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Abstract

We in this paper utilize P-GMM (Cheng and Liao, 2015) moment selection procedure to select valid

and relevant moments for estimating and testing forecast rationality under the flexible loss proposed by

Elliott et al. (2005). We motivate the moment selection in a large dimensional setting, explain the fun-

damental mechanism of P-GMM moment selection procedure, and elucidate how to implement it in the

context of forecast rationality by allowing the existence of potentially invalid moment conditions. A set

of Monte Carlo simulations is conducted to examine the finite sample performance of P-GMM estimation

in integrating the information available in instruments into both the estimation and testing, and a real

data analysis using data from the Survey of Professional Forecasters issued by the Federal Reserve Bank

of Philadelphia is presented to further illustrate the practical value of the suggested methodology. The

results indicate that the P-GMM post-selection estimator of forecaster’s attitude is comparable to the or-

acle estimator by using the available information efficiently. The accompanying power of rationality and

symmetry tests utilizing P-GMM estimation would be substantially increased through reducing the influ-

ence of uninformative instruments. When a forecast user estimates and tests for rationality of forecasts

that have been produced by others such as Greenbook, P-GMMmoment selection procedure can assist in

achieving consistent and more efficient outcomes.
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1 Introduction

Forecasting is an essential technique in economics, as well as in statistics and other sciences. From the

forecast producer’s perspective, it is critical to understand how to produce optimal forecasts in light of

the available information and a loss function. However, from the viewpoint of the forecast user, we are

interested in how to estimate and test for rationality of forecasts that have been produced by someone

else, typically the government (Greenbook), even if the loss function of the producer of forecasts is

unknown. Elliott et al. (2005) (hereafter EKT (2005)) test forecast optimality under general classes of

loss functions that nest popular loss functions as special cases (Figure 1), where the family of loss func-

tions is indexed by a single unknown parameter α. Such a parameter has significant economic value be-

cause it informs forecast user about the forecaster’s objectives. EKT (2005) establish conditions under

which this parameter α is identified and further propose a J-test for overidentification to test the fore-

cast rationality under asymmetric loss in linear generalized method of moments (GMM) framework.

The loss function they utilize to identify the forecaster’s attitude parameter α is

Lp (et+h;α) ≡ [α+ (1− 2α)I (et+h < 0)] |et+h|p, (1.1)

in which I(·) represents the indicator function that is equal to unity when the condition et+h < 0 holds

and zero otherwise, p indicates a positive exponent determining the curvature of the loss function, α

denotes an asymmetry parameter with range 0 < α < 1, h ≥ 0 is an integer variable that measures the

forecast horizon, and et+h stands for the forecast error. A positive forecast error results from underesti-

mating the target variable, while a negative forecast error arises out of overestimating it. Therefore, we

refer to α as the forecaster’s attitude parameter.

Figure 1: Loss Function with Different Values of α (Left: p = 2; Right: p = 1)

Note : The plot shows how the magnitude of the asymmetric parameter influences the univariate
loss functions. It demonstrates that even minor variations in α from the symmetric loss value of 0.5
imply fairly significant loss disparities. For instance, with α = 0.4, the loss ratio for both positive
and negative forecast errors is α/(1− α) = 2/3, resulting in a loss differential of approximately 33%.

In accordance with the optimization problem (1.1), the appropriate action that forecast producer

takes should satisfy the forecast optimality condition

E
(
Wt [I (et+h < 0)− α0] |et+h|p0−1

)
= 0, (1.2)

where α0 and p0 represent the true values of α and p, respectively, Wt is the information (instrument)
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set that the forecaster knows at time t, and the optimal forecast error follows a martingale difference se-

quence with respect to the information set at time t. However, usually not all of information inWt is ac-

cessible to a forecast user. For the purpose of backing out α, according to the orthogonality of marting-

ale differences, we only need an instrument set Vt ⊂ Wt, satisfying

E
(
Vt [I (et+h < 0)− α0] |et+h|p0−1

)
= 0, (1.3)

which is sufficient to identify α even under model misspecification.

The selection of instrument variables Vt directly affects the estimation and testing of forecast ra-

tionality. When we use the EKT (2005) approach to back out the forecaster’s attitude parameter α, we

usually utilize a comprehensive set of instrumental variables to approximate all information available

to forecast producer. In reality, the information set Vt we can access is typically very large and we may

also want to consider nonlinear functions of those instruments. For example, if we have 6 potential in-

struments, the set of instrument choices will consist of 26−1 = 63 alternatives. If we consider nonlinear

functions of those instruments, i.e., f(Vt) and f(·) is a known transform function such as polynomials,

the information set will become much larger, which could result in a singular weighting matrix for the

GMM estimation of α. While in some circumstances the choice of instruments may be driven by eco-

nomic concerns, in many cases the selection of instruments might be arbitrary. Occasionally, we could

even choose the instruments that forecast producer does not use, resulting in biased estimators and

misleading inferences. This bias would be larger when the number of moments d = dim(Vt) is large.

Meanwhile, estimates are often very sensitive to the instruments that we choose. Some instruments

may be invalid resulting in inconsistent estimation of α, while other instruments may be redundant re-

sulting in additional finite sample bias without bringing any useful information to improve estimation

efficiency. Therefore, for consistently and efficiently estimating α and increasing the power of rational-

ity and symmetry tests, it is important to identify the valid and relevant instruments (moment condi-

tions) whenever there is no prior information about their validity. To the best of our knowledge, the

EKT (2005) approach has not been combined with any moment selection methods thus far to account

for the uncertain validity and relevance of moment conditions in the presence of a large number of po-

tential instruments. The goal of this paper is to identify the instruments that are both valid and rele-

vant to back out the parameter α to learn the forecaster’s preference or/and loss attitude.

A lot of research has been devoted to choosing moment conditions (1.3) in the presence of many

possible instruments. Built on a trade-off between the J-test statistics and the number of moment

conditions, Andrews (1999) and Andrews and Lu (2001) put forth a moment selection criterion, which

takes the form of the J-test statistics of overidentifying restrictions plus a penalty term that accounts

for the number of moment conditions, in order to single out a set of valid moment conditions among

all possible choices. Hong et al. (2003) develop a model selection criteria for unconditional moment

models using generalized empirical likelihood statistics. Liao (2013) suggests a GMM shrinkage proce-

dure for the selection of valid moment conditions by adding a penalty function to the GMM criterion.

Caner et al. (2018) introduce the adaptive elastic net GMM estimator in large-dimensional models

with potentially (locally) invalid moment conditions. However, all of the aforementioned research only
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takes the moment validity into account under the premise that all of the moments are relevant. To

effectively select the relevant moment conditions, Andrews (2002) and Inoue (2006) utilize a bootstrap

setup relying on Edgeworth expansions. Hall et al. (2007) present a moment selection criterion formed

on entropy that can be applied to choose relevant moments. Ng and Bai (2009) propose an L2-Boosting

methodology for relevant instrument selection. Luo (2015) puts forward a LASSO based selection

procedure using the L1 penalty to pick out the informative moments. Larin (2016) suggests a statistic,

which follows a chi-squared limiting distribution when the estimator of moments covariance matrix con-

verges at the rate
√
T , to test the relevance of moment conditions, where T denotes sample size. Nev-

ertheless, each of the above-mentioned approaches is established on the assumption that all candidate

moments are valid, which is evidently an undesirable aspect of any forecast evaluation procedure.

Recently, gleaned from the shrinkage procedure proposed by Liao (2013), Cheng and Liao (2015)

study the selection of valid and relevant moments using a penalized GMM estimation, where a novel

penalty is designed to incorporate information on both moment validity and relevance for adaptive

estimation, henceforth referred to as P-GMM estimation. Lee and Xu (2018) bring forward a selection

algorithm named Double-Boosting GMM relied on boosting to choose the valid and relevant instru-

ments from a set of high dimensional instruments and show that their algorithm can give smaller mean

squared errors than Cheng and Liao (2015) in the simulations. Belloni et al. (2018) recommend a

regularized GMM to construct moment equationsM(θ; η) = 0 for the target parameter θ given the nui-

sance parameter η such that the true values of the parameters follow M (θ0; η0) = 0. Lai et al. (2010)

establish an empirical likelihood ratio statistic to eliminate invalid models firstly and then apply boot-

strap procedure to choose the model that yields the smallest approximate variance of the estimate. All

of these methods could be applied directly to choose the valid and relevant moment conditions simu-

ltaneously for the GMM estimation.

In the EKT (2005) methodology, we typically do not prioritize the estimation of regression coef-

ficients, and there are instances where we lack awareness of the variable types employed by forecast

producers. Consequently, traditional methods that focus solely on estimating target coefficients can-

not be directly employed to select the valid and relevant moments to identify the forecaster’s attitude

parameter α. In alignment with this, the approach proposed by Cheng and Liao (2015), which incorpo-

rates a penalty within the standard GMM criterion, can be employed in the framework of EKT (2005)

to select moment conditions for the purpose of estimating and testing forecast rationality under flexible

loss functions. Particularly, we demonstrate that P-GMM technique enjoys moment selection consis-

tency and is able to select all valid and relevant moment conditions without restricting the forecast

user’s knowledge of any particular information sets, which simultaneously provides more efficient post-

selection estimation. Asymptotically, the resultant P-GMM post-selection estimator of forecaster’s

attitude enjoys oracle property under consistent moment selection, i.e., as efficient as the oracle GMM

estimator formulated on all valid and relevant moment conditions.

To shed light on the statistical properties of P-GMM estimation of forecast rationality, we under-

take a set of Monte Carlo simulations, including both linear and nonlinear dependencies between the

forecast user’s information set and the forecast error. The Monte Carlo simulation results indicate that
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P-GMM procedure could provide an unbiased and more efficient estimator of α compared to the case

where we deploy all (valid) moment conditions. The suggested P-GMM estimation is appealing since

the obtained post-selection outcomes can be comparable to the oracle estimators by using the available

information efficiently. In addition, P-GMM estimation has the potential to enhance the estimator by

reducing its standard error and increase the power of J-test statistics by mitigating the influence of ir-

relevant instruments. These findings further demonstrate that even if forecast user does not have any

information regarding the validity of instrumental variables in practice, P-GMM estimation can be ex-

tremely helpful with relevance to select moment conditions in the context of EKT (2005) for producing

consistent and more efficient results. We then apply the suggested P-GMM estimation to data from the

Survey of Professional Forecasters issued by the Federal Reserve Bank of Philadelphia to further eluci-

date its practical value. The empirical results highlight the necessity of undertaking moment selection.

The outline of this paper is as follows. Section 2 provides a brief review of EKT (2005) method for

testing forecast rationality and motivates moment selection issue that inspires the development of the

suggested estimation procedure. Section 3, built on the P-GMM estimation method, selects valid and

relevant moment conditions within the framework of EKT (2005), for which the moment selection con-

sistency is presented. Section 4 includes simulation examples to shed light on the statistical properties

of the developed estimation and testing of forecast rationality. Section 5 presents a real data analysis

using data from the Survey of Professional Forecasters to further illustrate the performance of the

suggested P-GMM estimation. We conclude this paper in Section 6.

2 Estimation and Testing of Forecast Rationality: EKT (2005)

According to the setup of EKT (2005), X ≡
{
Xt : Ω → Rm+1,m ∈ N, t = 1, . . . , T

}
is a stochastic

process defined on a complete probability space (Ω,F , P ), where F = {Ft, t = 1, . . . , T} and Ft is the

σ-field generated by Ft ≡ σ {Xs, s ⩽ t}. In addition, Yt is the continuous component of interest of the

observed vectorXt with distribution function Ft(·) conditional on the information set Ft. The forecast-

ing problem is hence to predict the value of Yt+h by ft+h ≡ θ′Wt dependent upon the information set

Ft, in which θ is an unknown vector of parameters, Wt is a vector of variables that are Ft-measurable,

and Z ′ represents the transpose of a matrix or vector Z. A generalized loss function L(·), which is a

mapping from realizations and forecasts to the real line, is defined as

L(p, α, θ) ≡ [α+ (1− 2α)I (Yt+h − ft+h < 0)] |Yt+h − ft+h|p, (2.1)

where Yt+h−ft+h represents the forecast error et+h.
1 For easy calculations, EKT (2005) assume that

the value of the loss shape parameter p0 is known and deliberate on the estimation of forecaster’s atti-

tude parameter α. Given p0 and α0, the h-step-ahead forecast of Yt+h, f
∗
t+h = θ∗′Wt, is rational if θ

∗ =

1The loss function is flexible because it allows for a parametrization of the asymmetry in the loss and treats many
other functions as special cases. For instance, when p = 2, it is a squared loss function (Newey and Powell, 1987); when
p = 1, it is an absolute deviation loss function (Koenker and Bassett, 1978). When α < 0.5, forecasters tend to punish
over-prediction more and create a bias towards under-prediction. When α > 0.5, forecasters tend to punish underpredic-
tion more and create a bias toward overprediction.
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argminθ∈Θ E {L (α0, p0, θ)}, which solves the following moment condition

E
(
Wt

[
I
(
Yt+h − f∗

t+h < 0
)
− α0

]
|Yt+h − f∗

t+h|p0−1
)
= 0. (2.2)

In order to back out α, the first order condition of (2.1) should hold if and only if α = α0. As spec-

ified by Proposition 1 in EKT (2005), we recognize that the solution f∗
t+1 is exclusive, which indicates

that the forecaster’s attitude parameter α is unique even under model misspecification. Note that (2.2)

can be considered as a moment condition E
[
Wt

(
I
(
e∗t+h < 0

)
− α0

)
|e∗t+h|p0−1

]
= 0, where e∗t+h ≡

Yt+h−f∗
t+h = Yt+h−θ∗′Wt is the forecast error given f∗

t+h. It suggests that if the forecasts are optimal,

then any informationWt must be correctly included in f∗
t+h, so thatWt

(
I
(
e∗t+h < 0

)
− α0

)
is orthogo-

nal to the forecast errors. For a given f∗
t+h, we can back out α0 using this moment condition as well. In

reality, not all variables in Wt are known to the forecast user. Supposing that the user of forecast obs-

erves a d-vector variables Vt, which is a subvector of Wt, we would have

E(Vt[I(Yt+h − f∗
t+h < 0)− α0]|Yt+h − f∗

t+h|p0−1) = E(Ct − α0Bt) = 0, (2.3)

where Ct = VtI(Yt+h−f∗
t+h < 0)|Yt+h−f∗

t+h|p0−1 and Bt = Vt|Yt+h−f∗
t+h|p0−1. Thenceforth, α0 can

be solved by minimizing the quadratic norm of (2.3)

min
α

Q(α) = E(Ct − αBt)
′S−1E(Ct − αBt), (2.4)

in which S = E((Ct−αBt)(Ct−αBt)
′) = E[VtV

′
t

(
I
(
Yt+h − f∗

t+h < 0
)
− α0

)2 |Yt+h− f∗
t+h|2p0−2] is a

positive definite weighting matrix. Taking derivative of (2.4) with respect to α, we achieve

α0 = argmin
α

Q(α) = [E(B′
tS

−1Bt)]
−1E(B′

tS
−1Ct). (2.5)

Given a sample path of instrument vectors (V ′
1 , . . . , V

′
T )

′ with T observations, we obtain the esti-

mator of α0 from the empirical mean of (2.5)

α̂T = (B̂′
T Ŝ

−1
T B̂T )

−1(B̂′
T Ŝ

−1
T ĈT ), (2.6)

where B̂T = 1/T
∑T

t=1 Vt|Yt+h − f∗
t+h|p0−1, ĈT = 1/T

∑T
t=1 VtI(Yt+h − f∗

t+h < 0)|Yt+h − f∗
t+h|p0−1,

and ŜT ≡ 1/T
∑T

t=1[VtV
′
t

(
I
(
Yt+h − f∗

t+h < 0
)
− α̂T

)2 |Yt+h−f∗
t+h|2p0−2] is a consistent estimate of S.

Both α̂T and ŜT can be solved by iteration, where we first choose a preliminary weighting matrix ŜT =

Id×d (Newey and West, 1987).2 Up to now, we can see that the instrument validity is pretty important

as it affects the estimate of α through all factors appearing in (2.6). Indeed, each set of instruments

would generate different estimate and asymptotic variance, and only the inclusion of all the available in-

formation would produce an efficient estimator α̂T . Nevertheless, in practical applications, the forecast

user sometimes is unable to determine which instrumental variable is valid. It is necessary for us to int-

roduce an estimation procedure for assessing instrument validity and avoiding estimation bias.

2As the estimation of α depends on the estimate of S, which in turn relies on α, we can choose ŜT (α) = Id×d to com-
pute α̂T and then plug α̂T to obtain new ŜT (α̂T ). Repeat the procedure until it converges.
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After that, we have asymptotic normality (EKT (2005) Proposition 4) given p0 = 1 or 2 when the

true value of α is in the interior of the parameter space,

T
1
2 (α̂T − α0)

d→ N (0,
(
B′S−1B)−1

)
(2.7)

with B = E(Bt), which can be utilized to test whether α̂T differs from α0. In practice, we can simulate

the asymptotic distribution of the α estimate according to Andrews (2002) if the true value of α is on

the boundary of the parameter space. Regarding rationality test (EKT (2005) Corollary 5), a joint

null hypothesis of forecast rationality and the flexible loss function can be conducted with d > 1 instru-

ments through the test statistic for overidentification

JT (α̂T ) = T × Q̂T (α̂T ) = T × ÂT (α̂T )
′ Ŝ−1

T (α̂T ) ÂT (α̂T ) ∼ χ2
d−1, (2.8)

where ÂT (α̂T ) = ĈT − α̂T B̂T and a large value of the JT (α̂T ) indicates the rejection of forecast ratio-

nality. If there is only one instrumental variable available and overidentification cannot be tested as a

result, a unique closed form solution for estimator α̂T exists. For testing loss symmetry, with a fixed

value α̂T = 0.5, we have3

JT (0.5) = T × Q̂T (0.5) = T × ÂT (0.5)′ Ŝ−1
T (α̂T ) ÂT (0.5) ∼ χ2

d, (2.9)

in which the degrees of freedom equals to d as there is no parameter needing to be estimated. The

rejection of this test would indicate the refusal of the loss symmetry if (2.8) is not disregarded. The

conditional distribution of (2.9) is difficult to obtain. Following Wang and Lee (2014), we interpret

JT (0.5) as a test for loss symmetry after we select all valid and relevant moment conditions. The afore-

mentioned discussions reveal that the reliability of the moment conditions has a significant impact on

the statistical features of the GMM estimator α̂T . It would be beneficial to incorporate information on

both moment validity and relevance for rationality and symmetry tests.

Remark 2.1. There is a strong assumption in EKT (2005) that the forecasts are generated using a lin-

ear model ft+h = θ′Wt. In case of the nonlinear model, where ft+h = f(θ,Wt) and f(·) is continuously
differentiable, there exists θ∗ that satisfies

E
(
f∗
t+h

[
I
(
Yt+h − f∗

t+h < 0
)
− α0

]
|Yt+h − f∗

t+h|p0−1
)
= 0,

where f∗
t+h = f(θ∗,Wt). Accordingly, we can utilize Vv,t, which is a subvector of f∗(θ∗,Wt), to conduct

the rationality test. The point is that for the nonlinear case, f∗(θ∗,Wt) will be dependent on both θ∗

and Wt, but in reality we do not know the value of θ∗ which forecast user employs; see Naghi (2014) for

further discussion. Consequently, we in this paper only concentrate on the linear relationship.

The EKT (2005) method takes into consideration asymmetric preferences and offers the most lat-

itude in terms of the loss function among the tests of prediction optimality that are currently available

3The test of the loss symmetry may also be conducted by computing the asymptotic 95% confidence interval of α0.
Moreover, as noted in EKT (2005), we use Ŝ−1

T (α̂T ) to improve the finite sample power.
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in the literature. Nonetheless, one of the fundamental assumptions implicitly underlying the EKT

(2005) is that the forecast user has a full picture of available information, as reflected by (2.2). In prac-

tical applications, (2.3) is extremely useful since forecast user cannot achieve all information that fore-

casters have access to. However, even given the instrument set Vt, it is still unclear how the forecasting

institutions incorporate the information available in Vt to improve the forecast and how we should se-

lect the instruments to reach the most efficient value of α, since for each element of Vt, we could obtain

an estimate for α0 that would rationalize the observed sequence of forecasts. EKT (2005) suggest ap-

plying data-based methods for the selection of moment conditions using criteria such as those put for-

ward by Donald and Newey (2001), where they look into how to identify instruments from a subset that

is known to be valid. Such a data-based method is useful when dealing with a limited and fixed number

of moment conditions. The problem is that in reality we may have many instruments or moment condi-

tions, and we cannot guarantee that all instruments we are planning to select are valid. If the used in-

struments do not belong to the original information set, the forecast rationality estimation and testing

could lead to misleading inferences. We have to conduct some judgements for valid instruments before

we carry on the relevance selection, which is the primary problem this paper explores. To estimate and

test forecast rationality under the flexible loss acquired from EKT (2005), we adopt P-GMM estima-

tion method to select all valid and relevant instruments.

3 Moment Selection by P-GMM: Validity and Relevance

The estimation and testing of forecast rationality under flexible loss is a crucial issue of considerable

interest for forecast users from both theoretical and empirical perspectives. If the forecasts do not

efficiently use the information in Vt, then the estimator of α would be very different for each of the mo-

ment conditions and the test for overidentification would reject. Nonetheless, in empirical applications,

there are no general rules for choosing instruments. How to select the suitable (valid and relevant) in-

struments to back out the forecaster’s attitude parameter and improve estimation efficiency is still not

clear in the context of EKT (2005). To motivate the methodology suggested in this paper, suppose th-

ere is a set of possibly misspecified moment conditions

E
(
Vt

[
I
(
Yt+h − f∗

t+h < 0
)
− α0

]
|Yt+h − f∗

t+h|p0−1
) ?
= 0 (3.1)

with instruments Vt, where “
?
=” represents that equality may hold for some moments but not others.

Subsequently, including these misspecified moment conditions in estimating will lead to inconsistent es-

timation. To address this issue, we employ P-GMM estimation method (Cheng and Liao, 2015), which

can select valid and relevant moment conditions simultaneously to obtain not only an unbiased but also

a more efficient estimator of α (Figure 2).

Practically, (2.3) is the primary equation we need to utilize to select valid moment conditions,

which implies that if an instrument does not satisfy (2.3), we cannot adopt it to carry on the estima-

tion. After that, the relevant instruments are picked up from the valid ones by comparing the variance

of estimators. If a set of moment conditions yields a smaller variance, indicating that more informa-
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tion becomes available, this set of moment conditions will be treated as relevant moments, for which

(B′S−1B)−1 is the main indicator we concentrate on. These two selection steps are the crucial points

that many papers have emphasized for instrument or moment selection; see Lai et al. (2010). P-GMM

estimation combines these two selection steps together by attaching an appropriate penalty to the stan-

dard GMM criterion. Before introducing P-GMM estimation under the framework of EKT (2005), we

provide the definitions of valid and relevant instruments this paper employs.

Definition 1. (Validity) An instrument Vi,t is claimed as a valid instrument in terms of the estimation

of α if and only if it satisfies (2.3), i.e., E
[
Vi,t

(
I
(
e∗t+h < 0

)
− α0

)
|e∗t+h|p0−1

]
= 0.

Definition 2. (Relevancy) A valid instrument Vj,t is said to be a relevant instrument in terms of the

estimation of α given moment condition E
[
(Vj,t, Vi,t)

′ (I (e∗t+h < 0
)
− α0

)
|e∗t+h|p0−1

]
= 0 if and only

if B̂′
T (Vj,t, Vi,t)Ŝ

−1
T (Vj,t, Vi,t)B̂T (Vj,t, Vi,t) ≥ B̂′

T (Vi,t)Ŝ
−1
T (Vi,t)B̂T (Vi,t).

Figure 2: The Roadmap of Instrument Selection

Note : The instruments could be divided into four types: valid and invalid, relevant and irrelevant.
To reduce bias, valid instruments must be selected. For obtaining efficiency, relevant instruments
should be chosen. To get the unbiased and efficient estimation of the forecaster’s attitude parameter
α, we need to choose valid and relevant instruments, which is close to “Oracle Estimator”.

Given dim(Vt) = d, we divide the instrument set Vt into categories of “Good” instruments and

“Doubt” instruments, i.e., Vt = (VG,t, VD,t)
′ with VG,t ∈ Rk0 and VD,t ∈ Rd−k0 . We assume that a sub-

vector of “Good” moment function gG(VG,t, α) = CG,t−αBG,t ∈ Rk0 with k0 < d, where CG,t = VG,t

I(Yt+h−f∗
t+h < 0)|Yt+h−f∗

t+h|p0−1 and BG,t = VG,t|Yt+h−f∗
t+h|p0−1, can be utilized without testing

validity and relevance for the identification of parameter α. For instance, the value of k0 could be 2,

which means VG,t = (1, Yt−1)
′, as the constant and lagged dependent variable are well-known valid and

relevant instruments. To produce the most substantial collection of valid and relevant moment condi-

tions, following Cheng and Liao (2015), we adopt gD(VD,t, α) = CD,t−αBD,t ∈ Rd−k0 to represent all

“Doubt” moment conditions that needing to be checked for validity and/or relevance, where CD,t =

VD,tI(Yt+h−f∗
t+h < 0)|Yt+h−f∗

t+h|p0−1 and BD,t = VD,t|Yt+h−f∗
t+h|p0−1. Correspondingly, g(Vt, α) =

Ct − αBt = [gG(VG,t, α), gD(VD,t, α)]
′ ∈ Rd denotes the both “Good” and “Doubt” sets of all avail-

able moments. For the purpose of choosing moments, a slackness parameter β is defined as β =

E[gD(VD,t, α)]. In concert with the preceding definitions of valid and relevant instruments, P-GMM

estimation introduces the slackness parameter β0 into (2.3) to get
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E

(
Vt

[
I
(
Yt+h − f∗

t+h < 0
)
− α0

]
|Yt+h − f∗

t+h|p0−1 −

[
0

β0

])
≡ E

[
gG(VG,t, α0)

gD(VD,t, α0)− β0

]
= 0, (3.2)

where β0 = E[gD(VD,t, α0)]. Subsequently, instrument is selected from setD = A∪B1∪B0 with the car-

dinality |D| = d−k0, in which A represents the set of valid and relevant moments, B0 indicates the set

of valid but irrelevant ones, and B1 is the set of invalid moments. Both the moments in setA and B0 are

valid, but only those in A are relevant. We can simultaneously identify α and β and attain their joint

estimation through (3.2). The efficient estimation and moment selection are achieved in P-GMM esti-

mation by minimizing the following penalized objective function

α̂0 = argmin
α

[
gT (α, β)

′S−1
T gT (α, β) + λT

∑
ℓ∈A∪B1∪B0

ωT,ℓ|βℓ|
]
, (3.3)

where gT (α, β) =
1
T

∑T
t=1[gG(VG,t, α), gD(VD,t, α)−β]′, ST denotes a symmetric weighting matrix, λT

indicates a tuning parameter that regulates the overall penalty level, ωT,ℓ stands for an information-

based adaptive adjustment which equals µ̇r1
T,ℓ|β̇T,ℓ|

−r2 , µ̇T,ℓ is an empirical measure of the information

in moment ℓ ∈ D defined below in (3.4), β̇T,ℓ represents a preliminary consistent estimator of β0,ℓ =

E[gD(VD,t,ℓ, α0)], and r1 and r2 are positive constants (r2 ≤ r1 ) that are selected by the forecast user

to ensure a small value of ωT,ℓ when the moment condition is irrelevant. Notice that (3.3) is indeed a

LASSO type estimator—each individual slackness parameter βℓ is penalized using its L1-norm.

Remark 3.1. To distinguish between valid moments and invalid ones (Definition 1), β̇T,ℓ plays a dom-

inant role. For valid moments, β̇T,ℓ will exhibit a reduced magnitude, resulting in a substantial penalty,

whereas for invalid moments, β̇T,ℓ will be larger to lead to a small penalty. We must take into account

empirical measure of the information to make the distinction between relevant and irrelevant moments

(Definition 2). For relevant moments, µ̇T,ℓ will be larger to lead β to zero, while for irrelevant ones,

µ̇T,ℓ will be asymptotically zero, resulting in small shrinkage.

The parameter µ̇T,ℓ in the expression of ωT,ℓ can be chosen by the relevance criteria

µ̇T,ℓ = ρmax

(
B̂′

G+ℓŜ
−1
G+ℓB̂G+ℓ − B̂′

GŜ
−1
G B̂G

)
, ℓ ∈ D = A ∪ B1 ∪ B0, (3.4)

in which B̂G and ŜG are the corresponding estimates defined in the same way as B̂T and ŜT in Section

2, ρmax denotes the largest difference between B̂′
G+ℓŜ

−1
G+ℓB̂G+ℓ and B̂′

GŜ
−1
G B̂G, (B̂

′
GŜ

−1
G B̂G)

−1 depicts

the asymptotic variance of the optimal estimator of α0, and (B̂′
G+ℓŜ

−1
G+ℓB̂G+ℓ)

−1 represents the asymp-

totic variance of the optimal estimator of α0 after adding moment condition ℓ. According to Lemma

2.1 in Cheng and Liao (2015), we have B̂′
G+ℓŜ

−1
G+ℓB̂G+ℓ ≥ B̂′

GŜ
−1
G B̂G, which indicates that adding a

valid moment condition will not decrease the efficiency of the P-GMM post-selection estimator.

The initial estimator of α̇T and β̇T,ℓ can be estimated by setting λT = 0 in (3.3). Thereafter, the

value of µ̇T,ℓ could be obtained from (3.4). The tuning parameter λT for the ℓth moment condition is

calculated by using the explicit formula below

λ̂T,ℓ = 2
∥∥Ŝ− 1

2
T (ℓ)Π̂T

∥∥d r2
4 T− 1

2
− r2

4 , (3.5)
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where ∥·∥ represents the Euclidean norm, Ŝ−1
T (ℓ) denotes the ℓth row of the matrix Ŝ−1

T , Π̂T is the esti-

mator of ΠT = Id − S
− 1

2
T Γα

(
Γ′
αS

−1
T Γα

)−1
Γ′
αS

− 1
2

T , and Γα indicates the first derivative of gT (α, β).

We then obtain the main result of this paper—the selection consistency, mainly coming from the

L1 penalty in (3.3). Asymptotically, within the framework of EKT (2005), P-GMM estimation can

correctly estimate that all nonzero parameters βℓ in sets B0 and B1 as nonzero, whereas all zero param-

eters in set A as zero. Therefore, moment selection consistency is achieved by synchronically selecting

all valid and relevant moment conditions and automatically excluding all invalid or irrelevant ones.

Theorem 1. Let β̂ℓ denote the estimator of the slackness parameter indexed by ℓ from (3.3). Built on

the conditions and theorems in Cheng and Liao (2015), we can acquire the following results

P
(
∪ℓ∈B1

{
β̂ℓ = 0

})
→ 0 as T → ∞ (Invalid),

P
(
∪ℓ∈B0

{
β̂ℓ = 0

})
→ 0 as T → ∞ (Irrelevant),

P
(
∩ℓ∈A

{
β̂ℓ = 0

})
→ 1 as T → ∞ (Valid and Relevant).

The detailed proof of Theorem 1 can follow Cheng and Liao (2015), which is omitted here. The

above results reveal that the valid and relevant moments can be distinguished from the invalid or irrele-

vant ones with a probability tending towards one. It is commonly established that increasing the num-

ber of valid instruments will enhance efficiency in the standard GMM setup. Thus, P-GMM can select

all valid and relevant moment conditions in the context of EKT (2005) and simultaneously provides a

more efficient estimator of α, reflected by a smaller standard error. Note that under consistent moment

selection, the asymptotic distribution of the P-GMM post-selection estimator α̂0 is normal with mean

zero, which corresponds to the expression in (2.7) using the asymptotic laws in GMM theory. Such a

post-selection estimator could be as efficient as the oracle GMM estimator established on all valid and

relevant moment conditions, demonstrating by the simulations shown below. This oracle property indi-

cates that the suggested P-GMM estimation can increase the power of rationality and symmetry tests

through limiting the impact of uninformative instruments.

4 Monte Carlo Simulations

We conduct simulation experiments to illustrate the finite sample properties of the suggested P-GMM

estimation within the scope of EKT (2005), including linear dependence and nonlinear dependence be-

tween the forecast user’s information set and the forecast error. For both simulation settings, we treat

the constant instrument in the valid and relevant set VG,t defined in Section 3. Throughout the whole

section, the identity matrix is employed as a weighting matrix in the GMM optimization since it does

not require the estimation of any parameters, and the forecast horizon is limited to h = 1. We explore

the behaviour of the estimator of α and investigate the characteristics of the J-test statistics to empha-

size the impact of the selection of instrumental variables.
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DGP 1: Linear Case To capture large dimension in the underlying data, we in this simulation

let the number of instruments Vt be d = 30. We then generate the random samples from the following

data generating process (DGP)

Yt+1 = θ0 +W1,tθ1 +W2,tθ2 + Ut, (4.1)

where Y represents the dependent variable, W1 and W2 are two covariates, U denotes the error term,

and the parameters are set to be θ0 = 1, θ1 = 0.4, and θ2 = 0.4. The parameters we choose here are

strong enough for identification. The results in Cheng and Liao (2015) indicate that when we have a

weak identification issue, P-GMM estimation is robust at choosing all valid instruments but will select

more irrelevant instruments in the finite sample situation. When we increase the sample size, the

probability of identifying irrelevant instruments will decrease significantly even in the weak identifica-

tion case (see Table 2). Because of this, for the estimation part of this simulation study, we only draw

attention to the strong identification case. To highlight the effect of invalid instruments, the whole

simulated instrument set needs to include a valid but irrelevant instrument vector Wv,t and an invalid

instrument vector Winv,t. For ensuring this, the samples are generated through the following multiva-

riate normal distribution
W1,t

W2,t

Wv,t

W ∗
v,t

Ut

 ∼ N

0,


1 0.2 0 0 0

0.2 1 0 0 0

0 0 I14 0 0

0 0 0 I14 0

0 0 0 0 1



 ,

Winv,t(ℓ) = W ∗
v,t(ℓ) + cℓ × Ut, and cℓ = c0 +

(ℓ− 1) (c− c0)

d/2− 1
, ℓ = 1, . . . , d− k0

with k0 = 3 for VG,t = (1,W1,t,W2,t)
′, where Winv,t(ℓ) and W ∗

v,t(ℓ) are the ℓth instruments. Since

Winv,t(ℓ) is correlated with Ut, it is evident that the set of instruments used for estimating and testing

forecast rationality does not encompass it.

DGP 2: Nonlinear Case For this simulation, we consider d = 31 with nonlinear dependence.

We generate the random samples from the following nonlinear DGP

Yt+1 = θ0 +W 2
1,tθ1 + (W1,t ×W2,t)θ2 + exp(W3,t)θ3 + Ut, (4.2)

where θ0 = 1, θ1 = 0.5, θ2 = 0.5, and θ3 = 0.4. The whole instrument set also includes a valid but irrel-

evant vectorWv,t and an invalid vectorWinv,t. The samples are simulated by the following distribution

W1,t

W2,t

W3,t

Wv,t

W ∗
v,t

Ut


∼ N


0,



4 0.2 0.04 0 0 0

0.2 10 0.2 0 0 0

0.04 0.2 8 0 0 0

0 0 0 I14 0 0

0 0 0 0 I14 0

0 0 0 0 0 1




,
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Winv,t(ℓ) = W ∗
v,t(ℓ) + cℓ × Ut, and cℓ = c0 +

(ℓ− 1) (c− c0)

d/2− 1
, ℓ = 1, . . . , d− k0

with k0 = 4 for VG,t = (1,W 2
1,t,W1,tW2,t, exp(W3,t))

′.

For both DGPs, we set c0 = 0.5 and an upper bound c = 2.4, and choose the user-selected

constants r1 = 3 and r2 = 2 following Cheng and Liao (2015). The total number of data investigated is

T = 200 and T = 2000, respectively. The number of simulation repetitions is 5000. The sample is split

into an in-sample set and an out-of sample set, where 50% of observations are assumed to be available

to the forecast user prior to the first forecast. The reminder is used to compute forecast errors in order

to evaluate these forecasts. To this end, the forecasts are made by estimating θ̂ for p0 = 2 given a

collection of variables from the information set available to the forecast user and the forecaster’s true

preferences toward asymmetry, α0, where θ̂ represents the corresponding estimator of parameter vector

in each DGP. It is reasonable to fix the loss shape parameter p since Komunjer and Owyang (2012) have

shown that different values of the loss shape parameter p would all result in consistent estimates of the

asymmetric parameter. The true value of the asymmetric parameter is set to be α0 ∈ {0.2, 0.4, 0.5, 0.6,
0.8} in order to cover a wider range from severely asymmetric preferences, through values that are

almost symmetric, up to the symmetric case. Subsequently, we estimate different values of α based on

the resultant one-step ahead forecast errors using the P-GMM estimation approach.

Table 1: Performance of P-GMM Estimation (DGP 1-Strong Identification)

α
T = 200 T = 2000

P(VR) P(VR+) P(INV) P(VR) P(VR+) P(INV)

0.2 0.676 0.138 0 0.958 0.032 0

0.4 0.629 0.141 0 0.961 0.024 0

0.5 0.683 0.109 0 0.967 0.021 0

0.6 0.647 0.193 0 0.962 0.016 0

0.8 0.684 0.112 0 0.953 0.027 0

Note : “P(VR)” represents the probability that P-GMM estimation selects all valid and relevant
moments; “P(VR+)” indicates the probability that P-GMM estimation selects all valid and relevant
moments plus some irrelevant ones; and “P(INV)” denotes the probability that P-GMM estimation
selects invalid moment conditions.

The performance of P-GMM estimation for DGP 1 with various values of asymmetric parameter

is shown in Table 1. It can be observed that for each value of α, the probability of selecting invalid mo-

ment conditions is 0, indicating that P-GMM estimation is capable of choosing the entire valid moment

conditions. With a small sample size T = 200, the probability for P-GMM estimation to pick up all

valid and relevant moments (W1 and W2) in the context of EKT (2005) is approximately 0.65, whereas

the probability to select complete valid and relevant moments plus some irrelevant ones (instrument

from Winv) is roughly 0.15. Therefore, P-GMM estimation within the context of EKT (2005) is capa-

ble of identifying the whole valid and relevant moments with a probability around 0.8. When sample

size is increased to 2000, the probability of acquiring all valid and relevant moment conditions rises to
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about 0.95, while the probability of obtaining irrelevant moment conditions is very near to 0. These

outcomes all point to the P-GMM estimation’s good finite sample performance. In the framework of

EKT (2005), we additionally assess P-GMM estimation’s effectiveness in weak identification case. The

selection results are displayed in Table 2. When the sample size is small, the probability to select only

valid and relevant moments is low, but the probability of collecting all valid and relevant moments is ap-

proximately 0.85. When the sample size is increased to 2000, the probability of P-GMM estimation se-

lecting invalid moment conditions is precisely 0. Overall, the suggested P-GMM estimation has satisfa-

ctory performance and can be employed to eliminate irregular instruments to improve estimation.

Table 2: Performance of P-GMM Estimation (DGP 1-Weak Identification)

α
T = 200 T = 2000

P(VR) P(VR+) P(INV) P(VR) P(VR+) P(INV)

0.2 0.104 0.872 0.016 0.892 0.108 0

0.4 0.117 0.855 0.020 0.906 0.091 0

0.5 0.133 0.850 0.016 0.874 0.120 0

0.6 0.105 0.871 0.023 0.892 0.100 0

0.8 0.124 0.858 0.018 0.898 0.102 0

Note : The same DGP as the one used to build Table 1, but with θ1 = 0.07.

Table 3 displays the finite sample properties of α for DGP 1, where we compare five different

scenarios: (a) P-GMM estimation; (b) estimation with all valid and relevant moment conditions; (c)

estimation with all moment conditions; (d) estimation with a constant instrument; and (e) estimation

with a constant instrument plus instrument W1. These instrument sets are comprised of omitted infor-

mation as well as irrelevant information. As seen from Table 3, P-GMM estimator is consistent and has

a smaller standard error compared to all cases aside from scenario (b), which represents the oracle esti-

mator that forecast users never obtain. In addition, the P-GMM estimation precision regarding asym-

metry parameter α improves with increasing sample size. By looking at the results for scenario (c), it

is clear that when we include invalid moment conditions in estimating, the resultant estimator will be

biased and further away from the true value. Such biases will not be alleviated with the increase of sam-

ple size and the likelihood of falsely rejecting the appropriate null hypotheses for the relevant tests may

increase as a result of these biases. Because of this, we do not report J-test statistics for case (c) when

investigating the testing of forecast rationality in what follows. This outcome also indicates that when

estimating and testing forecast rationality under flexible loss, we cannot simply employ all instruments

we have, as some of them may be invalid and cause the target estimator to be biased, emphasizing the

significance of moment selection under the circumstances of EKT (2005). We can observe from case

(d) that even when only a constant instrument is utilized, the resulting estimator still maintains con-

sistency, which is in accordance with the existing literature that constant term is a valid and relevant

instrument. The estimation, however, is not efficient regarding standard errors and the test power is

lower compared to cases (a) and (b). It is fascinating to discover that the P-GMM post-selection esti-

mator can be comparable to the oracle estimator, concentrating on cases (a) and (b). Such a result is
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theoretically anticipated provided that the post-selection estimators constructed using the selected mo-

ments are available with P-GMM estimation, which lessens the influence of uninformative instruments.

With regard to the tests we acquire after completing P-GMM moment selection, we can observe

that the p-values of rationality and symmetry tests perform better than all other cases besides oracle

one (b). For all values of α, the p-values of J-test statistics using P-GMM estimation are higher than

other cases with the exception of oracle estimator, demonstrating that P-GMM estimation could en-

hance the power of the rationality test. For testing loss symmetry of α = 0.5, the p-values of J(0.5)-test

statistics using P-GMM estimation are higher than other cases except for oracle estimator, which re-

veals that the power of symmetry test will be increased if we adopt P-GMM estimation to carry out the

moment selection. For α = 0.2, 0.4, 0.6, and 0.8, the p-values of J(0.5)-test statistics using P-GMM es-

timation are smaller than other cases excluding oracle estimator, which also suggests that P-GMM es-

timation is able to increase the power of the symmetry test by reducing the influence of uninformative

instruments. Additionally, when the sample size grows, the power of J-test statistics increases as well.

All of these point to the fact that P-GMM estimation can provide us the desired theoretical features as

well as the computational simplicity needed to screen the instrumental variables for conducting fore-

cast rationality estimation and testing.

Table 4 represents the finite sample properties of α for DGP 2, which follows almost the same

characteristics as those in Table 3. We observe that the values of α are estimated fairly effectively both

in terms of bias and precision (standard errors) when the moment equation just contains a constant.

The estimates do not, nevertheless, systematically approach the true values as the sample size grows.

A similar patten can be detected for the scenario where the forecasts have been made using a constant

term and instrumentW 2
1 . As expected, P-GMM estimation performs overall well, the estimated values

being close to the true parameters, the standard errors being smaller, and the power of the test being

larger, suggesting that information selected by P-GMM estimation has been utilized efficiently. Fur-

thermore, we can see a decreasing variation in the P-GMM estimate of α with increasing sample size.

In cases where invalid instruments are used, some estimators appear biased, indicating the importance

of selecting valid and relevant moment conditions.

5 Real Data Analysis

We now turn to illustration of the suggested procedure in the framework of forecast rationality through

an empirical analysis. Throughout the whole section, the identity matrix is employed as a weighting

matrix in the GMM optimization and the forecast horizon is limited to h = 1. We use information from

the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters, the oldest quarterly

survey of macroeconomic forecasts that reveals information on the trajectory of the United States econ-

omy. The survey respondents who participate in the quarterly surveys that constitute this data set pro-

vide point forecasts for macroeconomic indicators. There is a substantial body of literature on the anal-

ysis of data from this survey. The underlying forecasting model does not need to be known, but is as-

sumed to be a linear forecasting rule. For simple explanation, we also assume that forecaster minimizes
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a quadratic loss function (p0 = 2). As in Naghi (2014), we focus on business cycle forecasts and the

following series are chosen consequently as the target variable (Yt+1): the quarterly growth rates for

real GNP/GDP (1968:4-2012:4), the quarterly growth rates for the price index for GNP/GDP (1968:4-

2012:4), and the quarterly growth rates for consumption (1981:3-2012:4). The difference between nat-

ural logs is utilized to compute growth rates. Periods t and t+1, respectively, relate to the quarters in

which the forecasts are released and the following quarter to which they refer. We calculate the forecast

error as the difference between the actual and the one-step ahead forecast value. Before conducting the

estimation and testing of forecast rationality, we examine stationarity using the unit root test proposed

by Elliott et al. (1996) and find that all growth rate series clearly reject the unit root null.

Table 5: Estimation and Testing for Symmetry and Rationality

Yt+1 Method α se t-Stat J-Stat p-value (J-Stat)

GNP/GDP Growth Rate All 0.4567 0.0478 -0.9055 1.8447 0.6053

CON+IV 0.4550 0.0481 -0.9348 0.2026 0.6526

P-GMM 0.4552 0.0366 -1.2240 1.2705 0.7182

Price Index Growth Rate All 0.5578 0.0459 1.2594 2.2457 0.5230

CON+IV 0.5619 0.0461 1.3422 1.1376 0.2862

P-GMM 0.5593 0.0451 1.3149 1.6824 0.6367

Consumption Growth Rate All 0.2976 0.0518 -3.9110 6.4760 0.0906

CON+IV 0.3152 0.0527 -3.5047 2.8750 0.0900

P-GMM 0.2749 0.0493 -4.5659 6.8142 0.0788

Note : We use “se” to denote standard error, “CON” to indicate a constant instrument, and “IV” to
represent lagged change in actual values. For output and prices, the sample size is T = 177, while for
consumption, it is T = 126.

With respect to the instruments of the estimation and J-test, we choose constant, absolute lagged

errors, lagged change in actual values, and lagged change in forecasts. For the sake of comparison, we

report the results using (i) all instruments; (ii) constant and lagged change in actual values; and (iii)

P-GMM estimation. The results for the estimates of the attitude parameter α as well as for the tests of

rationality are displayed in Table 5, where it is clear that all three estimates of the asymmetry param-

eter for real GNP/GDP take values that are slightly less than 0.5 (reflecting a propensity to generate

optimistic forecasts), whereas all estimates for price index take values that are somewhat greater than

0.5 (exhibiting a tendency for producing optimistic forecasts). All outcomes indicate that the estimate

of the asymmetry parameter for consumption is far away from 0.5, representing that the consumption’s

loss function appears to be asymmetric with higher weights on negative forecast errors. The results

demonstrate that the suggested P-GMM selection procedure can be utilized to recover the value of

the asymmetry parameter and improve estimation efficiency, reflected by smaller standard errors. In

accordance with the results in Naghi (2014), we focus on the J forecast rationality test and perform a

simple t-test to find out if the attitude parameter is different from 0.5. The results show that the null of

symmetric preferences cannot be rejected for real GNP/GDP and price index for all considered cases,

but the propensity for α estimates to deviate significantly from 0.5 is much greater based on P-GMM
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estimation. This suggests that by allowing for the selection of valid and relevant moments, some of the

inefficiencies associated with employing all instruments can be eliminated. Notice that the above null

hypothesis is rejected for consumption, revealing that Survey of Professional Forecasts gives negative

forecast errors more weight due to the higher costs involved in overpredicting consumption. All J-tests

do not reject the composite null hypothesis that the loss belongs to the family of loss functions defined

in EKT (2005) and that the forecasts are rational at the 5% significance level.4 Nonetheless, at the

10% significance level, the J-test does reject for consumption. It is possible that the failure of rational-

ity results from the J-test using unselected instruments. If we look into the P-GMM estimation, the

resulting p-value is smaller. This confirms that incorporating additional valid and relevant moments

through penalized estimation can improve efficiency for the forecaster’s attitude parameter. Despite

not being statistically significant enough, the estimate and p-value from P-GMM estimation are

convincing evidence that the forecast rationality hypothesis for consumption could be rejected. This

also implies that improving future predictions may benefit from completely utilizing the information

included in the chosen instrumental variables.

6 Conclusions

The assumption that economic agents establish rational expectations is a basic premise in economics.

As a result, a substantial body of research has explored the accuracy and rationality of forecasts. In ad-

dition, the number of candidate moment conditions is generally significantly larger than that of the pa-

rameter of interest in estimation and testing. Identifying a subset of the available instruments with the

most impacts on the target forecast rationality estimation and testing is frequently desirable in prac-

tice. To avoid biases and inefficiencies brought on by many moments problems, this paper integrates

the moment selection tool into the framework of EKT (2005) without assuming the validity of instru-

ments. Specifically, we employ P-GMM estimation to select valid and relevant moment conditions for

conducting the rationality estimation and testing. The Monte Carlo simulation results indicate that

P-GMM estimation can efficiently select all valid and relevant moment conditions and improve the esti-

mation accuracy measured by a decrease in standard error and an increase in test power. The empirical

analysis further emphasizes the importance of undertaking moment selection. As in reality we are not

aware of which instruments are useful to back out the forecaster’s attitude parameter, the presented

results in this paper have a significant practical implication in terms of examining the asymmetry in

forecast loss functions. In the presence of potentially invalid moment conditions, we can apply P-GMM

estimation to select not only valid instruments but also relevant instruments to achieve consistent and

more efficient estimators and more powerful tests.

This paper shows that when a forecast user intends to estimate and test for rationality of forecasts

that have been produced by someone else such as Greenbook, P-GMM estimation can aid in achieving

consistent and more efficient results. There are other additional techniques that can fill this instrument

4If we consider it more carefully, failing to reject the null hypothesis of rationality may only point to the absence of a
linear relationship between the forecast user’s information set and the forecast error; see Remark 2.1. However, it is out-
side the scope of the current paper to identify potential nonlinear dependencies.
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selection role, such as the two-stage moment selection model developed by Lai et al. (2010). It would

be interesting to compare these approaches and investigate which one is the best regarding backing out

the forecaster’s attitude parameter. In addition, while this paper concentrates solely on time series

prediction, we can also combine moment selection technique with panels of forecasts (see Timmermann

and Zhu (2019)) to conduct forecast rationality estimation and testing either along the time series

dimension for certain variables or along the cross sectional dimension for a specific time period. All of

these interesting research is left for future investigation.
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