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1. Introduction

In the absence of randomized control trials, finding valid and strong instruments to circumvent unob-

served confounders is a very challenging task. The Granular Instrumental Variables, hereafter GIV, method-

ology that Gabaix and Koijen (2021) propose, establishes a systematic way to construct instruments from

suitably weighted idiosyncratic shocks, from observational datasets and use them as instruments for aggre-

gate endogenous variables.

Constructing instruments. There are some existing methodologies which seek to eliminate the need

to find an instrument. A leading example is the Arellano and Bond (1991) framework in the context of

estimating the speed of adjustment or state dependence parameters using dynamic panel data models with

fixed effects, in which higher order lags of the dependent variable serve as instruments for the included lags

of the dependent variable. The Bartik (1991) methodology (aka shift-share estimators) where instruments

are constructed from identities involving the (endogenous) explanatory variable whose shift component

is interacted with shares. The Rigobon (2003) setting exploits the existence of structural breaks in the

conditional heteroskedasticity regime, which is common place in many applications of interest. This allows

one to bring a system with less equations than unknowns to a just identified system with as many equations as

unknowns. The Bai and Ng (2010) methodology lays out a panel simultaneous equations model (similar to

the model analyzed in this paper) where the estimated (strong) factors can be used as instrumental variables

under certain conditions. We will return to the Bai and Ng (2010) methodology when we overidentify the

structural parameters of interest as it is inspired by their framework. The vast methodological refinements

cited within the papers referenced above are not listed here for brevity.

Microeconomic (granular) origins of aggregate fluctuations. How can idiosyncratic shocks be

relevant for endogenous aggregate variables? The literature on "granularity" traces back to historic debates

in macroeconomics; no attempt to fully catalog this debate is made here, rather a concise summary is offered.

Long and Plosser (1983) demonstrate that in a multisector stochastic neoclassical growth model, sectoral

shocks (as opposed to aggregate shocks) can potentially lead to GDP fluctuations. Intuitively, complex pro-

duction processes form sectoral linkages which in turn provide a transmission mechanism of shocks across

sectors. Subsequently, Horvath (2000) and Dupor (1999) debate whether sectoral shocks decay according

to 1?
N

as the central limit theorem would suggest. Gabaix (2011) provides an initial theoretical solution to

the debate by showing that when the firm size distribution is heavy tailed, the central limit theorem does

not apply and sectoral volatility decays much slower than 1?
N

. Gabaix (2011) coins this mechanism as the

so-called "granular" hypothesis, in which the economy is composed of incompressible grains as opposed
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to infinitesimally small micro units. Acemoglu et al. (2012) formulates a network approach to demonstrate

that sectoral idiosyncratic shocks generate non-negligible aggregate volatility when there exists sufficient

asymmetry in the input-output relationships. Pesaran and Yang (2020) build off of the theoretical approach

of Acemoglu et al. (2012) and develop econometric theory to measure the degree of network dominance and

in their application they find some evidence of sector-specific shock propagation albeit not overwhelmingly

strong for the US input-output accounts data over the period 1972-2002. More empirical evidence for such

propagation mechanism is presented in Gatti et al. (2005), Canals et al. (2007), Koren and Tenreyro (2007),

Blank et al. (2009), Malevergne et al. (2009), Yan (2011), Gabaix (2011), Carvalho and Gabaix (2013),

Schiaffi (2013), Acemoglu et al. (2017), Jannati (2017) and Lera and Sornette (2017).

GIV, Gabaix and Koijen (2021). In an econometric framework, GK illustrate that when the market

under consideration is sufficiently concentrated, then one can use the collection of idiosyncratic shocks to

individual micro units, at each time period t, as an instrument for endogenous aggregate variables. The

instrumental relevance follows heuristically from the paragraphs above. The exogeneity condition, as in

any instrumental variables procedure, requires assumptions on unobserved random variables. However it

should be noted that the exogeneity condition exploited in this framework is a relatively mild assumption

that is often made in factor models (e.g. Bai and Ng (2002)) for identification purposes. The insight and

contribution of GK opens the doors to a wide possibility of ways in which one can continue building on the

promising new GIV methodology.

Contributions of this paper. Our contributions to the GIV methodology are primarily focused on the

underlying econometric issues. First, we naturally extend GK’s identification procedure to a large N and

large T framework (GK formally introduced GIV for a fixed N and large T ) by establishing and restricting

the asymptotic behavior of the Herfindahl index for large N markets as a function of the tail index of

the size distribution. Given the large N and large T framework, we treat both the factors and loadings

as unknown and allow the idiosyncratic error term to be weakly cross-sectionally correlated.1 As such,

from our preliminary stage, we extract not only the estimated factors but also the estimated loadings via

principal components analysis, PCA hereafter, or depending on the generality of the model (kx 6= 0 in

our notation from Section 2), we use the iterative OLS-PCA method of Bai (2009). Second, we show that

the sampling error in the estimated instrument and estimated factors is negligible when considering the

limiting distribution of the structural parameters of interest; that is, the estimator is robust to the latent factor

structure. Moreover, the exogeneity requirement for one of the structural parameters generally depends

1GK treat the factor loadings as known and extract the factors via period-by-period cross-sectional regressions. While they
advocate extraction of latent factors via principal components analysis when loadings are unknown, they abstract away from the
corresponding sampling error. We will show that the sampling error is indeed negligible.
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on a potentially high dimensional precision matrix (the inverse of the covariance matrix). Third, we show

that the sampling error in the high dimensional precision matrix is negligible in our iterative estimation

algorithm for said structural parameter. Fourth, we overidentify the structural parameters which leads to

efficiency gains. This leads to new and improved results in our empirical application of GIV to the global

crude oil markets. Monte Carlo evidence is presented to confirm the finite sample behavior of our estimators

are well approximated by the asymptotic distributions. We label our refinement to the GIV methodology

as Feasible Granular Instrumental Variables or FGIV for short. Finally, an empirical application of the

estimation methods to estimate demand and supply elasticities of the global crude oil markets are presented

to demonstrate the estimation procedures.

Notation. We distinguish vectors and matrices from scalars by making an object bold. Let {Xit, i =

1, . . . , N ; t = 1, . . . , T} be a double index process of random variables where N denotes the number of

cross-sectional units and T denotes the number of time periods. We frequently stack across i, in which we

obtain X ·t
N×1

:=
´

X1t . . . XNt

¯′
. Similarly, if we stack across t we obtain Xi·

T×1
:=

´

Xi1 . . . XiT

¯′
.

WhenXit is itself a vector, say of dimension k, then we obtain a matrix when we stack across i or t, e.g. X ·t
N×k

orXi·
T×k

. Define Xwt as the cross-sectionally weighted average of Xit, that is Xwt := w′X·t =
∑N

i=1wiXit.

Common weights, w
N×1

= (wi), used frequently throughout the paper are (1) the precision weights, E :=

Σ−1
u ι

ι′Σ−1
u ι

where Σu
N×N

:= E(u·tu
′
·t) is the covariance matrix of the idiosyncratic error term, uit, ι

N×1
is a

vector of ones and (2) the share weights, which we simply refer to as size weights, S :=
´

S1 . . . SN

¯′
.

Let rXit = Xit − X̄t, where X̄t = 1
N

∑N
i=1Xit, denote a cross-sectionally demeaned variable. Unless

otherwise specified, we denote the L2-norm as ||·|| or sometimes explicitly as ||·||2, the L1-norm as ||·||1

and the Frobenius norm as ||·||F ; if another norm is used, it will be explicitly noted. Given a square matrix

A, let γmax(A) denote the maximum eigenvalue of A. Joint convergence of N and T will be denoted

as (N,T )
j→ ∞ without any restriction on the relative rates; whenever restrictions on relative rates of

convergence are imposed, it will be explicitly noted. The expression
p→ denotes convergence in probability

while d→ denotes convergence in distribution. The equation y = Op(x) states that the vector of random

variables y is at most of order x in probability. The equation a = Θp(b) states that a is stochastically

bounded by b and b is stochastically bounded by a, hence a and b rise jointly proportionally.
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2. Model

A general formulation of the model examined in this paper is given in the following panel simultaneous

equations model with factor error structure

yit = Bxit +Cat + vit,

vit = Λ′iF t + uit,

where yit =
´

y1,it . . . yG,it

¯′
is a G × 1 vector of dependent variables, xit =

´

x1,it . . . xkx,it

¯′

is a kx × 1 vector of strictly exogenous variables (which can be arbitrarily correlated with the common

factors, F t, and/or the loadings, Λi), at =
´

a1,t . . . aka,t

¯′
is a ka × 1 vector of potentially endogenous

aggregate variables, vit is a G × 1 vector of composite error terms which admit a low-rank plus sparse

(factor structure) error decomposition, where Λi is an r × G matrix of latent factor loadings and F t is an

r × 1 vector of latent factors.

In our exposition, we focus on the canonical setting of estimating the supply and demand elasticities in

the global crude oil market, so we set the dimension of G = 2 for supply and demand variables respectively.

We take kx = 0 for ease of exposition but we present a general estimation algorithm for when kx 6= 0.

Moreover, we assume that only one of the G = 2 variables has a panel structure, whereas the other variable

is an aggregate time series. The main results extend relatively naturally to the case where both variables have

a panel model. That is, yit =
´

dt yit

¯′
where dt is the log change of aggregate crude oil consumption and

yit is the log change of country i’s crude oil production, at = pt, with ka = 1, is the log change of real crude

oil price (where we deflate the nominal oil price with the U.S. general price in3dex).2 Given our stylizations

the coefficient matrix C and composite error, vit becomes

C =

˜

φd 0

0 φs

¸

,

vit = Λ′iF t + uit =

˜

1 0

0 λi

¸˜

εt

ηt

¸

+

˜

0

uit

¸

,

2One may wonder why pt is not disaggregated; in fact the pt we use can be considered as the weighted average of country
specific real oil prices (in changes). As shown in Mohaddes and Pesaran (2016), for a proper global analysis, deflating the nominal
oil price in U.S. dollars by the U.S. price index is generally theoretically invalid unless the law of one price holds universally.
Namely, let Pit denote the general price index faced by country i, Eit denotes country i’s exchange rate measured as units of
country i’s currency per U.S. dollar, pit denote country specific log of real oil prices and p̃t denotes nominal oil prices in U.S.
dollars, if EitPUS,t = Pit ∀i; then it follows that

∑N
i=1 wipit = p̃t +

∑N
i=1 wilog(Eit/Pit) = p̃t +

∑N
i=1 wilog(1/PUS,t) =

p̃t − pUS,t := pt. As it turns out, pt = p̃t − pUS,t is an appropriate approximation as documented in Mohaddes and Pesaran
(2016) for their long run analysis, in the sense that it respects the long-run equilibrium relationships. We assume it is an appropriate
approximation for our short-run analysis.
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where the coefficients φd and φs denote the crude oil demand and supply elasticities, respectively, and ηt,λi

are r × 1 vectors of latent factors and latent loadings, respectively. Our stylized simultaneous equations

model takes the simple form

dt = φdpt + εt (1)

yit = φspt + λ′iηt + uit. (2)

The global market clearing condition is given by ySt = dt, where ySt := S′y·t =
∑N

i=1 Siyit, S is the

N × 1 vector of shares that are normalized such that
∑N

i=1 Si = 1 and i and t take the values i = 1, . . . , N

and t = 1, . . . , T , respectively.3 Making use of the global market clearing condition we see that

pt =
1

φd − φs
`

uSt + λ′Sηt − εt
˘

, (3)

which makes the simultaneity clear, e.g., that prices are composed of size-weighted idiosyncratic shocks,

aggregate supply shocks and the demand shock. The objective of the GIV methodology is to extract the

idiosyncratic shocks and use them as instruments for price.

Demand estimation in the case of uniform loadings (λi = λ ∀ i). To momentarily fix ideas, it is

helpful to consider a major simplification when constructing the instrument. Suppose that the loadings are

uniform, λi = λ∀i. Then, the instrument, zt, can be formed as

zt = ySt −
1

N

N∑
i=1

yit = (φdpt + λ′ηt + uSt)− (φdpt + λ′ηt +
1

N

N∑
i=1

uit),

= uSt −
1

N

N∑
i=1

uit := uΓt, (4)

where Γ := S − ι/N is an N × 1 random vector such that ι′Γ =
∑N

i=1 Γi = 0, by construction. Γi is

random because we assume the shares follow a fat-tailed distribution, see Assumption 4. Identification and

estimation of demand by GIV requires that

E(ztεt) = E

˜

N∑
i=1

ΓiE(uitεt|Γ)

¸

= 0. (5)

(5) is our exogeneity condition and (3) gives E(ztpt) 6= 0, relevance. A sufficient condition for the mo-

3As oil is a storable good, one could easily allow oil prices to adjust to the gap between supply and demand, e.g. as in Mohaddes
and Pesaran (2016). This introduces more complex notations without adding any substance to the main points of the paper.
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ment condition in (5) to be zero is E(uitεt|Γ) = 0, which effectively requires that conditional on size,

uit and εt are uncorrelated. Given relevance, exogeneity implies the following demand elasticity estimator

pφd =
∑
t dtzt∑
t ptzt

. Intuitively, zt places larger weights on the idiosyncratic shocks to larger oil producers, these

granular shocks will shift the supply curve while keeping the aggregate demand curve fixed since demand

responds to these shocks only through their affects on prices. This allows for consistent estimation of the de-

mand elasticity. The uniform loadings assumption in this case tremendously facilitate the analysis. Uniform

loadings allow one to construct the instrument, as in (4), from observables. In practice, uniform loadings

are quite restrictive and we subsequently relax this assumption. However, before moving on to the general

case, we also illustrate supply estimation under simplifying assumptions to fix ideas.

Supply estimation in the case of uniform loadings and uit i.i.d. Continuing on with the uni-

form loadings case, remarkably, GK show that one can use the same instrument, zt, to also estimate the

supply elasticity using a cross-sectionally aggregated supply equation. Now, GK further assume that uit

are i.i.d., E(u·tu
′
·t) := Σu = σ2

uIN , where u·t :=
´

u1t . . . uNt

¯′
and IN is the identity matrix and

define the N × 1 precision weight vector E := Σ−1
u ι

ι′Σ−1
u ι

which reduces to ι/N when uit are i.i.d. across i.

Aggregation of the supply equation is performed using the vectorE, we have that yEt = φspt+λ
′ηt+uEt.

Identification and estimation of supply by GIV requires that the instrument satisfies exogeneity with respect

to the composite error term4

E((λ′ηt + uEt)zt) = 0. (6)

The first term in (6) has similar interpretation as in (5), i.e., size-weighted idiosyncratic supply shocks are

uncorrelated with the aggregate supply component, λ′ηt. Miraculously, the second term is exactly zero

E(uEtzt) = E(E′u·tu
′
·tΓ) = E(E′E(u·tu

′
·t|Γ)Γ) =

σ2
u

N
E(ι′Γ) = 0.5 (7)

The moment condition (7) is zero due to independence of Γi and uit by assumption and the sum-to-zero

property of Γ. For identification with largeN , we assume size to follow a power law in tail (see Assumption

4), thus Γi is stochastic and assumed to be independent of uit.6 So again, we have E(ztpt) 6= 0 and for this

simplified example, we avoid the need to estimate the factor structure since (i) due to uniform loadings, zt

4In the general case to follow, we estimate the factors and thus only exploit E(uEtzt) = 0 to estimate φs.
5One may wonder then why this particular form of Γ was selected. Appealing to Proposition 3 in GK, they establish that

Γ = S − E, for this example, turns out to be the optimal weight vector, amongst the class of weights which sum-to-zero. Γ is
optimal in the sense that it minimizes the asymptotic variance of the structural parameters.

6For a fixed N , it is not required to assume independence of Γi and uit because Γi can be treated as constant and (7) is zero
solely by virtue of the fact that ι′Γ = 0.
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is constructed from observables and (ii) zt is uncorrelated with the composite error term. If either of (i) or

(ii) fails to hold, estimation of the factor structure becomes a preliminary step, as in our general procedure.

Nevertheless, (6) leads to the following simple supply elasticity estimator pφs =
∑
t yEtzt∑
t ptzt

. The intuition here

is that, again, zt places larger weights on the idiosyncratic shocks to larger oil producers, these granular

shocks keep the simple average (or more generally precision-weighted, i.e., weighted heavily towards more

stable oil producers) supply curve fixed. That is, on average, precision-weighted supply responds to these

granular shocks only through their effects on prices (due to E((λ′ηt + uEt)zt) = 0) and at the same time

since smaller oil producers take as given price changes caused by these granular shocks, it will shift their

supply curves which enables consistent estimation of the supply elasticity.

Discussion. In the case of uniform loadings and uit i.i.d., the vector E and the instrument are con-

structed from observables, the large sample properties of pφs and pφd only entail fixed N , large T asymptotics

for which GK have laid out. In general, however, the cross-section will need to be exploited to estimate E

since one can not know if uit are i.i.d. across i. Indeed, the factors typically take care of a substantial portion

of the cross-sectional correlations but it is prudent to allow for cross correlations in uit since the exogeneity

condition for estimation of the supply elasticity heavily exploits the structure of Σu. Therefore, it will be

important to generally allow for some weak cross correlations in Σu, which our algorithm accommodates,

as discussed in Section 3 and Section 4.

Moreover, although homogeneous loadings was only an abstraction to illustrate the instrument, GK ad-

vocate the use of yΓt = ySt − 1
N

∑
i yit in practice even when the loadings are not uniform. In the general

heterogeneous loadings case, their instrument becomes

Zt := yΓt = uΓt + λ′Γηt. (8)

They label this instrument with a capital case convention, to distinguish it because it is no longer solely com-

posed of weighted idiosyncratic shocks, uΓt, as the λ′Γηt term is contaminating the instrument. However,

this clever formulation is possible because they advocate estimation of the factors in practice, which they

augment to their structural equations, thereby controlling for the second term which can potentially make

their moment conditions different from zero.

3. Feasible Granular Instrumental Variables

Homogeneous loadings are overly restrictive but relaxing this can be easily accommodated in practice

via PCA or iterative OLS-PCA methods, e.g., Bai (2003) or Bai (2009) in a preliminary stage to construct an
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estimate of the instrument.7 Although in GK’s asymptotic theory they assume homogeneous loadings and

that the instrument is exogenous with respect to the composite error, which circumvents the need to estimate

the factor structure, they indeed advocate augmenting their structural equations with estimated factors ei-

ther via period-by-period cross sectional regressions when the loadings are known or via PCA in the case of

non-parametric (unknown) loadings. GK abstract away from the sampling error in suggesting the use of aug-

mented factors, which only vanishes for both large N and T . Bai and Ng (2006) and Greenaway-McGrevy

et al. (2012) have developed the asymptotic distribution for structural parameters in factor augmented re-

gressions in time series and panel models respectively. In this paper, a variant of their corresponding result

is established in showing the sampling error from estimating the high dimensional precision matrix, the

factors, as well as the instrument is negligible in the asymptotic distribution of the structural parameters.

The general heterogeneous loadings case and uit non-i.i.d. Now we formulate the estimation

approach in the general case, which makes much heavier use of the cross-section. When we cross-sectionally

demean the supply equation and stack across i we obtain (recall ĂX denotes a generic demeaned variate)

ry·t = rΛηt + ru·t, (9)

which is estimable with vanilla PCA when the factor structure is strong.8 LettingQ = (IN−rΛ(rΛ′ rΛ)−1
rΛ
′
),

then Qry·t = Qru·t, completely purges the process of the common factors through the loading space. Pre-

multiplying the share weights gives the instrument

zt := S′Qry·t, (10)

= S′Qru·t := Γ′ru·t, (11)

where Γ := QS is unknown becauseQ is unknown, butQ is easily estimated from data. Once we have pQ,

which just replaces rΛ with p

rΛ , we form pzt = S′ pQry·t from observables. Importantly, when λi = λ ∀i, then

Γ = (IN − rΛ(rΛ′ rΛ)−1
rΛ
′
)S = S − ι/N as in the previous case with homogenous loadings. This gives

7For our theory, we assume a balanced panel. However, in the case of unbalanced panels with data missing at random (which
is beyond the scope of this paper) one can instead use the Bai et al. (2015) method or Bai and Ng (2021b) method to estimate
the factor structure and the instrument. In the more realistic case where data are not missing at random, one can use the methods
developed in Xiong and Pelger (2019). Remark?

8Strong factors in the sense that Λ′Λ/N
p→ ΣΛ > 0; thus we assume the factors are strong/pervasive in the sense that a

significant fraction of cross-sectional units are affected by their presence. Consistent estimation of weak factors is beyond the scope
of this paper, see for example Onatski (2012), Bailey et al. (2016) or Freyaldenhoven (2021) for suitable conditions for which it
is possible. Even when estimable, their convergence rates are slower relative to estimates of strong factors, e.g., see Bai and Ng
(2021a). This will generally require modifications to the limiting distributions we derive in this paper.
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rise to a more general demand elasticity estimator

pφd = pφd(pz) =

∑
t dtpzt∑
t ptpzt

. (12)

In Section 6, we show that the demand elasticity can be estimated as if the infeasible instrument, zt, is used.

In the case of the supply elasticity, the estimator will additionally depend on the estimated (potentially

high dimensional) precision matrix. That is, pφs = pφs(pz, pΣ
−1

u ). This creates the need to jointly estimate

pΣ
−1

u to form pE in order to aggregate the panel to estimate pφs. We propose a simple iterative procedure and

show that the supply elasticity can be estimated as if the infeasible precision matrix, Σ−1
u , and instrument,

zt, were used. More specifically, let yEt = φspt + λ′Eηt + uEt := f ′tθ
s + uEt, where θs =

´

φs λ′E

¯′

and f t =
´

pt η′t

¯′
are (1 + r) × 1 vectors. The remarkable result E(ztuEt) = 0, shown in (7) for

the previous simple example with homogeneous loadings, continues to hold in this setting as well, with

zt = S′Qỹ·t = S′Qũ·t and Γ = QS (recall that ι′Γ = 0)

E(uEtzt) = E
`

E′u·tũ
′
·tΓ

˘

= E(E′u·t(u·t − ūtι)′Γ) = E(E′u·tu
′
·tΓ)−E(E′u·tūtι

′Γ)

= E(E′E(u·tu
′
·t|Γ)Γ)− 0 =

1

ι′Σ−1
u ι

E
`

ι′Γ
˘

= 0. (13)

So we have that (where the estimated factors self-instrument)

E

«˜

zt

ηt

¸

· uEt

ff

= E

«˜

zt

ηt

¸

·
`

yEt − φspt − λ′Eηt
˘

ff

= 0. (14)

However, given our interest lies in inference for φs, it is useful to stack over t, yE = pφs+η λE+uE ,where

yE ,p, and uE are T × 1 vectors and y
pE

is the feasible counterpart of yE . LetM
pη = (IT − pη(pη′pη)−1

pη
′
),

then it follows from standard partitioned regression results that

pφs = pφs(pz, pΣ
−1

u ) =
pz
′
M

pη y pE

pz
′
M

pη p
. (15)

As pΣ
−1

u depends on pφs, (15) generally requires an iterative estimation procedure. To that end, note that if φs

were known, yit−ptφs = λ′iηt+uit follows an approximate factor structure. Thus, a covariance estimator,

pΣu, for the idiosyncratic part can be obtained following Fan et al. (2013) by applying thresholding to the

eigenvalue decomposition, 1
T

∑T
t=1(y·t − ιptφs)(y·t − ιptφs)′ =

∑N
i=1 γiξiξ

′
i, where γi and ξi are the

eigenvalues (sorted in decreasing order) and corresponding eigenvectors, respectively. More specifically, if
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φs were known, we have

pΣ(y·t−ιptφs) :=
r∑
i=1

pγipξi
pξ
′
i + pΣu

T
, (16)

where pΣ
T
u =

∑N
i=r+1 pγi

pξi
pξ
′
i = (pσTu,ij)N×N ,

pσTu,ij =


pσu,ii, i = j,

hij(pσu,ij), i 6= j,

(17)

and hij(·) is a generalized shrinkage function of Antoniadis and Fan (2001).9 Of course, φs can not be

known as it requires an estimate of Σ−1
u . Thus, we now address joint estimation of φs and Σ−1

u in what fol-

lows and subsequently establish that the sampling error in pE is negligible given some regularity conditions.

The iterative procedure is summarized in Algorithm 1 presented below.

Algorithm 1 FGIV for φs (when kx = 0):
• Step 1: Run PCA on (9) and obtain pzt = S′ pQry·t as the sample counterpart of (10).

• Step 2: Initialize pΣ
−1

u = IN .

• Step 3: Obtain y
pE
(pΣ
−1

u ) and pφs(pz, pΣ
−1

u ) as in (15).

• Step 4: Update pΣ
−1

u by inverting pΣ
T
u defined in (17), y

pE
(pΣ
−1

u ) and pφs(pz, pΣ
−1

u ).

• Step 5: Iterate Step 3 and Step 4 until convergence.

When r is unknown, one can augment Step 1 and estimate r using a procedure as in Bai and Ng (2002),

Onatski (2010) or Ahn and Horenstein (2013); we use the ER and GR methods of Ahn and Horenstein

(2013) (hereafter AH). For more details of the ER and GR methods, see Section C of the Supplementary

Appendix.

FGIV algorithm accommodating cross-section specific covariates. When kx 6= 0 then the

demeaning transformation from (9) results in ry·t = rΛηt+ rx·tβ+ ru·t, where rx·t is anN×kx matrix, which

leaves β
kx×1

as an additional parameter to estimate. β can be easily estimated by adapting the procedure of

Bai and Liao (2017), which is generalizing Bai (2009), to handle endogeneity of prices even after controlling

9Examples of hij(·) include hard thresholding hij(x) = x1(|x|≥ τij) and soft thresholding hij(x) = sgn(x)(|x|−τij)+. The
entry dependent threshold, τij > 0, can be defined asCωT

a

pαij , where pαij = 1
T

∑T
t=1(puitpujt−pσu,ij)2, pσu,ij = 1

T

∑T
t=1 puitpujt

and puit = yit − φspt − pλ
′
i pηt for some predetermined decreasing sequence ωT > 0 and C > 0. The choice of C can be data

driven; Fan et al. (2013) choose C through multifold cross-validation to maintain positive definiteness of pΣ
T
u (C). In our algorithm

below, we make use of the R package for POET, written by the authors Fan et al. (2013).
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for latent common factors. More specifically,

β(rΛ,ηt,Σ
−1
u ) =

˜

T∑
t=1

rx′·tΣ
−1
u rx·t

¸−1 T∑
t=1

rx′·tΣ
−1
u (ry·t − rΛηt), (18)

(ry·t − rx·tβ) = rΛηt + ru·t, (19)

since (19) follows a factor structure, the T×r factor matrix, η(β,Σ−1
u ), can be estimated using the principal

components estimator whose columns are the eigenvectors corresponding to the largest r eigenvalues of the

T×T matrix (ry··−rx··(β))Σ−1
u (ry··−rx··(β))′, where the T×N matrix rx··(β) :=

´

rx1·β . . . rxN ·β
¯

and

rΛ(β,Σ−1
u ) = 1

T

∑T
t=1(ry·t − rx·tβ)η′t(β,Σ

−1
u ). Thus, to deal with general (strictly exogenous) covariates,

xit, Algorithm 2 can be applied.

Algorithm 2 FGIV for φs (when kx 6= 0):

• Step 1: Initialize pβ = 0, pΣ
−1

u = IN .

• Step 2: Run PCA on (19) to obtain pηt(
pβ, pΣ

−1

u ) and p

rΛ(pβ, pΣ
−1

u ) as explained above.

• Step 3: Update pβ as the sample counterpart of (18).

• Step 4: Obtain pzt = S′ pQ(ry·t − rx·t pβ).

• Step 5: Initialize y
pE
(pΣ
−1

u ) and pφs(pz, pΣ
−1

u ) =
´

pz
′
M

pη p
¯−1

pz
′
M

pη (y
pE
− xi·β).

• Step 6: Update pΣ
−1

u by inverting pΣ
T
u defined in (17), where pγi and pξi are the eigenvalues and eigen-

vectors (sorted in decreasing order) corresponding to the sample analog of
1
T

∑T
t=1(y·t − ιptφs − x·tβ)(y·t − ιptφs − x·tβ)′ respectively.

• Step 7: Iterate Step 2 through Step 6 until convergence.

When r is unknown, one can augment Step 2 and iteratively estimate r using the ER and GR methods of

Ahn and Horenstein (2013).

The main takeaway is that when both (N,T ) are large, one can generalize the GIV estimators proposed

by GK along different dimensions; here we accommodate latent heterogeneous loadings, latent factors and

latent precision matrix (e.g., uit can be weakly cross-correlated and heteroskedastic). As mentioned earlier,

we call the proposed estimators of the elasticities in (12), Algorithm 1 and Algorithm 2 as FGIV estimators.

Remark 1 In principle, the theory for the estimators proposed in this paper allows forN � T . This case is

relevant in many empirical settings (e.g., empirical industrial organization and finance). However, it may be

beneficial to avoid estimating the precision matrix for cases where N � T (e.g., empirical macro). But, as

(7) and (13) show, to have a valid instrument for which the moment equation is exactly zero, we must specify
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Σu correctly. This is the primary motivation for estimating the general precision matrix in Algorithms 1

and 2. In order to avoid estimating the precision matrix, we must assume (potentially erroneously) uit are

cross-sectionally independent. We now analyze the consequences of making this assumption when in fact

uit are cross-sectionally correlated. Suppose we erroneously assume cross-sectional independence, then the

vector E reduces to ι/N and we end up with the following moment equation

E(uEtzt) = E
`

E′u·tũ
′
·tΓ

˘

= E(E′u·t(u·t − ūtι)′Γ)

= E(E′E(u·tu
′
·t|Γ)Γ)−E(E′u·tι

′Γ)ūt =
1

N
E(ι′ΣuΓ)− 0 = o(1). (20)

Hence, zt is not a valid instrument in the traditional sense because we allow E(uEtzt) 6= 0 for any given

sample. Nevertheless, this moment converges to zero for large N . Indeed, the moment satisfies E(uEtzt) =

o p1q under our regularity assumptions, and thus, zt is asymptotically a valid instrument.10 This insight

reveals that this moment is approaching zero, hence it may prove to be beneficial to aggregate the panel,

yit, using weights ι/N regardless of the covariance structure. The immediate implication is that pφs =

pφs(pz, IN ), so there is no need for an algorithmic estimation procedure, the simple analytical formula for the

supply elasticity estimator with potentially misspecified covariance structure for uit is given by pφs(pz, IN ) =

pz
′
M

pη ȳ

pz
′
M

pη p
, where ȳ stacks ȳt = 1

N

∑N
i=1 yit for each t = 1, . . . , T ; this estimator is essentially Step 2 and

Step 3 of Algorithm 1. Asymptotically, it holds that pφs(pz, pΣ
−1

u ) = pφs(pz, IN ) + op(1). However, regarding

performance in finite samples, when uit are not i.i.d. and when N � T , it is not clear ex-ante if pφs(pz, IN )

will outperform pφs(pz, pΣ
−1

u ). When N � T one would expect ex-ante that pφs(pz, IN ) will be less efficient

than pφs(pz, pΣ
−1

u ) since the former is not optimally weighting the observations, whereas the latter is. When

uit are indeed i.i.d. we would expect pφs(pz, IN ) to perform better.11

4. Efficient GMM Estimation: Factor-Augmented FGIV

We now proceed to overidentify the elasticities, which yields overidentified FGIV estimators. We will

refer to the overidentified FGIV estimators simply as efficient GMM estimators and the just identified FGIV

estimators simply as FGIV estimators. It will be of interest to practitioners to see if overidentification is pos-

sible for the supply and demand equations. In this section, we show that the system is indeed overidentified

10It can be shown that ι′ΣuΓ = ι′ΣuQS ≤ ι′ΣuSγmax(Q) =
∑
i,j σu,ijSj ≤

´∑
i,j σ

2
u,ij

¯1/2

||S||22= ||Σu||F ||S||22≤
||Σu||1||S||22≤ O(mN )Θp(1) = o(N)Θp(1) = o(N), where mN is defined in Assumption 3 and mN = o(N).

11In unreported simulations where N � T and uit are non-i.i.d., we find that pφs(pz, pΣ
−1

u ) typically has a smaller bias than
pφs(pz, IN ) (in absolute terms, the bias of both estimators are very small) but with a slightly larger variance.
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to varying degrees for the supply and demand equations.

Demand. It is common practice to assume uncorrelated aggregate supply and aggregate demand shocks,

that is E(ηtεt) = 0. When we are willing to entertain this, then our supply factors, estimated via principal

components, serve as valid instruments in estimation of the demand elasticity, rendering an overidentified

parameter. In fact, the theory for using principal components as instruments was laid out in Bai and Ng

(2010) under strong instrument asymptotics, as well as Kapetanios and Marcellino (2010) under many/weak

instrument asymptotics. In the remainder of this section, we let the GIV be denoted as zt,GIV := zt to

distinguish it from the full instrument vector we introduce with upper case conventions. Our full instrument

matrix for the demand equation is Zd
T×(1+r)

:=
´

zGIV η
¯

with E(Zdtεt) = 0; Zdt simply augments

factors to be used as instruments. Making use of the (1+r)×1 dimensional moment condition, the efficient

GMM demand elasticity estimator is defined as

pφdGMM = argmin
φd

ε′Zd

T
W d

Z ′dε

T
,

=

ˆ

p′ pZd
pΩ
−1

d
pZ
′

dp

˙−1

p′ pZd
pΩ
−1

d
pZ
′

dd, (21)

where W d
(1+r)×(1+r)

is an arbitrary positive definite weight matrix, but is optimally set as xW d = pΩ
−1

d , where

pΩd = 1
T

∑T
t=1

pZdt
pZ
′
dt(dt − ptpφ

d
2SLS)2. It is clear that (21) nests the FGIV estimator for the demand

elasticity as a special case. In this sense, pφdGMM will be robust to scenarios where zt is weaker.

Supply. In the same vein, the supply elasticity can always be overidentified given our identifying as-

sumptions because E(εtuEt) = 0 and thus εt can serve as an additional instrument. To estimate the entire

parameter vector for the supply equation, let Zs
T×(2+r)

:=
´

zGIV ε η
¯

, where the augmented factors

self-instrument as they are part of the supply equation. Then yE = fθs + uE and recall θs =
´

φs λ′E

¯′

and f t =
´

pt η′t

¯′
are (1 + r) × 1 vectors and the matrix f is T × (1 + r), which stacks f t. We have

E(ZstuEt) = 0; hence, making use of the (2 + r)× 1 dimensional moment conditions, the efficient GMM

supply elasticity estimator is defined as

pθ
s

GMM = argmin
θs

u′EZs

T
W s

Z ′suE
T

,

=

ˆ

pf
′
pZs

pΩ
−1

s
pZ
′

s
pf

˙−1
pf
′
pZs

pΩ
−1

s
pZ
′

sy pE
. (22)

where W s
(2+r)×(2+r)

is an arbitrary positive definite weight matrix, but is also optimally set as xW s = pΩ
−1

s ,
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where pΩs = 1
T

∑T
t=1

pZst
pZ
′
st(y pEt

− pf
′
t
pθ
s

GMM )2.12 It is clear that (22) nests the FGIV estimator for the

supply equation as a special case. As in the just identified case in (15), pθ
s

GMM in (22) depends on pΣ
−1

u ,

hence, will generally require an iterative estimation procedure. Algorithm 3 below generalizes Algorithm 1

by extending the joint estimation of the supply elasticity estimator and the precision matrix to the overiden-

tified case for when kx = 0. In view of Algorithm 2, Algorithm 3 can be further extended to the case when

kx > 0, but we omit the details for brevity.

Algorithm 3 Efficient GMM for φs (when kx = 0):
• Step 1: Run PCA on (9) and obtain pzt = S′ pQry·t as the sample counterpart of (10).

• Step 2: Initialize pΣ
−1

u = IN .

• Step 3: Estimate (21) to obtain pε, initialize xW s = ( pZ
′
s
pZs)
−1 and obtain pθ

s

2SLS( pZs, pΣ
−1

u ).

• Step 4: Obtain y
pE
(pΣ
−1

u ).

• Step 5: Update xW s =
´

1
T

∑T
t=1

pZst
pZ
′
stpu

2
pEt

¯−1
, where pu

pEt
= y

pEt
− pθ

s

GMM ( pZs, pΣ
−1

u )′ pf t and

construct pθ
s

GMM ( pZs, pΣ
−1

u ) as the sample counterpart of (22).

• Step 6: Update pΣ
−1

u by inverting pΣ
T
u defined in (17).

• Step 7: Iterate Step 4 through Step 6 until convergence.

In addition to efficiency gains, the efficient GMM estimators exhibit superior finite sample properties and

are also robust to the GIV itself being a weak instrument. We illustrate these points in greater detail in

Remark 5 and Section 7.

The intuition for the overidentified estimators can be seen from observing the reduced form equation

for (equilibrium) prices, pt = 1
φd−φs

`

uSt + λ′Sηt − εt
˘

. Clearly E(ptηt) 6= 0 and E(ptεt) 6= 0 and so

instrumental relevancy is established. Thus, we are effectively back to the classical approach of finding

exogenous supply shifters, in this case εt, to estimate the supply elasticity and finding exogenous demand

shifters, in this case ηt, to estimate the demand elasticity. With the exception that these shifters, ηt and εt

are unobserved. In what follows, we show that estimating ηt and εt has a negligible effect on the limiting

distributions of the estimators of demand and supply elasticities, respectively.

5. Assumptions

Below we lay out the assumptions needed to derive our main results. Assumption 1, Assumption 2 and

Assumption 3 are standard in the literature; see, for example, Bai (2003), Fan et al. (2013) and Bai and Liao
12In the case of the demand elasticity estimator in (21) we use 2SLS residuals to construct pΩd. However, we implement (22)

via Algorithm 3 which, by iteration, renders the residuals used to construct pΩs to be GMM residuals.
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(2017), but are relevant for a thorough understanding of the subsequent theorems. Whereas, Assumption 4

parts ii.) and iii.) are new so we provide more details.

Assumption 1 (Factor Error Structure) The composite error term in (2) is assumed to admit an (approx-

imate) factor structure representation vit := λ′iηt + uit, where ηt =
´

η1t . . . ηrt

¯′
is an r× 1 vector of

latent common factors and λi =
´

λ1i . . . λri

¯′
is an r × 1 vector of latent factor loadings. We assume

the factors are pervasive in the sense that Λ′Λ/N converges to some r × r positive definite matrix.

Assumption 2 (Strict Stationarity, Exponential Tails & Strong Mixing)

(A2i.) {ηt, uit, εt}t≥1 is strictly stationary and each with a zero mean.

(A2ii.) ∃ c1, c2 > 0 with γmin(Σu) > c2, max
j≤N
||γj ||< c1, c2 < γmin(cov(ηt)) ≤ γmax(cov(ηt)) < c1.

(A2iii.) Exponential tail: ∃ r1, r2 > 0 and b1, b2 > 0, such that for any s > 0, i ≤ N and j ≤ r,

P(|uit|> s) ≤ exp(−(s/b1)r1)), and P(|ηt,j |> s) ≤ exp(−(s/b2)r2)).

(A2iv.) Strong Mixing: ∃ r3, C > 0 ∀ T > 0, r−1
1 + r−1

2 + r−1
3 > 1, sup

A∈F 0
−∞, B∈F∞T

|P(A)P(B) −

P(AB)|< exp(−CT r3), where F0
−∞ and F∞T denote the σ-algebras generated by {(ηt, uit, εt) : t < 0}

and {(ηt, uit, εt) : t > T} respectively.

Assumption 3 (Sparsity on Σu) Let Σu = (σu,ij), for some q ∈ [0, 1/2), define

mN = max
i≤N

N∑
j=1

|σu,ij |q. (23)

We require that there is q ∈ [0, 1/2) such that mNω
1−q
N,T = o(1), where ωN,T =

b

log(N)
T + 1?

N
.

Assumption 4 (Identification by GIV)

(A4i.) E(ztuEt) = E(ztεt) = E(ZstuEt) = E(Zdtεt) = 0.

(A4ii.) The sizes S1, . . . , SN are drawn i.i.d. from an arbitrary distribution for which the tail of the size

distribution (i.e. above some threshold) follows a power law, with tail index, µ > 0

P(S > s) = cs−µ.

The tail index µ determines the probability of observing extreme values. We assume that Si is independent

of uit.

(A4iii.) Suppose the sizes are ordered in decreasing fashion as such: S(1) ≥ S(2) ≥ . . . ≥ S(N−1) ≥ S(N),

15



and we partition the cross-section as, Ndominant := {1, . . . , N1} and Nfringe := {N1 + 1, . . . , N} such

that Ndominant ∪ Nfringe := Nfull. Let Si = Si∑N
j=1 Sj

denote the normalized shares such that
∑

i Si = 1.

We assume ∀ i ∈ Ndominant, Si = Θp(1), and ∀ i ∈ Nfringe, Si = Op
`

1
N

˘

. We further assume that the

cardinality of the dominant units is fixed as N → ∞, that is, |Ndominant|= N1 and N1 does not rise with

N while the cardinality of the fringe grows with N , |Nfringe|= N −N1 →∞ as N →∞.

Remark 2 The first condition gives us instrumental exogeneity for the FGIV and efficient GMM estimators.

The second condition allows for instrumental relevance in the extension of a large N framework. An im-

portant implication of the second condition is that the Herfindahl index, hN,µ, has the following asymptotic

property

a

hN,µ = ||S||2 =


Θp p1q for µ ∈ (0, 1),

Op pgN,µq for µ ∈ [1, 2),

with Op pgN,µq � 1/
?
N . The variance of the just identified estimators is inversely proportional to the

Herfindahl index, that is V(pφjFGIV ) = O(h−1
N,µ) for j = s, d, reflecting the fact that the more concentrated

the market, the more precise the GIV methodology will be and also reflecting the fact that if the Herfindahl

converges to zero in the limit, the variance will diverge.13 However, if µ is slightly greater than 1, theoret-

ically identification breaks down for large N but in any finite sample the GIV could be relevant (precisely

due to Op pgN,µq� 1
?
N ). Nevertheless, we rule this case out for the purpose of asymptotic inference.14

Note, that the third condition is consistent with µ ∈ (0, 1), but is slightly stronger. The third condition

is also a generalization of the so-called "granular" weights in the panel data literature, say w
N×1

, which are

typically assumed to satisfy ||w||2= O
´

1?
N

¯

and wi
||w||2 = O

´

1?
N

¯

∀ i. The third condition allows the

share vector to be partitioned into a dominant part and a fringe part. That is, S =
´

S′d S′f

¯′
where Sd

is N1 × 1, is the dominant part and Sf is N2 × 1, is the fringe part; with N1 + N2 = N , the key being

that N1(N) = N1 is fixed while N2(N) → ∞ as N → ∞. This assumption can be empirically justified

in concentrated markets, see Section 9 as an example; as well as mathematically justified, see Logan et al.,

1973.

Remark 3 Taking the variance of the equilibrium price process (assuming the covariances to be zero for

simplicity) we obtain V(pt) = 1
(φd−φs)2 (V(uSt) + V(λ′Sηt) + V(εt)) = Θ(1), where the last equality

13The derivation of the asymptotic behavior of hN,µ can be found in Supplementary Appendix B.
14For more details on instrumental relevance for large N , see Section 7.
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follows by the second and the third conditions in Assumption 4, details can be found in Lemma 1 in the

Appendix. Without these conditions, one would obtain the unsatisfactory result thatV(pt) = O(N), that is,

the variance of the price process is unbounded for each t as N → ∞. Effectively, Assumption 4 allows the

coexistence of a finite number of dominant units, in terms of size, whose cardinality can not grow with N ,

while at the same time allowing for a bounded variance for the aggregate endogenous variable pt.

6. Limiting Distributions

In this section, we first present the limiting distributions of the FGIV elasticity estimators, corresponding

to (12) and (15) with Algorithm 1. We then move on to the limiting distributions of the efficient GMM

elasticity estimators, corresponding to (21) and (22) with Algorithm 3.

Just identified demand elasticity. The just identified demand elasticity estimator in (12) is given by

pφd(pz) =

∑T
t=1 pztdt∑T
t=1 pztpt

=

∑T
t=1

∑
i,j Si

pQij ỹjtdt∑T
t=1

∑
i,j Si

pQij ỹjtpt
.

Hence,

pφd − φd =

˜∑
t

pztpt

¸−1 ˜∑
t

pztεt

¸

,

=

˜

T−1
∑
t

ztpt + T−1
∑
t

(pzt − zt)pt

¸−1 ˜

T−1
∑
t

ztεt + T−1
∑
t

(pzt − zt)εt

¸

.

From above, it is apparent we need to show 1
T

∑T
t=1(pzt − zt)εt = 1

T

∑T
t=1 S

′( pQ −Q)ỹ·tεt = op(1) and
1
T

∑T
t=1(pzt − zt)pt = 1

T

∑T
t=1 S

′( pQ −Q)ỹ·tpt = op(1). Indeed, we show in Lemma 2, in the Appendix,

that

T−1
T∑
t=1

S′( pQ−Q)ỹ·tεt = Op(C−2
NT ) +Op(C−2

NT ) · Op
ˆ

N

T

˙

+Op
ˆ

1
?
N
· C−1

NT

˙

, (24)

T−1
T∑
t=1

S′( pQ−Q)ỹ·tpt = Op(C−2
NT ) +Op(C−2

NT ) · Op
ˆ

N

T

˙

+Op
ˆ

1
?
N
· C−1

NT

˙

, (25)

where CNT := min{
?
N,

?
T}. The terms in (24) and (25) are op(1) whenN < T without any restrictions;

however, when T < N we require the mild restriction that N/T 2 → 0, i.e., if T < N , T 2 does not grow
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too slowly relative to N . Thus, making use of (24) and (25) we obtain

pφd − φd =

˜∑
t

pztpt

¸−1 ˜∑
t

pztεt

¸

=

˜

T−1
∑
t

ztpt

¸−1

T−1
∑
t

ztεt + op(1). (26)

The order of the sampling error generally relies, in part, on the order of the Herfindahl. The order of the

Herfindahl, in turn, critically depends on µ, the tail index of the size distribution (see Remark 2). Results on

the order of the Herfindahl as a function of the tail index parameter µ entails a total of six possible cases.

The results can be found in Table 6 of Supplementary Appendix B. However, for inference, we require

µ ∈ (0, 1) (regularly varying tails) or µ → 0 (slowly varying tails) as discussed in detail in the previous

section’s remarks. Given this, even after pinning down the order of the Herfindahl, the panel dimensions can

distinguish more cases as seen above. Nevertheless, as (24), (25) and (26) indicate, for consistency we have

the following result:

Theorem 1 (Consistency of pφd) Under Assumptions 1-4, as (N,T )
j→∞, we have that when N ≥ T and

N/T 2 → 0 or when N < T

pφd − φd p→ 0. (27)

All proofs are deferred tot the appendix. Now, multiplying (26) by
?
T

?
T (pφd − φd) =

˜

T−1
∑
t

ztpt

¸−1 ˜

1
?
T

∑
t

ztεt +Op

˜ ?
T

C2
NT

¸

+Op

˜

N
?
T · C2

NT

¸

+Op

˜ ?
T

?
N · CNT

¸¸

.

(28)

We can state the following result for the limiting distribution:

Theorem 2 (Limiting distribution for pφd) Under Assumptions 1-4 as (N,T )
j→ ∞, we have that when

N ≥ T , N/T 3/2 → 0 and
?
T/N → 0; or when N < T only

?
T/N → 0

?
T (pφd − φd) d→ N p0,vdq , (29)

where vd := m−2
zp vzε, vzε := E(z2

t ε
2
t ) and mzp := E(ztpt).
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vzε can be consistently estimated with

pvzε =


T−1

∑T
t=1 pz

2
t pε 2

t HC,

T−1
∑T

t=1 pz
2
t pε 2

t + 2 · T−1
∑m

j=1

ˆ

1− j

m+ 1

˙∑T
t=j+1 pztpεtpzt−jpεt−j HAC,

(30)

where HC and HAC denote heteroskedasticity-consistent and heteroskedasticity and autocorrelation con-

sistent estimators, respectively. Hence
?
T (pφd−φd)

pv
1/2
d

∼ tdf
d→ N (0, 1), where pv

1/2
d = pm−2

zp pv
1/2
zε , with

pmzp = T−1
∑T

t=1 pztpt also consistent formzp. We will see in Section 8 that the asymptotic theory provides

good approximations to the finite sample distribution.

Remark 4 As in GK, we express vd as inversely related to the Herfindahl, hN,µ, as claimed in Remark 2, for

insights on the role of market concentration on precision of the GIV. Assuming conditional homoskedasticity

of εt and homoskedasticity of uit, we have that

vzε = E(z2
t ε

2
t ) = σ2

ε · σ2
ũ ·E(S′QS). (31)

If λi = λ ∀i, then there is no need to purge the factor structure through the loading space. That is, a simple

cross-sectional demeaning transformation will suffice, Q = (IN − Λ̃(Λ̃′Λ̃)−1Λ̃′) = (IN −
ιι′

N
). We can

simplify equation (31) to (where we make use of the normalization that S′ι = 1)

vzε = σ2
ε · σ2

ũ ·
ˆ

E(S′S)− 1

N

˙

= σ2
ε · σ2

ũ ·
ˆ

E(hN,µ)− 1

N

˙

loooooooooooomoooooooooooon

E(z2
t )

,

whereas, mzp = E(ptzt) ∝ E(z2
t ). Hence,

vd ∝
σ2
ε · σ2

ũ ·
`

E(hN,µ)− 1
N

˘

“

σ2
ũ ·

`

E(hN,µ)− 1
N

˘‰2 =
σ2
ε

σ2
ũ ·

`

E(hN,µ)− 1
N

˘ . (32)

Thus, the more concentrated the market, the more precise the estimator. See Section 7 for a more general

treatment.

Just identified supply elasticity. For the just identified supply elasticity estimator in (15), upon conver-
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gence of Algorithm 1, we have that

pφs − φs =
´

T−1
pz
′
M

pη p
¯−1

loooooooooomoooooooooon

pA−1

T−1
pz
′
M

pη η · λ pE
loooooooooomoooooooooon

pB

+
´

T−1
pz
′
M

pη p
¯−1

T−1
pz
′
M

pη u pE
looooooomooooooon

pC

. (33)

We can write the scalars pA, pB and pC as follows

pA = T−1z′Mη p+ T−1(pz − z)′M
pη p

loooooooooomoooooooooon

a1

+T−1z′ (M
pη −Mη)p

loooooooooooomoooooooooooon

a2

, (34)

pB = T−1(pz − z)′M
pη ηλ pE

loooooooooooomoooooooooooon

b1

+T−1z′ (M
pη −Mη)ηλ

pE
loooooooooooooomoooooooooooooon

b2

, (35)

pC = T−1z′Mη uE + T−1(pz − z)′M
pη u pE

looooooooooomooooooooooon

c1

+T−1z′ (M
pη −Mη)u

pE
looooooooooooomooooooooooooon

c2

+T−1z′Mη (u
pE
− uE)

looooooooooooomooooooooooooon

c3

. (36)

It is shown in Lemma 3 of the Appendix that the terms ai, bi, cj are op(1) for i = 1, 2; j = 1, 2, 3, such that

pφs − φs =
`

T−1z′Mη p
˘−1 `

T−1z′Mη uE
˘

+ op(1). (37)

We can now state the following result:

Theorem 3 (Consistency of pφs) Under Assumptions 1-4, as (N,T )
j→∞, we have

pφs − φs p→ 0. (38)

Now, multiplying (37) by
?
T

?
T (pφs − φs) =

`

T−1z′Mη p
˘−1

˜

z′Mη uE
?
T

+Op

˜ ?
T

C2
NT

¸

+Op

˜ ?
T

?
NT · CNT

¸¸

+

`

T−1z′Mη p
˘−1

˜

Op

˜

N
?
T · C2

NT

¸

+Op

˜

mNω
1−q
N,T

?
T

¸¸

,

(39)

we can state the following result for the limiting distribution:

Theorem 4 (Limiting distribution for pφs) Under Assumptions 1-4, as (N,T )
j→ ∞, we have that when

N ≥ T , N/T 3/2 → 0 and
?
T/N → 0; or when N < T only

?
T/N → 0

?
T (pφs − φs) d→ N p0,vsq , (40)
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where vs := m
−2
zp̃ vzu, vzu := E(z 2

t (Mη uE) 2
t ) and mzp̃ = E(zt(Mη p)t).

vzu can be consistently estimated with

pvzu =


T−1

∑T
t=1 pz

2
t (M

pη puE) 2
t HC,

T−1
∑T
t=1 pz

2
t (M

pη pu pE)2t + 2 · T−1
∑m
j=1

ˆ

1− j

m+ 1

˙∑T
t=j+1 pzt(M pη pu pE)tpzt−j(M pη pu pE)t−j HAC.

(41)

Hence
?
T (pφ s−φs)
pv

1/2
s

∼ tdf
d→ N (0, 1), where pv

1/2
s = pm

−2
zp̃ pvzu, with pmzp̃ = T−1

∑T
t=1 pzt(M pη p)t consistent

for mzp̃. We will see in Section 8 that asymptotic theory provides good approximations to the finite sample

distribution.

Overidentified demand elasticity. For the overidentified demand elasticity estimator in (21), recall

the estimated instrument matrix consists of pZd =
´

pzGIV pη
¯

. For the strong factors, pη, estimated via

PCA, Bai and Ng (2010) showed that the generated regressors problem of Pagan (1984) does not arise

when both N and T are large. Thus, the sampling error in pη is negligible in consideration of the limiting

distribution of the overidentified demand elasticity estimate. In the previous section, we established that

estimation of pzGIV is also negligible under regularity, we can then use standard asymptotic theory to also

obtain asymptotic normality of the efficient GMM estimator in the case of demand since

pφdGMM − φd =
´

p′ pZd
pΩ
−1

d
pZ
′
d p

¯−1
p′ pZd

pΩ
−1

d
pZ
′

d ε,

=
´

p′Zd Ω−1
d Z

′
d p

¯−1
p′Zd Ω−1

d Z
′
d ε+ op(1). (42)

We can now state the following theorem:

Theorem 5 (Limiting distribution for pφdGMM ) Under Assumptions 1-4, withE(εtηt) = 0 ∀t, as (N,T )
j→

∞, we have that when N ≥ T , N/T 3/2 → 0 and
?
T/N → 0; or when N < T only

?
T/N → 0

?
T (pφdGMM − φd)

d→ N
´

0,V(pφdGMM )
¯

, (43)

where

V(pφdGMM ) =
`

m′Zdp Ω−1
d mZdp

˘−1
, (44)

withmZdp = E(Zdt pt) and Ωd = plim T−1
∑T

t=1
pZdt

pZ
′

dt(dt − ptpφd2SLS)2.
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V(pφdGMM ) can be consistently estimated using 2SLS residuals with

pV(pφdGMM ) =

¨

˝

p
′
pZd

T
pΩ
−1

d

pZ
′

d p

T

˛

‚

−1

, (45)

where pΩd = T−1
∑T

t=1
pZdt

pZ
′

dt (dt−ptpφd2SLS)2. It is well known thatV(pφdGMM ) attains the semiparamet-

ric efficiency bound, as shown by Chamberlain (1987), which reduces to (44) in the linear model. Standard

overidentification tests can be carried out since

Jd = T ·

˜

T−1
T∑
t=1

Zdt εt(pφ
d
GMM )

¸′

pΩ
−1

d

˜

T−1
T∑
t=1

Zdt εt(pφ
d
GMM )

¸

d→ χ2
dfd
, (46)

where the degrees of freedom is given by dfd = (1 + r)− kd = r and kd = 1 is the number of endogenous

regressors. We will see that simulation evidence shows that the size of the J-test is near the nominal size

when the true r is used and when rmax > r factors are used; which is important in empirical work when r

is typically estimated and it is generally known that an overestimate of r is preferred in order to prevent an

effect akin to omitted variable bias, see Moon and Weidner (2015) who formalize this notion.

Overidentified supply elasticity. The full instrument matrix for the overidentified supply elasticity

estimator in (22) consists of pZs =
´

pzGIV pε pη
¯

, (recall the factors self instrument here, as they are part

of the supply equation). We show that the sampling error in pZs is indeed negligible. This is again due to

both large N and T . As a result, Ωs
(2+r)×(2+r)

= plim T−1
∑T

t=1
pZst

pZ
′

st(y pEt
− pf

′
t
pθ
s

GMM )2 is sufficient

when constructing the efficient weighting matrix, even though it does not take the sampling error in our

estimate of φd into account (since pε = ε(pφdGMM )). That is

pθ
s

GMM − θs =

ˆ

f ′ pZs
pΩ
−1

s
pZ
′

sf

˙−1

f ′ pZs
pΩ
−1

s
pZ
′

suE ,

=
´

f ′Zs Ω−1
s Z

′
sf

¯−1
f ′Zs Ω−1

s Z
′
suE + op(1). (47)

We can now state the following theorem:

Theorem 6 (Limiting distribution for pθ
s

GMM ) Under Assumptions 1-4, as (N,T )
j→ ∞, we have that

when N ≥ T , N/T 3/2 → 0 and
?
T/N → 0; or when N < T only

?
T/N → 0

?
T (pθ

s

GMM − θs)
d→ N

´

0,V(pθ
s

GMM )
¯

, (48)
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where

V(pθ
s

GMM ) =
`

m′Zsf Ω−1
s mZsf

˘−1
, (49)

withmZsf = E(Zstf
′
t) and Ωs = plim T−1

∑T
t=1

pZst
pZ
′

st(y pEt
− pf

′
t
pθ
s

GMM )2.

V(pθ
s

GMM ) can be consistently estimated using GMM residuals with

pV(pθ
s

GMM ) =

¨

˝

pf
′
pZs

T
pΩ
−1

s

pZ
′

s
pf

T

˛

‚

−1

, (50)

where pΩs = T−1
∑T

t=1
pZst

pZ
′

st (y
pEt
− pf

′
t
pθ
s

GMM )2. Just as in the case of the overidentified demand elas-

ticity estimator, (49) achieves the semiparametric efficiency bound. Overidentification tests can be carried

out since

Js = T ·

˜

T−1
T∑
t=1

Zst u
pEt

(pθ
s

GMM )

¸′

pΩ
−1

s

˜

T−1
T∑
t=1

Zst u
pEt

(pθ
s

GMM )

¸

d→ χ2
dfs , (51)

where the degrees of freedom are given by dfs = 2 − ks = 2 − 1 = 1 and ks = 1 is the number of

endogenous regressors for the supply equation.

Remark 5 The asymptotic distribution of the FGIV and efficient GMM estimators of demand and supply

elasticities are established. However, the finite sample moments of these estimators, are unbounded to

different degrees. The extensive literature on the classic simultaneous equations model has documented

this result in many forms, see Mariano (1973), Hatanaka (1973), Sawa (1972), Takeuchi (1970), Ullah and

Nagar (1974), Sargan (1978), Fuller (1977) and Hillier and Srivastava (1981). A complete representation

of the above results was given by Kinal (1980). Kinal’s result for 2SLS states that, if the dependent variable,

explanatory variables and instruments are jointly normal, then E||pφj2SLS ||m< ∞ for m < `j − kj + 1,

j = d, s, where `j is the number of instruments and kj is the number of endogenous regressors.

Thus, the FGIV estimators for supply and demand exhibit no bounded absolute moments since `j = kj =

1, j = d, s. Whereas, the efficient GMM estimators exhibits `d − kd = (1 + r) − 1 = r bounded absolute

moments in finite samples for the case of demand and `s − ks = 2 − 1 = 1 bounded absolute moment in

finite samples for the case of supply. Hence, the efficient GMM elasticity estimators (overidentified FGIV

estimators) exhibit superior finite sample properties relative to their (just identified) FGIV counterparts. Of

course, in general, just identified instrumental variables estimators (with strong instruments) exhibit nice
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properties asymptotically.

7. Weak Instruments

The classical weak instruments framework introduced by Staiger and Stock (1997) has its analog in this

framework. Interestingly, here the "weak" aspect is partially linked to the Herfindahl index without making

the usual local-to-zero assumption as in Staiger and Stock (1997). Moreover, the traditional notion of local-

to-zero with 1?
T

scaling which matches the rate of convergence of the estimator need not necessarily apply

here for weak instruments to arise. More specifically, the locality to zero can be expressed as decaying

functions of N , except in the case of µ ∈ (0, 1), which we require for inference under our maintained

strong instruments assumption; whereas the rate of convergence is at the
?
T rate. To make things more

clear, it is useful to see the reduced form, equilibrium price equation again. Recall from (3), we have that

pt =
1

φd − φs
`

uSt + λ′Sηt − εt
˘

. Thus, it is clear that for finite N , Cov(pt, zt) > 0, which automatically

renders the GIV as relevant. However, for large N , writing zt = S′Qũ·t we observe that

V(S′Qũ·t) = E(S′QE(ũ·tũ
′
·t|Γ)QS) = E(S′QΣũQS), (52)

where Σũ := E(ũ·tũ
′
·t). The term inside the expectation can be simplified to

S′QΣũQS = S′QΣuQS +Op
`

N−1
˘

≤ S′QS γmax(Σu) +Op
`

N−1
˘

≤ S′S · γmax(Σu) · γmax(Q) +Op
`

N−1
˘

= O p1qhN,µ +Op
`

N−1
˘

, (53)

where we make use of γmax(Σu) = O p1q and the fact that a symmetric idempotent matrix, such as Q, has

eigenvalues of 0 or 1 and so γmax(Q) = 1. Taken together, (52) and (53) imply

V(zt) ≤ O p1qE(hN,µ) +O
`

N−1
˘

. (54)

As such, only when we are in a tail regime indexed by µ ∈ (0, 1) do we avoid the locality to zero. For

example, when µ > 2, we have that V(S′Qũ·t) ≤ O p1qE(hN,µ>2) = O
`

1
N

˘

. As a result, when µ > 2,

we have that zt = S′Qũ·t = Op
´

1?
N

¯

, so our equilibrium price equation simplifies to the following large
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N representation

pt =
1

φd − φs
`

λ′Sηt − εt
˘

+Op
ˆ

1
?
N

˙

. (55)

This would render the GIV as very weak since Cov(pt, uSt) = Cov(pt, zt) = O
`

1
N

˘

. Note that the

Cov(pt, uSt) and Cov(pt, zt) are of the same order precisely because γmax(Q) = 1. (55) is effectively

the relationship that was exploited by Mohaddes and Pesaran (2016), who assumed the so-called "granular"

weights of order O
`

1
N

˘

and used this weak correlation for large N to ultimately deduce that prices can be

treated as weakly exogenous.15

Consider the well documented and empirically relevant case where µ is just above 1 (Zipf’s law corre-

sponds to µ = 1); when µ ∈ (1, 2) we have hN,µ∈(1,2) = Op
´

1/(N
2− 2

µ )
¯

. So,

pt =
1

φd − φs
`

λ′Sηt − εt
˘

+Op
ˆ

1

N
1− 1

µ

˙

. (56)

Therefore, even thoughCov(pt, zt) = O
´

1/(N
2− 2

µ )
¯

, it is in fact decaying to zero so slowly for µ near 1,

that this potentially corresponds to a highly relevant instrument in any finite sample. That is,Cov(pt, zt) =

O
´

1/(N
2− 2

µ )
¯

, is potentially consistent with zt accounting for large fractions of aggregate variation, see

Gabaix (2011).

However, the case we theoretically entertain, for consistency and valid asymptotic inference, requires

µ ∈ (0, 1), which in conjunction with the additional regularity assumptions, renders Cov(pt, zt) = Θ(1)

even as N →∞.

Rothemberg Representations. Moreover, to further assess the likelihood of weak instruments, we

can analyze the efficient GMM estimator of the demand elasticity which uses both the GIV and the factors

as instruments and for comparison we can analyze the just identified demand elasticity estimator which

uses only the GIV as an instrument. We analyze the overidentified case with conditional homoskedasticity

(assuming only for remainder of this section). Define the projection matrix P Zd = Zd(Z
′
dZd)

−1Z ′d, the

2SLS estimator takes the form

pφdGMM − φd =
p′P Zd ε

p′P Zd p
. (57)

15"Granular" has a different definition in the panel data literature, which is referring to properties of weights and heuristically,
rules out the existence of dominant units, see e.g., Mohaddes and Pesaran (2016) and Remark 2. On the contrary, our usage of the
term "granular" follows Gabaix (2011) and is essentially referring to the existence of dominant cross-sectional units, see Section 1.
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Write the structural and reduced form equations as

d = pφd + ε

p = zπ′ + v, (58)

where z
T×(1+r)

=
´

uS η
¯

, π
(1+r)×1

=
´

1
φd−φs

1
φd−φs · λ

′
S

¯′
and v

T×1
= 1

φd−φs · ε.

Remark 6 The difference between z in (58) and our actual instrument, Zd, boils down to the difference

between their first columns, Zd[·, 1] = zGIV = ũ··QS and z[·, 1] = uS = u··S. In the case of the demand

equation, uS is ideal, whereas zGIV is a proxy. The reason the proxy is used is simply due to a simpler

theoretical exposition than a direct estimate for the ideal. Indeed zGIV is in fact a good proxy. For example,

the correlation between uS and zGIV is over 90% regardless of the complexity of our DGP in Monte Carlo

simulations even for small configurations of (N,T ). Moreover, in the case of the supply equation, uS is

no longer valid, whereas zGIV is; see (13). Mathematically, S′u·t − S′Qũ·t = S′P Λ̃u·t = S′P Λ̃P Λ̃u·t

for each t, where P Λ̃ is the symmetric and idempotent projection matrix in the demeaned loading space.

Hence, S′P Λ̃P Λ̃u·t is zero when the loadings and the share vector are asymptotically uncorrelated and/or

the loadings and idiosyncratic errors are asymptotically uncorrelated; which explains why our simulations

exhibit near perfect correlation.

Then, it follows from Rothenberg (1984) that (57) has the following illustrative representation

µd,GMM (pφdGMM − φd) =

ˆ

σ2
ε

σ2
v

˙

1
2 X + (ω1/µd,GMM )

1 + 2Y/µd,GMM + (ω2/µ2
d,GMM )

, (59)

where X = π′z′P Zdε/(σ
2
επ
′z′zπ)

1
2 and Y = π′z′P Zdv/(σ

2
vπ
′z′zπ)

1
2 are bivariate standard normal

variates with correlation coefficient ρ. The random variable ω1 = v′P Zdε/(σ
2
εσ

2
v)

1
2 has mean equal to

rank(PZd)ρ = (r + 1)ρ and variance equal to (r + 1)(1 + ρ2). The random variable ω2 = v′P Zdv/σ
2
v

has mean equal to rank(P Zd) = (r + 1) and variance equal to 2(r + 1). Finally, µd,GMM is the square

root of the so-called concentration parameter µ2
d,GMM = π′z′zπ/σ2

v for the demand equation. µd,GMM

plays the role of
?
T , that is, when µd,GMM is large, µd,GMM (pφdGMM − φd) is well approximated by a

N (0, 1) variate. Large values of µd,GMM are consistent with large values of T , i.e., our typical large sample

approximations. However, large values of µd,GMM are also consistent with small values of σ2
v , regardless

of the value of T , i.e., small-σ asymptotics, as introduced originally by Kadane (1971). More insights can
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be gained by simplifying the concentration parameter for the demand elasticity

µ2
d,GMM = π′z′zπ/σ2

v =
1

σ2
v

·
´

π1 π2
′
¯

˜

u′SuS u′Sη

η′uS η′η

¸˜

π1

π2

¸

≈
u′S uS + λ′SλS

σ2
ε

, (60)

where the approximation is due to ignoring the terms involving η′uS , which are zero only in expectation.

(60) is very intuitive, if the proportion of the volatility in the GIV and size-weighted common components

dominate the volatility of the demand shocks, so that the ratio in (60) is large, then the concentration param-

eter µd,GMM will be large and one should expect good approximations to the finite sampling distributions.

On the other hand, when only the GIV is used as an instrument, if we redefine z
T×1

= uS , π
1×1

= 1
φd−φs

and v
T×1

= 1
φd−φs · (ε + ηλS) from (58) and simply follow the logic above through (60), we arrive at the

following concentration parameter for the FGIV estimator

µ2
d,FGIV ≈

u′SuS
λ′SλS + σ2

ε

. (61)

Thus, by inspection of (60) against (61) we can see that in the case of the just identified FGIV estimator,

we would need the volatility of just the GIV to drive up the ratio of the concentration parameter, µ2
d,GIV ,

and the size-weighted common component would be working against us (in the denominator), in this case,

instead of working for us as in µ2
d,GMM .

Although the literature on granularity has demonstrated that idiosyncratic shocks alone can be quite

volatile, in this context, we advocate starting with the efficient GMM estimators, since the J-test is well

sized as illustrated with simulation evidence, because the efficient GMM estimators can exhibit substantially

improved finite sample properties relative to the just identified estimators and are less likely to suffer from

weak instrument issues as well.

8. Monte Carlo

We simulate the following panel simultaneous equations system with latent factor structure that was

analyzed in the theoretical sections:

dt = φdpt + εt, yit = φspt + λ1iη1t + λ2iη2t + uit, ySt = dt,

pt =
1

φd − φs
`

uSt + λ′Sηt − εt
˘

, Si =

ˆ

i

N

˙− 1
µ

, Si =
Si∑N
j=1 Sj

.
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We consider two sets of simulated experiments. In Design 1, we let uit be i.i.d. to establish a set of baseline

results. In Design 2, we allow for sparse cross-sectional dependence in uit. In addition, in unreported

simulations, we simulate zt,GIV to be a weak instrument to illustrate that the efficient GMM estimators

are robust to this as they optimally shift their weights away from this point of weakness, whereas the just

identified estimators of GK and our FGIV will substantially deteriorate in their performances.

Design 1 - uit i.i.d. case. We set φs = 0.1 and φd = −0.3. We draw the supply factors and loadings

as, η
T×r

i.i.d.∼ N (0, Ir) and Λ
N×r

i.i.d.∼ N (0, σ2
ΛIN ), respectively, with r = 2.16 We draw the idiosyncratic

supply shocks as u
T×N

i.i.d.∼ N (0, σ2
uIN ⊗ IT ) and aggregate demand shocks as ε

T×1

i.i.d.∼ N (0, σ2
εIT ).

Design 2 - uit non-i.i.d. case. Everything is identical to Design 1, except that we no longer set

Σu = σ2
uIN for each t = 1, . . . , T . We generate a non-diagonal banded covariance matrix; as such, it

satisfies the sparsity requirement from Assumption 3.17 We consider the following banded idiosyncratic

covariance matrix with cross-sectional dependence and heteroskedasticity

σu,ij =


τ |i−j|

?
σu,iσu,j |i− j|≤ k; k ≥ 0,

0 |i− j|> k,

(62)

with bandwidth k = 3 and σ2
u,i are drawn from U [0.5, 1].

Target parameterizations. The variance of the price process takes the following form V(pt) =

c ·
`

V(uSt) +V(λ′Sηt) +V(εt)
˘

, where c =
1

(φd − φs)2
. This conveniently allows us to parameter-

ize the relative volatilities of the various components of equilibrium prices. We parameterize the indi-

vidual variances, σ2
u (for Design 1), σ2

Λ and σ2
ε such that ψu :=

V p
?
c · uStq

V(pt)
∈ (0.15, 0.35), ψu+η :=

V
`?
c · (uSt + λ′Sηt)

˘

V(pt)
∈ (0.45, 0.65), and ψu+ε :=

V p
?
c · (uSt + εt)q

V(pt)
∈ (0.45, 0.65).18 In Design 1,

we achieve an average across simulations of ψ̄u ≈ 0.23, ψ̄u+η ≈ 0.58 and ψ̄u+ε ≈ 0.65 which implies that

ψ̄η = 0.35 and ψ̄ε = 0.42. That is, the idiosyncratic shocks are not the dominating force in terms of ob-

served price volatility; however, their granular role is still substantial enough to draw inferences from when

used as instruments. In Design 2, we achieve an average across simulations of ψ̄u ≈ 0.27, ψ̄u+η ≈ 0.64 and

ψ̄u+ε ≈ 0.63.

Let pφj(m), j = d, s, denote the estimate in the mth monte carlo repetition, m = 1, ...,M . We report the

16The results do not change significantly if we draw the loadings from a Uniform distribution with non-zero mean.
17In unreported simulations, we find that the results do not change significantly if we generate a dense, non-diagonal Σu, such

as one arising from a cross-sectional AR(p) process. This is because although the cross-sectional AR(p) generates a dense matrix,
it is not too dense since the off-diagonals decay exponentially fast to 0 as |i− j|→ ∞.

18The interval for ψu is consistent with the literature on granularity, which has documented the proportion of aggregate fluctua-
tions traced back to idiosyncratic shocks falling in this specified range.
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monte carlo bias: Bias(pφj) =

ˆ

1

M

∑M
m=1

pφj(m)− φj
˙

for j = d, s; and square root of the monte carlo

MSE: RMSE(pφj) =

c

1

M

∑M
m=1(pφj − φj)2 for j = s, d. Additionally we report the size of the t-test for

all estimators and size of the J-test for the efficient GMM estimators. The results are reported in Table 1

(Design 1) and Table 2 (Design 2). In Table 1, we multiply the bias by 100 because all the estimators perform

quite well in this ideal setting. For nearly each configuration of (N,T ) the GMM estimators perform the

best, in terms of bias and RMSE, as the theory suggests. Importantly, the t-test and J-test is well sized even

when rmax = 3 > r = 2 factors are used. In Table 2, we report the bias as is, and we find that for a

given configuration of (N,T ) the bias is two orders of magnitude larger in Design 2 relative to Design 1.

Nevertheless, as the theory would suggest, the efficient GMM estimators perform the best in terms of bias

and RMSE. There are some size distortions for the supply side estimators but the distortions are decreasing

in N for a given T .

9. Application to Global Crude Oil Markets

The data construction follows the recent literature: Kilian (2009), Caldara et al. (2019), Baumeister and

Hamilton (2019) (hereafter BH) and GK. The following is a breakdown of the raw variables collected for

Jan. 1985 - Dec. 2015 (T = 372 months): monthly oil production for N = 22 countries from the U.S.

Energy Information Administration (hereafter EIA); world oil production from the U.S. EIA; monthly oil

prices based on the refiner acquisition cost of imported crude oil from the U.S. EIA; U.S. CPI from the

St. Louis FRED database; monthly change in inventories from BH; monthly industrial production index

from BH. The CPI is used to deflate nominal oil prices to arrive at the real price of oil, which is highly

non-stationary. Following the aforementioned literature, we take the logarithm of the real price of oil series

and then take first differences. We apply the same transformation to the monthly oil production for each

country. These transformations render the production and price series stationary as confirmed by a host of

Dickey-Fuller tests. For ensuring the tail index of the size-distribution, µ, is in the region the theory requires,

we provide visual evidence along with 6 estimates of µ that all fall beneath 1, see Table 3. Also, see Figure

1, Figure 2 & Figure 3.

Let yit denote the log difference of the oil supply for country i at time t and pt denote the log difference

of the real price of oil. Following GK, we estimate an OPEC factor using information on the cross-section

of countries (i.e., known loadings). To that end, let oit denote a dummy variable equal to 1 if country i is

an OPEC member at time t and note that oit = oi for most i, with the exception of Gabon and Ecuador in

our sample. Finally, ct−1 denotes a 4× 1 vector containing: lagged pt, lagged world supply growth, lagged
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change in inventories, and lagged growth in industrial production. The system is given as follows

yit = φspt + γs
′ct−1 + oitηOPEC,t + λ′iηt + uit, (63)

dt = φdpt + γ ′dct−1 + λdηOPEC,t + εt, (64)

N∑
i=1

Sit yit = dt; (65)

where we lose the observation t = 1 due to differencing. The cross-sectionally demeaned supply equation

is given by the approximate factor model,

ỹit = yit −
1

N

∑
i

yit = õitηOPEC,t + λ̃
′
iηt + ũit = õitηOPEC,t + ẽit, (66)

where ẽit := λ̃
′
iηt+ ũit. Note that (66) implies we can obtain the OPEC factor, ηOPEC,t, via cross-sectional

regression, for each t > 1, that is pηOPEC,t = (õ′·tõ·t)
−1õ′·tỹ·t. Hence, in our preliminary stage, we extract

pηOPEC,t and then run PCA on pẽit = ỹit−pηOPEC,t to extract the latent demeaned loadings and latent factors.

Define y∗·t := ỹ·t − x̃·tpηOPEC,t, then we purge the latent factors via Q as in the main text: Qy∗·t = Qũ·t.

However, when forming the GIV, there is a minor difference that we have time-varying size-weights, so

we no longer construct zGIV with a time-invariant share vector Si, but rather we weight each idiosyncratic

component at time t with its corresponding share from time t − 1 to avoid endogeneity issues arising from

contemporaneous weighting

zGIV
(T−1)×1

=

¨

˚

˚

˚

˚

˝

S′·1Qỹ
∗
·2

S′·2Qỹ
∗
·3

...
S′·T−1Qỹ

∗
·T

˛

‹

‹

‹

‹

‚

. (67)

Besides these modifications from the stylized model in the theory, we estimate the elasticities using the

estimators outlined in the main text. The number of factors, r, is estimated via the AH procedures (as

outlined in the Supplementary Appendix C). The ER method of AH estimated prER = 1, while the GR

method estimated prGR = 3; with kmax = 10. To be safe, we take pr = prGR + 1.

Supply results. The results for the supply elasticity are presented in Table 4. In Table 4, the 2nd

column displays GK’s results. The instrument GK use is given by (8) and their dependent variable is simply

the cross-sectional average of the log difference of oil supply (i.e., E = ι/N ). Our results are in columns 3

and 4. In contrast to (8), the instrument we use in column 3 purges the common factors through the loading
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space. The instrument we use in column 4 also adds an estimate of the unobserved aggregate demand shocks,

pεt, to our FGIV. Moreover, the dependent variable we use is weighted using the estimated precision vector

pE, which allows for cross-sectional correlations and heteroskedasticity in uit. These differences lead to

significantly different results. Columns 2 and 3, which attempt to use only GIVs as instruments, both lead to

weak instruments as indicated by the first-stage F -statistics less than the rule of thumb, 10. Nevertheless, the

FGIV supply elasticity estimate (0.016) from column 3 (estimated via Algorithm 1) is roughly one third that

of GK’s (0.044). Whereas, our efficient GMM supply elasticity estimate (0.005) from column 4 (estimated

via Algorithm 3) is highly significant at the 1% level. Additionally, our results reveal that using estimates of

unobserved aggregate demand shocks as supply instruments indeed renders a strong instrument as indicated

by the first-stage F -stat of 14.33 in column 4. Moreover, the p-value for the J-statistic (0.11) fails to reject

the null hypothesis of a valid model. An F -stat greater than 10, coupled with a small J-statistic provides

statistical evidence in favor of our efficient GMM point estimate for the supply elasticity.

Demand results. Turning now to the demand elasticity in Table 5, the dependent variable GK use in

this case is the same as the one we use. However, the instruments are different. Column 2 displays GK’s

demand elasticity (-0.463), again using the instrument as in (8). Column 3 presents our result when using

only the FGIV as an instrument (-.0009), which is roughly 400 times smaller than GK’s estimate. Columns

4 through 7 sequentially add principal components to the instrument vector for our efficient GMM estimator

from column 3 until 4 principal components are used. Here we find that none of the models yield first-

stage F -statistics greater than 10. It is reassuring, however, that the J-statistic for columns 4 through 7 all

fail to reject the null of a valid model. Lastly, column 8 presents the Bai and Ng, 2010 estimator which

only includes the four principal components but not the FGIV as instruments, nearly all statistics remain

unchanged except that inclusion of the FGIV increases the t-stat by about 25%.

Taken together, our empirical results suggest that supply shocks, whether they be aggregate or idiosyn-

cratic supply shocks, albeit valid, do not serve as strong instruments for estimation of the demand elasticity.

Whereas, aggregate demand shocks indeed seem to be a strong source of exogenous variation to tease out

the supply elasticity.

10. Concluding Remarks

In this paper, we have further developed the GIV methodology introduced by Gabaix and Koijen (2021),

which takes advantage of panel data to construct instruments for estimation of structural time series regres-

sion models that involve endogenous regressors. This paper focuses on the underlying econometric issues
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involved in developing FGIV in a largeN and large T framework where the loadings are treated as unknown

parameters to be estimated before constructing the FGIV instrument. We further demonstrate that the sam-

pling error arising from estimating the instrument, factors and a high dimensional precision matrix does not

affect the limiting distribution for the structural parameters of interest. We also overidentify the structural

parameters, which leads to new and improved results in the crude oil markets application and demonstrate

that the J-test is well sized with simulation evidence. Our Monte Carlo study illustrates that our estimators

and algorithms exhibit desirable performance with the finite sample distributions being well approximated

by the asymptotic distributions.

More fruitful areas of research would be empirical applications of the theoretical results derived in this

paper. Interesting theoretical extensions would be to allow for random slope coefficients with correlated

heterogeneity, the presence of weak factors and unbalanced panels with data not missing at random. We

are currently pursuing the dynamic panel data extension, as well as adapting the GIV methodology for

unit-specific endogenous variables.
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Table 1: Bias×100, RMSE, Size of t-test and Size of J-test for Design 1.

Finite sample properties for Design 1.

N T µ pφsFGIV
pφsGK

pφsGMM
pφ s,rmaxGMM

pφdFGIV
pφdGK

pφdGMM
pφd,rmaxGMM

1 30 400 0.92 0.0612 0.0910 0.0164 0.0273 -0.2760 -0.2723 0.1100 0.2100
(0.0344) (0.0330) (0.0204) (0.0204) (0.0152) (0.0173) (0.0079) (0.0080)
[0.0635] [0.1205] [0.0830] [0.0830] [0.0570] [0.0510] [0.0685] [0.0735]
{N.A.} {N.A.} {0.0540} {0.0625} {N.A.} {N.A.} {0.0490} {0.0465}

2 50 400 0.85 0.0071 0.0774 0.0174 0.0224 -0.1803 -0.1649 0.1462 0.2306
(0.0313) (0.0292) (0.0200) (0.0200) (0.0106) (0.0186) (0.0058) (0.0059)
[0.0650] [0.2685] [0.0710] [0.0715] [0.0555] [0.0555] [0.0700] [0.0740]
{N.A.} {N.A.} {0.0520} {0.0510} {N.A.} {N.A.} {0.0480} {0.0550}

3 100 400 0.80 0.0059 0.0159 0.0070 0.0102 -0.1886 -0.1558 0.1449 0.2330
(0.0287) (0.0271) (0.0196) (0.0197) (0.0068) (0.0112) (0.0039) (0.0040)
[0.0610] [0.2505] [0.0585] [0.0615] [0.0515] [0.0540] [0.0705] [0.0790]
{N.A.} {N.A.} {0.0495} {0.0485} {N.A.} {N.A.} {0.0440} {0.0425}

4 200 400 0.77 0.0192 0.0246 -0.006 0.0010 -0.1896 -0.1713 0.0524 0.1409
(0.0276) (0.0263) (0.0188) (0.0188) (0.0046) (0.0080) (0.0027) (0.0027)
[0.0600] [0.2660] [0.0545] [0.0535] [0.0410] [0.0450] [0.0625] [0.0635]
{N.A.} {N.A.} {0.0590} {0.0620} {N.A.} {N.A.} {0.0495} {0.0425}

5 500 400 0.75 -0.0013 -0.0078 -0.0097 -0.0102 0.2501 0.2255 -0.0893 -0.1747
(0.0287) (0.0280) (0.0188) (0.0187) (0.0028) (0.0030) (0.0016) (0.0016)
[0.0545] [0.0840] [0.062] [0.0625] [0.0540] [0.0590] [0.0680] [0.0730]
{N.A.} {N.A.} {0.0560} {0.0535} {N.A.} {N.A.} {0.054} {0.051}

Notes: We report Bias×100, (RMSE), [t-test],and {J-test} (if applicable) with a nominal size of 5%. pφsFGIV , pφsGMM ,
pφs,rmaxGMM estimated with Algorithm 1, 3, 3 with r = 2 and rmax = 3, respectively and pφsGK , pφdGK both use (8) as an
instrument. pφdFGIV , pφdGMM , pφd,rmaxGMM estimated with (12), (21), (21) with r = 2 and rmax = 3, respectively. µ set to
maintain hN,µ = 0.12 across all configurations of (N,T ). ψ̄u = 0.23, ψ̄u+η = 0.58, ψ̄u+ε = 0.65.
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Table 2: Bias, RMSE, Size of t-test and Size of J-test for Design 2.

Finite sample properties for Design 2.

N T µ pφsFGIV
pφsGK

pφsGMM
pφ s,rmaxGMM

pφdFGIV
pφdGK

pφdGMM
pφd,rmaxGMM

1 30 400 0.92 0.0263 0.0225 0.0080 0.0089 -0.0021 -0.0016 0.0003 0.0009
(0.0365) (0.0259) (0.0150) (0.0151) (0.0371) (0.0368) (0.0148) (0.0161)
[0.2730] [0.2895] [0.12450] [0.1410] [0.0500] [0.0510] [0.0560] [0.0600]
{N.A.} {N.A.} {0.1895} {0.3035} {N.A.} {N.A.} {0.05200} {0.0465}

2 50 400 0.85 0.0144 0.0136 0.0058 0.0063 -0.0009 -0.0007 0.0007 0.0013
(0.0245) (0.0219) (0.0154) (0.0155) (0.0381) (0.0327) (0.0112) (0.0117)
[0.4030] [0.4090] [0.1245] [0.1410] [0.0465] [0.0490] [0.0705] [0.0735]
{N.A.} {N.A.} {0.1185} {0.1615} {N.A.} {N.A.} {0.0425} {0.0405}

3 100 400 0.80 0.0070 0.0065 0.0029 0.0031 -0.0006 -0.0004 0.0009 0.0014
(0.0221) (0.0196) (0.0137) (0.0139) (0.0117) (0.0196) (0.0068) (0.0069)
[0.1365] [0.3865] [0.0925] [0.0915] [0.0465] [0.0455] [0.0530] [0.0590]
{N.A.} {N.A.} {0.0895} {0.0955} {N.A.} {N.A.} {0.0495} {0.0510}

4 200 400 0.77 0.0031 0.0029 0.0015 0.0016 -0.0011 -0.0009 0.0006 0.0010
(0.0216) (0.0197) (0.0139) (0.0139) (0.0071) (0.0130) (0.0044) (0.0045)
[0.0950] [0.3645] [0.0745] [0.0760] [0.0400] [0.0455] [0.0640] [0.0665]
{N.A.} {N.A.} {0.0590} {0.0615} {N.A.} {N.A.} {0.0510} {0.0515}

5 500 400 0.75 0.0014 0.0014 0.0006 0.0006 -0.0011 -0.0009 0.0004 0.0008
(0.0218) (0.0209) (0.0141) (0.0141) (0.0037) (0.0042) (0.0024) (0.0024)
[0.0690] [0.1125] [0.0670] [0.0690] [0.0515] [0.0570] [0.0605] [0.0675]
{N.A.} {N.A.} {0.0535} {0.0520} {N.A.} {N.A.} {0.0575} {0.0555}

Notes: We report Bias, (RMSE), [t-test],and {J-test} (if applicable) with a nominal size of 5%. pφsFGIV , pφsGMM , pφs,rmaxGMM

estimated with Algorithm 1, 3, 3 with r = 2 and rmax = 3, respectively and pφsGK , pφdGK both use (8) as an instrument.
pφdFGIV , pφdGMM , pφd,rmaxGMM estimated with (12), (21), (21) with r = 2 and rmax = 3, respectively. µ set to maintain
hN,µ = 0.12 across all configurations of (N,T ). ψ̄u = 0.23, ψ̄u+η = 0.58, ψ̄u+ε = 0.65.

Table 3: Tail Index Estimates by Various
Methods

Tail index estimator pµ

MLE 0.4216

OLS 0.5095

Percentiles Method 0.8987

Modified Percentiles Method 0.9000

Geometric Percentiles Method 0.5208

Weighted Least Squares 0.3725

Notes: The estimates are for a month selected
at random. However, the estimates do not
change significantly if we estimate pµ for each
month and average across months.
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Table 4: Global crude oil market: supply elasticity

pφsGK
pφsFGIV

pφsGMM

Supply instruments ZGIV zGIV Zs = (zGIV , ε)

Dep. variable ȳ y
pE

y
pE

p 0.044 0.016 0.005

t-stat (1.43) (1.35) (4.32)

(N,T ) (21, 370) (21, 370) (21, 370)

J-stat p-value {N.A.} {N.A.} 0.11

First stage F -stat < 10 < 10 14.33

First stage R2 0.26 0.14 0.21

Notes: pφsGK is estimated using (8) as the instrument; whereas pφsFGIV ,
and pφsGMM are estimated using Algorithm 1 and 3 respectively. See
Section 9 for more details. The t-stat is reported in parenthesis below
coefficient estimates. The coefficient estimates on pηt,pηOPEC,t and ct−1
are omitted for brevity.

Table 5: Global crude oil market: demand elasticity

pφdGK
pφdFGIV

pφdGMM (r) FGMM, BN

Demand instruments ZGIV zGIV (zGIV ,η[, 1]) (zGIV ,η[, 1 : 2]) (zGIV ,η[, 1 : 3]) (zGIV ,η[, 1 : 4]) η[, 1 : 4]

Dep. variable d d d d d d d

p −0.463 −0.0009 −0.0009 −0.0003 −0.0003 −0.0003 −0.0003

t-stat (−3.54) (−0.88) (−0.89) (−0.87) (−0.93) (−1.01) (−0.80)

(N,T ) (21, 370) (21, 370) (21, 370) (21, 370) (21, 370) (21, 370) (21, 370)

J-stat p-value {N.A.} {N.A.} 0.83 0.67 0.85 0.93 0.98

First stage F -stat < 10 < 10 < 10 < 10 < 10 < 10 < 10

First stage R2 0.58 0.12 0.12 0.15 0.15 0.16 0.16

Note: pφdGK is estimated using (8) as the instrument; whereas pφdFGIV , and pφdGMM are estimated using (12) and (21) respectively. See Section 9 for more
details. The t-stat is reported in parenthesis below coefficient estimates. The coefficient estimates on pηOPEC,t and ct−1 are omitted for brevity. The final
column represents the Bai and Ng (2010) factor GMM estimator (FGMM).
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Appendix

In this appendix, we prove Theorems 1-6, which require 4 lemmas. Lemmas 1, 2 and 3 are included in

this appendix while Lemma 4 is deferred to Appendix B of the Supplementary Appendix.

Lemma 1 Under Assumptions 1-4, we have that

(i.)

˜

1

T

T∑
t=1

ỹitεt

¸2

= Op
ˆ

1

T

˙

(68)

(ii.) V(pt) = Θ(1) (69)

(iii.)

˜

1

T

T∑
t=1

ỹitpt

¸2

= Op p1q (70)

(iv.)

N∑
i=1

N∑
j=1

˜

1

T

T∑
t=1

Siỹjtεt

¸2

= Op
ˆ

N

T

˙

. (71)

Proof of Lemma 1: For (i.), we have that for large T , the sum is stochastically bounded by the central

limit theorem when scaled by T−1/2, thus the term inside the square is Op
´

1?
T

¯

. For (ii.), note that by

Assumption 3 we can decompose our share vector into a dominant and a fringe part: S =
´

S′d S′f

¯′

where Sd is N1 × 1, is the dominant part and Sf is N2 × 1, is the fringe part; with N1 + N2 = N . The

key being that N1(N) = N1 is fixed while N2(N) → ∞ as N → ∞. Recall that prices are given by

pt =
1

φd − φs
`

uSt + λ′Sηt − εt
˘

. For simplicity, suppose that supply and demand shocks are uncorrelated,

so that (ignoring the squared constant term)

V(pt) ∝ E(S′ΣuS) +E(S′ΛΛ′S) +V(εt) = E(S′ΣuS) +E(S′dΛdΛ
′
dSd) +E(S′fΛfΛ

′
fSf ) +V(εt)

≤ E(||S||22γmax(Σu)) +E(||Sd||22γmax(ΛdΛ
′
d)) +E(||Sf ||22γmax(ΛfΛ

′
f )) +O(1),

by Assumption 3 and Assumption 4; the first term consists of ||S||2, which is Θp(1) for µ ∈ (0, 1), see

Lemma 4 in Appendix B of the Supplementary Appendix, and γmax(Σu) = O(1) by assumption, the

second term is O(1) by Assumption 4 and the third term is O( 1
N ) · O(N) = O(1) by Assumption 4. For

part (iii.),

˜

1

T

T∑
t=1

ỹitpt

¸

≤

˜

1

T

T∑
t=1

ỹ2
it

¸

1
2

·

˜

1

T

T∑
t=1

p2
t

¸

1
2

=

ˆ

1
?
T
||ỹi·||

˙

·
ˆ

1
?
T
||p||

˙

= Op(1).
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For part (iv.), we have

N∑
i=1

N∑
j=1

˜

1

T

T∑
t=1

Siỹjtεt

¸2

= I + II + III + IV,

where I = Op
`

1
T

˘

= op(1), II = Op
`

1
T

˘

= op(1), III = Op
`

1
NT

˘

= op(1) and IV = Op(NT ) which

are show below (where we repeatedly make use of part (i.) as well as the decomposition of the share vector

into fringe and dominant components)

I =

N1∑
i=1

S2
i

N1∑
j=1

˜

1

T

T∑
t=1

ỹjtεt

¸2

= ||Sd||2·Op
ˆ

N1

T

˙

= op(1)

II =

N∑
i=N1+1

S2
i

N∑
j=N1+1

˜

1

T

T∑
t=1

ỹjtεt

¸2

= ||Sf ||2·Op(N2) · Op
ˆ

1

T

˙

= Op
ˆ

1

N

˙

Op
ˆ

N2

T

˙

= op(1)

III =

N∑
i=N1+1

S2
i

N1∑
j=1

˜

1

T

T∑
t=1

ỹjtεt

¸2

= ||Sf ||2·Op
ˆ

N1

T

˙

= op p1q

IV =

N1∑
i=1

S2
i

N∑
j=N1+1

˜

1

T

T∑
t=1

ỹjtεt

¸2

= Op
ˆ

N

T

˙

by Assumption 4 and Lemma 1 part (i.) �

Lemma 2 Under Assumptions 1-4, we have that

1

T

T∑
t=1

(pzt − zt)εt =
1

T

T∑
t=1

S′( pQ−Q)ỹ·tεt = Op(C−2
NT ) +Op(C−2

NT ) · Op
ˆ

N

T

˙

+Op
ˆ

1
?
N
· C−1

NT

˙

(72)

1

T

T∑
t=1

(pzt − zt)pt =
1

T

T∑
t=1

S′( pQ−Q)ỹ·tpt = Op(C−2
NT ) +Op(C−2

NT ) · Op
ˆ

N

T

˙

+Op
ˆ

1
?
N
· C−1

NT

˙

,

(73)
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where CNT = min{
?
N,

?
T}.

Proof of Lemma 2: For the first term, it is well known that the loadings are only identified up to scale,

so the usual notion of consistency is altered to consider consistency up to a rotation instead. For notational

ease we will let Λ̃ be denoted by Λ. Recall, Q = IN − PΛH−1 is an idempotent matrix spanned by the

null space of ΛH−1 and is invariant to an orthogonal transformation. Let pD =
pΛ
′
pΛ

N
=

1

N

∑N
i=1

pλipλ
′
i and

D =
H−1′

(Λ′Λ)H−1

N
=

1

N
H−1′ ∑N

i=1 λiλ
′
iH
−1, then we have (omitting subscripts on P )

pQ−Q = pP − P

= N−1
pΛ

˜

pΛ
′
pΛ

N

¸−1

pΛ
′
−N−1ΛH−1

˜

H−1′
(Λ′Λ)H−1

N

¸−1

H−1′
Λ′

= N−1
”

pΛ pD−1
pΛ
′
−ΛH−1D−1H−1′

Λ′
ı

= N−1
”

(pΛ−ΛH−1 + ΛH−1) pD−1(pΛ−ΛH−1 + ΛH−1)′ −ΛH−1D−1H−1′
Λ′

ı

= N−1 r (pΛ−ΛH−1) pD−1(pΛ−ΛH−1)′ + (pΛ−ΛH−1) pD−1H−1′
Λ′ + . . .

· · ·+ ΛH−1
pD−1(pΛ−ΛH−1) + ΛH−1( pD−1 −D−1)H−1′

Λ′ s .

Therefore, 1
T

∑T
t=1 S

′( pQ−Q)ỹ·tεt = I + II + III + IV . Each term is analyzed below in order.19

I =
1

NT

T∑
t=1

S′(pΛ−ΛH−1) pD−1(pΛ−ΛH−1)′ỹ·tεt

=
1

N

N∑
i=1

N∑
j=1

(pλi −H−1λi)
′
pD−1(pλj −H−1λj) ·

1

T

T∑
t=1

Siỹjtεt

≤

¨

˝

1

N2

N∑
i=1

N∑
j=1

”

(pλi −H−1λi)
′
pD−1(pλj −H−1λj)

ı2

˛

‚

1
2

·

»

–

N∑
i=1

N∑
j=1

˜

1

T

T∑
t=1

Siỹjtεt

¸2
fi

fl

1
2

(74)

≤

¨

˝

1

N2

N∑
i=1

N∑
j=1

||(pλi −H−1λi)||2·|| pD−1||2·||(pλj −H−1λj)||2
˛

‚

1
2

· Op
ˆ

N

T

˙

= || pD−1||·

¨

˝

˜

1

N

N∑
i=1

||(pλi −H−1λi)||2
¸2

˛

‚

1
2

· Op
ˆ

N

T

˙

= Op(1) · Op(C−2
NT ) · Op

ˆ

N

T

˙

= Op(C−2
NT ) · Op

ˆ

N

T

˙

,

whereOp(C−2
NT ) follows from symmetry of Theorem 1 in Bai and Ng (2002), who show (while proving their

19In this Appendix, we use the Frobenius norm of a matrix A is ||A||F= rtr(A′A)s
1
2 =

”∑
i

∑
j |aij |

2
ı 1

2 , but omit the
subscript F for notational ease.
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Lemma 2) || pD−1|| is Op(1) which again follows symmetrically here. Note, the first inequality follows from

Cauchy-Schwarz applied to the summation in (i, j); the second inequality follows from Cauchy-Schwarz

applied again but to the left most term’s inner term in brackets being squared, in equation (74).

II =
1

NT

T∑
t=1

S′(pΛ−ΛH−1) pD−1H−1′
Λ′ỹ·tεt =

1

N

N∑
i=1

(pλi −H−1λi)
′
pD−1

N∑
j=1

H−1′
λj ·

1

T

T∑
t=1

Sj ỹitεt

loooooooooooooooooooomoooooooooooooooooooon

ai
r×1

= Op
`

C−2
NT

˘

, (75)

which is the same rate as I . In (75), we make use of the fact that N−1
∑

i(
pλi −H−1λi)

′ai = Op
`

C−2
NT

˘

,

which follows symmetrically from Lemma B.1 of Bai (2003). The same logic leads to III = Op
`

C−2
NT

˘

.

IV =
1

NT

T∑
t=1

S′ΛH−1( pD−1 −D−1)H−1′
Λ′ỹ·tεt =

1

N

N∑
i=1

N∑
j=1

Siλ
′
iH
−1( pD−1 −D−1)H−1′

λj ·
1

T

T∑
t=1

ỹjtεt

≤

¨

˝

1

N2

N∑
i=1

N∑
j=1

S2
i

”

λ′iH
−1( pD−1 −D−1)H−1′

λj

ı2

˛

‚

1
2

· Op p1q

≤

¨

˝

1

N2

N∑
i=1

N∑
j=1

S2
i · ||λ′iH−1||2·|| pD−1 −D−1||2·||H−1′

λj ||2
˛

‚

1
2

· Op p1q

= Op(C−1
NT ) ·

˜

1

N

N∑
i=1

S2
i · ||λ′iH−1||2

¸

1
2

· Op(1) · Op p1q

= Op(C−1
NT ) ·

¨

˝

1

N

»

–

N1∑
i=1

S2
i · ||λ′iH−1||2+

N∑
i=N1+1

S2
i · ||λ′iH−1||2

fi

fl

˛

‚

1
2

· Op(1) · Op p1q

≤ Op(C−1
NT ) ·

¨

˚

˝

1

N

˜

N1∑
i=1

S4
i

¸

1
2

·

˜

N1∑
i=1

||λ′iH−1||4
¸

1
2

+
1

N

¨

˝

N∑
i=N1+1

S4
i

˛

‚

1
2

·

¨

˝

N∑
i=N1+1

||λ′iH−1||4
˛

‚

1
2

˛

‹

‚

1
2

= Op
`

C−1
NT

˘

·
ˆ

Op
ˆ

N1

N

˙

+Op
ˆ

1

N

˙˙
1
2

= Op
`

C−1
NT

˘

· Op
ˆ

1
?
N

˙

,

where || pD−1 −D−1||= Op(C−1
NT ) again follows symmetrically from Bai and Ng (2002). All in all, we

have that

1

T

T∑
t=1

S′( pQ−Q)ỹ·tεt = Op(C−2
NT ) +Op(C−2

NT ) · Op
ˆ

N

T

˙

+Op
ˆ

1
?
N
· C−1

NT

˙

,
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which is as the Lemma claimed. �

Proof of Theorem 1: In light of Lemma 2, the result follows immediately from (26) by observing that
1
T

∑
t ptzt

p→ E(ptzt) > 0 for µ ∈ (0, 1). Similarly, 1
T

∑
t ztεt

p→ E(ztεt) = 0 by Assumption 4. �

Proof of Theorem 2: Under Assumptions 1-4 and Lemma 2, the result follows immediately. �

As in the case of the demand elasticity, we need Lemma 3 before consistency and the limiting distribution

of the supply elasticity can be established.

Lemma 3 Under Assumptions 1-4, we have that the terms ai, bi, cj for i = 1, 2; and j = 1, 2; defined in

equations (34), (35) and (36) are op p1q. While for j = 3, c3 is Op
ˆ

mNω
1−q
N,T

T

˙

= op(1).

Proof of Lemma 3: The terms, a1, b1, and c1 follow very similarly as the proof for Lemma 2 and hence

are omitted and the terms a2, b2 and c2 follow symmetrically to the proof of Lemma 2 and thus, they

are also omitted. The term c3 is novel and warrants some further analysis. Recall c3 is given by c3 =

T−1z′Mη (u
pE
− uE). Let us focus on (u

pE
− uE) = u··( pE −E) momentarily, where u·· is the T ×N

matrix of idiosyncratic errors and pE − E =
pΣ
−1

u ι

ι′ pΣ
−1

u ι
− Σ−1

u ι

ι′Σ−1
u ι

. Let Θu := Σ−1
u , C := ι′Θuι

N , then

E = Θuι/N
C . We have that

pE −E =

”

C pΘuι− pCΘuι
ı

/N

pCC
=

”

C pΘuι− CΘuι+ CΘuι− pCΘuι
ı

/N

pCC
,

=

”

C( pΘu −Θu)ι+ (C − pC)Θuι
ı

/N

pCC
,

=⇒ || pE −E||1 ≤

”

C · ||( pΘu −Θu)ι||1+|C − pC|·||Θuι||1
ı

/N

| pC|C
, (76)

where (76) follows from Callot et al. (2021). Let Θu,j denote the jth row of Θu written as a column vector.

Using Hölder’s inequality we have

| pC − C| =
ˇ

ˇ

ˇ

ˇ

ι′( pΘu −Θu)ι

N

ˇ

ˇ

ˇ

ˇ

≤ ||(
pΘu −Θu)ι||1·||ι||max

N
≤ max

1≤j≤N
|| pΘu,j −Θu,j ||1= || pΘu −Θu||1.
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Thus,

|| pE −E||1 ≤

”

C · ||( pΘu −Θu)ι||1+|C − pC|·||Θuι||1
ı

/N

| pC|C
,

≤

„

C · max
1≤j≤N

|| pΘu,j −Θu,j ||1+ max
1≤j≤N

|| pΘu,j −Θu,j ||1·||Θuι||1/N


| pC|C
,

=

max
1≤j≤N

|| pΘu,j −Θu,j ||1rC ·+||Θuι||1/N s

| pC|C
≤

max
1≤j≤N

|| pΘu,j −Θu,j ||1
„

C + max
1≤j≤N

||Θu,j ||1


| pC|C
,

≤ ||
pΘu −Θu||1rC + ||Θu||1s

|C + op(1)|C
=
Op(mNω

1−q
N,T ) rOp(1) +Op(1)s

(Op(1) + op(1))Op(1)
= Op(mNω

1−q
N,T ), (77)

where C ≥ γmin(Θu) > 0. Putting it all together for c3, we have that

c3 = T−1z′Mη(u
pE
− uE) = T−1z′Mη u·· ( pE −E) ≤ γmax(Mη) · T−1z′ u·· ( pE −E),

= T−1z′ u·· ( pE −E) ≤ T−1||u··′z||1·|| pE −E||1≤ T−1||u··′z||1·Op(mNω
1−q
N,T ),

= T−1
N∑
i=1

|Si(u··′ y·· Q)i|·Op(mNω
1−q
N,T ) = Op

ˆ

1

T

˙

· Op(mNω
1−q
N,T ) = op(1),

which concludes the proof. �

Proof of Theorem 3: In light of Lemma 3, the result follows immediately from (37). �

Proof of Theorem 4: Under Assumptions 1-4 and Lemma 3, the result follows immediately. �

Proof of Theorem 5: In light of Theorem 2 and Bai and Ng (2010), the result follows immediately. �

Proof of Theorem 6: In light of the theorems in the just identified case and standard GMM theory, we

know that
?
T (pθ

s

GMM − θs) is asymptotically, a normal variate. The question remains whether using pε =

ε(pφdGMM ) introduces sampling error that will effect the standard error of pθ
s

GMM . To that end, let gst
(2+r)×1

:=
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ZstuEt, we have that pθ
s

GMM solves the following first-order condition with probability approaching 1

0 =

˜

1

T

T∑
t=1

∂

∂θs
gst(

pθ
s

GMM ; pφd)

¸′

pΩ
−1

s

˜

1

T

T∑
t=1

gst(
pθ
s

GMM ; pφd)

¸

(78)

=

˜

1

T

T∑
t=1

∂

∂θs
gst(

pθ
s

GMM ; pφd)

¸′

pΩ
−1

s

˜

1

T

T∑
t=1

gst(θ
s; pφd)

¸

+

˜

1

T

T∑
t=1

∂

∂θs
gst(

pθ
s

GMM ; pφd)

¸′

pΩ
−1

s

˜

1

T

T∑
t=1

∂

∂θs
gst(θ̄

s
; pφd)

¸

(pθ
s

GMM − θs) (79)

= G′s
pΩ
−1

s

˜

1
?
T

T∑
t=1

gst(θ
s; pφd)

¸

+G′s
pΩ
−1

s Gs

?
T (pθ

s

GMM − θs) (80)

The basic idea of whether the sampling error from estimating pφd can be ignored, boils down to whether

the following expression holds: 1?
T

∑T
t=1 gst(θ

s; pφd) = 1?
T

∑T
t=1 gst(θ

s;φd) + op(1); when this equation

holds, then
?
T (pθ

s

GMM − θs) will not asymptotically depend on
?
T (pφd − φd). This can be easily seen if

we take a mean value expansion of the left hand side of the expression above around φd, we obtain

1
?
T

T∑
t=1

gst(θ
s; pφd) =

1
?
T

T∑
t=1

gst(θ
s;φd) + F

?
T (pφd − φd) + op(1), (81)

where F
(2+r)×1

:= E

”

∇φdgst(θs; pφd)
ı

, is generally different from zero, but here we have F = Op( 1?
N

).

This implies the asymptotic variance of
?
T (pθ

s

GMM − θs) need not take into account the sampling error

induced by pφd. To see why, we need to get an expression for
?
T (pφd − φd), let gdt

(1+r)×1

= Zdtεt; then

taking a similar mean value expansion (as above) of the first-order conditions that pφd solves with probability

approaching 1

0 = G′d
pΩ
−1

d

˜

1
?
T

T∑
t=1

gdt(φ
d)

¸

+G′d
pΩ
−1

d Gd

?
T (pφd − φd), (82)

hence, we obtain the usual influence function representation

?
T (pφd − φd) = − 1

?
T

T∑
t=1

(G′dΩ
−1
d Gd)

−1G′dΩ
−1
d gdt(φ

d) :=
1

?
T

T∑
t=1

rdt(φ
d). (83)
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Making use of (83) in (81) we obtain

1
?
T

T∑
t=1

gst(θ
s; pφd) =

1
?
T

T∑
t=1

ǧst(θ
s;φd) + op(1), (84)

where ǧst(θ
s;φd) := gst(θ

s;φd)+F rdt(φ
d). Putting (84) and (80) together and solving for

?
T (pθ

s

GMM −

θs) gives

?
T (pθ

s

GMM − θs)
d→ −(G′s Ω−1

s Gs)
−1G′s Ω−1

s

˜

1
?
T

T∑
t=1

gst(θ
s;φd) + F rdt(φ

d)

¸

+ op(1), (85)

= −(G′s Ω−1
s Gs)

−1G′s Ω−1
s

˜

1
?
T

T∑
t=1

gst(θ
s;φd) +Op

ˆ

1
?
N

˙

Op p1q

¸

+ op(1),

(86)

which gives the result. �
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Supplementary Appendices

This is the Supplementary Appendix to the paper, "Inferential Theory for Granular Instrumental Variables

in High Dimensions" by Saman Banafti and Tae-Hwy Lee. Section A contain figures pertaining to the

empirical work from Section 9. Section B contains theoretical results for Herfindahl’s in large N markets

along with Lemma 4. Section C contains the estimation methods we use when r is unknown. Section D

contains Algorithm 3′ which employs an alternative estimator for the precision matrix, which is a hybrid of

the factor approach and graphical models.

A. Figures
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Figure 1: Temporal variation of production shares
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Figure 2: Distribution of production shares
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Figure 3: Size-Rank plot (log-log scale)
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B. Herfindahl’s in Large N Markets

In this appendix we provide some basic information about properties of random variables that follow a

power law and then we conclude with the statement of Lemma 4 and its proof. The following draws on

Darling (1952), Gnedenko and Kolmogorov (1954), Feller (1971), Logan et al. (1973), Jakubowski (1993),

Jakubowski (1997), Davis and Hsing (1995), Malevergne et al. (2009), Gabaix (2011) and Durrett (2019).

Recall, the sizes S1, . . . , SN are drawn i.i.d. from a distribution for which the tail follows a power law, with

tail index, µ > 0. Note that the first and second moments can potentially diverge

E(S) =

∫ ∞
1

sµs−µ−1ds =

∫ ∞
1

µs−µds =
µ

1− µ
s1−µ

ˇ

ˇ

ˇ

ˇ

∞

1

=


∞ for µ ∈ (0, 1]

− µ

1− µ
for µ ∈ (1,∞)

(87)

E(S2) =

∫ ∞
1

s2µs−µ−1ds =

∫ ∞
1

µs1−µds =
µ

2− µ
s2−µ

ˇ

ˇ

ˇ

ˇ

∞

1

=


∞ for µ ∈ (0, 2]

− µ

2− µ
for µ ∈ (2,∞)

(88)

as a result of (87) and (88), E(S) is bounded for µ > 1, while V(S) is bounded for µ > 2. The literature

refers to the cases µ ≤ 2 as thick tail regimes since the variance is infinite, rendering extreme tail events

more likely. In light of this, there are some important cases to distinguish from one another when considering

the limiting behavior of hN,µ, which are outlined in Table 6 below.

Table 6: Limiting Behavior of the Asymptotic Herfindahl Index

Tail
index

regime
Tail variation

First
moment

Variance Op pgN,µq

Case I µ > 2 Exponential E(S) <∞ V(S) <∞ 1
?
N

Case II µ = 2
Regularly
varying

E(S) <∞ V(S) =∞
c

log(N)

N

Case III µ ∈ (1, 2)
Regularly
varying

E(S) <∞ V(S) =∞ 1

N
1− 1

µ

Case IV µ = 1
Regularly
varying

E(S) =∞ V(S) =∞ 1

log(N)

Case V µ ∈ (0, 1)
Regularly
varying

E(S) =∞ V(S) =∞ Θp(1)

Case VI µ→ 0
Slowly
varying

E(S) =∞ V(S) =∞ Θp(1)
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The Herfindahl is given by

hN,µ =

N∑
i=1

S 2
i =

N∑
i=1

˜

Si∑N
j=1 Sj

¸2

, (89)

and the object of interest is the asymptotic Herfindahl and from (89), it can readily be written as

hµ := lim
N→∞

hN,µ = lim
N→∞

N∑
i=1

˜

Si∑N
j=1 Sj

¸2

= lim
N→∞

1

N

N−1
∑N

i=1 S
2
i

´

N−1
∑N

j=1 Sj

¯2 := lim
N→∞

1

N

aN
bN

. (90)

In Case I, when E(S),E(S2) < ∞, the usual LLN and continuous mapping theorem gives us aN
p→

a = E(S2) and bN
p→ b = pE(S)q

2. Therefore, hN,µ → hµ = 0, for thin tailed regimes.20 We will skip

further details regarding Cases II-IV and state Lemma 4 which is pertaining to Cases V and VI.

Lemma 4 Under Assumption 4 (ii.), we have that

a

hN,µ = ||S||2= Θp(1) for µ ∈ [0, 1). (91)

Proof of Lemma 4: Note that P(S > s) = s−µ and hence, P(S−µ > s) = s. Or, put differently

P(S−µ > s) ∼ U[0, 1]; which is equivalently denoted as Ui := 1−FS(si) = s−µi , where FS(si) denotes the

CDF of si. As a result, U1, . . . , UN are an i.i.d. sample from U[0, 1]. It is well known that order statistics,

denoted as U(i) = 1 − FS(s(i)), of the uniform distribution on the unit interval have marginal distributions

belonging to the Beta distribution family. Hence, the PDF of the ith order statistic, U(i),N ∼ Beta(α, β),

with α = i and β = N− i+1. Finally, the size of the ith largest unit out ofN can be found by manipulating

the expected value of the ith order statistic, given by

E(U(i),N ) = E(S−µ(i),N ) =
α

α+ β
=

i

N + 1
, (92)

hence, the size of the ith largest unit is

S(i),N =

ˆ

i

N + 1

˙− 1
µ

'
ˆ

i

N

˙− 1
µ

, (93)

where the approximation is negligible for large N . Furthermore, S2
i has tail index µ

2 ≤ 1, since P(S2 >

20As we saw in (unreported) simulation evidence, a Herfindahl converging to zero in the large N limit, should not rule out
identification by GIV; although theoretically it does. As illustrated in Remark 4, the variance of the elasticities diverges.
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s) = P(S > s
1
2 ) = s−

µ
2 . Plugging (93) into (90), we obtain

lim
N→∞

1

N

N−1
∑N

i=1 S
2
i

´

N−1
∑N

j=1 Sj

¯2 = lim
N→∞

1

N

N−1
∑N

i=1

ˆ

i

N

˙− 2
µ

´

N−1
∑N

j=1 Sj

¯2 = lim
N→∞

1

N2

1

N
− 2
µ

∑N
i=1 i

− 2
µ

´

N−1
∑N

j=1 Sj

¯2

= lim
N→∞

1

N
2− 2

µ

∑∞
i=1 i

− 2
µ

ˆ

1

N
1− 1

µ

∑∞
j=1 j

− 1
µ

˙2 = lim
N→∞

1

N
2− 2

µ

∑∞
i=1 i

− 2
µ

1

N
2− 2

µ

´∑∞
j=1 j

− 1
µ

¯2 = lim
N→∞

∑∞
i=1 i

− 2
µ

´∑∞
j=1 j

− 1
µ

¯2

=
ζ( 2
µ)

´

ζ( 1
µ)
¯2 (94)

Where ζ(·) denotes the Riemann-zeta function. Therefore, we have just showed that for µ ∈ (0, 1), hN,µ →

hµ > 0. �

C. Estimating the Number of Factors

Generally, since the number of factors, r, is unknown we must estimate it. There are many estimators

for r in static approximate factor models. Some examples are Bai and Ng (2002), Onatski (2010) and

Ahn and Horenstein (2013). We make use of the ER(k) and GR(k) estimators proposed by Ahn and

Horenstein (2013) (hereafter AH), which have been shown to outperform the existing estimators in the

literature, particularly when the idiosyncratic errors are not i.i.d., which is likely to be the more relevant

case.

The estimators below can be used in (12) for estimation of the demand elasticity without affecting infer-

ence, and in Algorithm 1, 2, or 3 for estimation of the supply elasticity; again without affecting inference.

The AH estimators are given by maximizing the following criteria

ER(k) =
µ̃NT,k
µ̃NT,k+1

k = 1, . . . , kmax (95)

GR(k) =
ln rV (k − 1)/V (k)s

ln rV (k)/V (k + 1)s

=
ln(1 + µ̃∗NT,k)

ln(1 + µ̃NT,k+1)
k = 1, . . . , kmax, (96)

where µ̃NT,k := ψk rXX ′/(NT )s = ψk rX ′X/(NT )s, X denotes a T × N matrix and ψk(A) denotes

the kth largest eigenvalue of a positive semidefinite matrix A. V (k) =
∑m

j=k+1 µ̃NT,j and µ̃∗NT,k =

µ̃NT,k/V (k). Where V (k) is the sample mean of the squared residuals from the time series regressions of
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individual response variables on the first k principal components ofXX ′/(TN). Hence, the estimators are

prER = argmax
1≤k≤kmax

ER(k), (97)

prGR = argmax
1≤k≤kmax

GR(k). (98)

The basic idea behind maximizing the ER(k) and GR(k) criteria is that
µ̃NT,j
µ̃NT,j+1

= Op(1) for j 6= r,

while
µ̃NT,r
µ̃NT,r+1

= Op(CNT ). This effective idea stems from the seminal paper of Chamberlain and Roth-

schild (1983), who, among other things, demonstrate that only the r eigenvalues arising from the common

component remain unbounded as the sample size tends to infinity, while those from the idiosyncratic part

remain bounded. In particular, see their Theorem 4. Lastly, some recommendations on the choice of kmax

are provided by AH to avoid choosing pr < r wpa 1.

The important fact is that the limiting distribution of the elasticities remain unchanged so long as we

use a consistent estimator for r. Let pφ j
pr , for j = s, d, denote the FGIV or efficient GMM estimator, using

a consistent estimator for r, such as the AH estimator. It is easy to show that pφ j
pr has the same limiting

distribution as pφ jr , for j = d, s:

P

´?
T (pφ j

pr − φ
j) ≤ x

¯

= P

´?
T (pφ j

pr − φ
j) ≤ x|pr = r

¯

·P(pr = r)

+P
´?

T (pφ j
pr − φ

j) ≤ x|pr 6= r
¯

·P(pr 6= r) (99)

→ P

´?
T (pφ j

pr − φ
j) ≤ x|pr = r

¯

(100)

= P

´?
T (pφ jr − φ j) ≤ x

¯

. (101)

From (99) to (100) we make use of the fact that pr is a consistent estimator for r, i.e. P(pr = r) → 1. From

(100) to (101) we make use of the fact that conditional on pr = r, pφ j
pr = pφ jr . Therefore,

ˇ

ˇ

ˇ

ˇ

P

´?
T (pφ j

pr − φ
j) ≤ x

¯

−P
´?

T (pφ jr − φ j) ≤ x
¯

ˇ

ˇ

ˇ

ˇ

→ 0. (102)

D. Estimation of the High-Dimensional Precision Matrix via `1-Penalized

Bregman Divergence

An alternative to using the POET like procedure of Fan et al. (2013) to estimate a high dimensional

precision matrix is to use graphical Lasso methods, as in Friedman et al. (2008). One thought would be to
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directly estimate the precision matrix using graphical models, say by applying the graphical Lasso procedure

to the composite error, vit = λ′iηt + uit, or by using a local (nodewise) graphical method as in Callot et al.

(2021) and applying to it vit.

However, these approaches rule out the presence of an approximate factor structure, as they assume

unconditional sparsity of the composite error term vit. It is clear that sparsity of vit fails given our (pervasive)

factor structure, as pointed out by Barigozzi et al. (2018), Brownlees et al. (2018) and Koike (2020).

An alternative, hybrid, approach to estimation of high dimensional covariance matrices is to adopt an

approximate factor structure, thereby decomposing the process into a low rank part (common component),

plus a sparse part (idiosyncratic component) like the approach we adopted in the main text of the paper.

Except now we will use a graphical model in estimation of the precision matrix, as opposed to the POET

estimation procedure. Thus, we can employ a hybrid approach known as the factor-adjusted graphical lasso

model or simply FGL of Lee and Seregina (2021). The FGL approach imposes conditional sparsity similar

to POET with the exception that sparsity is imposed on the precision matrix, Σ−1
u , of the idiosyncratic term

rather than the covariance matrix, Σu. That is, once the low dimensional common factors are conditioned

on, Σ−1
u is assumed to be sparse in the sense that many of the off-diagonal elements are zero. Note that with

FGL, sparsity is assumed on the precision matrix, Σ−1
u , for the idiosyncratic term and not on the precision

matrix of the composite error, Σ−1
v as in a traditional graphical method.

Along the POET procedures, Fan et al. (2013), Fan et al. (2018) and Bai and Liao (2017) amongst others,

estimate the high dimensional covariance matrix via thresholding techniques and then invert the estimate to

obtain an estimate of the precision matrix. Whereas, graphical methods directly estimate the precision

matrix. The FGL approach is essentially a hybrid of the two approaches. We adopt the FGL approach

of Lee and Seregina (2021), although in their paper endogeneity is not a concern. To that end, suppose

momentarily that the idiosyncratic error is observed

uit = yit − λ′iηt − φspt,

= yit −ψ′if t, (103)

where ψi :=
´

λ′i φs
¯′

and f t is defined as in the main text. We apply the graphical Lasso procedure

of Friedman et al. (2008) to (103), to obtain pΣ
−1

u as the solution to the `1-penalized Bregman Divergence.

Bregman divergence is simply a measure of distance between two objects defined in terms of a strictly

convex function, say f(·). Introduce S++ as the set of symmetric positive definite matrices, then, for A1,
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A2 ∈ S++, the Bregman Divergence in this context, is defined as

df (A1,A2) := f(A1)− f(A2)− 〈∇f(A2),A1 −A2〉 (104)

where f(·) is strictly convex and continuously differentiable. The Bregman Divergence, df , can be viewed

as the difference of f(A1) from the first-order approximation of f(A1) around A2. Moreover, (104) nests

some important loss functions as special cases for particular choices of f(·), e.g. when f(x) = x′Bx, df

becomes the Mahalanobis distance, which reduces to the squared norm when B = I and when f(x) =∑
i xilogxi, we obtain df as the Kullback-Leibler divergence. When one sets f(A) = −log det(A), then

∇f(A) = −A−1
2 ,21 and the Bregman Divergence takes the following familiar form for A1 = Σ−1

u and

A2 = pΣ
−1

u

df (Σ−1
u , pΣ

−1

u ) = −log det(Σ−1
u ) + 〈pΣu,Σ

−1
u − pΣu〉+ c1

= −log det(Σ−1
u ) + tr(pΣuΣ

−1
u ) + c2 (105)

where (105) can be viewed as the negative Gaussian log-likelihood of the data, partially maximized with

respect to the mean parameter. Adding an `1-penalty on the off-diagonal elements of Σ−1
u to (105) gives us

pΣ
−1

u as the solution to the `1-penalized Bregman Divergence

pΣ
−1

u (ρ) = arg min
Σ−1
u ∈S++

{−log det(Σ−1
u ) + tr(pΣuΣ

−1
u ) + ρ||Σ−1

u ||1}, (106)

where ρ is the tuning hyperparameter and only here ||Σ−1
u ||1:=

∑
i 6=j |Σ

−1
u,ij | is defined to not penalize the

diagonal elements. The routine can be easily implemented in the R package glassoFast or CVglasso.

However, as noted in Janková and van de Geer (2018), there are theoretical and practical benefits to

modify (106) to the so-called weighted FGL (effectively just adaptive Lasso)

pΣ
−1

u (ρ) = arg min
Σ−1
u ∈S++

{−log det(Σ−1
u ) + tr(pΣuΣ

−1
u ) + ρ

∑
i 6=j

xWii
xWjj |Σ−1

u,ij |}, (107)

where xW
2

= diag(pΣu). We suggest iterating between estimation of Σ−1
u by optimizing (107) with the

graphical Lasso algorithm and estimation of φs(z,Σ−1
u ) as in (15) in Algorithm 3′ below. For each iteration,

we optimally select the penalty hyperparameter, ρ, via cross-validation.

21See Section A.4.1 of Boyd and Vandenberghe (2004) for an elegant derivation of this gradient.
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We do not explore the theoretical properties of the sampling error induced by this weighted FGL estima-

tion procedure, but in some unreported Monte Carlo evidence we find that it performs well. The algorithm

below details the overidentified estimation procedure for the case when kx = 0.

Algorithm 3′ Efficient GMM-FGL for φs (when kx = 0):
• Step 1: Run PCA on (9) and obtain pzt = S′ pQry·t as the sample counterpart of (10).

• Step 2: Initialize pΣ
−1

u = IN .

• Step 3: Estimate (21) to obtain pε, initialize xW s = ( pZ
′
s
pZs)
−1 and obtain pθ

s

2SLS( pZs, pΣ
−1

u ).

• Step 4: Obtain y
pE
(pΣ
−1

u ).

• Step 5: Update xW s =
´

1
T

∑T
t=1

pZst
pZ
′
stpu

2
pEt

¯−1
, where pu

pEt
= y

pEt
− pθ

s

GMM ( pZs, pΣ
−1

u )′f t and

construct pθ
s

GMM ( pZs, pΣ
−1

u ) as in (22).

• Step 6: Construct the sample counterpart of (103) to update pΣ
−1

u via (107) and update y
pE
(pΣ
−1

u ).

• Step 7: Iterate Step 4 through Step 6 until convergence.

Note, to obtain pψi in the sample counterpart of (103), we have pΛ = T−1y′..pη and pφsGMM is an element of

pθ
s

GMM . In view of Algorithm 2, Algorithm 3′ can be further extended to the case when kx > 0. However,

for brevity we omit the details.
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