995). We include 4 control variables in the model -
namely, the dummy variable of air conditioning (AC), horsepower/weight (HPW), miles per dollar (MP\$), and size of car (Size). We denote these control variables as $w_{i t}=$ $\left(\mathrm{AC}_{i t} \mathrm{HPW}_{i t} \mathrm{MP}_{i t} \text { Size }_{i t}\right)^{\prime}$. There are total 63 instruments, including the constant. Since the first 4 instruments are control variables, we assume all these 4 variables are valid. We select the constant and all four control variables for \mathcal{S}. The rest of instruments are in \mathcal{D}. In order to be consistent with the profit maximization behavior of the firm, the number of cars that have inelastic demand need to be small, because if the demand were inelastic to price changes, firm would easily make higher revenue by increasing the price.

We compare the estimation results of 6 different methods in Table 8. Instead of using PGMM directly as described in the previous sections, we re-estimate the coefficients using GMM with the selected instruments from PGMM. We refer to this method as Post-PGMM and denote it as PGMM*.

In Table 8, we find the estimators of HPW and AC in OLS, $2 \mathrm{SLS}^{\mathcal{S} D}$ and Post-PGMM, and the estimator of MP $\$$ in DB-GMM are insignificant at 5% significant level. The other estimators are very significant regardless of the estimation methods. The estimators of Size are positive for all methods and ranges from 2.115 to 2.8103 . The signs of the estimators of HPW, AC, and MP\$ vary across the methods due to the instruments selection.

Because of the endogeneity in price, possible high collinearity and high dimensionality of instruments, estimators in OLS and 2SLS ${ }^{\mathcal{S D}}$ may be inconsistent. On the other hand, 2SLS ${ }^{\mathcal{S}}$ fails to capture all strongly valid and strongly relevant instruments among the nonlinear sieve instruments. Hence, the estimators in $2 \mathrm{SLS}^{\mathcal{S}}$ is inefficient and lead to a positive coefficient estimates for Price. BGMM selects 21 instruments in total, where 16 of them are from \mathcal{D}. Among these 16 instruments, 6 of them are from $h_{1}\left(w_{i t}\right)$ and $h_{2}\left(w_{i t}, t\right)$, and 10 of them are from $h_{3}\left(w_{i t}\right)$. As BGMM only checks relevancy, it selects too many instruments, where some of the instruments may be invalid. By adding the validity check, PGMM selects 8 instruments from \mathcal{D}, where 7 of them are from $h_{1}\left(w_{i t}\right)$ and $h_{2}\left(w_{i t}, t\right)$, and the last one is from $h_{3}\left(w_{i t}\right)$.

In comparison, we find that DB-GMM selects only one additional instrument from $h_{3}\left(w_{i t}, t\right)$, which is the sum of the first order interaction between HPW and Size of all
other cars under the same firm. By compared with other methods, the estimator of Price in DB-GMM is the smallest and thus suggesting the most elastic demand to price changes.

VII Conclusions

We propose the Double-criteria Boosting algorithm that will consistently select strongly valid and strongly relevant instruments in a high dimensional IV regression model. We theoretically prove that DB will not select a weakly valid instrument nor a weakly irrelevant instrument. The simulation results illustrate that DB-GMM estimation has smaller RMSE than PGMM. We also examine our selection of 0.01 for learning rate in the estimation of simulation. In the application from BLP (1995) where instruments are generated from polynomials of the product characteristics, the DB-GMM result suggests that the price elasticity of demand estimated by DB-GMM is more elastic than other methods.

VIII Appendix

This appendix includes the proofs on Theorem 1 and Theorem 2.

A. Proof of Theorem 1

Under the approximately sparse model in Equation (4), the conditional quadratic mean of regression error using L_{2} Boosting is,

$$
\begin{aligned}
& \left\{E\left[\left.\frac{1}{n} \sum_{i=1}^{n}\left(F_{m_{n}, i}-E\left(x_{i} \mid w_{i}\right)\right)^{2} \right\rvert\, W\right]\right\}^{1 / 2} \\
& =\left\{E\left[\left.\frac{1}{n} \sum_{i=1}^{n}\left(F_{m_{n}, i}-\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}-r_{i}\right)^{2} \right\rvert\, W\right]\right\}^{1 / 2} \\
& \leq\left\{E\left[\left.\frac{1}{n} \sum_{i=1}^{n}\left(F_{m_{n}, i}-\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}\right)^{2} \right\rvert\, W\right]\right\}^{1 / 2}+\left\{E\left[\left.\frac{1}{n} \sum_{i=1}^{n} r_{i}^{2} \right\rvert\, W\right]\right\}^{1 / 2}
\end{aligned}
$$

by Minkowski's inequality. By Bühlmann (2006) Theorem 1, the first term is $o_{p}(1)$. By

Assumptions 1 and 5, the second term is

$$
E\left(\frac{1}{n} \sum_{i=1}^{n} r_{i}^{2}\right) \leq \sigma_{2}^{2}\left(\frac{\log \ell_{n}}{n}\right)=O_{p}\left(C n^{-\eta}\right)=o_{p}(1)
$$

Hence,

$$
E\left[\left.\frac{1}{n} \sum_{i=1}^{n}\left(F_{m_{n}, i}-E\left(x_{i} \mid w_{i}\right)\right)^{2} \right\rvert\, W\right]=o_{p}(1)
$$

B. Proof of Theorem 2

Lemma 1: Under Assumptions 3 and 4, $R_{\mathcal{R}, j}^{2}=O_{p}\left(\hat{\gamma}_{j}^{2}\right)$.
Proof: Denote $\hat{v}_{m, i}^{*}=\hat{v}_{m, i}-\bar{v}_{m}$, and $z_{j, i}^{*}=z_{j, i}-\bar{z}_{j}$. Then

$$
\begin{aligned}
& R_{\mathcal{R}, j}^{2}=1-\frac{\sum_{i=1}^{n}\left(\hat{v}_{m, i}^{*}-\hat{\gamma}_{j} z_{j, i}^{*}\right)^{2}}{\sum_{i=1}^{n} \hat{v}_{m, i}^{* 2}} \\
&=\frac{\sum_{i=1}^{n}\left(2 \hat{v}_{m, i}^{*} \hat{\gamma}_{j} z_{j, i}^{*}-\hat{\gamma}_{j}^{2} z_{j, i}^{* 2}\right)}{\sum_{i=1}^{n} \hat{v}_{m, i}^{* 2}} \\
&=2 \hat{\gamma}_{j}^{2}\left(\frac{\sum_{i=1}^{n} z_{j, i}^{* 2}}{\sum_{i=1}^{n} \hat{v}_{m, i}^{*} z_{j, i}^{*}}\right) \frac{\sum_{i=1}^{n} \hat{v}_{m, i}^{*} z_{j, i}^{*}}{\sum_{i=1}^{n} \hat{v}_{m, i}^{* 2}}-\hat{\gamma}_{j}^{2} \sum_{i=1}^{n} z_{j, i}^{* 2} \\
& \sum_{i=1}^{n} \hat{v}_{m, i}^{* 2} \\
&=\hat{\gamma}_{j}^{2} \frac{\sum_{i=1}^{n} z_{j, i}^{* 2}}{\sum_{i=1}^{n} \hat{v}_{m, i}^{* 2} .}
\end{aligned}
$$

Under Assumptions 3 and $4, \frac{1}{n} \sum_{i=1}^{n} z_{j, i}^{* 2}=O_{p}(1)$ and $\frac{1}{n} \sum_{i=1}^{n} \hat{v}_{m, i}^{* 2}=O_{p}(1)$. Then, $\frac{\sum_{i=1}^{n} z_{j, i}^{* 2}}{\sum_{i=1}^{n} \hat{v}_{m, i}^{* 2}}=$ $O_{p}(1)$. Hence, $R_{\mathcal{R}, j}^{2}=O_{p}\left(\hat{\gamma}_{j}^{2}\right)$.

Lemma 2: Under Assumption 3, $\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{u}_{i} \xrightarrow{p} E\left(z_{j, i} u_{i}\right)$.

Proof:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{u}_{i} & =\frac{1}{n} \sum_{i=1}^{n} z_{j, i}\left(y_{i}-x_{i} \hat{\beta}_{2 S L S}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} z_{j, i}\left[\left(y_{i}-x_{i} \beta\right)-x_{i}\left(x_{i}^{\prime} z_{S, i}\left(z_{S, i}^{\prime} z_{S, i}\right)^{-1} z_{S, i}^{\prime} x_{i}\right)^{-1}\left(x_{i}^{\prime} z_{S, i}\left(z_{S, i}^{\prime} z_{S, i}\right)^{-1} z_{S, i}^{\prime} u_{i}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} z_{j, i}\left[u_{i}-x_{i}\left(x_{i}^{\prime} z_{S, i}\left(z_{S, i}^{\prime} z_{S, i}\right)^{-1} z_{S, i}^{\prime} x_{i}\right)^{-1}\left(x_{i}^{\prime} z_{S, i}\left(z_{S, i}^{\prime} z_{S, i}\right)^{-1} z_{S, i}^{\prime} u_{i}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} z_{j, i} u_{i}-\frac{1}{n} \sum_{i=1}^{n} z_{j, i} x_{i}\left(x_{i}^{\prime} z_{S, i}\left(z_{S, i}^{\prime} z_{S, i}\right)^{-1} z_{S, i}^{\prime} x_{i}\right)^{-1}\left(x_{i}^{\prime} z_{S, i}\left(z_{S, i}^{\prime} z_{S, i}\right)^{-1} z_{S, i}^{\prime} u_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} z_{j, i} u_{i}+o_{p}(1) \xrightarrow{p} E\left(z_{j, i} u_{i}\right) .
\end{aligned}
$$

Lemma 3: Under Assumptions 1 to 5, $\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{v}_{m, i} \xrightarrow{p} E\left(z_{j, i} v_{i}\right)$.
Proof: First, we rewrite $\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{v}_{m, i}$ in terms of the strong learner $F_{m-1, i}$ and the error term v_{i}. We obtain,

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{v}_{m, i} & =\frac{1}{n} \sum_{i=1}^{n} z_{j, i}\left(x_{i}-F_{m-1, i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} z_{j, i}\left(x_{i}-\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}+\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}-F_{m-1, i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} z_{j, i}\left(v_{i}+\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}-F_{m-1, i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} z_{j, i} v_{i}-\frac{1}{n} \sum_{i=1}^{n} z_{j, i}\left(F_{m-1, i}-\sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}\right)
\end{aligned}
$$

By Theorem 1, $F_{m-1, i} \xrightarrow{q . m .} \sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}$ implies $F_{m-1, i} \xrightarrow{p} \sum_{j=1}^{\ell_{n}} \gamma_{j} z_{j, i}$. Hence

$$
\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{v}_{m, i}=\frac{1}{n} \sum_{i=1}^{n} z_{j, i} v_{i}+o_{p}(1) \xrightarrow{p} E\left(z_{j, i} v_{i}\right) .
$$

Proof of Theorem 2:

For validity, $\rho_{j} \propto \frac{b_{j}}{n^{\delta_{j}}}$. By Lemma 2,

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{u}_{i}\right)=\left\{\begin{array}{lll}
O_{p}\left(b_{j} n^{\frac{1}{2}-\delta_{j}}\right) & =o_{p}(1) & \text { if } \delta_{j}>\frac{1}{2} \\
O_{p}\left(b_{j} n^{0}\right) & =O_{p}(1) & \text { if } \delta_{j}=\frac{1}{2} \\
O_{p}\left(b_{j} n^{\frac{1}{2}-\delta_{j}}\right) & =O_{p}\left(n^{\frac{1}{2}-\delta_{j}}\right) & \text { if } \delta_{j}<\frac{1}{2}
\end{array}\right.
$$

Then

$$
\begin{align*}
n R_{\mathcal{V}, j}^{2} & =n \hat{\rho}_{j}^{2} \\
& =\frac{\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} z_{j, i} \hat{u}_{i}\right)^{2}}{\left(\frac{1}{n} \sum_{i=1}^{n} z_{j, i}^{2}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}\right)} \\
& = \begin{cases}o_{p}(1) & \text { if } b_{j}=0 \\
o_{p}(1) & \text { if } b_{j} \neq 0 \text { or } \delta_{j}>\frac{1}{2} \\
O_{p}(1) & \text { if } b_{j} \neq 0 \text { and } \delta_{j}=\frac{1}{2} \\
O_{p}\left(n^{1-2 \delta_{j}}\right) & \text { if } b_{j} \neq 0 \text { and } 0<\delta_{j}<\frac{1}{2} \\
O_{p}(n) & \text { if } b_{j} \neq 0 \text { and } \delta_{j}=0\end{cases} \tag{1}
\end{align*}
$$

For relevancy, $\gamma_{j}=\frac{a_{j}}{n^{\alpha_{j}}}$, and $n R_{\mathcal{R}, j}^{2}=O_{p}\left(n \hat{\gamma}_{j}^{2}\right)$ by Lemma 1. From Lemma 3,

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} z_{j, i} \hat{v}_{m, i}\right)=\left\{\begin{array}{lll}
O_{p}\left(a_{j} n^{\frac{1}{2}-\alpha_{j}}\right) & =o_{p}(1) & \text { if } \alpha_{j}>\frac{1}{2} \\
O_{p}\left(a_{j} n^{0}\right) & =O_{p}(1) & \text { if } \alpha_{j}=\frac{1}{2} \\
O_{p}\left(a_{j} n^{\frac{1}{2}-\alpha_{j}}\right) & =O_{p}\left(n^{\frac{1}{2}-\alpha_{j}}\right) & \text { if } \alpha_{j}<\frac{1}{2}
\end{array}\right.
$$

As $\hat{v}_{m, i}^{*}=\hat{v}_{m, i}-\bar{v}_{m}$ and $z_{j, i}^{*}=z_{j, i}-\bar{z}_{j}, \hat{v}_{m, i}^{*}$, and $z_{j, i}^{*}$ will have the same order as $\hat{v}_{m, i}$ and $z_{j, i}$. Then

$$
\begin{align*}
n R_{\mathcal{R}, j}^{2} & \propto n \hat{\gamma}_{j}^{2} \\
& =\left(\frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} z_{j, i}^{*} \hat{v}_{m, i}^{*}}{\frac{1}{n} \sum_{i=1}^{n} z_{j, i}^{* 2}}\right)^{2} \\
& = \begin{cases}o_{p}(1) & \text { if } a_{j}=0 \\
o_{p}(1) & \text { if } a_{j} \neq 0 \text { and } \alpha_{j}>\frac{1}{2} \\
O_{p}(1) & \text { if } a_{j} \neq 0 \text { and } \alpha_{j}=\frac{1}{2} \\
O_{p}\left(n^{1-2 \alpha_{j}}\right) & \text { if } a_{j} \neq 0 \text { and } 0<\alpha_{j}<\frac{1}{2} \\
O_{p}(n) & \text { if } a_{j} \neq 0 \text { and } \alpha_{j}=0\end{cases} \tag{1}
\end{align*}
$$

Notice that $\mathcal{A}=\mathcal{V}_{1} \cap \mathcal{R}_{3}$ is the set of strongly valid and strongly relevant instruments, $\mathcal{B}_{0}=\mathcal{V}_{1} \cap\left(\mathcal{R}_{1} \cup \mathcal{R}_{2}\right)$ is the set of strongly valid and weakly relevant or irrelevant instruments, and $\mathcal{B}_{1}=\left(\mathcal{V}_{2} \cup \mathcal{V}_{3}\right) \cap\left(\mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}\right)$ is the set of weakly valid or invalid instruments that are not in $\mathcal{A} \cup \mathcal{B}_{0}$. For instrument in each of $\mathcal{A}, \mathcal{B}_{0}$, and $\mathcal{B}_{1}, \omega_{j}$ has the following orders in
probability:

$$
\begin{array}{ll}
\omega_{j}=\frac{\left(n R_{\mathcal{V}, j}^{2}\right)^{r_{2}}}{\left(n R_{\mathcal{R}, j}^{2}\right)^{r_{1}}}=\frac{o_{p}(1)}{O_{p}\left(n^{r_{1}}\right)}=o_{p}\left(n^{-r_{1}}\right), & Z_{j} \in \mathcal{A}, \\
\omega_{j}=\frac{\left(n R_{\mathcal{V}, j}^{2}\right)^{r_{2}}}{\left(n R_{\mathcal{R}, j}^{2}\right)^{r_{1}}}=\frac{o_{p}(1)}{O_{p}\left(n^{r_{1}\left(1-2 \alpha_{j}\right)}\right)}=o_{p}\left(n^{r_{1}\left(2 \alpha_{j}-1\right)}\right), & Z_{j} \in \mathcal{B}_{0} \\
\omega_{j}=\frac{\left(n R_{\mathcal{V}, j}^{2}\right)^{r_{2}}}{\left(n R_{\mathcal{R}, j}^{2}\right)^{r_{1}}}=\frac{O_{p}\left(n^{r_{2}}\right)}{O_{p}\left(n^{r_{1}}\right)}=O_{p}\left(n^{r_{2}-r_{1}}\right), & Z_{j} \in \mathcal{B}_{1} .
\end{array}
$$

We summarize the above results in Table 2, which adds the orders of ω_{j} to Table 1. Because $\alpha_{j}>0$ for $Z_{j} \in \mathcal{B}_{0}$, we have $o_{p}\left(n^{r_{1}\left(2 \alpha_{j}-1\right)}\right) \leq \min \left\{o_{p}\left(n^{r_{1}\left(2 \alpha_{j}-1\right)}\right), O_{p}\left(n^{r_{2}-r_{1}}\right)\right\}$. Therefore, for any selected instrument $Z_{j_{m}}$ by the DB algorithm,

$$
\operatorname{Pr}\left(\omega_{j_{m}}<\omega_{j}\right) \rightarrow 1 \text { for all } Z_{j} \in \mathcal{B}_{0} \cup \mathcal{B}_{1}, \text { as } n \rightarrow \infty
$$

so that $Z_{j} \in \mathcal{B}_{0} \cup \mathcal{B}_{1}$ will not be selected w.p.a.1.

References

Bekker, P. (1994). 'Approximations to the Distributions of Instrumental Variable Estimators', Econometrica Vol. 62, pp. 657-681.

Belloni, A., Chen, D., Chernozhukov, V., and Hansen, C. (2012). 'Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain', Econometrica Vol. 80, pp. 2369-2429.

Belloni, A., Chernozhukov, V. (2013). 'Least Squares After Model Selection in Highdimensional Sparse Models', Bernoulli Vol. 19, pp. 521-547.

Berry, S., Levinsohn, J., and Pakes, A. (1995). 'Automobile Prices in Market Equilibrium', Econometrica Vol. 63, pp. 841-890.

Bühlmann, P. (2006). 'Boosting for High-dimensional Linear Models', Annals of Statistics Vol. 34, pp. 559-583.

Caner, M. (2009). 'Lasso-type GMM Estimator', Econometric Theory Vol. 25, pp. 270-290.
Caner, M., Han, X., and Lee, Y. (2017). 'Adaptive Elastic Net GMM Estimation with Many Invalid Moment Conditions: Simultaneous Model and Moment Selection', Journal of Business and Economic Statistics Vol. 36, pp. 24-46.

Caner, M., and Zhang, H. H. (2014). 'Adaptive Elastic Net for Generalized Methods of Moments', Journal of Business and Economic Statistics Vol. 32, pp. 30-47.

Chernozhukov, V., Hansen, C., and Spindler, M. (2015). 'Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments', American Economic Review, Papers and Proceedings Vol. 105, pp. 486-490.

Cheng, X. and Liao, Z. (2015). 'Select the Valid and Relevant Moments: An Informationbased LASSO for GMM with Many Moments', Journal of Econometrics Vol.186, pp. 443-464.

DiTraglia, F. (2016). 'Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM', Journal of Econometrics Vol. 195, pp. 187-208.

Donald., S., Imbens, G., and Newey, W. (2009). 'Choosing Instrumental Variables in Conditional Moment Restriction Models', Journal of Econometrics Vol. 152, pp. 2836.

Fan, J. and Liao, Y. (2014). 'Endogeneity in High Dimensions', Annals of Statistics Vol. 42, pp. 872-917.

Gillen, B. J., Montero, S., Moon, H. R., and Shum, M. (2019). 'BLP-Lasso for Aggregate Discrete Choice Models of Elections with Rich Demographic Covariates', Econometrics Journal Vol.22, pp. 262-281.

Gillen, B. J., Moon, H. R., and Shum, M. (2014). 'Demand Estimation with Highdimensional Product Characteristics', Advances in EconometricsVol. 34, pp. 301-324.

Hartford, J., Lewis, G., Leyton-Brown, K., and Taddy, M. (2017). 'Counterfactual Prediction with Deep Instrumental Variables Networks', ICML 2017.

Liao, Z. (2013). 'Adaptive GMM Shrinkage Estimation with Consistent Moment Selection', Econometric Theory Vol. 29, pp. 857-904.

Meinshausen, N. (2007). 'Relaxed Lasso', Computational Statistics ξ^{3} Data Analysis Vol. 52, pp. 374-393.

Ng, S. and Bai, J. (2009). 'Selecting Instrumental Variables in a Data Rich Environment', Journal of Time Series Econometrics Vol. 1, pp. 1-34.

Phillips, P. (1989). 'Partially Identified Econometric Models', Econometric Theory Vol. 5, pp. 181-240.

Staiger, D. and Stock, J (1997). 'Instrumental Variables Regression with Weak Instruments', Econometrica Vol. 65, pp. 557-586.

Stock, J.H. and Wright, J. (2000). ‘GMM with Weak Identification', Econometrica Vol. 68, pp. 1055-1096.

TABLE 1:
Categories of instruments

		Strongly Valid \mathcal{V}_{1}	Weakly Valid \mathcal{V}_{2}	Invalid \mathcal{V}_{3}
Irrelevant	\mathcal{R}_{1}		\mathcal{B}_{1}	
Weakly Relevant	\mathcal{R}_{2}	\mathcal{B}_{0}		
Strongly Relevant	\mathcal{R}_{3}	\mathcal{S}, \mathcal{A}		

Notes: The notation for each subset of instruments follows Cheng and Liao (2015, p. 446, Table 2.1). Instruments in \mathcal{S} are sure to be valid and relevant. Instruments in \mathcal{A} are valid and relevant, those in \mathcal{B}_{0} are valid but redundant, and those in \mathcal{B}_{1} are invalid.

TABLE 2:
Order of ω_{j} for each category of instruments

		Strongly Valid \mathcal{V}_{1}	Weakly Valid \mathcal{V}_{2}	Invalid \mathcal{V}_{3}
Irrelevant	\mathcal{R}_{1}		$\mathcal{B}_{1}: \omega_{j}=O_{p}\left(n^{r_{2}-r_{1}}\right)$	
Weakly Relevant	\mathcal{R}_{2}	$\mathcal{B}_{0}: \omega_{j}=o_{p}\left(n^{r_{1}\left(2 \alpha_{j}-1\right)}\right)$		
Strongly Relevant	\mathcal{R}_{3}	$\mathcal{A}: \omega_{j}=o_{p}\left(n^{-r_{1}}\right)$		

TABLE 3:
DGP 1

n	ℓ_{n}	a	OLS	$2 S L S^{\text {SD }}$	$2 S L S^{\text {S }}$	$2 S L S^{\mathcal{S A}}$	BGMM	PGMM	DB-GMM
Panel A: strong instrument with $\gamma_{4}=0.5$									
100	52	CL	0.3363	0.3604	0.0020	0.0162	0.3706	0.0068	0.0288
			0.3388	0.3632	0.1979	0.0786	0.3743	0.2980	0.1746
100	52	0.5	0.2816	0.2911	-0.0024	0.0088	0.2970	-0.0021	0.0116
			0.2841	0.2941	0.1048	0.0686	0.3013	0.1045	0.0917
100	52	0.9	0.2172	0.2079	-0.0005	0.0076	0.2020	-0.0001	0.0057
			0.2204	0.2118	0.0593	0.0535	0.2078	0.0598	0.0591
250	52	CL	0.3329	0.3736	-0.0002	0.0054	0.3777	0.0005	0.0121
			0.3339	0.3748	0.1058	0.0493	0.3795	0.1044	0.0889
250	52	0.5	0.2804	0.2968	0.0014	0.0050	0.3003	0.0016	0.0064
			0.2815	0.2983	0.0601	0.0425	0.3023	0.0603	0.0538
250	52	0.9	0.2166	0.2002	-0.0010	0.0019	0.1979	-0.0009	0.0017
			0.2179	0.2020	0.0358	0.0329	0.2005	0.0358	0.0356
				Pane	B: weak	instrument	t with γ_{4}	$=0.01$	
100	52	CL	0.4210	0.4619	0.0026	0.0290	0.4780	0.0261	0.0348
			0.4231	0.4643	0.1970	0.1110	0.4811	0.1573	0.1600
100	52	0.5	0.3846	0.4112	0.0015	0.0216	0.4256	0.0028	0.0164
			0.3868	0.4138	0.1316	0.0990	0.4292	0.1267	0.1245
100	52	0.9	0.3405	0.3428	-0.0014	0.0135	0.3478	-0.0017	0.0136
			0.3431	0.3460	0.0850	0.0799	0.3529	0.0865	0.1001
250	52	CL	0.4178	0.4890	-0.0004	0.0120	0.4952	0.0002	0.0144
			0.4186	0.4901	0.1081	0.0654	0.4967	0.1083	0.0923
250	52	0.5	0.3842	0.4310	0.0009	0.0093	0.4370	0.0010	0.0087
			0.3851	0.4322	0.0728	0.0575	0.4387	0.0729	0.0667
250	52	0.9	0.3392	0.3440	-0.0007	0.0061	0.3473	-0.0010	0.0079
			0.3402	0.3456	0.0531	0.0505	0.3496	0.0533	0.0630

Notes: For each different case, the first row is the bias of $\hat{\beta}$, and the second row is the RMSE of $\hat{\beta}$. 2 SLS ${ }^{\mathcal{S D}}$ denotes 2SLS with all instruments. 2 SLS $^{\mathcal{S}}$ denotes 2SLS with instruments in $\mathcal{S} .2$ SLS ${ }^{\mathcal{S A}}$ denotes 2 SLS with instruments in $\mathcal{S} \cup \mathcal{A}$, which demonstrates the oracle result. Column 3 indicates different variance-covariance matrix of Z. When $a=$ CL, Σ_{Z} is the same as in Cheng and Liao (2015), where $\Sigma_{Z}=\operatorname{diag}\left(\Sigma_{\mathcal{S} \cup \mathcal{A}}, \Sigma_{\mathcal{B}}\right) . \Sigma_{\mathcal{S} \cup \mathcal{A}}$ is a
 $\left(\ell_{n}-4\right) \times\left(\ell_{n}-4\right)$ identity matrix. When $a \in\{0.5,0.9\}, \Sigma_{Z}$ is an $\ell_{n} \times \ell_{n}$ Toeplitz matrix, where each (i, j) element equals to $a^{|i-j|}$.

TABLE 4:

$$
D G P 2
$$

n	ℓ_{n}	a	$O L S$	$2 S L S^{\mathcal{S D}}$	$2 S L S^{\mathcal{S}}$	$2 S L S^{\mathcal{S A}}$	BGMM	PGMM	DB-GMM
100	125	0	0.3103	4.9391	0.2218	0.0181	0.2363	0.1975	0.0216
			0.3205	46.5148	0.8011	0.0930	0.2621	0.6628	0.1848
100	125	0.5	0.2707	0.2649	-0.0010	0.0132	0.2011	0.0228	0.0196
			0.2825	0.7593	0.4671	0.0775	0.2286	0.4410	0.1364
100	125	0.9	0.2196	-0.5400	-0.0176	0.0009	0.2233	-0.0264	0.0096
			0.2327	6.9021	0.3236	0.0731	0.2439	0.4009	0.1004
250	125	0	0.2792	0.2329	0.0771	0.0036	0.1993	0.1267	0.0043
			0.2843	0.2398	0.6743	0.0581	0.2130	1.0879	0.1588
250	125	0.5	0.2554	0.2218	0.0130	0.0069	0.1843	0.0120	0.0039
			0.2609	0.2281	0.1432	0.0474	0.1971	0.1415	0.0653
250	125	0.9	0.2158	0.2121	-0.0102	0.0013	0.2213	-0.0106	-0.0024
			0.2207	0.2177	0.1032	0.0480	0.2313	0.1023	0.0658

TABLE 5:
DGP 3

n	ℓ_{n}	a	$O L S$	$2 S L S^{\mathcal{S D}}$	$2 S L S^{\mathcal{S}}$	$2 S L S^{\mathcal{S A}}$	BGMM	PGMM	DB-GMM
100	125	0	0.1659	0.1329	0.3219	-0.0010	0.1197	0.5625	0.0070
			0.1712	0.1388	2.1693	0.0366	0.1282	3.3374	0.0925
100	125	0.5	0.1611	0.1355	0.0155	0.0054	0.1222	0.0151	0.0135
			0.1677	0.1434	0.0954	0.0387	0.1341	0.0960	0.0496
100	125	0.9	0.1372	0.1323	0.0100	0.0012	0.1396	0.0090	0.0069
			0.1429	0.1385	0.0619	0.0329	0.1496	0.0618	0.0353
250	125	0	0.1740	0.1420	0.0409	0.0050	0.1282	0.3717	0.0149
			0.1796	0.1484	0.3838	0.0426	0.1380	3.0727	0.0668
250	125	0.5	0.1536	0.1286	-0.0024	-0.0016	0.1156	-0.0001	0.0033
			0.1588	0.1345	0.1074	0.0376	0.1258	0.1029	0.0504
250	125	0.9	0.1320	0.1273	-0.0078	-0.0052	0.1327	-0.0072	-0.0012
			0.1404	0.1366	0.0681	0.0332	0.1471	0.0687	0.0398

TABLE 6:
DGP2 - Estimation with Different Learning Rate

| | | | $B G M M$ | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | ℓ_{n} | a | 0.01 | 0.05 | 0.1 | 1 | 0.01 | 0.05 | 0.1 | 1 |
| 100 | 125 | 0 | 0.2363 | 0.2581 | 0.2573 | 0.2558 | 0.0216 | 0.0245 | 0.0187 | 0.0139 |
| | | | 0.2621 | 0.2776 | 0.2774 | 0.2770 | 0.1848 | 0.1526 | 0.1456 | 0.1434 |
| 100 | 125 | 0.5 | 0.2011 | 0.2214 | 0.2213 | 0.2181 | 0.0196 | 0.0179 | 0.0164 | 0.0149 |
| | | | 0.2286 | 0.2424 | 0.2426 | 0.2417 | 0.1364 | 0.1067 | 0.1067 | 0.1225 |
| | | | | | | | | | | |
| 100 | 125 | 0.9 | 0.2233 | 0.2204 | 0.2208 | 0.2189 | 0.0096 | 0.0279 | 0.0275 | 0.0189 |
| | | | 0.2439 | 0.2399 | 0.2405 | 0.2398 | 0.1004 | 0.1143 | 0.1137 | 0.1046 |
| | | | | | | | | | | |
| 250 | 125 | 0 | 0.1993 | 0.2079 | 0.2073 | 0.2045 | 0.0043 | 0.0106 | 0.0111 | 0.0080 |
| | | | 0.2130 | 0.2181 | 0.2176 | 0.2163 | 0.1588 | 0.0893 | 0.0892 | 0.0914 |
| | | | | | | | | | | |
| 250 | 125 | 0.5 | 0.1843 | 0.2017 | 0.2008 | 0.1969 | 0.0039 | 0.0060 | 0.0062 | 0.0055 |
| | | | 0.1971 | 0.2111 | 0.2101 | 0.2065 | 0.0653 | 0.0605 | 0.0605 | 0.0620 |
| 250 | 125 | 0.9 | 0.2213 | 0.2141 | 0.2128 | 0.2120 | -0.0024 | 0.0123 | 0.0133 | 0.0073 |
| | | | 0.2313 | 0.2229 | 0.2218 | 0.2212 | 0.0658 | 0.0783 | 0.0794 | 0.0671 |

Notes: For each different case, the first row is the bias of $\hat{\beta}$, and the second row is the RMSE of $\hat{\beta}$. Each column represents the result of different learning rate $\left(c_{m}\right)$

TABLE 7:
DGP2 - Instrument Selection Count

		$B G M M$								
n	ℓ_{n}	a	0.01	0.05	0.1	1	0.01	0.05	0.1	1
100	125	0	492.00	461.98	229.19	20.96	414.21	435.82	217.48	19.57
			9.39	28.46	27.92	18.79	5.12	11.38	11.49	8.78
100	125	0.5	492.00	473.93	236.24	22.59	448.15	464.31	232.11	22.19
			10.03	25.57	25.13	18.60	4.56	9.50	9.48	8.22
100	125	0.9	492.00	465.74	234.74	23.79	482.23	475.75	235.53	23.34
			8.45	16.26	16.08	14.20	3.81	6.39	6.39	5.90
250	125	0	492.00	488.04	243.12	22.03	459.63	485.69	241.68	23.42
			7.30	33.10	32.80	20.60	5.61	12.95	13.12	10.76
250	125	0.5	492.00	491.45	245.35	24.28	490.38	488.23	243.59	23.90
			9.22	27.02	26.78	20.34	4.48	9.43	9.60	8.86
250	125	0.9	492.00	489.14	244.46	24.92	491.46	491.36	245.41	24.39
			8.24	17.03	16.77	14.49	3.34	5.90	5.96	5.85

Notes: For each different case, the first row is the optimal number of steps in boosting algorithm. The second row is the number of instruments selected by boosting algorithms from \mathcal{D}. Each column represents the result of different learning rate $\left(c_{m}\right)$

TABLE 8:
Estimation of the Automobile Demand

	OLS	2SLS	2SD	2SLS	BGMM	PGMM *
DB-GMM						
constant	-10.0716	-10.0438	-11.5205	-9.7926	-9.8492	-9.3702
	(0.2576)	(0.2608)	(0.6205)	(0.2642)	(0.2600)	(0.3800)
HPW	-0.1243	0.1161	-12.6448	0.8962	-0.7947	5.9361
	(0.2790)	(0.3179)	(0.3745)	(0.3518)	(0.4475)	(1.0240)
AC	-0.0343	0.0584	-4.8623	0.4778	-0.2035	2.3026
	(0.0710)	(0.0880)	(0.3147)	(0.1139)	(0.1286)	(0.3631)
MP\$	0.2650	0.2484	1.1316	0.1730	0.2479	-0.1544
	(0.0425)	(0.0433)	(0.1025)	(0.0443)	(0.0474)	(0.0833)
Size	2.3421	2.3331	2.8103	2.2783	2.2944	2.1155
	(0.1246)	(0.1265)	(0.2618)	(0.1283)	(0.1264)	(0.1770)
Price	-0.0886	-0.0970	0.3479	-0.1277	-0.0713	-0.2999
	(0.0043)	(0.0063)	(0.0220)	(0.0086)	(0.0108)	(0.0328)

Notes: PGMM* is the Post-PGMM. The values inside the parentheses are the standard error of the corresponding estimators.

[^0]: *We thank seminar participants at NeurIPS Causal Inference Workshop, UCLA (Econ), UCR (Econ), UCR (Stat), USC (Econ), Ford Motor Company, Academia Sinica (Econ), BJTU (Econ), CAS (AMSS), CUFE (Econ) and PKU (Management) for many valuable comments.
 ${ }^{\dagger}$ Global Data Insight 8 Analytics, Ford Motor Company, Michigan USA 48124 (e-mail: hxu59@ford.com)
 ${ }^{\ddagger}$ Department of Economics, University of California, Riverside, California USA 92521 (e-mail: taelee@ucr.edu)

