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Abstract

Carter Hill’s numerous contributions (books and articles) in econometrics stand out espe-
cially in pedagogy. An important aspect of his pedagogy is to integrate “theory and practice” of
econometrics, as coined into the titles of his popular books. The new methodology we propose
in this paper is consistent with these contributions of Carter Hill. In particular, we bring the
maximum score regression of Manski (1975, 1985) to high dimension in theory and show that
the “Asymmetric AdaBoost” provides the algorithmic implementation of the high dimensional
maximum score regression in practice. Recent advances in machine learning research have
not only expanded the horizon of econometrics by providing new methods but also provided
the algorithmic aspects of many of traditional econometrics methods. For example, Adaptive
Boosting (AdaBoost) introduced by Freund and Schapire (1996) has gained enormous success
in binary/discrete classification/prediction. In this paper, we introduce the “Asymmetric Ad-
aBoost” and relate it to the maximum score regression in the algorithmic perspective. The
Asymmetric AdaBoost solves high-dimensional binary classification/prediction problem with
state-dependent loss functions. Asymmetric AdaBoost produces a nonparametric classifier via
minimizing the “asymmetric exponential risk” which is a convex surrogate of the non-convex
0-1 risk. The convex risk function gives a huge computational advantage over non-convex risk
functions of Manski (1975, 1985) especially when the data is high-dimensional. The result-
ing nonparametric classifier is more robust than the parametric classifiers whose performance
depends on the correct specification of the model. We show that the risk of the classifier that
Asymmetric AdaBoost produces approaches the Bayes risk which is the infimum of risk that can
be achieved by all classifiers. Monte Carlo experiments show that the Asymmetric AdaBoost
performs better than the commonly used LASSO-regularized logistic regression when paramet-
ric assumption is violated and sample size is large. We apply the Asymmetric AdaBoost to
predict business cycle turning points as in Ng (2014).
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1 Introduction

Data with a large number of variables relative to the sample size, namely high-dimensional data, are

becoming more and more prevalent in empirical economics as well as statistics and computer science.

One of the most successful applications of high-dimensional data in economics as well as other

sciences is to construct empirical models for the forecasting of binary outcomes and making binary

decisions. Examples in forecasting include predicting firm solvency, the legitimacy of credit card

transactions, directional forecasts of financial prices, whether a loan is paid off or not, or whether

an introduced foreign plant species will become invasive or not. Such forecasts are often translated

into decisions which are binary in character, e.g. the loan is granted or it is not, the student is

admitted to the school or not, the candidate is hired or not hired, the surgery is undertaken or

it is not, importation of a foreign plant species is allowed or not. Various traditional statistical

approaches to binary classification are available in the literature, from discriminant analysis, logit

or probit models to less parametric estimates of the conditional probability model for the outcome

variable such as semiparametric single-index models (Ichimura, 1993; Klein and Spady, 1993).

Typically, most estimation techniques used for binary classification do not make use of the loss

function implicit in the underlying decision/prediction problem. For example logit and probit mod-

els are estimated to maximize the likelihood of the model, irrespective of the relative usefulness of

true positives or true negatives. Nonparametric methods seek the best fit for the conditional proba-

bility based on the loss function (typically squared error) rather than the appropriate loss function

for the decision problem. In most applications, the relative costs of making errors, false negatives

and false positives, are rarely balanced in the way that could be used to motivate these approaches.

In detecting credit card fraud, “wasting” resources on checking that the customer has control over

their credit card is perhaps less costly than failing to do so when their credit card number has been

stolen. Elliott and Lieli (2013) point out that even with local misspecifications that are difficult

to detect using standard specification tests, parametric models of the conditional probability of a

positive outcome can perform arbitrarily poorly when the loss function is ignored at the estimation

stage. They further propose the “maximum utility estimator” which is a semiparametric method

that requires far less information to attain maximal utility, and through the utilization of the loss
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function at the estimation stage has useful properties given any misspecification. The maximum

utility estimator builds upon and extends results of Manski (1975, 1985).

This paper extends the method of Manski (1975, 1985) and Elliott and Lieli (2013) to high-

dimensional data and model misspecification in the order of independent variables. We consider the

prediction of a binary variable y ∈ {1,−1}, e.g. y = 1 if the economy is in expansion and y = −1

if the economy is in recession. Let G(x) be a classifier of y. This paper investigates the problem of

classification/prediction that minimizes a weighted (asymmetric) misclassification probability

Rτ (G) = E
[
τ(x)× 1(y=−1,G(x)=1) + (1− τ(x))× 1(y=1,G(x)=−1)

]
(1)

= Ex[τ(x) Pr(y = −1, G(x) = 1|x) + (1− τ(x)) Pr(y = 1, G(x) = −1|x)], (2)

where the first expectation is taken over y and x, and the symbol 1(·) is the indicator function which

takes the value 1 if the logical conditions inside the parenthesis are satisfied and takes the value

0 otherwise. τ(x) is a utility-based weight function that assigns different penalties conditioning

on the state variable y and characteristics x as shown in Section 3. In addition, we allow the

characteristics x to be high-dimensional, and both the conditional distribution of y given x and the

functional form of the classifier G(x) to be of unknown forms.

We propose a nonparametric method which minimizes an asymmetric exponential loss via func-

tional gradient descent and builds a strong (optimal) classifier by iteratively combining weak classi-

fiers. The resulted strong classifier can encamps a large class of functions even if the weak classifiers

are restricted to a given parametric form. Moreover, we use component-wise algorithm and select

only one independent variable at each iteration to overcome the issue of high-dimensionality.

There are some prediction problems that do not fit the framework examined here. A forecaster

providing forecasts that might be used by a number of different users might not consider the loss

function. For example a weather forecaster providing a forecast of whether or not it might rain

might simply report an estimate of the conditional probability of rain and let different users interpret

the information differently. We will also rule out feedback of the prediction to the conditional

probability of the event to be predicted, which means that the methods are not appropriate for

predictions of outcomes where there is this type of feedback. Such feedback occurs for example in

predicting success of job training programs, where entry to the program affects the chance of getting
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a job. However a myriad of problems are not ruled out, where the prediction is not important for

the distribution of the outcomes and the econometrician is willing to elicit a loss function.

The rest of the paper is organized as follows. Section 2 introduces the binary choice model

and the maximum score approach. Section 3 relate the binary classification problem with decision

theory. In Section 4, we look into the problem of prediction with state-dependent losses and intro-

duce a new “asymmetric exponential risk” function based on the utility functions. We also propose

a new algorithm that minimizes the “asymmetric exponential risk” and builds up a nonparamet-

ric classifier. In Section 5, we examine the finite sample properties of Asymmetric AdaBoost via

Monte Carlo simulations. Section 6 predicts business cycle turning points as in Ng (2014). Section

7 concludes. All technical derivations and proofs are presented in the Appendix.

2 Maximum Score Regression

In this paper, we consider the binary choice model given by

y =

{
1 if ϕ(x) ≥ ϵ
−1 otherwise.

(3)

where ϕ(·) is an unknown function, x is a vector of exogenous variables, ϵ is a random disturbance.

We assume that observations {xi, yi} are independently and identically distributed. However, we

do not require any prior knowledge on the functional form of ϕ(·) or the distribution of ϵ.

Manski (1975) proposes to obtain a classifier G(x) ∈ {1,−1} by maximizing the “score”

maxS(G) = E [yG(x)] , (4)

which is called the maximum score approach. Note that

E [yG(x)|x] = [Pr(y = 1|x)− Pr(y = −1|x)]G(x). (5)

Hence, G(x) should take the same sign as Pr(y = 1|x)− Pr(y = −1|x) when (4) is maximized, i.e.

G∗(x) =

{
1 Pr(y = 1|x) > Pr(y = −1|x)
−1 otherwise,

(6)

or equivalently,

G∗(x) =

{
1 Pr(y = 1|x) > 0.5

−1 otherwise.
(7)
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Remark 1. We refer to the problem and the risk function in this section as “symmetric” since the

optimal decision rule is Pr(y = 1|x) > 0.5. Similarly, we refer to the risk functions in Section 4 as

“asymmetric” since the the optimal decision rule is not Pr(y = 1|x) > 0.5.

Note that the score function (4) is a linear transformation of the misclassification probability

(1) with τ = 0.5,

S(G) = E[yG(x)] = −4× E
[
1

2
× 1(G(x)̸=y)

]
+ 1 = −4×R0.5(G) + 1. (8)

Hence, the maximum score approach is equivalent to minimizing the symmetric misclassification

probability.

Remark 2. Note that the risk function (1) is often referred to as the 0-1 risk since the indicator

function takes value 1 when the classification is wrong and 0 otherwise. We would use these names

interchangeably with the negative score function used in the maximum score approach in the rest

of the paper.

From (7), the optimal maximum score classifier, also known as the Bayes classifier, makes

classification based on the condition Pr(y = 1|x) > 0.5. The Bayes classifier achieves the “Bayes

risk”

R∗
0.5 = inf

G
R0.5(G) = Emin

{
1

2
Pr (y = 1|x) , 1

2
Pr (y = −1|x)

}
, (9)

where the infimum is taken over all possible (measurable) classifiers.

The maximum score approach yields a classifier that minimizes the misclassification probability

(1) with τ = 0.5. It is superior to many other popular methods, e.g. probit and logit models, in the

sense that it does not have to assume that y given x follows a given distribution. However, there

are some limitations: The classifier is assumed to take the form G(x) = sign[x′β], i.e., the optimal

classifier is the sign of a linear function. The objective function used is non-convex which lead to

computation difficulty especially when the sample size is large. Last but not the least, the method

does not work if covariates are high-dimensional.

3 Decision Theory for Binary Prediction/Classification

In a more general case, it may not be optimal to use Pr(y = 1|x) > 0.5 as the threshold. Granger

and Pesaran (2000) discuss the idea of using decision theory to evaluate classification/prediction
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accuracy in a two-state two-action decision problem. Assume the payoff matrix is

y = 1 y = −1
G (x) = 1 u1,1 (x) u1,−1 (x)
G (x) = −1 u−1,1 (x) u−1,−1 (x)

(10)

where ui,j (x) is the state dependent utility of making prediction i when the realized value is j

under circumstances x. Without loss of generality, we assume that u1,1 (x)−u−1,1 (x)+u−1,−1 (x)−

u1,−1 (x) = 1. It is natural to also assume that all utilities are bounded and taking the correct

decision i corresponding to realized state j is beneficial: τ(x) ≡ u1,1 (x) − u−1,1 (x) > 0 and

1− τ(x) ≡ u−1,−1 (x)− u1,−1 (x) > 0.

The optimal classification/prediction is G (x) = 1 if the expected utility of G(x) = 1 is greater

than G(x) = −1:

Pr (y = 1|x)u1,1 (x) + Pr (y = −1|x)u1,−1 (x) > Pr (y = 1|x)u−1,1 (x) + Pr (y = −1|x)u−1,−1 (x) .

(11)

Hence, G(x) = 1 if

Pr (y = 1|x) > (u−1,−1 (x)− u1,−1 (x)) = 1− τ (x) , (12)

is the sufficient condition for G (x) = 1 to be the optimal classification/decision.

Setting the losses as negative utilities, the above problem can be written as minimizing a state-

dependent risk function as follows:

Rτ (G) = E
(
t (y, x) 1(−yG(x)>0)

)
, (13)

where

t(y, x) =

{
τ(x) y = 1

1− τ(x) y = −1
(14)

is a non-negative function of outcome variable y and characteristics x. Similarly, we denote the

risk of classification using the optimal decision rule (12)

R∗
τ = inf

G
Rτ (G(x)) = E{min[t(1, x) Pr(y = 1|x), t(−1, x) Pr(y = −1|x)]} (15)

as the Bayes risk which is the minimal risk that can be achieved. The risk function (13) is essentially

the same as the misclassification probability (1) with argument F ∈ R instead ofG ∈ {1,−1}. As we

have shown before, the misclassification probability, namely the 0-1 risk, is a linear transformation

of the risk function used in the maximum score approach.
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The optimal classifier

G∗
τ (x) =

{
1 Pr(y = 1|x) > 1− τ(x)
−1 otherwise.

(16)

uses the classification rule (12) that is a function of the state-dependent utilities of the economic

agent and achieves the Bayes risk (15).1

Remark 3. We refer to the binary classification/prediction problem with state-dependent losses as

asymmetric since the optimal classification rule is Pr(y = 1|x) > 1 − τ(x), i.e. the threshold is

1− τ(x) instead of 0.5 as in the symmetric case.

4 Asymmetric Exponential Loss

The score risk (13) is non-convex which lead to high computation cost especially when the sample

size is large and/or covariates are high-dimensional. In this section, we introduce a new risk

function, namely the asymmetric exponential risk, for solving binary classification/prediction under

state-dependent losses. We also propose a new algorithm, that we call the Asymmetric AdaBoost,

which produces a nonparametric classifier by minimizing the asymmetric exponential risk. Our

new algorithm is computationally efficient and is able to handle binary classification/prediction

problem with high-dimensional covariates.

4.1 Maximum Score

Before we introduce our convex surrogate risk function, we first point out that it is a common

practice to assume that the binary classifier G(x) in (4) is taking the sign of a real valued function,

i.e. G(x) = sign[F (x)] where F (x) ∈ R. Manski (1975) assumes that G(x) = sign[x′β] where the

function F (x) = x′β is linear in x. It is worth noting that we do not impose the linearity assumption

or any other parametric assumption in our method. Hence, the classifier is nonparametric. However,

without loss of generality, we also assume G(x) = sign[F (x)]. Note that this assumption does not

jeopardize the generality of our classifier as long as the inner function F (x) is flexible enough.

1Manski (1975, 1985) propose the maximum score estimator to solve the above binary classification problem from
minimizing a linear transformation of the score risk

max
G

E (t(y, x)yG (x)) . (17)

Elliott and Lieli (2013) also use a similar estimator which they call the maximum utility estimator.
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Replace G(x) with sign[F (x)], then (13) becomes

Rτ (sign[F (x)]) = E
(
t (y, x) 1(−y sign[F (x)]>0)

)
= E

(
t (y, x) 1(−yF (x)>0)

)
, (18)

where

t(y, x) =

{
τ(x) y = 1

1− τ(x) y = −1.
(19)

It is interesting to find that in (18) the latter equality shows the equivalence of using the score,

y sign[F (x)] ∈ {−1, 1} and using which is called the margin in the machine learning literature,

yF (x) ∈ R. From Figure 1, it is easy to see that the risk function (18) is non-convex since it

includes the indicator function 1(−yF (x)>0). The non-convexity would lead to high computation

costs and greatly limit the applicability of the risk function especially when the sample size is large

and/or the data is high-dimensional.

4.2 Convex Surrogate

Bartlett, Jordan, and McAuliffe (2006) discuss the “convex relaxation” of non-convex risk functions

commonly used in the classification literature. It is possible to use the exponential function

ψ(x) = e−yF (x), (20)

as used in AdaBoost as a convex surrogate of the non-convex indicator function of the margin

1(−yF (x))>0. To solve the non-convex optimization problem, we propose to use a new risk function,

the asymmetric exponential risk,

Rψ,τ (F ) = E
(
t(y, x)e−yF (x)

)
, (21)

which is a convex surrogate of the score risk (13). Similarly, let us denote the optimal asymmetric

exponential risk as

R∗
ψ,τ = inf

F
Rψ,τ (F ) . (22)

The asymmetric exponential risk replaces the non-convex indicator function in the risk (13)

with the convex exponential function. As shown in Figure 1, the asymmetric exponential risk (21)

is a convex upper bound of the risk (13).
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Note that the optimal classifier from minimizing the asymmetric exponential risk (21) also uses

Pr(y = 1|x) > 1− τ(x) for the classification rule as in (16). Take the derivative of

Rψ,τ (F (x)) = E
[
E
(
t(y, x)e−yF (x)|x

)]
= E

[
τ(x) Pr (y = 1|x) e−F (x) + (1− τ(x)) Pr (y = −1|x) eF (x)

]
.

w.r.t. F (x) and making it equal to zero, we obtain

∂Rψ,τ (F (x))

∂F (x)
= −τ(x) Pr (y = 1|x) e−F (x) + (1− τ(x)) Pr (y = −1|x) eF (x) = 0. (23)

Hence,

F ∗
τ (x) =

1

2
log

[
τ(x) Pr (y = 1|x)

(1− τ(x)) Pr (y = −1|x)

]
. (24)

Moreover, the optimal classifier sign[F ∗(x)] follows the classification rule Pr(y = 1|x) > 1 − τ(x)

as in (16) since τ(x) Pr (y = 1|x) > (1− τ(x)) Pr (y = −1|x) if Pr(y = 1|x) > 1− τ(x).

In fact, the excess misspecification probability, Rτ (sign[F ])−R∗
τ , is bounded from above by the

excess asymmetric exponential risk, Rψ,τ (F )−R∗
ψ,τ . Hence, the excess misspecification probability

would go to zero as the excess asymmetric exponential risk goes to zero. Solving the convex

surrogate problem Rψ,τ would solve the maximum score problem Rτ that is widely used in decision

theory such as the two-state two-action decision problem mentioned before. Therefore, we replace

the non-convex risk function with a convex surrogate which could be minimized more efficiently

and provide improvement with large samples and high-dimensional data.

4.3 Asymmetric AdaBoost as Newton-like Optimization

In this section, we introduce a new numerical algorithm that is able to efficiently solve the convex

surrogate problem, which we call the Asymmetric AdaBoost. We use functional gradient descent

to produce a nonparametric classifier. In addition, our algorithm can handle high-dimensional

covariates. The algorithm is shown in Algorithm 1.

Algorithm 1 builds an additive regression model FM (x) via Newton-like updates for minimiz-

ing the asymmetric exponential risk (21). A detailed comparison of the Asymmetric AdaBoost

algorithm and Newton-like minimization via the functional gradient descent is provided in shown

below.
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Algorithm 1 Asymmetric AdaBoost

1. Start with weights wi = t (yi, xi), i = 1, . . . , n, and normalize so that
∑N

i=1wi = 1.

2. For m = 1 to M

(a) Fit the classifier fm(x) ∈ {−1, 1} using weights wi on the training data.

(b) Compute errm = Ew[1y ̸=fm(x)], cm = log
(
1−errm
errm

)
.

(c) Set wi ← wi exp[−cmyifm(xi)], i = 1, . . . , n, and normalize so that
∑n

i=1wi = 1.

3. Output the classifier from the sign of FM (x) =
∑M

m=1 cmfm(x), sign[FM (x)].

We follow the steps of Friedman et al. (2000) and start with the asymmetric exponential risk

function

Rψ,τ (F (x)) = E
(
t (y, x) e−yF (x)

)
. (25)

First, we look for the optimal fm+1(x) for each iteration. Suppose we have finishedm iterations,

the current classifier is denoted as Fm (x) =
∑m

s=1 csfs (x). In the next iteration, we are seeking an

update cm+1fm+1 (x) for the function fitted in previous iterations Fm (x). The updated classifier

would be

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) . (26)

The risk for the updated classifier is

Rψ,τ (Fm (x) + cm+1fm+1 (x)) = E
(
t (y, x) e−y(Fm(x)+cm+1fm+1(x))

)
. (27)

Expand (27) w.r.t. fm+1 (x)

E
(
t (y, x) e−y(Fm(x)+cm+1fm+1(x))

)
(28)

≈ E
(
t (y, x) e−yFm(x)

(
1− ycm+1fm+1 (x) +

yc2m+1f
2
m+1 (x)

2

))
(29)

= E
(
t (y, x) e−yFm(x)

(
1− ycm+1fm+1 (x) +

c2m+1

2

))
, (30)

since y2 = f2m+1 (x) = 1 holds for all y and fm+1 (x). Only the second term in the bracket contains

fm+1 (x), so minimizing the above risk function w.r.t. fm+1 (x) is equivalent to maximizing the

following expectation

max
f

E
(
e−yFm(x)t (y, x) yfm+1 (x) |x

)
, (31)
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for any cm+1 > 0. Then we re-write the above maximization as

max
f

Ew (t (y, x) yfm+1 (x) |x) . (32)

Here the notation Ew(·|x) refers to a weighted conditional expectation, where w ≡ w(x, y) ≡

e−yFm(x), and

Ew (g(x, y)|x) := E (w(x, y)g(x, y)|x)
E (w(x, y)|x)

. (33)

We solve the maximization problem

max
f

Ew (t (y, x) yfm+1 (x) |x) (34)

= Pw (y = 1|x) t (1, x) fm+1 (x)− Pw (y = −1|x) t (−1, x) fm+1 (x) (35)

= [Pw (y = 1|x) t (1, x)− Pw (y = −1|x) t (−1, x)] fm+1 (x) , (36)

by taking fm+1(x) the same sign as Pw (y = 1|x) t (1, x)− Pw (y = −1|x) t (−1, x). Thus,

fm+1 (x) =

{
1, Pw (y = 1|x) t (1, x)− Pw (y = −1|x) t (−1, x) > 0

−1, otherwise.
(37)

Next, we look for the optimal learning rate cm+1 for each iteration. The optimal learning rate

is also related to the weight function t(y, x). The summary of our findings is shown in Theorem 1.

Theorem 1. The optimal learning rate cm+1 in Algorithm 1 is

cm+1 =
1

2
log

(
TP× t (1, x) + TN× t (−1, x)
FN× t (1, x) + FP× t (−1, x)

)
=

1

2
log

(
1− errm+1

errm+1

)
, (38)

where errm+1 = Ew
(
t (y, x)× 1(y ̸=fm+1(x))

)
, Pw (y = 1, fm+1 (x) = 1) is the rate of true positive

(TP), Pw (y = −1, fm+1 (x) = −1) is the rate of true negative (TN), Pw (y = 1, fm+1 (x) = −1) is

the rate of false negative (FN), Pw (y = −1, fm+1 (x) = 1) is the rate of false positive (FP).

Proof. See Appendix 8.1.

When choosing the optimal learning rate, Algorithm 1 penalizes False Positive and False Nega-

tive classifications differently according to the weight function t(y, x) which is related to the utilities

as shown in (14). Hence, the classifier produced would maximize the utilities in the classification

problem.
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Remark 4. The existing symmetric AdaBoost algorithm starts with wi = 1
n in Step 1 and the

optimal learning rate does not penalize FN and FP differently.

Last, we update the current classifier and get ready for the next iteration. In the next iteration,

we have

Fm+1 (x)← Fm (x) + cm+1fm+1 (x) . (39)

Hence,

wm+1 = e−yFm+1(x) (40)

= e−y(Fm(x)+cm+1fm+1(x)) (41)

= wm × e−cm+1yfm+1(x), (42)

is of identical form as the Newton-like functional gradient descent as shown by Friedman et al.

(2000).

4.4 Component-wise Asymmetric AdaBoost

We now provide a version of the Asymmetric AdaBoost which is able to deal with high-dimensional

data which we call the Component-wise Asymmetric AdaBoost. The algorithm is shown in Algo-

rithm 2.

Algorithm 2 Component-wise Asymmetric AdaBoost

1. Start with weights wi = t (yi, xi), i = 1, . . . , n, and normalize so that
∑N

i=1wi = 1.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi.

ii. Compute errmj =
∑n

i=1wi1(yi ̸=fmj(xij)).

iii. Compute cmj =
1
2 log

(
1−errmj

errmj

)
.

(b) Find ĵm = argminj
∑
wie

−cmjyifmj(xij).

(c) Set wi ← wi exp[−cmĵyifmĵ
(
xiĵ

)
], i = 1, . . . , n, and normalize so that

∑n
i=1wi = 1.

3. Output the classifier from the sign of FM (x) =
∑M

m=1 cmfmĵm(xĵm), sign[FM (x)].
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Remark 5. For the selection of the number of iterations M , a widely used method in the boosting

literature is cross-validation. Here we can divide the whole sample into several sections, then take

turns to use one section as test sample to evaluate the obtained model while using the other sections

as training sample. In the end, we choose the number of iteration that has the least cross-validation

loss. Another choice is to use information criterion, e.g. AICc. The exponential loss can be linked

with log-likelihood of logistic models as in Ng (2014).

The Component-wise Asymmetric AdaBoost algorithm uses one explanatory variable at a time

to fit a weak classifier fmj(xj). In the end, the algorithm produces a strong classifier FM (x) by

combining all the weak classifiers that uses different explanatory variables. Hence, the Component-

wise Asymmetric AdaBoost overcomes the high-dimensional data problem by selecting only one

explanatory variable in each iteration and combining the weak classifiers across iterations. More-

over, the resulted strong classifier is a weighted sum of weak classifiers which is not required to

satisfy any parametric assumption.

4.5 Asymmetric AdaBoost is Consistent

As in the previous sections, from the use of a convex risk function, Algorithm 2 is computationally

more efficient. Moreover, since the convex exponential risk (21) is differentiable, Algorithm 2

uses functional gradient descent to minimize the asymmetric exponential risk which will produce

a classifier with larger flexibility. Next, we show that Algorithm 2 is consistent in the sense that

the risk of the classifier obtained will converge to the optimal asymmetric exponential risk as the

sample size goes to infinity.

Theorem 2. Let the assumptions in Bartlett and Traskin (2007) be satisfied. Then Algorithm 2

stopped at iteration Mn = n1−ϵ where ϵ ∈ (0, 1) returns a sequence of classifiers FMn almost surely

satisfying

Rψ,τ (sign[FMn ])→ R∗
ψ,τ as n→∞. (43)

Proof. It is a generalization of Bartlett and Traskin (2007) to the asymmetric exponential risk.

Theorem 2 shows that the classifier produced by Algorithm 2 will minimize the exponential risk

(21). Hence, Asymmetric AdaBoost is consistent in terms that the risk of the produced classifier
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is minimized.

In addition, we generalize the convex relaxation result of Bartlett, Jordan, and McAuliffe (2006)

for the asymmetric exponential risk.

Theorem 3. If (43) holds, then limn→∞Rτ (sign[FMn ]) = R∗
τ .

Proof. See Appendix 8.2.

In other words, in addition to minimizing the exponential risk, the classifier produced by Algo-

rithm 2 will achieve the Bayes risk (15), hence, solve the maximum score regression. Algorithm 2 is

able to solve binary classification/prediction problem with state-dependent losses while maintaining

the computational advantage and the flexibility of the functional form.

5 Monte Carlo

In this section, we examine the finite sample properties of the Asymmetric AdaBoost via Monte

Carlo simulations and compare its performance with the Logistic Regression with LASSO-penalty.

We consider the binary decision problem in Section 3 with τ(x) = τ .

5.1 DGPs

We construct the following high-dimensional DGPs where y follows Bernoulli distribution and x is

high-dimensional. All the DGPs satisfy the sparsity assumption that most of the x’s are completely

irrelevant or have negligible influence on y.

DGP1 (Linear Logistic Models):

Pr (y = 1|x) = 1

1 + e−v
.

Let x be a p× 1 vector.

v = β1x1 + β2x2 + β3x3 + · · ·+ βpxp,

where

(x1, x2, . . . , xp)
′ ∼ N (0, Ip) , βj = 0.8j , j = 1, . . . , p

n = {100, 1000} , p = 100.

13



DGP1 is the classical logistic model where the probability of y being 1 depends only on a single

index v that is linear in x. This is the underlying model of the Logistic Regression. Hence, we

would expect that Logistic Regression would be the best in DGP1. We construct DGP1 to give

the most disadvantages to Asymmetric AdaBoost when comparing with Logistic Regression.

DGP2 (Quadratic Logistic Models):

Pr (y = 1|x) = 1

1 + e−v
.

Let x be a p× 1 vector.

v = β2(x
2
1 − x22) + β3x3 + · · ·+ βpxp,

where

(x1, x2, . . . , xp)
′ ∼ N (0, Ip) , βj = 0.8j , j = 2, . . . , p

n = {100, 1000} , p = 100.

DGP2 is a slight deviation from the classical logistic model in the sense that the single index v

in the logistic model is not linear in x1 and x2. We take the difference of x21 and x22 so that the

expectation of the single index v is 0 and the unconditional probability of y = 1 is 0.5, i.e., the data

is balanced. We will examine the performance of the Asymmetric AdaBoost with unbalanced data

in DGP4. Note that in the simulations, we provide the two methods with x of only the first order.

Since the Asymmetric AdaBoost does not depend on any parametric assumptions, we would like

to check the robustness of the Asymmetric AdaBoost and the sensitivity of the Logistic Regression

when the model is slightly misspecified.

DGP3 (Cubic Logistic Models):

Pr (y = 1|x) = 1

1 + e−v
.

Let x be a p× 1 vector.

v = x31 − 4x1,

where

(x1, x2, . . . , xp)
′ ∼ N (0, Ip) , n = {100, 1000} , p = 100.

14



In DGP3, we deviate further from the classical logistic model by having the single-index v to be a

third-order polynomial of x1. DGP3 is to test the performance of the Asymmetric AdaBoost and

the Logistic Regression when the parametric assumptions of the Logistic Regression are invalid.

DGP4 (Circle Model, Mease, Wyner, and Buja (2007)):

Pr (y = 1|x) =


1 v < 8
28−v
20 8 ≤ v ≤ 28

0 v > 28

.

Let x be a p× 1 vector.

v =
√
x21 + x22

where

xj ∼ U [−28, 28] , j = 1, . . . , p

n = {100, 1000} , p = 100.

The probability, Pr(y = 1|x), in the DGP4 is shown in Figure 2. A major difference between DGP4

and the other DGPs is that Pr(y = 1) ≈ 0.1 < 0.5 in DGP4. Hence, the data is unbalanced, i.e.

there are more events of y = −1 than y = 1. We have this setup since in many situations we are

more interested in predicting an event that is less common than its complementary, e.g. recessions

over expansions.

To construct the training and testing samples, we randomly generate x using the above distri-

bution and calculate Pr (y = 1|x). To generate the random variable y based on x, we first generate

a random variable ϵ that follows uniform distribution between [0, 1]. Next, we compare ϵ with

Pr (y = 1|x). There is a probability of Pr (y = 1|x) that ϵ is smaller than Pr (y = 1|x) and a prob-

ability 1− Pr (y = 1|x) otherwise. Hence, we set

y =

{
1 Pr (y = 1|x) > ϵ

−1 Pr (y = 1|x) < ϵ.
(44)

To evaluate the algorithms, first we train our classifier with the training data of size n = {100, 1000}.

Then, we use a testing dataset that contains n′ = 10000 new observations to test the out-of-sample

performance of the methods.

We report the following sample version of the 0-1 risk of the tested methods,

R̂τ,n′ (sign[F ]) =
τ

n′

∑
yi=1

1(yi ̸=sign[F (xi)]) +
(1− τ)
n′

∑
yi=−1

1(yi ̸=sign[F (xi)]). (45)
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We also report the sample Bayes risk as the benchmark for comparison,

R̂∗
τ,n′ =

1

n′

n′∑
i=1

min {τ Pr (y = 1|xi) , (1− τ) Pr (y = −1|xi)} .

The above procedure is repeated for 1000 times and the average over the 1000 repetitions is reported

in the tables.

5.2 Alternative Method: Asymmetric Logistic Regression

Apart from Asymmetric AdaBoost, we consider the Logistic Regression as an alternative method

to obtain a classifier of y. In the alternative method, we use Y = y+1
2 for simplification. Because of

the high-dimensional construction of our problem, we minimizes the negative logistic log-likelihood

with a LASSO-penalty as below

β = argmin
β
−

n∑
i=1

[
Yi (xiβ)− log

(
1 + exiβ

)]
+ λ |β|1 . (46)

In particular, we use the standard glmnet package of Friedman et al. (2010) for the Logistic Re-

gression. We use the estimated β to construct a logistic probability model for y. Then, get the

classifications by plugging the estimated logistic probability into the Bayes classifier (16).

5.3 Results

The simulation results are reported in Tables 1 to 4. In Table 1, the DGP1 is a linear logistic

model. In this case, the Logistic Regression has absolute advantage over Asymmetric AdaBoost

both when n is small and large. This is expected since logistic regression has the correct parametric

assumption in this case which is infeasible in practice. However, even in this case, we see that the

advantage of the Logistic Regression over the Asymmetric AdaBoost is limited and as the sample

size increases, the loss of the Asymmetric AdaBoost converges to the sample Bayes risk which

suggests that the Asymmetric AdaBoost is consistent.

In Table 2, the DGP2 is still the logit model. Hence, the Logistic Regression still has inherited

advantages over the Asymmetric AdaBoost. However, we introduce a small deviation from DGP1

by letting the single index, v, in the logistic function be quadratic in x1 and x2. In this case,

the logistic regression is partially biased since it assumes that the single index is a linear function

of the covariates. When n is small, we see that the results are neck and neck. The Asymmetric
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AdaBoost works better when τ is close to 0.5 and the logistic regression works better when τ

is away from 0.5. This is expected as our method is nonparametric and nonparametric methods

generally perform worse in the tails when samples in the area are few. Moreover, Logistic Regression

is also not highly biased. Both methods are far behind the Bayes risk since the Asymmetric

AdaBoost without parametric assumption has larger variance and the logistic regression with wrong

parametric assumption is biased.

When the sample size increases, the Asymmetric AdaBoost have smaller variance and the losses

are closer to the sample Bayes risk. The Logistic Regression, on the other hand, is still biased and

has higher losses than the Asymmetric AdaBoost except in the two far tails. This shows that the

Asymmetric AdaBoost that produces a nonparametric classifier will suffer from higher variance if

the sample size is small. But, as the sample size increases, the Asymmetric AdaBoost will produce

an unbiased classifier and achieve lower losses than logistic regression which is biased even if the

true model only deviates slightly from the parametric assumptions of the Logistic Regression.

In Table 3, the DGP3 deviates further from the classical logistic model. The Asymmetric

AdaBoost performs strictly better than the Logistic Regression. When n is small, we see that the

Asymmetric AdaBoost outperforms the Logistic Regression except in the two tails (τ = 0.1 and

τ = 0.9) where insufficient samples are available. This is a general limitation of all nonparametric

methods since nonparametric methods. However, the performance of the Asymmetric AdaBoost

surpasses the Logistic Regression in the tails when the sample size become larger. In practice, when

the true DGP is not the logistic model, the Asymmetric AdaBoost is definitely more reliable.

In Table 4, the DGP4 is unbalanced. The event y = 1 is significantly fewer than y = −1. We

can see that the Asymmetric AdaBoost works better when the minority of the events is penalized

more heavily. The Asymmetric AdaBoost has lower losses on the right-hand side where y = 1 is

penalized more heavily, and higher losses on the left-hand side where y = −1 is penalized more

heavily. In the unbalanced DGP, the Logistic Regression only focuses on the event that is the

majority. However, the Asymmetric AdaBoost still tries to model both events. Hence, if one is

interested in predicting the less common event, e.g. recession over expansion, the Asymmetric

AdaBoost will give lower losses as we will see in the application section. Moreover, as the sample

size increases, we see that the Asymmetric AdaBoost converges to the Bayes risk on both sides and
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catches up with logistic regression on the left-hand side.

In summary, the Asymmetric AdaBoost is consistent in the sense that the losses of the classifier

produced converges to the sample Bayes risk as the sample size increases. Compared with the

Logistic Regression, the Asymmetric AdaBoost is more robust if the true DGP is not the logistic

model especially when the sample size if large. Moreover, the Asymmetric AdaBoost is better than

the Logistic Regression if one is more interested in predicting the less common events, such as

recessions over expansions, when the data is unbalanced.

6 Application

In this section, we predict the NBER business cycle turning points using both the Asymmetric

AdaBoost and the Logistic Regression with LASSO-penalty. We use the 132 independent variables

from the data of Jurado, Ludvigson, and Ng (2015). After removing the observations with missing

values and taking the one, two and three lagged values of each independent variable and the

dependent variable, the remained sample period ranges from April 1964 to July 2011 with 568

observations and 399 independent variables. We use a rolling sample scheme and make three-

period ahead predictions of economic recessions as in Ng (2014). We use rolling sample size (n) of

60, 120 and 240. The average losses from all rolling samples under different degrees of asymmetry

R̂τ,n (sign[F ]) =
τ

n′

∑
yi=1

1(yi ̸=sign[F (xi)]) +
(1− τ)
n′

∑
yi=−1

1(yi ̸=sign[F (xi)])

where n′ is the total number of rolling samples are reported in Table 5.

In the application, we see that the Asymmetric AdaBoost has smaller losses than the Logistic

Regression. Both the Asymmetric AdaBoost and the Logistic Regression are consistent in the sense

that the forecasting error decreases as the rolling sample size increases. Algorithm-wise, we have

removed the rolling samples that contain less than two months of recessions. These samples account

for 119, 2, 0 of the total rolling samples in the cases where the rolling sample sizes are 60, 120 and

240. When the number of recessions in the rolling sample is less than two, the standard package for

Logistic Regression with LASSO-penalty reports an error and fails to produce the result(Friedman

et al., 2010). More specifically, if there is no recession contained in the rolling sample, the maximum

likelihood of the Logistic Regression would be 0, i.e., the coefficients of the Logistic Regression
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would explode to infinity. In addition, we can not use cross-validation to choose the penalty term λ

for Logistic Regression since the cross-validation process involves randomly resampling the rolling

samples and frequently results in less than two recessions in the cross-validation samples even when

n = 240. Instead, we tried different values of λ for Logistic Regression and reported all of them

in Table 5. In almost all cases, the Asymmetric AdaBoost significantly outperforms the Logistic

Regression which strongly suggests that the parametric assumptions of Logistic Regression are

invalid in this application.

7 Conclusions

In this paper, we introduce a new Asymmetric AdaBoost algorithm which produces an additive

regression model from maximizing a new risk function, namely the asymmetric exponential risk

function. The new Asymmetric AdaBoost algorithm is based on the asymmetric exponential risk

function, which maps into a binary decision making problem given a utility function. Furthermore,

by carefully establishing the asymmetry in the risk function in accordance to the binary decision

making, we show that our Asymmetric AdaBoost algorithm is closely related to the maximum

score regression (Manski 1975, 1985) and the binary prediction literature in economics (Granger

and Pesaran 2000, Lee and Yang 2006, Lahiri and Yang 2012, and Elliot and Lieli 2013), all of

which however deal with low-dimensional predictor space. Asymmetric AdaBoost can handle the

maximum score and binary prediction when the predictors are high-dimensional. Theoretical re-

sults show that Asymmetric AdaBoost will converge to Bayes risk as n → ∞. Simulation and

application results show that Asymmetric AdaBoost is a competitive approach in binary classifica-

tion/prediction.
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8 Appendix

8.1 Proof of Theorem 1

After solving fm+1 (x), we minimize the risk function (27) w.r.t. cm+1,

cm+1 = argmin
c
Rψ,τ (Fm (x) + cfm+1m+1 (x)) (47)

= argmin
c

E
(
t (y, x) e−y(Fm(x)+cm+1fm+1(x))

)
(48)

= argmin
c

Ew
(
t (y, x) e−ycm+1fm+1(x)

)
(49)

Then

Ew
(
t (y, x) e−ycm+1fm+1(x)

)
(50)

= Pw (y = 1, fm+1 (x) = 1) t (1, x) e−cm+1 + Pw (y = −1, fm+1 (x) = −1) t (−1, x) e−cm+1(51)

+Pw (y = 1, fm+1 (x) = −1) t (1, x) ecm+1 + Pw (y = −1, fm+1 (x) = 1) t (−1, x) ecm+1 (52)

The first order condition from taking the derivative w.r.t. cm+1

∂Rψ,τ (cm+1fm+1 (x))

∂cm+1
(53)

= −Pw (y = 1, fm+1 (x) = 1) t (1, x) e−cm+1 − Pw (y = −1, fm+1 (x) = −1) t (−1, x) e−cm+1(54)

+Pw (y = 1, fm+1 (x) = −1) t (1, x) ecm+1 + Pw (y = −1, fm+1 (x) = 1) t (−1, x) ecm+1 (55)

gives the optimal cm+1 from solving the following

Pw (y = 1, fm+1 (x) = 1) t (1, x) e−cm+1 + Pw (y = −1, fm+1 (x) = −1) t (−1, x) e−cm+1(56)

= Pw (y = 1, fm+1 (x) = −1) t (1, x) ecm+1 + Pw (y = −1, fm+1 (x) = 1) t (−1, x) ecm+1 , (57)

where Pw (y = 1, fm+1 (x) = 1) is the rate of true positive (TP), Pw (y = −1, fm+1 (x) = −1) is the

rate of true negative (TN), Pw (y = 1, fm+1 (x) = −1) is the rate of false negative (FN), Pw (y = −1, fm+1 (x) = 1)

is the rate of false positive (FP). Hence, rewriting it as

[TP× t (1, x) + TN× t (−1, x)] e−cm+1 = [FN× t (1, x) + FP× t (−1, x)] ecm+1 , (58)

we obtain the optimal cm+1

cm+1 =
1

2
log

(
TP×t (1, x) + TN× t (−1, x)
FN× t (1, x) + FP× t (−1, x)

)
=

1

2
log

(
1− errm+1

errm+1

)
, (59)

where errm+1 = Ew
(
t (y, x)× 1(y ̸=fm+1(x))

)
.
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8.2 Proof of Theorem 3

Notation. Let

R(G) = E
[
1

2
× 1(y ̸=G(x))

]
=

1

2
Pr(y ̸= G(x)), (60)

denote the 0-1 risk when τ = 1
2 and

R∗ = inf
G
R(G) = Emin

{
1

2
Pr (y = 1|x) , 1

2
Pr (y = −1|x)

}
, (61)

be the minimum risk. Let

Rψ (F ) = E
(
1

2
e−yF (x)

)
, (62)

be the exponential risk with t(y, x) = 1
2 and

R∗
ψ = inf

F
Rψ (F ) . (63)

Lemma 1 (Bartlett et al., 2006). For every sequence of measurable functions Fm : χ → R and

every probability distribution on χ× {±1},

Rψ (Fm)→ R∗
ψ implies that R (sign[Fm])→ R∗.

Proof. This is a special case of Theorem 1 of Bartlett et al. (2006) for the exponential risk.

Proof of Theorem 1. Let F ∗ = argminF Rτ (F ) be the Bayes classifier. Let P(x, y) be the joint

density function of x and y, and Pw (x, y) = t(y,x)P(x,y)∫
t(y,x)P(x,y)dydx

. Then Pw (x, y) defines a probability

distribution of (x, y) on χ× {±1}. By definition,

Rψ,τ (Fi) = E
(
t (y, x) e−yFi

)
=

∫
t (y, x) e−yFiP (x, y) dydx

=

∫
t (y, x)P (x, y) dydx ·

∫
e−yFi

t (y, x)P (x, y)∫
t (y, x)P (x, y) dydx

dydx

=

∫
t (y, x)P (x, y) dydx ·

∫
e−yFiPw (x, y) dydx

= C

∫
e−yFiPw (x, y) dydx,

where C ≡
∫
t (y, x)P (x, y) dydx is positive and bounded. Moreover,

R∗
ψ,τ = inf

Fi

Rψ,τ (Fi) .

21



Hence, by Lemma 1,

Rψ,τ → R∗
ψ,τ implies that

∫
1(y ̸=sign[Fi])Pw (x, y) dydx→

∫
1(y ̸=sign[Fi])Pw (x, y) dydx.

Rewrite the expression in terms of P (x, y), we have

1

C

∫
1(y ̸=sign[Fi])t (y, x)P (x, y) dydx→ 1

C

∫
1(y ̸=sign[F ∗])t (y, x)P (x, y) dydx.

Therefore,

Rτ (sign[Fi]) =

∫
t (y, x) 1(y ̸=sign[Fi])P (x, y) dydx→

∫
t (y, x) 1(y ̸=sign[F ∗])P (x, y) dydx = R∗

τ .

The statement in the theorem is proved.
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Figure 1: (Asymmetric) Exponential Loss and 0-1 Loss
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Figure 2: Conditional Probability of the Circle Model
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Table 1: Linear Logit Model (DGP1)
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0544 0.0997 0.1379 0.1602 0.1712 0.1607 0.1372 0.1005 0.0545
LASSO 0.0492 0.0934 0.1266 0.1479 0.1550 0.1482 0.1271 0.0933 0.0493
Bayes Risk 0.0482 0.0885 0.1178 0.1360 0.1419 0.1359 0.1182 0.0886 0.0482

n = 100
AdaBoost 0.0774 0.1263 0.1728 0.2001 0.2085 0.1981 0.1739 0.1300 0.0773
LASSO 0.0509 0.1026 0.1483 0.1814 0.1973 0.1843 0.1482 0.1015 0.0513
Bayes Risk 0.0482 0.0885 0.1180 0.1357 0.1418 0.1358 0.1179 0.0885 0.0483

Note: The average of the losses of the two methods for predicting y are reported in the table. Bayes Risk is the

infeasible optimal risk when the true model is known. τ shows different degrees of asymmetry. n is the sample size

of each training sample.

Table 2: Balanced Quadratic Logit Model (DGP2)
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0524 0.0958 0.1330 0.1614 0.1736 0.1570 0.1316 0.0951 0.0516
LASSO 0.0510 0.1021 0.1495 0.1841 0.1949 0.1805 0.1442 0.0977 0.0488
Bayes Risk 0.0469 0.0866 0.1168 0.1358 0.1422 0.1358 0.1170 0.0867 0.0469

n = 100
AdaBoost 0.0765 0.1304 0.1734 0.2017 0.2121 0.2049 0.1769 0.1335 0.0819
LASSO 0.0501 0.1017 0.1552 0.2076 0.2346 0.2063 0.1541 0.1030 0.0514
Bayes Risk 0.0468 0.0866 0.1168 0.1357 0.1422 0.1358 0.1168 0.0866 0.0469

Note: The average of the losses of the two methods for predicting y are reported in the table. Bayes Risk is the

infeasible optimal risk when the true model is known. τ shows different degrees of asymmetry. n is the sample size

of each training sample.

Table 3: Unbalanced Quadratic Logit Model (DGP3)
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0442 0.0642 0.0770 0.0837 0.0857 0.0837 0.0771 0.0641 0.0443
LASSO 0.0500 0.0999 0.1499 0.1999 0.2499 0.1998 0.1499 0.1000 0.0500
Bayes Risk 0.0402 0.0609 0.0736 0.0807 0.0830 0.0807 0.0736 0.0609 0.0402

n = 100
AdaBoost 0.0539 0.0843 0.1148 0.1393 0.1393 0.1392 0.1162 0.0843 0.0535
LASSO 0.0500 0.0999 0.1500 0.2015 0.2498 0.2023 0.1501 0.0999 0.0500
Bayes Risk 0.0403 0.0609 0.0736 0.0807 0.0830 0.0807 0.0737 0.0609 0.0402

Note: The average of the losses of the two methods for predicting y are reported in the table. Bayes Risk is the

infeasible optimal risk when the true model is known. τ shows different degrees of asymmetry. n is the sample size

of each training sample.
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Table 4: Circle Model (DGP4)
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0402 0.0719 0.0835 0.0893 0.0981 0.1041 0.1058 0.0794 0.0443
LASSO 0.0358 0.0715 0.1073 0.1430 0.1792 0.2158 0.1937 0.1283 0.0641
Bayes Risk 0.0276 0.0513 0.0700 0.0833 0.0902 0.0897 0.0814 0.0640 0.0372

n = 100
AdaBoost 0.0554 0.0841 0.1090 0.1256 0.1353 0.1387 0.1336 0.1189 0.0807
LASSO 0.0358 0.0718 0.1082 0.1451 0.1848 0.2272 0.2049 0.1344 0.0658
Bayes Risk 0.0276 0.0512 0.0700 0.0834 0.0902 0.0897 0.0812 0.0640 0.0372

Note: The average of the losses of the two methods for predicting y are reported in the table. Bayes Risk is the

infeasible optimal risk when the true model is known. τ shows different degrees of asymmetry. n is the sample size

of each training sample.

Table 5: Loss for Predicting Recessions
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 60
AdaBoost 0.0181 0.0255 0.0318 0.0377 0.0374 0.0405 0.0431 0.0362 0.0348
LASSO (λ = 0.05) 0.0229 0.0350 0.0452 0.0499 0.0514 0.0473 0.0422 0.0365 0.0288
LASSO (λ = 0.1) 0.0216 0.0370 0.0522 0.0535 0.0488 0.0473 0.0458 0.0411 0.0440
LASSO (λ = 1) 0.0211 0.0422 0.0632 0.0843 0.1054 0.1326 0.1707 0.1769 0.1262
LASSO (λ = 5) 0.0211 0.0422 0.0632 0.0843 0.1054 0.1326 0.1707 0.1769 0.1262

n = 120
AdaBoost 0.0154 0.0245 0.0267 0.0316 0.0334 0.0352 0.0348 0.0276 0.0223
LASSO (λ = 0.05) 0.0182 0.0314 0.0370 0.0381 0.0381 0.1641 0.1269 0.0919 0.0511
LASSO (λ = 0.1) 0.0168 0.0336 0.0469 0.0444 0.0471 0.0457 0.0365 0.0359 0.0332
LASSO (λ = 1) 0.0155 0.0309 0.0464 0.0619 0.0774 0.0928 0.1128 0.1439 0.0659
LASSO (λ = 5) 0.0155 0.0309 0.0464 0.0619 0.0774 0.0928 0.1128 0.1439 0.0659

n = 240

AdaBoost 0.0115 0.0158 0.0228 0.0237 0.0289 0.0256 0.0271 0.0231 0.0170
LASSO (λ = 0.05) 0.0112 0.0213 0.0295 0.0402 0.0442 0.1121 0.0871 0.0621 0.0378
LASSO (λ = 0.1) 0.0112 0.0225 0.0338 0.0426 0.0472 0.0408 0.0274 0.0274 0.0320
LASSO (λ = 1) 0.0112 0.0225 0.0338 0.0451 0.0564 0.0676 0.0789 0.1500 0.0853
LASSO (λ = 5) 0.0112 0.0225 0.0338 0.0451 0.0564 0.0676 0.0789 0.1500 0.0853

Note: The average losses of the three period ahead prediction on recessions are reported in the table. τ shows different

degrees of asymmetry.
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