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Abstract

A two-step estimator of a nonparametric regression function via KRLS with para-

metric error covariance is proposed. The KRLS, not considering any information in the

error covariance, is improved by incorporating a parametric error covariance, allowing

for both heteroskedasticity and autocorrelation, in estimating the regression function.

A two step procedure is used, where in the first step, the parametric error covariance

is estimated from the residuals obtained by a KRLS regression and in the second step,

another KRLS regression based on transformed variables from the error covariance is

estimated. Theoretical results including bias, variance, and asymptotics are derived.

Simulation results show that the proposed estimator outperforms the KRLS in both

heteroskedastic errors and autocorrelated errors cases. An empirical example is il-

lustrated with estimating an airline cost function under a random effects model with

heteroskedastic and correlated errors. The derivatives are evaluated, and the average

partial effects of the inputs are determined in the application.
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1 Introduction

Peter Schmidt has made many seminal contributions in advancing the statistical inference

methods and their applications in time series, cross section, and panel data econometrics in

general (Schmidt, 1976a) and, in particular, in the areas of dynamic econometric models,

estimation and testing of cross-sectional and panel data models, crime and justice models

(Schmidt andWitte, 1984), survival models (Schmidt andWitte, 1988). His fundamental and

innovative contributions on the econometrics of stochastic frontier production/cost models

have made significant impact on the generations of econometricians (e.g., Schmidt (1976b),

Aigner et al. (1977), Amsler et al. (2017), Amsler et al. (2019)). Also, he has contributed

many influential papers on developing efficient procedures involving the generalized least

squares (GLS) method (see Guilkey and Schmidt (1973), Schmidt (1977), Arabmazar and

Schmidt (1981), Ahu and Schmidt (1995)) among others. These were for the parametric

models, whereas here we consider the nonparametric models.

Nonparametric regression function estimators are useful econometric tools. Common

methods to estimate a regression function are kernel based methods, such as Kernel Regular-

ized Least Squares (KRLS), Support Vector Machines (SVM), Local Polynomial Regression,

etc. However, in order to avoid overfitting the data, some type of regularization, lasso or

ridge, is generally used. In this paper, we will focus on KRLS; this method is also known

as Kernel Ridge Regression (KRR) in the machine learning literature and is the kernelized

version of the simple ridge regression to allow for nonlinearities in the model.

In this paper, we establish fitting a nonparametric regression function via KRLS under a

general parametric error covariance. Some theoretical results, including pointwise marginal

effects, unbiasedness, consistency and asymptotic normality, on KRLS are found in Hain-

mueller and Hazlett (2014). However, Hainmueller and Hazlett (2014) only consider errors

to be homoskedastic and that the estimator is unbiased for estimating the postpenaliza-

tion function, not for the true underlying function. Confidence interval estimates for Least

Squares Support Vector Machine (LSSVM) are discussed in De Brabanter et al. (2011), al-
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lowing for heteroskedastic errors. Although not directly stated, the LSSVM estimator in

De Brabanter et al. (2011) is equivalent to KRR/KRLS when an intercept term is included

in the model. Following Hainmueller and Hazlett (2014), we will use KRLS without an

intercept. Although De Brabanter et al. (2011) allow for heteroskedastic errors, none of

the papers mentioned thus far discuss incorporating the error covariance in estimating the

regression function itself, making these type of estimators inefficient. In this paper, we focus

on making KRLS more efficient by incorporating a parametric error covariance, allowing for

both heteroskedasticity and autocorrelation, in estimating the regression function. We use

a two step procedure where in the first step, we estimate the parametric error covariance

from the residuals obtained by KRLS and in the second step, we estimate a model by KRLS

based on transformed variables based on the error covariance. We also provide estimating

derivatives based on the two step procedure, allowing us to determine the partial effects of

the regressors on the dependent variable.

The structure of this paper is as follows: Section 2 discusses the model framework and

the GKRLS estimator, Section 3, Section 4, and Section 5 show the finite sample prop-

erties, asymptotic properties, and partial effects and derivatives of the GKRLS estimator,

respectively, Section 6 runs through a simulation example, Section 7 illustrates an empirical

example for a random effects model with heteroskedastic and correlated errors, and Section 8

concludes the paper.

2 Generalized KRLS Estimator

Consider the nonparametric regression model:

Yi = m(Xi) + Ui, i = 1, . . . , n, (1)
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where Xi is a q × 1 vector of exogenous regressors, and Ui is the error term such that

E[Ui|X1, . . . , Xn] = E[Ui|X] = 0, where X = (X1, . . . , Xn)
⊤ and

E[UiUj|X] = ωij(θ0) for some θ0 ∈ Rp, i, j = 1, . . . , n. (2)

In this framework, we allow the error covariance to be parametric, where the errors can be

autocorrelated or non-identically distributed across observations.

2.1 KRLS Estimator

For KRLS, the function m(·) can be approximated by some function in the space of functions

constituted by

m(x0) =
n∑

i=1

ciKσ(xi,x0), (3)

for some test observation x0 and where ci, i = 1, . . . , n are the parameters of interest, which

can be thought of as the weights of the kernel functions Kσ(·). The subscript of the kernel

function, Kσ(·), indicates that the kernel depends on the bandwidth parameter, σ.

We will use the Radial Basis Function (RBF) kernel,

Kσ(xi,x0) = e−
1
σ2 ||xi−x0||2 . (4)

Notice that the RBF kernel is very similar to the Gaussian kernel, in that it does not have

the normalizing term out in front and that σ is proportional to the bandwidth h in the

Gaussian kernel often used in nonparametric local polynomial regression. This functional

form is justified by a regularized least squares problem with a feature mapping function that

maps x into a higher dimension (Hainmueller and Hazlett, 2014), where this derivation of

KRLS is also known as Kernel Ridge Regression (KRR). Overall, KRLS uses a quadratic

loss with a weighted L2-regularization. Then, in matrix notation, the minimization problem
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is

argmin
c

(y −Kσc)
⊤(y −Kσc) + λc⊤Kσc, (5)

where y is the vector of training data corresponding to the dependent variable, Kσ is the

kernel matrix, with Kσ,i,j = Kσ(xi,xj) for i, j = 1, . . . , n, and c is the vector of coefficients

that is optimized over. The solution to this minimization problem is

ĉ1 = (Kσ1 + λ1I)
−1y. (6)

The kernel function can be user specified but in this paper we only consider the RBF kernel

in Eq. (4). The kernel function’s hyperparameter σ and the regularization parameter λ can

also be user specified or can be found via cross validation. The subscript of one denotes the

KRLS estimator, or the first stage estimation. Finally, predictions for KRLS can be made

by

m̂1(x0) =
n∑

i=1

ĉ1,iKσ1(xi,x0). (7)

2.2 An Efficient KRLS Estimator

The KRLS estimator, m̂1(·) does not take into consideration any information in the error

covariance structure and therefore is inefficient. As a result, consider the n× n error covari-

ance matrix, Ω(θ), where ωij(θ) denotes the (i, j)th element. Assume that Ω(θ) = P (θ)P (θ)′

for some square matrix P (θ) and let pij(θ) and vij(θ) denote the (i, j)th element of P (θ) and

P (θ)−1. Let m ≡ (m(X1), . . . ,m(Xn))
′ and U ≡ (U1, . . . , Un)

′. Now, premultiply the model

in Eq. (1) by P−1, where P−1 = P−1(θ) and we condense the notation and the dependence

on θ is implied.

P−1y = P−1m+ P−1U. (8)

The transformed error term, P−1U has mean 0 and covariance matrix as the identity matrix.

Therefore, we consider a regression of P−1y on P−1m. This simply re-scales the variables
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by the inverse of their square root of their variances. Since m = Kσc, the quadratic loss

function with L2 regularization under the transformed variables is

argmin
c

(y −Kσc)
⊤Ω−1(y −Kσc) + λc⊤Kσc. (9)

The solution for vector is

ĉ2 = (Ω−1Kσ2 + λ2I)
−1Ω−1y (10)

Note that the solution obtained depends on the bandwidth parameter σ2 and ridge parameter

λ2, which can be different than the hyperparameters used in the KRLS estimator. In practice,

cross validation can be used for obtaining estimates for both hyperparameters. Here, it is

assumed that Ω is known if θ is known. However, if θ is unknown, it can be estimated

consistently and Ω can be replaced by Ω̂ = Ω̂(θ̂).1

Furthermore, predictions for the generalized KRLS estimator can be made by

m̂2(x0) =
n∑

i=1

ĉ2,iKσ2(xi,x0) (11)

The two step procedure is outlined below

1. Estimate Eq. (1) by KRLS from Eq. (7) with bandwidth parameter, σ1 and ridge

parameter, λ1. Obtain the residuals which can then be used to get a consistent estimate

for Ω.

2. Estimate Eq. (8) by KRLS under the transformed variables as in Eq. (9) and Eq. (11).

Denote these estimates as GKRLS.

1Ω̂ can be thought of as a working covariance matrix since the parametric functional form may be subject
to misspecification. One method to avoid misspecification is to estimate Ω nonparametrically. For example,
under heteroskedasticity, one can estiamate Ω by a semiparametric KRLS estimator of the conditional
variance (Dang and Ullah, 2022). Other solutions may be explored as future work.
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2.3 Selection of Hyperparameters

Throughout this paper, we focus on the RBF kernel in Eq. (4), which contains the hyperpa-

rameter σ1 (and σ2). Since these parameters appear as squared in the RBF kernel in Eq. (4),

we can instead search for the hyperparameters σ2
1 and σ2

2. The selection of the hyperparame-

ters λ1, λ2, σ
2
1, and σ2

2 is selected via leave one out cross validation (LOOCV). However, prior

to cross validation, it is common in penalized methods to scale the data to have mean of 0

and standard deviation of 1. This way, the penalty parameters λ1 and λ2 do not depend on

the scale of the data or the magnitude of the coefficients. Note that the scaling of the data

does not affect the interpretations of predictions and marginal effects since the estimates can

be translated back to their original scale and location.

For the hyperparameters, σ2
1 and σ2

2, Hainmueller and Hazlett (2014) suggest setting

σ2 = q, the number of regressors. Therefore, in items 1 and 2 in the two step procedure,

σ2
1 = q and σ2

2 = q. Then, only the penalty hyperparameters λ1 and λ2 need to be chosen.

λ1 is chosen via LOOCV in item 1 of the two step procedure using Eq. (5). λ2 is then chosen

via LOOCV in item 2 of the two step procedure using Eq. (9). If one wishes to also search

for σ2
1 and σ2

2, one would perform LOOCV to find λ1 and σ2
1 simultaneously in item 1 using

Eq. (5) and then perform another LOOCV to find λ2 and σ2
2 simultaneously in item 2 of the

two step procedure using Eq. (9).

3 Finite Sample Properties

In this section, finite sample properties of both KRLS and GKRLS estimators, including the

estimation procedures of bias and variance, are discussed in detail.

3.1 Estimation of Bias and Variance

In this subsection, we estimate the bias and variance of the two step estimator. Following,

De Brabanter et al. (2011), notice that the GKRLS estimator is a linear smoother.
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Defintion 1. An estimator m̂ of m is a linear smoother if, for each x0 ∈ Rq, there exists a

vector L(x0) = (l1(x0), . . . , ln(x0))
⊤ ∈ Rn such that

m̂(x0) =
n∑

i=1

li(x0)Yi, (12)

where m̂(·) : Rq → R.

For in sample data, Eq. (12) can be written in matrix form as m̂ = Ly, where m̂ =

(m̂(X1), . . . , m̂(Xn))
⊤ ∈ Rn and L = (l(X1)

⊤, . . . , l(Xn)
⊤)⊤ ∈ Rn×n, where Lij = lj(Xi).

The ith row of L show the weights given to each Yi in estimating m̂(Xi). For the rest of the

paper, we will denote m̂2(·) as the prediction made by GKRLS for a single observation and

m̂2 as the n× 1 vector of predictions made for the training data.

To obtain the bias and variance of the GKRLS estimator, we assume the following:

Assumption 1. The regression function m(·) to be estimated falls in the space of functions

represented by m(x0) =
∑n

i=1 ciKσ(xi,x0) and assume the model in Eq. (1).

Assumption 2. E[Ui|X] = 0 and E[UiUj|X] = ωij(θ) for some θ ∈ Rp, i, j = 1, . . . , n

Using Definition 1, Assumption 1, and Assumption 2, the conditional mean and variance

can be obtained by the following theorem.

Theorem 1. The GKRLS estimator in Eq. (11) is

m̂2(x0) =
n∑

i=1

li(x0)Yi

= L(x0)
⊤y,

(13)

and L(x0) = (l1(x0), . . . , ln(x0))
⊤ is the smoother vector,

L(x0) =
[
K∗⊤

σ2,x0
(Ω−1Kσ2 + λ2I)

−1Ω−1
]⊤

, (14)

with K∗
σ2,x0

= (Kσ2(x1,x0), . . . , Kσ2(xn,x0))
⊤ the kernel vector evaluated at point x0.
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Then, the estimator, under model Eq. (1), has conditional mean

E[m̂2(x0)|X = x0] = L(x0)
⊤m (15)

and conditional variance

Var[m̂2(x0)|X = x0] = L(x0)
⊤ΩL(x0). (16)

Proof: see Appendix A.

From Theorem 1, the conditional bias can be written as

Bias[m̂2(x0)|X = x0] = E[m̂2(x0)|X = x]−m(x0)

= L(x0)
⊤m−m(x0)

(17)

Following De Brabanter et al. (2011), we will estimate the conditional bias and variance

by the following:

Theorem 2. Let L(x0) be the smoother vector evaluated at x0 and let m̂2 = (m̂2(x1),

. . . , m̂2(xn))
⊤ be the in sample GKRLS predictions. For a consistent estimator of the co-

variance matrix such that Ω̂ → Ω, the estimated conditional bias and variance for GKRLS

are obtained by

B̂ias[m̂2(x2)|X = x0] = L(x0)
⊤m̂2 − m̂2(x0) (18)

and

V̂ar[m̂2(x0)|X = x0] = L(x0)
⊤Ω̂L(x0). (19)

Proof: See Appendix B.
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3.2 Bias and Variance of KRLS

First, note that the KRLS estimator is also a linear smoother, so the bias and the variance

take the same form as in Eq. (18) and Eq. (19), except that the linear smoother vector L(x0)

will be different. Let

L1(x0) =
[
K∗⊤

σ1,x0
(Kσ1 + λ1I)

−1
]⊤

(20)

be the smoother vector for KRLS. Then, Eq. (7) can be rewritten as

m̂1(x0) = L1(x0)
⊤y. (21)

Using Theorem 1 and Theorem 2 and applying them to the KRLS estimator, the estimated

conditional bias and variance of KRLS are

B̂ias[m̂1(x0)|X = x0] = L1(x0)
⊤m̂1 − m̂1(x0) (22)

V̂ar[m̂1(x0)|X = x0] = L1(x0)
⊤Ω̂L1(x0), (23)

where m̂1 is the n × 1 vector of fitted values for KRLS. Note that the estimate of the

covariance matrix, Ω, will be the same for both KRLS and GKRLS.

4 Asymptotic Properties

The asymptotic properties of GKRLS, including consistency, asymptotic normality, and

bias corrected confidence intervals are covered in this section. To obtain consistency of the

GKRLS estimator, we also assume:

Assumption 3. Let λ1, λ2, σ1, σ2 > 0 and as n → ∞, for singular values of LP given by di,∑n
i=1 d

2
i grows slower than n once n > M for some M < ∞.
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Theorem 3. Under Assumptions 1-3, and let the bias corrected fitted values be denoted by

m̂2,c = m̂2 − Bias[m̂2|X], (24)

then

lim
n→∞

Var[m̂2,c|X] = 0 (25)

and the bias corrected GKRLS estimator is
√
n-consistent with plim

n→∞
m̂c,n(xi) = m(xi) for

all i.

Proof: See Appendix C.

The estimated conditional bias from Eq. (18) and conditional variance from Eq. (19) can

be used to construct pointwise confidence intervals. Asymptotic normality of the proposed

estimator is given via the central limit theorem.

Theorem 4. Under Assumptions 1 to 3, m̂2 is asymptotically normal by the central limit

theorem:
√
n(m̂2 − Bias[m̂2|X]−m)

d→ N(0,Var[m̂2|X]), (26)

where Bias[m̂2|X] = Lm−m and Var[m̂2|X] = LΩL⊤.

Proof: See Appendix D.

Since GKRLS is a biased estimator for m, we need to adjust the pointwise confidence

intervals to allow for bias. Since the exact conditional bias and variance are unknown, we can

use Eqs. (18) and (19) as estimates and can conduct approximate bias corrected 100(1−α)%

pointwise confidence intervals from Theorem 4 as

m̂2(xi)− B̂ias[m̂2(xi)|X = xi]± z1−α/2

√
V̂ar[m̂2(xi)|X = xi] (27)

for all i. Furthermore, to test the significance of the estimated regression function at an

observation point, we can use the bias corrected confidence interval to see if 0 is in the
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interval.

5 Partial Effects and Derivatives

We also derive an estimator for pointwise partial derivatives with respect to a certain variable

x(r). The partial derivative of the GKRLS estimator, m̂2(x0) with respect to the rth variable

is

m̂
(1)
2,r(x0) =

n∑
i=1

∂Kσ2(xi,x0)

∂x
(r)
0

ĉ2,i

=
2

σ2
2

n∑
i=1

e
− 1

σ2
2
||xi−x0||2

(x
(r)
i − x

(r)
0 )ĉ2,i,

(28)

using the RBF kernel in Eq. (4) and where m̂
(1)
2,r(x0) ≡ ∂m̂2(x0)

∂x(r) . To find the conditional bias

and variance of the derivative estimator, we use the following:

Theorem 5. The GKRLS derivative estimator in Eq. (28) with the RBF kernel in Eq. (4)

can be rewritten as

m̂
(1)
2,r(x0) = Sr(x0)

⊤y, (29)

where ∆r ≡ 2
σ2
2
diag(x

(r)
1 − x

(r)
0 , . . . ,x

(r)
n − x

(r)
0 ) is a n× n diagonal matrix, and

Sr(x0) =
[
K∗⊤

σ2,x0
∆r(Ω

−1Kσ2 + λ2I)
−1Ω−1

]⊤
(30)

is the smoother vector for the first partial derivative with respect to the rth variable. Then,

the conditional mean of the GKRLS derivative estimator is

E[m̂(1)
2,r(x0)|X = x0] = Sr(x0)

⊤m (31)
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and conditional variance is

Var[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

⊤ΩSr(x0). (32)

Proof: see Appendix E.

Using Theorem 5, the conditional bias and variance can be estimated as follows

Theorem 6. Let Sr(x0) be the smoother vector for the partial derivative evaluated at x0

and let m̂2 = (m̂2(x1), . . . , m̂2(xn))
⊤ be the in sample GKRLS predictions. For a consistent

estimator of the covariance matrix such that Ω̂ → Ω, the estimated conditional bias and

variance for GKRLS derivative estimator in Eq. (28) are obtained by

B̂ias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

⊤m̂− m̂
(1)
2,r(x0) (33)

and

V̂ar[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

⊤Ω̂Sr(x0). (34)

Proof: See Appendix F.

The average partial derivative with respect to the rth variable is

m̂(1)
avg,r =

1

n′

n′∑
j=1

m̂
(1)
2,r(x0,j) (35)

The bias and variance of the average partial derivative estimator is given by

Bias[m̂(1)
avg,r|X] =

1

n′ ι
⊤
n′S0,rm− 1

n′ ι
⊤
n′m

(1)
0,r (36)
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and

Var[m̂(1)
avg,r|X] =

1

n′2 ι
⊤
n′S0,rΩS

⊤
0,rιn′ , (37)

where n′ is the number of observations in the testing set, ιn′ is a n′× 1 vector of ones, S0,r is

the n′ ×n smoother matrix with the jth row as Sr(x0,j), j = 1, . . . , n′, and m
(1)
0,r is the n

′ × 1

vector of derivatives evaluated at each x0,j, j = 1, . . . , n′.

5.1 First Differences for Binary Independent Variables

Unlike for the continuous case, partial effects for binary independent variables should be

interpreted as and estimated by first differences. That is, the estimated effect of going from

x(b) = 0 to x(b) = 1 can be determined by

m̂FDb
(x0) = m̂(x(b) = 1,x0)− m̂(x(b) = 0,x0)

= LFDb
(x0)

⊤y

(38)

where m̂FDb
(·) is the first difference estimator for the bth binary independent variable, x(b) is a

binary variable that takes the values 0 or 1, x0 is the (q−1)×1 vector of the other independent

variables evaluated at some test observation, and LFDb
(x0) ≡ L(x(b) = 1,x0)−L(x(b) = 0,x0)

is the first difference smoother vector. The conditional bias and variance of the first difference

GKRLS estimator in Eq. (38) are shown in the following theorem.

Theorem 7. Using Theorems 1 and 2, the conditional bias and variance for the GKRLS

first difference estimator in Eq. (38) are obtained by

Bias[m̂FDb
(x0)|X = x0] = LFDb

(x0)
⊤m−mFDb

(x0) (39)

14



and

Var[m̂FDb
(x0)|X = x0] = LFDb

(x0)
⊤ΩLFDb

(x0), (40)

where mFDb
(x0) = m(x(b) = 1,x0)−m(x(b) = 0,x0).

Proof: See Appendix G

Then, the conditional bias and variance can be estimated as follows:

B̂ias[m̂FDb
(x0)|X = x0] = LFDb

(x0)
⊤m̂− m̂FDb

(x0) (41)

V̂ar[m̂FDb
(x0)|X = x0] = LFDb

(x0)
⊤Ω̂LFDb

(x0). (42)

Note that Eq. (38) provides the pointwise first difference estimates. If one is interested

in the average partial effect of going from x(b) = 0 to x(b) = 1, the following average first

difference GKRLS estimator would be used.

m̂FD,b =
1

n′

n′∑
j=1

m̂FDb
(x0,j) (43)

This average partial effect is similar to the continuous case and can be compared to traditional

parametric partial effects as in the case of least squares coefficients. The conditional bias

and variance of the average first difference GKRLS estimator in Eq. (43) are:

Bias[m̂FDb
(x0)|X = x0] =

1

n′ ι
⊤
n′LFD0,b

m− 1

n′ ι
⊤
n′mFD0,b

(44)

Var[m̂FDb
|X = x0] =

1

n′2 ι
⊤
n′LFD0,b

ΩL⊤
FD0,b

, (45)

where LFD0,b
is the n′ × n smoother matrix with the jth row as LFDb

(x0,j), j = 1, . . . , n′,

and mFD0,b
is the n′ × 1 vector of first differences evaluated at each x0,j, j = 1, . . . , n′. The

conditional bias and variance of the average first difference estimator can be estimated using

Eqs. (41) and (42).
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6 Simulations

We conduct simulations that show the performance with respect to gaining efficiency of the

proposed generalized KRLS estimator. Consider the data generating process from Eq. (1):

Yi = m(Xi) + Ui, i = 1, . . . , n. (1)

We consider the sample size of n = 200 and three independent variables X that is generated

from

X1 ∼ Bern(0.5)

X2 ∼ N(0, 1)

X3 ∼ U(−1, 1).

(46)

The specification for m is:

m(Xi) = 5− 2Xi,1 + sin(Xi,2) + 3Xi,3 (47)

and the partial derivatives with respect to each independent variable are given by

m
(1)
1 (Xi) = −2

m
(1)
2 (Xi) = cos(Xi,2)

m
(1)
3 (Xi) = 3

(48)

For the error terms, we consider two cases.

Ui = 0.7Ui−1 + Vi

Vi ∼ N(0, 52)

(49)
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and

Ui ∼ N (0, exp(Xi,1 + 0.2Xi,2 − 0.3Xi,3)) (50)

First, in Eq. (49), Ui is generated by an AR(1) process. Second, Ui is heteroskedastic but

independent of each other with Var[Ui|Xi] = exp(Xi,1 + 0.2Xi,2 − 0.3Xi,3).

In addition to the proposed estimator, we compare four other nonparametric estimators:

the KRLS estimator (KRLS), Local Polynomial (LP) estimator with degree zero, Random

Forest (RF), and Support Vector Machine (SVM). The KRLS estimator is used as a compar-

ison to GKRLS to show the magnitude of the efficiency loss from ignoring the information

in the error covariance matrix. The KRLS, LP, RF, and SVM estimators do not utilize the

covariance matrix in estimating the regression function and excludes heteroskedasticity or

autocorrelation of the errors. For the GKRLS and KRLS estimators, we set σ2
1 = σ2

2 = 3,

the number of independent variables in this example, and implement leave one out cross

validation to select the hyperparameters, λ1 and λ2.
2 The variance function under the het-

eroskedastic case is estimated by least squares from the regression of the log residuals on X.

Taking the exponential would give the predicted variance estimates. Under the case of AR(1)

errors, the covariance function is estimated from an AR(1) model. We run 200 simulations

for each of the two cases and the bias corrected results are reported below in Table 1.3 To

evaluate the estimators, mean squared error is used as the main criterion, where we also

investigate the bias and variance. To compare results, all estimators are evaluated from 300

data points generated from Eqs. (46) and (47).

Table 1 displays the evaluations, including bias, variance, and MSE of the estimators for

the regression function under both error cases. Note that the GKRLS and KRLS estimates

in Table 1 are bias corrected. All estimates are averaged across all simulations. Estimates

based on GKRLS seem to exhibit similar finite sample bias as KRLS, and there is an obvious

2The hyperparameters of the LP, RF, and SVM estimators are chosen by their default methods in their
respective R packages.

3The following R packages were used for conducting simulations: Borchers (2021), Hyndman and Khan-
dakar (2008), McLeod et al. (2007), Boos and Nychka (2022), Hayfield and Racine (2008), Liaw and Wiener
(2002), and Meyer et al. (2022).
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Simulation Evaluation for m(x0)

MSE Variance Bias

Autocor. Errors GKRLS 2.8562 1.6311 0.0140
KRLS 2.9767 2.3835 -0.0094
LP 3.4623 3.0822 -0.0112
RF 3.8442 3.5013 0.0205
SVM 5.7663 5.6482 0.0263

Heterosk. Errors GKRLS 0.2287 0.1702 0.0103
KRLS 0.2366 0.1766 -0.0148
LP 0.2696 0.1958 0.0055
RF 0.5917 0.1372 0.0178
SVM 0.2632 0.2105 -0.0001

Table 1: The table reports the bias, variance, and MSE of GKRLS, KRLS, LP, RF, and
SVM estimators for the regression function m(x0) under the cases of heteroskedastic and
AR(1) errors generated from Eqs. (46), (47), (49) and (50). The GKRLS and KRLS esti-
mates are bias corrected. All estimates are averaged across all simulations.

reduction in the variability with smaller variance of the proposed estimator relative to KRLS.

Note that GKRLS estimation provides a 31.6% and a 3.6% decrease in the variance for

estimating the regression function for the autocorrelated and heteroskedastic errors, relative

to KRLS. With smaller variance, GKRLS also has a smaller MSE, making GKRLS superior

to KRLS. Compared to the other nonparametric estimators, LP, RF, and SVM, the GKRLS

estimator outperforms the others in terms of MSE and is the preferred method in the presence

of heteroskedasticity or autocorrelation.

Table 2 displays the evaluations, including bias, variance, and MSE of the bias GKRLS

and KRLS estimators for the partial derivatives of the regression function with respect to

each of the independent variables under both error cases.4 Since X1 is discrete, the partial

derivative is estimated by first differences. Similar to the regression estimates, for both

heteroskedastic and AR(1) errors, the variability from estimating the derivative is reduced by

GKRLS estimation relative to KRLS estimation. In addition, the efficiency gain in estimating

4The derivatives are not reported for LP, RF, and SVM since derivative estimation for RF and SVM
methods are uncommon. The derivative estimates for LP can be obtained but in this simulation the GKRLS
estimator is superior with respect to MSE.
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Simulation Evaluation for m
(1)
r (x0)

GKRLS KRLS

MSE Variance Bias MSE Variance Bias

Autocor. Errors X1 1.1708 0.4092 0.8239 2.1013 1.7419 0.5017
X2 0.3800 0.0887 -0.3567 0.7745 0.5502 -0.2700
X3 5.2002 0.3361 -2.0737 5.5494 1.6599 -1.7282

Heterosk. Errors X1 0.3290 0.2835 0.0950 0.3291 0.2922 0.0914
X2 0.2414 0.1695 -0.0421 0.2524 0.1718 -0.0534
X3 2.0529 0.5746 -0.7904 2.1461 0.5876 -0.8218

Table 2: The table reports the bias, variance, and MSE of the bias corrected GKRLS and
KRLS estimators and the cases of heteroskedastic and AR(1) errors for the derivative of

the regression function m
(1)
r (x0) generated from Eqs. (46) to (50). Each row represents the

MSE, variance, and bias of the partial derivative estimates with respect to Xr, r = 1, 2, 3.
All estimates are averaged across all simulations.

both the regression and the derivative seems to be more evident in the AR(1) case compared

to the heteroskedastic case. A possible explanation for this is that the covariance matrix

contains more information in the off-diagonal elements compared to the diagonal covariance

matrix in the heteroskedastic case. Overall, when estimating the regression function and

its derivative for this simulation example, the reduction in variance and therefore MSE is

clearly evident in Tables 1 and 2, making the GKRLS the preferred estimator.

Table 3 shows the simulation results for the consistency of GKRLS. The bias, variance,

and MSE are reported for sample sizes of n = 100, 200, 400. In this example, we set σ2
1 =

σ2
2 = 3 and the hyperparameters λ1 and λ2 are found by LOOCV. For the regression function

and the derivative and for both error covariance structures, the squared bias, variance, and

MSE all decrease as the sample size increases, which implies that the GKRLS estimator is

consistent in this simulation exercise.
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Simulation Results for Consistency of GKRLS

Autocor. Errors Heterosk. Errors

MSE Variance Bias2 MSE Variance Bias2

m(x0) n = 100 4.9665 2.8562 1.6112 0.4113 0.2287 0.1309
n = 200 2.7170 1.6311 0.8786 0.3012 0.1702 0.0993
n = 400 2.2496 1.2251 0.7326 0.1101 0.0585 0.0316

m
(1)
1 (x0) n = 100 2.3091 0.5590 1.7501 0.5880 0.5196 0.0683

n = 200 1.1708 0.4092 0.7615 0.3290 0.2835 0.0455
n = 400 0.6992 0.2647 0.4345 0.1964 0.1695 0.0269

m
(1)
2 (x0) n = 100 0.4614 0.1164 0.3449 0.3751 0.2702 0.1049

n = 200 0.3800 0.0887 0.2913 0.2414 0.1695 0.0719
n = 400 0.2962 0.0715 0.2247 0.1601 0.1063 0.0539

m
(1)
3 (x0) n = 100 6.6704 0.4951 6.1753 2.8633 0.8853 1.9780

n = 200 5.2002 0.3361 4.8641 2.0529 0.5746 1.4783
n = 400 4.4179 0.2261 4.1918 1.5181 0.3793 1.1388

Table 3: The table reports the bias, variance, and MSE of the GKRLS estimator for both
the regression function and the partial derivatives and for the cases of heteroskedastic and
AR(1) errors generated from Eqs. (46) to (50) for different sample sizes, n = 100, 200, 400.
All reported estimates are biased corrected and are averaged across all simulations. The
kernel hyperparameters are set as σ2

1 = σ2
2 = 3 and the hyperparameters λ1 and λ2 are found

by LOOCV.

7 Application

We implement an empirical application from the U.S. airline industry with heteroskedastic

and autocorrelated errors using a panel of 6 firms over 15 years.5 For the data set, we set

aside a portion of the data for training and the other for testing. We estimate the model with

four methods, GKRLS, KRLS, LP, and Generalized Least Squares (GLS), and compare their

results in terms of mean squared error (MSE). To evaluate the out of sample performance

of each method, the predicted out of sample MSEs are computed as follows

MSEe =
1

n′T

n′∑
i=1

T∑
t=1

(y0,it − m̂e(x0,it))
2 (51)

5The data for the application is from Greene (2018) and can be downloaded at
https://pages.stern.nyu.edu/ wgreene/Text/Edition7/tablelist8new.htm
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where MSEe is the mean squared error for the eth estimator and n′ is the number of observa-

tions in the testing data set and j = 1, . . . , n′. In this empirical exercise, n′ = 1 and T = 15

since we leave out the first firm as a test set. To assess the estimated average derivatives,

we use the bootstrap to calculate the MSEs for the average partial effects. We report the

bootstrapped MSEs for the average derivative by the following.6

MSEe,r =
1

B

B∑
b=1

(
m̂

(1)
avg,e,r,b −

1

4

∑
e

m̂(1)
avg,e,r

)2

(52)

where B is the number of bootstraps with b = 1, . . . , B, m̂
(1)
avg,e,r,b(·) is the bth bootstrapped

average partial first derivative with respect to the rth variable for the eth estimator, and

1
4

∑
e m̂

(1)
avg,e,r is the simple average of the average partial first derivatives with respect to the

rth variable from the four estimators (GLS, GKRLS, KRLS, and LP):

m̂(1)
avg,e,r =

1

nT

n∑
i=1

T∑
t=1

m̂(1)
e,r(xit),

e = {GLS, GKRLS, KRLS, LP}

(53)

7.1 U.S. Airline Industry

We obtain the data on the efficiency in production of airline services from Greene (2018).

Since the data are a panel of 6 firms for 15 years, we consider the one way random effects

model:

logCit = m(logQit, logPit) + αi + εit, (54)

where the dependent variable Yit = logCit is the logarithm of total cost, the independent

variables Xit = (logQit, logPit)
⊤ are the logarithms of output and the price of fuel, respec-

tively, αi is the firm specific effect, and εit is the idiosyncratic error term. In this empirical

6The R package by Callaway (2022) was used to obtain the bootstrap samples.
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setting, we assume E[εit|X] = 0, E[ε2it|X] = σ2
εi
, E[αi|X] = 0, E[α2

i |X] = σ2
αi
, E[εitαj|X] = 0

for all i, t, j, E[εitεjs|X] = 0 if t ̸= s or i ̸= j, and E[αiαj|X] = 0 if i ̸= j. Consider the

composite error term Uit ≡ αi + εit. Then, the model in Eq. (54) can be rewritten as

logCit = m(logQit, logPit) + Uit, (55)

In Eq. (55), the independent variables are strictly exogenous to the composite error term,

E[Uit|X] = 0. The variance of the composite error term is E[U2
it|X] = σ2

αi
+ σ2

εi
. Therefore,

in this empirical example, we allow for firm specific heteroskedasticity. In other words, the

variance of the error terms are not constant across firms, but are constant over time for each

firm. Since there is a time component, we allow an individual firm to be correlated across

time but not with other firms, that is, E[UitUis|X] = σ2
αi
, t ̸= s and E[UitUjs|X] = 0 for

all t and s if i ̸= j. Note that the correlation across time can be different for every firm.

Therefore, in this empirical framework, we allow the error terms to be heteroskedastic across

firms and correlated across time.

To estimate Eq. (55) by GKRLS and KRLS in the framework set up in this paper, we

can write the model in matrix notation. Consider

y = m+U, (56)

where y is the nT × 1 vector of logCit, m is the nT × 1 vector of the regression function

m(Xit), and U is the nT × 1 vector of Uit, i = 1, . . . , n and t = 1, . . . , T . Then, the nT ×nT

error covariance matrix Ω is

Ω = Var[U|X] = diag(Σ1, . . . ,Σn), (57)

where Σi = σ2
εi
IT + σ2

αi
ιT ι

⊤
T , i = 1, . . . , n has dimension T × T , IT is a T × T identity matrix

and ιT is a T × 1 vector of ones. To use the GKRLS estimator in this empirical framework,
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we first estimate Eq. (55) or Eq. (56) by KRLS and obtain the residuals, denoted by ûit.

To estimate the error covariance matrix Ω, the variances of the firm specific error and the

idiosyncratic error, σ2
αi

and σ2
εi

need to be estimated. Consider the following consistent

estimators using time averages,

σ̂2
Ui

=
1

T
û⊤
i ûi (58)

σ̂2
αi

=
1

T (T − 1)/2

T−1∑
t=1

T∑
s=t+1

ûitûis (59)

σ̂2
εi
= σ̂2

Ui
− σ̂2

αi
, (60)

where ûi is the T ×1 vector of residuals for the ith firm. Now, plugging these estimates in for

Ω, the GKRLS estimator can be estimated as in the previous sections. For further details,

please see Appendix H.

With regards to the other comparable estimators, the KRLS and LP estimators are

used to estimate Eq. (55) or Eq. (56) ignoring the heteroskedasticity and correlation in the

composite error, U. Note that the KRLS estimator uses the error covariance matrix in

the variances and standard errors but does not use the error covariance in estimating the

regression function. Lastly, the GLS estimator is used as a parametric benchmark to compare

to the standard random effects panel data model.7

The data contain 90 observations of 6 firms for 15 years, from 1970-1984. We split the

data into two parts, where the first 15 observations, which corresponds to the first firm, are

used as testing data and 75 observations, which corresponds to the last five firms, are set as

training data to evaluate out of sample performance. So, for the training data, i = 1, . . . , 5

and t = 1, . . . , 15, with a total of 75 observations for training. For the GKRLS and KRLS

estimators, all hyperparameters are chosen via LOOCV.8

7The R package by Croissant and Millo (2008) was used to obtained the Random Effects GLS estimator.
8For the LP estimator, cross validation is used to select the hyperparameters. The local constant estimator

is used, although one can use the local linear estimator, which gives similar results to that of the local
constant.
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Average Partial Derivatives for Airline Data

log(Q) log(P)

GLS 0.8436 0.4188
(0.0311) (0.0181)

GKRLS 0.8130 0.4247
(0.0034) (0.0082)

KRLS 0.8248 0.4581
(0.016) (0.0457)

LP 0.5885 0.2260
(0.0276) (0.0138)

Table 4: Bias corrected average partial derivatives and their standard errors in parentheses
are reported for GLS, GKRLS, KRLS, and LP estimators. The columns represent the esti-
mates of the average partial derivative with respect to each regressor.

The bias corrected average partial derivatives and corresponding standard errors are

reported in Table 4. These averages are calculated by training each estimator on the five

firms with 75 observations in the training data set. The estimates are bias corrected and

the results from Section 5 are used in our calculations. All estimators display positive and

significant relationships between cost and each of the regressors, output and price, with their

average partial derivatives being positive. The elasticity with respect to output ranges from

0.5885 to 0.8436 and with respect to price ranges from 0.2260 to 0.4581. More specifically,

for the GKRLS estimator, a 10% increase in output would increase the total cost by an

average of 8.13% and a 10% increase in fuel price would increase the total cost by an average

of 4.25% holding all else fixed. Comparing the GKRLS and KRLS methods, the estimates of

the average partial derivatives are similar but the standard errors are significantly reduced

for GKRLS for both output and fuel price, implying a gain in efficiency. Therefore, using the

information and the structure of the error covariance in Eq. (57) in estimated the regression

function allows GKRLS to provide more robust estimates of the average partial effects of

each independent variable compared to KRLS.

Table 4 shows that the GLS estimator overestimates the elasticity with respect to output

and underestimates the elasticity with respect to fuel price compared to those of GKRLS.
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The LP estimator appears to provide different average partial effect estimates compared

to the rest of the estimators. One possible explanation is that the bandwidths may not

be the most optimal since data-driven bandwidth selection methods (e.g., cross validation)

fail when there is correlation in the errors (De Brabanter et al., 2018). Since the data

is panel structured, there is correlation across time, making bandwidth selection for LP

estimators difficult. The LP estimates are from the local constant estimator; however, the

local linear estimator provides similar estimates of the average partial effects to those of the

local constant estimator. Nevertheless, the LP average partial effects of each variable are

positive and significant, which are consistent with the other methods. Furthermore, GKRLS

provides similar average partial effects with respect to output and price but is more efficient

in terms of smaller standard errors relative to the other considered estimators.

MSEs for Airline Data

MSE MSElogQ MSElogP

GLS 0.0106 0.0042 0.0018
GKRLS 0.0091 0.0030 0.00001
KRLS 0.0306 0.0031 0.0024
LP 0.0191 0.2900 0.0867

Table 5: The MSEs are reported for the GLS, GKRLS, KRLS, and LP, estimators. The
first column are the out of sample MSEs calculated by Eq. (51) and the second and third
columns are the bootstrapped MSEs for the average partial derivatives calculated by Eq. (52).
The GKRLS and KRLS estimates are bias corrected.

To assess the estimators in terms of out of sample performance, we calculate the MSEs

using the 15 observations in the testing data set. Table 5 reports MSEs for the four considered

estimators. The first column reports the out of sample MSEs using the 15 observations from

the first firm. Out of all the considered estimators, the GKRLS estimator outperforms the

others in terms of MSE. In other words, the GKRLS estimator can be seen as the superior

method in estimating the regression function in this empirical example. The bootstrapped

MSEs for the average partial derivatives, calculated by Eq. (52), are reported in the second

and third columns of Table 1. For both the average partial derivatives with respect to
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output and price, GKRLS produces the lowest MSE, outperforming the other estimators. In

addition, since GKRLS incorporates the error covariance structure, efficiency is gained and

therefore reductions in MSEs are made relative to KRLS. Overall, GKRLS is considered to

be the best method in terms of MSE for estimating both the airline cost function and the

average partial effects with respect to output and price.

8 Conclusion

Overall, this paper proposes a nonparametric regression function estimator via KRLS under

a general parametric error covariance. The two step procedure allows for heteroskedastic

and serially correlated errors, where in the first step, KRLS is used to estimate the regres-

sion function and the parametric error covariance, and in the second step, KRLS is used to

estimate the regression function using the information in the error covariance. The method

improves efficiency in the regression estimates as well as the partial effects estimates com-

pared to standard KRLS. The conditional bias and variance, pointwise marginal effects, con-

sistency, and asymptotic normality of GKRLS are provided. Simulations show that there are

improvements in variance and MSE reduction when considering GKRLS relative to KRLS.

An empirical example is illustrated with estimating an airline cost function under a random

effects model with heteroskedastic and correlated errors. The average derivatives are evalu-

ated, and the average partial effects of the inputs are determined in the application. In the

empirical exercise, GKRLS is more efficient compared to KRLS and is the most preferred

method for estimating the airline cost function and its average partial derivatives in terms

of MSE.

Compliance with Ethical Standards

This research received no funding. Justin Dang declares that he has no conflict of interest.

Aman Ullah declares that he has no conflict of interest. This article does not contain any

26



studies with human participants performed by any of the authors.

References

Ahu, S. C. and Schmidt, P. “A separability result for gmm estimation, with applications to

gls prediction and conditional moment tests.” Econometric Reviews, 14(1):19–34, 1995.

doi:10.1080/07474939508800301.

Aigner, D., Lovell, C., and Schmidt, P. “Formulation and estimation of stochastic frontier

production function models.” Journal of Econometrics, 6(1):21–37, 1977.

Amsler, C., Prokhorov, A., and Schmidt, P. “Endogenous environmental variables in stochas-

tic frontier models.” Journal of Econometrics, 199(2):131–140, 2017. ISSN 0304-4076.

doi:https://doi.org/10.1016/j.jeconom.2017.05.005.

Amsler, C., Schmidt, P., and Tsay, W.-J. “Evaluating the cdf of the distribution of the

stochastic frontier composed error.” Journal of Productivity Analysis, 52(1-3):29–35, 2019.

doi:10.1007/s11123-019-00554-9.

Arabmazar, A. and Schmidt, P. “Further evidence on the robustness of the tobit estimator

to heteroskedasticity.” Journal of Econometrics, 17(2):253–258, 1981. ISSN 0304-4076.

doi:https://doi.org/10.1016/0304-4076(81)90029-4.

Boos, D. D. and Nychka, D. Rlab: Functions and Datasets Required for ST370 Class, 2022.

R package version 4.0.

Borchers, H. W. pracma: Practical Numerical Math Functions, 2021. R package version

2.3.3.

Callaway, B. BMisc: Miscellaneous Functions for Panel Data, Quantiles, and PrintingRe-

sults, 2022. R package version 1.4.5.

27



Croissant, Y. and Millo, G. “Panel data econometrics in R: The plm package.” Journal of

Statistical Software, 27(2):1–43, 2008. doi:10.18637/jss.v027.i02.

Dang, J. and Ullah, A. “Machine-learning-based semiparametric time series conditional

variance: Estimation and forecasting.” Journal of Risk and Financial Management, 15(1),

2022. ISSN 1911-8074. doi:10.3390/jrfm15010038.

De Brabanter, K., Cao, F., Gijbels, I., and Opsomer, J. “Local polynomial regression

with correlated errors in random design and unknown correlation structure.” Biometrika,

105(3):681–690, 2018. ISSN 0006-3444. doi:10.1093/biomet/asy025.

De Brabanter, K., De Brabanter, J., Suykens, J. A. K., and De Moor, B. “Approximate

confidence and prediction intervals for least squares support vector regression.” IEEE

Transactions on Neural Networks, 22(1):110–120, 2011. doi:10.1109/TNN.2010.2087769.

Greene, W. Econometric Analysis. Pearson, 2018. ISBN 9780134461366.

Guilkey, D. K. and Schmidt, P. “Estimation of seemingly unrelated regressions with vector

autoregressive errors.” Journal of the American Statistical Association, 68(343):642–647,

1973. ISSN 01621459.

Hainmueller, J. and Hazlett, C. “Kernel regularized least squares: Reducing misspecification

bias with a flexible and interpretable machine learning approach.” Political Analysis,

22(2):143–168, 2014. ISSN 10471987, 14764989.

Hayfield, T. and Racine, J. S. “Nonparametric econometrics: The np package.” Journal of

Statistical Software, 27(5):1–32, 2008. doi:10.18637/jss.v027.i05.

Hyndman, R. J. and Khandakar, Y. “Automatic time series forecasting: the forecast package

for R.” Journal of Statistical Software, 26(3):1–22, 2008.

Liaw, A. and Wiener, M. “Classification and regression by randomforest.” R News, 2(3):18–

22, 2002.

28



McLeod, A. I., Yu, H., and Krougly, Z. “Algorithms for linear time series analysis: With r

package.” Journal of Statistical Software, 23(5), 2007.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. e1071: Misc Func-

tions of the Department of Statistics, ProbabilityTheory Group (Formerly: E1071), TU

Wien, 2022. R package version 1.7-12.

Schmidt, P. Econometrics. Marcel Dekker, Inc., New York, 1976a.

Schmidt, P. “On the Statistical Estimation of Parametric Frontier Production Functions.”

The Review of Economics and Statistics, 58(2):238–239, 1976b.

Schmidt, P. “Estimation of seemingly unrelated regressions with unequal numbers of

observations.” Journal of Econometrics, 5(3):365–377, 1977. ISSN 0304-4076. doi:

https://doi.org/10.1016/0304-4076(77)90045-8.

Schmidt, P. and Witte, A. D. An Economic Analysis of Crime and Justice. Academic Press,

New York, 1984.

Schmidt, P. and Witte, A. D. Predicting Recidivism Using Survival Models. Springer-Verlag,

New York, 1988.

White, H. Asymptotic Theory for Econometricians. Economic Theory, Economet-

rics, and Mathematical Economics. Emerald Group Publishing Limited, 2001. ISBN

9780127466521.

29



Appendices

A Proof of Theorem 1

First, we note that the GKRLS estimator is a linear smoother by substituting Eq. (10) into

Eq. (11)

m̂2(x0) =
n∑

i=1

ĉ2,iKσ2(xi,x0)

= K∗⊤
σ2,x0

ĉ2

= K∗⊤
σ2,x0

(Ω−1Kσ2 + λ2I)
−1Ω−1y

= L(x0)
⊤y,

where L(x0) =
[
K∗⊤

σ2,x0
(Ω−1Kσ2 + λ2I)

−1Ω−1
]⊤

and K∗
σ2,x0

= (Kσ2(x1,x0), . . . , Kσ2(xn,x0))
⊤

the kernel vector evaluated at point x0.

Then, the conditional mean and variance of GKRLS can be derived as follows

E[m̂2|X = x0] = L(x0)
⊤E[y|X]

= L(x0)
⊤m

and

Var[m̂2(x0)|X = x0] = L(x0)
⊤Var[y|X]L(x0)

= L(x0)
⊤ΩL(x0).
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B Proof of Theorem 2

The exact bias for GKRLS for the training data is given by

E[m̂2|X = x]−m = (L− I)m,

and observe that the residuals are obtained by

û2 = y − m̂2

= y − Ly

= (I− L)y.

And the expectation of the residuals is given by

E[û2|X = x] = m− Lm

= −Bias[m̂2|X].

De Brabanter et al. (2011) suggests estimating the conditional bias by smoothing the

negative residuals

B̂ias[m̂2|X] = −Lû2

= −L(I− L)y

= (L− I)m̂2.

Therefore, the conditional bias can be estimated at any point x0 by

B̂ias[m̂2(x0)|X = x0] = L(x0)
⊤m̂− m̂2(x0)

For the conditional variance, we assume that the error covariance matrix Ω = Ω(θ) can
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be consistently estimated by Ω̂ = Ω̂(θ̂). Then, using a consistent estimator of the error

covariance matrix, the conditional variance of GKLRS can be estimated by

V̂ar[m̂2(x0)|X = x0] = L(x0)
⊤Ω̂L(x0).

C Proof of Theorem 3

Since the bias corrected fitted values, m̂c, have zero conditional bias, we can focus on the

conditional variance. From Theorem 1, the conditional variance of the GKRLS estimator is

Var[m̂2|X] = LΩL⊤

= LPP⊤L⊤

= LP (LP )⊤

= AA⊤,

where A ≡ LP . Consider the singular value decomposition of A, where D, U, V are the

singular values, left singular vectors, and right singular vectors respectively.

Var[m̂2|X] = AA⊤

= UDV(UDV)⊤

= UD2U⊤

= U


d21 . . . 0

...
. . .

...

0 . . . d2n

U⊤,
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where di, i = 1, . . . , n denotes the ith diagonal element ofD, i.e. the ith singular value of LP .

To examine the sum of the variances of m̂2, the trace of the variance matrix is evaluated.

tr(Var[m̂2|X]) = tr(UD2U⊤)

= tr(D2U⊤U)

= tr(D2)

=
n∑
i

d2i .

For large enough n, tr(D2) slows in growth and converges to some constant, M , and the

average variance of m̂(xi) is
1
n

∑n
i=1 d

2
i . Recall that d

2
i denotes the ith squared singular value

of LP and is proportional to the variance explained by a given singular vector of LP . Given

the construction of LP , the columns of this product matrix can be thought of as weights

of the data, scaled by the standard deviation of the error term. Therefore, the number of

large singular values will grow initially with n but the number of important dimensions or

singular values will start to grow slowly with n. As a result, the average variance of m̂(xi),

which is 1
n

∑n
i=1 d

2
i , shrinks to zero as n → ∞. Since the average variance shrinks to zero,

then each individual variance must approach zero as n becomes large.

We also provide an alternative proof of consistency. Consider the GKRLS coefficient

estimator of c in Eq. (10):

ĉ2 = (Ω−1Kσ2 + λ2I)
−1Ω−1y

= (Ω−1Kσ2 + λ2I)
−1Ω−1 (Kσ2c+ u)

=

(
1

n
Ω−1Kσ2 +

λ2

n
I

)−1
1

n
Ω−1 (Kσ2c+ u)

=

(
1

n
Ω−1Kσ2 +

λ2

n
I

)−1(
1

n
Ω−1Kσ2

)
c+

(
1

n
Ω−1Kσ2 +

λ2

n
I

)−1(
1

n
Ω−1

)
u
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Again, since we consider the bias corrected estimator, m̂2,c, we can focus on the conditional

variance. However, below we also show that the non-bias corrected estimator has zero

conditional bias in the limit. Taking the conditional bias of ĉ2:

Bias[ĉ2|X] =

(
1

n
Ω−1Kσ2 +

λ2

n
I

)−1(
1

n
Ω−1Kσ2

)
c− c,

where the strict exogeneity assumption E[u|X] = 0 is used. Furthermore, if we assume λ2

is fixed or does not grow as fast as n and
(
1
n
Ω−1Kσ2

)
→ Q, a positive definite matrix with

finite elements, when n → ∞, then Bias[ĉ2|X] → 0 as n → ∞.

Taking the conditional variance of ĉ2:

Var[ĉ2|X] =
1

n

(
Ω−1Kσ2

n
+

λ2I

n

)−1(
Ω−1

n

)[(
Ω−1Kσ2

n
+

λ2I

n

)−1
]⊤

.

Again, we assume that λ2 is fixed or does not grow as fast as n and
(
1
n
Ω−1Kσ2

)
→ Q, a

positive definite matrix with finite elements. Furthermore, if we assume that
(
1
n
Ω−1

)
→ QΩ,

a matrix with finite elements when n → ∞, then Var[ĉ2|X]→ 0 as n → ∞. Therefore,

plim
n→∞

ĉ2 = c.

Now, consider the GKRLS estimator m̂2 = Kσ2 ĉ2. Then,

plim
n→∞

m̂2 = Kσ2

(
plim
n→∞

ĉ2

)
= Kσ2c

= m,

proving consistency of m̂2. Note that since the variance is O(1/n), m̂2 is
√
n-consistent.
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D Proof of Theorem 4

Consider the difference between the bias corrected fitted values and the true values, m̂2 −

Bias[m̂2|X]−m, where Bias[m̂2|X] = Lm−m,

m̂2 − Bias[m̂2|X]−m = Lu

Note that E[Lu|X] = 0 and Var[Lu|X] = LΩL⊤. The following results will be for the case of

heteroskedastic errors, where observations are independent and heterogeneously distributed.

Consider the individual variances for each observation,

Var[L(xi)ui|X] = L(xi)
⊤ΩL(xi)

and let s2n be the sum of the variances,

s2n =
n∑

i=1

L(xi)
⊤ΩL(xi).

As long as the sum is not dominated by any particular term and if L(xi)ui are independent

vectors distributed with mean 0 and variance L(xi)
⊤ΩL(xi) < ∞ and s2n → ∞ as n → ∞,

then
√
nLu

d→ N(0,LΩL⊤),

by Lindeberg-Feller central limit theorem. It then follows that

√
n(m̂2 − Bias[m̂2|X]−m)

d→ N(0,LΩL⊤).

The following results will be for the case of autocorrelated errors, where observations are

dependent and identically distributed.9 Define Ln ≡ Kσ2

(
Ω−1Kσ2+λ2I

n

)−1

Ω−1 and Ln(Xt)

9We follow the proof similar to the case of dependent identically distributed observations provided by
White (2001).
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as the t−th row of Ln. Given (i) Yt = m(Xt) + ut, t = 1, 2, . . .; (ii) {(Xt, ut)} is a sta-

tionary ergodic sequence; (iii) (a) {Ln(Xthi)uth,Ft} is an adapted mixingale of size -1,

h = 1, . . . , p, i = 1, . . . , n; (b) E|Ln(Xthi)uth|2 < ∞, h = 1, . . . , p, i = 1, . . . , n; (c) Vn ≡

Var
(

1√
n
Lnu

)
is uniformly positive definite; (iv) E|Ln(Xthi)|2 < ∞, h = 1, . . . , p, i = 1, . . . , n;

(v) lim
n→∞

Ln(Xt) = L(Xt) and lim
n→∞

Ln = L.

Consider n−1/2
∑n

t=1 λ
⊤V−1/2Ln(Xt)ut, where V is any finite positive definite matrix.

By Theorem 3.35 of White (2001), {Zt,Ft} is an adapted stochastic sequence because Zt is

measurable with respect to Ft. To see that E(Z2
t ) < ∞, note that we can write

Zt = λ⊤V−1/2Ln(Xt)ut

=

p∑
h=1

λ⊤V−1/2Ln(Xth)uth

=

p∑
h=1

n∑
i=1

λ̃iLn(Xthi)uth,

where λ̃i is the ith element of the n× 1 vector λ̃ ≡ V−1/2λ. By definition of λ and V, there

exists ∆ < ∞ such that |λ̃i| < ∆ for all i. It follows from Minkowski’s inequality that

E(Z2
t ) ≤

[
p∑

h=1

n∑
i=1

(
E|λ̃iLn(Xthi)uth|2

)1/2]2

≤

[
∆

p∑
h=1

n∑
i=1

(
E|Ln(Xthi)uth|2

)1/2]2
≤ [∆pn∆1/2]2 ≤ ∞,

since for ∆ sufficiently large, E|Ln(Xthi)uth|2 < ∆ < ∞ given (iii.b) and the stationarity

assumption. Next, we show {Zt,Ft} is a mixingale of size -1. Using the expression for Zt
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just given, we can write

E([E(Z0|F−m)]
2) = E

[E( p∑
h=1

n∑
i=1

λ̃iLn(X0hi)u0h|F−m)

)]2
= E

[ p∑
h=1

n∑
i=1

E
(
λ̃iLn(X0hi)u0h|F−m

)]2 .

Applying Minkowski’s inequality, it follows that

E([E(Z0|F−m)]
2) ≤

[
p∑

h=1

n∑
i=1

(
E
[
E
(
λ̃iLn(X0hi)u0h|F−m

)2])1/2
]2

≤

[
∆

p∑
h=1

n∑
i=1

(
E
[
E(Ln(X0hi)u0h|F−m)

2
])1/2]2

≤

[
∆

p∑
h=1

n∑
i=1

c0hiγmhi

]2
≤ [∆pnc̄0γ̄m]

2,

where c̄0 = maxh,i c0hi < ∞ and γ̄m = maxh,i γmhi is of size -1. Thus, {Zt,Ft} is a mixingale

of size -1. Note that

Var(
√
nZ̄n) = Var

(
1√
n

n∑
t=1

λ⊤V −1/2Ln(Xt)ut

)

= λ⊤V−1/2VnV
−1/2λ → σ̄2 < ∞.

Hence Vn converges to a finite matrix. Set V = limn→∞ Vn = LΩL⊤ which is positive

definite given (iii.c). Then, σ̄2 = λ⊤V−1/2VV−1/2λ = 1. Then by the martingale central

limit theorem, n−1/2
∑n

t=1 λ
⊤V−1/2Ln(Xt)ut

d→ N(0, 1). Since this holds for every λ such

that λ⊤λ = 1, it follows from Cramér-Wold Theorem, that n−1/2V−1/2
∑n

t=1 Ln(Xt)ut
d→
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N(0, I). Hence,
√
nLu

d→ N(0,LΩL⊤) and it then follows that

√
n(m̂2 − Bias[m̂2|X]−m)

d→ N(0,LΩL⊤).

E Proof of Theorem 5

First, we note that the GKRLS derivative estimator is a linear smoother by substituting

Eq. (10) into Eq. (28),

m̂
(1)
2,r(x0) =

2

σ2
2

n∑
i=1

e
− 1

σ2
2
||xi−x0||2

(x
(r)
i − x

(r)
0 )ĉ2,i

= K∗⊤
σ2,x0

∆rĉ2

= K∗⊤
σ2,x0

∆r(Ω
−1Kσ2 + λ2I)

−1Ω−1y

= Sr(x0)
⊤y,

where ∆r ≡ 2
σ2
2
diag(x

(r)
1 − x

(r)
0 , . . . ,x

(r)
n − x

(r)
0 ) is a n× n diagonal matrix and

Sr(x0) =
[
K∗⊤

σ2,x0
∆r(Ω

−1Kσ2 + λ2I)
−1Ω−1

]⊤
(61)

is the smoother vector for the first partial derivative with respect to the rth variable. Then,

the conditional mean and variance of the GKRLS derivative can be derived as follows

E[m̂(1)
2,r(x0)|X = x0] = Sr(x0)

⊤E[y|X]

= Sr(x0)
⊤m
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and

Var[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

⊤ Var[y|X]Sr(x0)

= Sr(x0)
⊤ΩSr(x0).

F Proof of Theorem 6

The bias of the GKRLS derivative estimator in Eq. (28)

Bias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

⊤E[y|X]−m(1)
r (x0)

= Sr(x0)
⊤m−m(1)

r (x0),

where m
(1)
r (x0) is the true first partial derivative of m with respect to the rth variable. Since

this quantity as well as m is unknown, we estimate both to calculate the conditional bias.

B̂ias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

⊤m̂2 − m̂
(1)
2,r(x0),

where m̂2 is the n × 1 vector of in sample GKRLS predictions of m and m̂
(1)
2,r(x0) is the

estimated GKRLS derivative prediction evaluated at point x0.

For the conditional variance, we assume that the error covariance matrix Ω = Ω(θ)

can be consistently estimated by Ω̂ = Ω̂(θ̂). Then, using a consistent estimator of the

error covariance matrix, the conditional variance of the GKRLS derivative estimator can be

estimated by

V̂ar[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

⊤Ω̂Sr(x0) (62)
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G Proof of Theorem 7

The conditional bias of the GKRLS first difference estimator in Eq. (38) is

Bias[m̂FDb
(x0)|X = x0]

= L(x(b) = 1,x0)
⊤m−m(x(b) = 1,x0)−

[
L(x(b) = 0,x0)

⊤m−m(x(b) = 0,x0)
]

=
[
L(x(b) = 1,x0)− L(x(b) = 0,x0)

]⊤
m−

[
m(x(b) = 1,x0)−m(x(b) = 0,x0)

]
= LFDb

(x0)
⊤m−mFDb

(x0),

where mFDb
(x0) = m(x(b) = 1,x0) − m(x(b) = 0,x0) is the true first difference of m with

respect to the bth variable and LFDb
(x0) = L(x(b) = 1,x0) − L(x(b) = 0,x0) is the first

difference smoother vector.

The conditional variance of the GKRLS first difference estimator in Eq. (38) is

Var[m̂FDb
(x0)|X = x0]

= L(x(b) = 1,x0)
⊤ΩL(x(b) = 1,x0) + L(x(b) = 0,x0)

⊤ΩL(x(b) = 0,x0)

− L(x(b) = 1,x0)
⊤ΩL(x(b) = 0,x0)− L(x(b) = 0,x0)

⊤ΩL(x(b) = 1,x0)

=
[
L(x(b) = 1,x0)− L(x(b) = 0,x0)

]⊤
Ω
[
L(x(b) = 1,x0)− L(x(b) = 0,x0)

]
= LFDb

(x0)
⊤ΩLFDb

(x0).

H A Random Effects Model for Airline Data used in

Section 7

Consider the following random effects model for an airline cost function:

Yit = m(Xit) + αi + εit,
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Yit = logCit, Xit = (logQit, logPit)
⊤, αi is the firm specific effect, and εit is the idiosyncratic

error term. In this empirical setting, we assume

E[εit|X] = 0

E[ε2it|X] = σ2
εi

E[αi|X] = 0

E[α2
i |X] = σ2

αi

E[εitαj|X] = 0 for all i, t, j

E[εitεjs|X] = 0 if t ̸= s or i ̸= j

E[αiαj|X] = 0 if i ̸= j

Consider the composite error term Uit ≡ αi + εit. Then, the model with the composite error

term is

Yit = m(Xit) + Uit

Note that the independent variables are strictly exogenous; the regressors are mean inde-

pendent of each error term and therefore of the composite error term:

E[Uit|X] = E[αi|X] + E[εit|X]

= 0.

In this framework, we allow for the errors to be heteroskedastic and correlated across

time. The variance of the composite error term is

E[U2
it|X] = E[α2

i |X] + E[ε2it|X] + 2E[αiεit|X]

= σ2
αi
+ σ2

εi
,
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where E[αiεit|X] = 0 by assumption. The covariance of the composite errors is

E[UitUis|X] = E[(αi + εit)(αi + εis)|X]

= E[α2
i |X]

= σ2
αi

for t ̸= s

and

E[UitUjs|X] = E[(αi + εit)(αj + εjs)|X]

= 0 for all t and s if i ̸= j .

Therefore, this framework allows for heteroskedasticity with respect to firms and correlation

across time and the correlation across time can be firm specific.

Define the T × 1 vector of errors for firm i as ui = (ui1, . . . , uiT )
⊤, i = 1, . . . , n, where we

stack the errors over time for each firm. Then define the T × T error covariance matrix for

each firm, Σi, as

Σi = E[uiu
⊤
i |X]

= σ2
αi
ιT ι

⊤
T + σ2

εi
IT

=



σ2
αi
+ σ2

εi
σ2
αi

. . . σ2
αi

σ2
αi

σ2
αi
+ σ2

εi

. . .
...

...
. . . . . . σ2

αi

σ2
αi

. . . σ2
αi

σ2
αi
+ σ2

εi


.
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Therefore, the nT × nT error covariance matrix Ω is block diagonal as

Ω = diag(Σ1, . . . ,Σn)

=



Σ1 0 . . . 0

0 Σ2
. . .

...

...
. . . . . . 0

0 . . . 0 Σn


To estimate the random effects model of airline cost by GKRLS, first, we follow item 1

of the two step procedure outlined in Section 2. To get a consistent estimate of the error

covariance matrix Ω, we can estimate the error variances using the residuals from the first

step as

σ̂2
Ui

=
1

T
û⊤
i ûi

σ̂2
αi

=
1

T (T − 1)/2

T−1∑
t=1

T∑
s=t+1

ûitûis

σ̂2
εi
= σ̂2

Ui
− σ̂2

αi
.

Since averages are used to estimate the variances and by the law of large numbers σ̂2
αi

and σ̂2
εi

are consistent estimators of σ2
αi

and σ2
εi
. Then, using these estimates for the error covariance,

we follow item 2 of the two step procedure to get GKRLS estimates of the cost function.

In order to apply the asymptotic results established in Section 4, we must have nT → ∞.

Then, consistency and asymptotic normality of the GKRLS estimator under the random

effects model discussed in Section 7 can be applied. In addition, since time averages are used

to estimate the variances, we also must have T → ∞. T → ∞ is needed to apply the law of

large numbers to get consistent estimates of σ2
αi

and σ2
εi
. Since we assume that T → ∞, it

must be that nT → ∞, and applying Theorems 3 and 4, the GKRLS estimator is consistent

and asymptotically normal.
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