Testing Attrition Bias in Field Experiments*

Dalia Ghanem Sarojini Hirshleifer Karen Ortiz-Becerra

UC Davis UC Riverside University of San Diego

September 15, 2022

Abstract

We approach attrition in field experiments with baseline data as an identification prob-
lem in a panel model. A systematic review of the literature indicates that there is no
consensus on how to test for attrition bias. We establish identifying assumptions for
treatment effects for both the respondent subpopulation and the study population, and
propose procedures to test their sharp implications. We then relate our proposed tests
to current empirical practice, and demonstrate that the most commonly used test in
the literature is not a test of internal validity in general. We illustrate the relevance of

our analysis using several empirical applications.
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1 Introduction

Randomized control trials (RCTs) are an increasingly important tool of applied economics
since, when properly designed and implemented, they can produce internally valid estimates
of causal impact.! Non-response on outcome measures at endline, however, is an unavoidable
threat to the internal validity of many carefully implemented trials. Long-distance migration
can make it prohibitively expensive to follow members of an evaluation sample. Conflict,
intimidation or natural disasters sometimes make it unsafe to collect complete response
data. In high-income countries, survey response rates are often low and may be declining.?
The recent, increased focus on the long-term impacts of interventions has also made non-
response especially relevant. Thus, researchers often face the question: How much of a threat
is attrition to the internal validity of a given study?

In this paper, we approach attrition in field experiments with baseline data as an iden-
tification problem in a nonseparable panel model. We focus on two identification questions
generated by attrition in this setting. First, does the difference in mean outcomes between
treatment and control respondents identify the average treatment effect for the respondent
subpopulation (ATE-R)? Second, is this estimand equal to the average treatment effect for
the study population (ATE)?® To answer these questions, we examine the testable impli-
cations of the relevant identifying assumptions and propose procedures to test them. Our
results provide insights that are relevant to current empirical practice.

We first conduct a systematic review of 96 recent field experiments with baseline outcome
data in order to document attrition rates and understand how authors test for attrition bias.
Attrition and attrition tests are both common in published field experiments. Although we
find wide variation in the choice and implementation of attrition tests in the literature, we

are able to identify two main types: (i) a di erential attrition rate test that determines if

1Since in the economics literature the term “field experiment” generally refers to a randomized controlled
trial, we use the two terms interchangeably in this paper. We do not consider “artefactual” field experiments,
also known as “lab experiments in the field,” since attrition is often not relevant to such experiments.

2Gee, for example, Meyer et al. (2015) and Barrett et al. (2014).

3We refer to the population selected for the evaluation as the study population.



attrition rates are different across treatment and control groups, and (ii) a selective attrition
test that attempts to determine if the mean of baseline observable characteristics differs
across the treatment and control groups conditional on response status. While authors
report a differential attrition rate test for 79% of field experiments, they report a selective
attrition test only 61% of the time. In addition, for a substantial minority of field experiments
(36%), authors conduct a determinants of attrition test for differences in the distributions
of respondents and attritors.

Next, we present a formal treatment of attrition in field experiments with baseline out-
come data. Specifically, we establish the identifying assumptions in the presence of attrition
for two cases that are likely to be of interest to the researcher. For the first case, in which
the researcher’s objective is internal validity for the respondent subpopulation (IV-R), the
identifying assumption is random assignment conditional on response status (IV-R assump-
tion). This implies that the difference in the mean outcome across the treatment and control
respondents identifies the ATE-R, a local average treatment effect for the respondents.* In
the second case, where internal validity for the study population (IV-P) is of interest, the
identifying assumption is that the unobservables that affect response and outcome are inde-
pendent in addition to the initial random assignment of the treatment (IV-P assumption).
If this identifying assumption holds, the ATE for the study population is identified. This
second case is especially relevant in settings where the study population is representative of
a larger population.

We then derive testable restrictions for each of the above identifying assumptions. If
treatment effects for the respondents are the researchers’ object of interest, they can imple-
ment a test of the IV-R assumption. The null hypothesis of the IV-R test consists of two
equality restrictions on the baseline outcome distribution; specifically, for treatment and con-
trol respondents as well as treatment and control attritors. Alternatively, if the researchers

are interested in treatment effects for the study population, they can test the restriction

4For brevity, we use a “difference in means” to refer to a “difference in population means”. To distinguish
it from its sample analogue, we refer to the latter as a “difference in sample means”.



of the IV-P assumption. The hypothesis of the IV-P test is the equality of the baseline
outcome distribution across all four treatment/response subgroups. We show that these
testable restrictions are sharp, meaning that they are the strongest implications that we can
test given the available data.® We also propose randomization procedures to test the sharp
distributional restrictions implied by each identifying assumption as well as regression-based
procedures to test their mean counterparts. We illustrate the intuition of the IV-R and IV-P
tests by applying them to the randomized evaluation of the Progresa program, in which the
study population is representative of a broader population of interest.

Given their relevance to current empirical practice, we also provide a formal treatment of
the differential attrition rate test. In order to understand the role of differential attrition rates
for internal validity, we apply the framework of partial compliance from the local average
treatment effect (LATE) literature to potential response.® We demonstrate that even though
equal attrition rates are sufficient for IV-R under additional assumptions, they are not a
necessary condition for internal validity in general. We illustrate using an analytical example
and simulations that it is possible to have differences in attrition rates across treatment and
control groups while internal validity holds not only for the respondent subpopulation but
also the study population.

We also examine the use of covariates in testing the IV-R and IV-P assumptions. This
approach is useful for settings where baseline outcome is not observed or is degenerate
by design. Covariates can also aid in detecting violations of internal validity when the
relationship between the outcome and its determinants changes over time. Building on our
framework, we introduce two types of covariates that are appropriate to include in the tests:
(i) determinants of the outcome, and (i) “proxy” variables which are determined by the

same variables as the outcome in question. In cases where covariates are appropriate for a

5Sharp testable restrictions are the restrictions for which there are the smallest possible set of cases
such that the testable restriction holds even though the identifying assumption does not. The concept of
sharpness of testable restrictions was previously developed and applied in Kitagawa (2015), Hsu et al. (2019),
and Mourifié and Wan (2017).

6See the foundational work in the LATE literature (Imbens and Angrist, 1994; Angrist et al., 1996).



given setting, we recommend that authors pre-specify a limited number of covariates to use
in their attrition test. We illustrate the use of covariates in attrition tests using the Progresa
example.

Finally, we demonstrate the empirical relevance of our results by applying our tests to
four published field experiments with high attrition rates.” For this exercise, we implement
our attrition tests using baseline outcome only. Based on that approach, for about two-
thirds of the outcomes, we neither reject the IV-R nor the IV-P assumption, which ensures
the identification of treatment effects for the study population. For the remaining outcomes,
however, our tests reject the IV-P but not the IV-R assumption. In other words, for those
outcomes, the researcher would reject the internal validity of the corresponding treatment
effect for the study population, but would not reject the assumption that ensures the internal
validity of the treatment effect for the respondent subpopulation. An important takeaway
from our analysis is that researchers should consider an outcome-specific approach to testing
for attrition bias. Our empirical results also support the limitations of the differential attri-
tion rate test highlighted by the theoretical analysis. For about one-third of the outcomes,
our test results are consistent with the conditions under which this test would not control
size as a test of internal validity.

This paper has several implications for current empirical practice. First, our theoretical
and empirical results imply that the most widely used test in the literature, the differential
attrition rate test, may overreject internal validity in practice. The second most widely used
test, the selective attrition test, is implemented using a variety of approaches. Most such
tests constitute IV-R tests, although those typically use respondents only. Our theoretical
results indicate, however, that the implication of the relevant identifying assumption is a joint
test that uses all of the available information in the baseline data, and thus includes both
respondents and attritors. In addition, while the majority of testing procedures pertain to

IV-R and not IV-P, the use of determinants of attrition tests suggests that some researchers

"We choose the four published field experiments from our review that have the highest attrition rates
subject to data availability.



may be interested in implications of the estimated treatment effects for the study population.
More generally, this paper highlights the importance of understanding the implications of
attrition for a broader population when interpreting field experiment results for policy.
Finally, we note that our paper contributes to a debate in the literature about the value
of collecting baseline data by highlighting its importance for testing internal validity in the
presence of attrition (Muralidharan, 2017; Carneiro et al., 2019).

This paper contributes to a growing literature that considers methodological questions

9 Given the wide use of attrition tests, we formally examine

relevant to field experiments.
the testing problem here. Our focus complements a thread in this literature that outlines
various approaches to correcting attrition bias in field experiments (Horowitz and Manski,
2000; Lee, 2009; Huber, 2012; Behagel et al., 2015; Millan and Macours, 2021; Ghanem et
al., 2022).% These corrections build on the vast sample selection literature in econometrics
going back to Heckman (1976, 1979).1' While the latter literature is broadly concerned with

population objects, work that is relevant to program evaluation proposes corrections for

objects pertaining to subpopulations (e.g. Lee, 2009; Huber, 2012; Chen and Flores, 2015a).

8External validity can be assessed in a number of ways (see, for example, Andrews and Oster (2019) and
Azzam et al. (2018)). In our setting, we note that if IV-R holds but not IV-P, we may be able to draw
inference from the local average treatment effect for respondents to a broader population.

9Bruhn and McKenzie (2009) compare the performance of different randomization methods; McKenzie
(2012) discusses the power trade-offs of the number of follow-up samples in the experimental design; Baird et
al. (2018) propose an optimal method to design field experiments in the presence of interference; de Chaise-
martin and Behaghel (2018) present how to estimate treatment effects in the context of randomized wait
lists; Abadie et al. (2018) propose alternative estimators that reduce the bias resulting from endogenous
stratification in field experiments; Muralidharan et al. (2019) examine empirical practice in analyzing ex-
periment with factorial design and analyze the trade-off between power and correct inference in this setting;
Kasy and Sautmann (2020) propose a treatment assignment algorithm to choose the best among a set of
policies at the end of an experiment; Vazquez-Bare (2020) examines the identification and estimation of
spillover effects in randomized experiments.

00ther work considers corrections for settings with sample selection and noncompliance. Chen and Flores
(2015a) rely on monotonicity restrictions to construct bounds for average treatment effects in the presence
of partial compliance and sample selection. Fricke et al. (2015) consider instrumental variables approaches
to address these two identification problems.

"Nonparametric Heckman-style corrections have been proposed for linear and nonparametric outcome
models (e.g. Ahn and Powell, 1993; Das et al., 2003). Inverse probability weighting (Horvitz and Thompson,
1952; Hirano et al., 2003; Robins et al., 1994) is another important category of corrections for sample selection
bias, frequently used in the field experiment literature. Attrition corrections for panel data have also been
proposed (e.g. Hausman and Wise, 1979; Wooldridge, 1995; Hirano et al., 2001). Finally, nonparametric
bounds is an alternative approach relying on weaker conditions (Horowitz and Manski, 2000; Manski, 2005;
Lee, 2009; Kline and Santos, 2013).



Our paper provides tests of identifying assumptions emphasizing the distinction between the
(study) population and the respondent subpopulation. Finally, the randomization tests we
propose contribute to recent work that examines the potential use of randomization tests in
analyzing field experiment data (Young, 2018; Athey and Imbens, 2017; Athey et al., 2018;
Bugni et al., 2018).

We also build on other strands of the econometrics literature. Recent work on nonpara-
metric identification in nonseparable panel data models informs our approach (Altonji and
Matzkin, 2005; Bester and Hansen, 2009; Chernozhukov et al., 2013; Hoderlein and White,
2012; Ghanem, 2017). Specifically, the identifying assumptions in this paper fall under the
nonparametric correlated random effects category (Altonji and Matzkin, 2005). Further-
more, we build on the literature on randomization tests for distributional statistics (Dufour,
2006; Dufour et al., 1998).

The paper proceeds as follows. Section 2 presents the review of the field experiment
literature. Section 3 formally presents the identifying assumptions and their sharp testable
restrictions. It also includes a formal treatment of differential attrition rates. Section 4
discusses implications for empirical practice, including the role of covariates in testing internal
validity. Section 5 presents the results of the empirical application exercise. Section 6
concludes. Sections A and B present the randomization and regression-based procedures
to test the IV-R and IV-P assumptions for completely, stratified and cluster randomized

experiments.

2 Attrition in the Field Experiment Literature

We systematically reviewed 93 recent articles published in economics journals that report

the results of 96 field experiments.'> The objective of this review is to understand both

2We included articles from 2009 to 2015 that were published in the top five journals in economics as
well as five highly regarded applied economics journals that commonly publish field experiments: Ameri-
can Economic Review, American Economic Journal: Applied Economics, Econometrica, Economic Journal,
Journal of Development Economics, Journal of Human Resources, Journal of Political Economy, Review of
Economics and Statistics, Review of Economic Studies, and Quarterly Journal of Economics. Section SA1.1



the extent to which attrition is observed and the implementation of tests for attrition bias
in the literature.®> Our categorization imposes some structure on the variety of different
estimation strategies used to test for attrition bias in the literature.!* In keeping with our
panel approach, we focus on field experiments in which the authors had baseline data on at
least one main outcome variable.®

Figure 1: Attrition Rates Relevant to Main Outcomes in Field Experiments

Panel A. Overall Attrition Rate Panel B. Differential Attrition Rate
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Notes: We report one observation per field experiment. Specifically, the highest attrition rate
relevant to a result reported in the abstract of the article. The Overall rate is the attrition rate
for the full sample, which is composed of the treatment and control groups. The Differential rate
is the absolute value of the difference in attrition rates across treatment and control groups. The
blue (orange) line depicts the average overall (differential) attrition rate in our sample of field
experiments. Panel A includes 93 field experiments and Panel B includes 76 experiments since the
relevant attrition rates are not reported in some articles.

We review reported overall and differential attrition rates in field experiment papers and

in the online appendix includes additional details on the selection of papers and relevant attrition rates.
Section SAG6 in the online appendix contains a list of all the papers included in the review.

13The review complements the review in Millin and Macours (2021) by comprehensively identifying and
cataloging the range of approaches that authors use to test for attrition bias. Milldn and Macours (2021)
provides a particularly useful review of the use of attrition corrections. Notably, we find similar overall
attrition rates, despite differences in the inclusion criteria for the experiments in our sample on a number of
factors (such as the years of publication and types of units of analysis in the study).

4We identify fifteen estimation strategies used to conduct attrition tests (see Section D in the appendix).

5We exclude 62 field experiments that were published during that time period, since they lack baseline
data for any outcome mentioned in the abstract. Of those, slightly less than half (47%) are experiments for
which the baseline outcome is the same for everyone by design and hence is not informative (see Section
SA1.1 in the online appendix).



find that attrition is common.'® As depicted in Panel A in Figure 1, even though 22% of
field experiments have less than 2% attrition overall, the distribution of attrition rates has a
long right tail. Specifically, 45% of reviewed field experiments have an attrition rate higher
than the average of 15%.1" Of the experiments that report a differential attrition rate, Panel
B in Figure 1 illustrates that a majority have little differential attrition for the abstract
results: 63% have a differential rate that is less than 2 percentage points, and only 11% have
a differential attrition rate that is greater than 5 percentage points.8

We then study how authors test for attrition bias. Notably, attrition tests are widely used
in the literature: 92% of field experiments with an attrition rate of at least 1% for an outcome
with baseline data conduct at least one attrition test. We first identify two main types of tests
that aim to determine the impact of attrition on internal validity: (i) a di erential attrition
rate test, and (ii) a selective attrition test. A di erential attrition rate test determines
whether the rates of attrition are statistically significantly different across treatment and
control groups. In contrast, a selective attrition test aims to determine whether, conditional
on being a respondent and/or attritor, the mean of observable characteristics is the same

19 We find that there is no consensus on whether to

across treatment and control groups.
conduct a differential attrition rate test or a selective attrition test, however (Panel A in

Table 1). In the field experiments that we reviewed, the differential attrition rate test is

16To understand the extent of attrition that is relevant to the main outcomes in the paper, we focus
on attrition rates that are relevant to outcomes reported in the abstract (i.e. “abstract results”). Most
papers report attrition rates at the level of the data source or subsample, rather than at the level of the
outcome. Since the number of data sources and/or subsamples that are relevant to the abstract results vary
by experiment, we include one attrition rate per field experiment for consistency. Specifically, we report
the highest attrition rate relevant to an abstract result. Authors do not in general report attrition rates
conditional on baseline response.

17 A noteworthy finding from Table SA3 in the online appendix is that attrition rates are higher on average
for experiments in high-income countries. We also note that the average attrition rate for the studies in our
review is slightly higher than the average attrition rate of the studies that do not have baseline data for any
main outcome, and thus are excluded from our review. Of these 62 excluded studies, 56 report information
on survey-level attrition. Thirty-eight percent of these articles have less than 2% attrition and the average
rate across the excluded studies is 12.1%.

18]t is possible, however, that these numbers reflect authors’ exclusion of results with higher differential
attrition rates than those that were reported or published.

19Gee Section D for more details on the empirical strategies used in the field experiment literature to
conduct each of these tests.



substantially more common (79%) than the selective attrition test (61%). In fact, 29% of
the articles that conducted a differential attrition rate do not conduct a selective attrition
test.20

Table 1: Distribution of Field Experiments by Attrition Test

Panel A: Differential and Selective Attrition Tests

Selective attrition test
No Yes Total

No 10% 10% 21%
Differential attrition rate test Yes 29% 51% 79%
Total 39% 61% 100%

Proportion of field experiments that conduct:

Panel B: Types of Selective Attrition Test

Conditional on conducting a selective attrition test:

Test using respondents and attritors 28%
Test using respondents only 63%
Test using attritors only 4%

Totall 100%

Panel C: Determinants of Attrition Tests

Determinants of attrition test

Proportion of field experiments that conduct:

Yes No Total
Differential attrition rate test only 12% 1™% 29%
Selective attrition test only 1% 9% 10%
Differential & selective attrition tests 21%  29% 50%
No differential & no selective attrition test 1% 9% 10%
Total 36%  64% 100%

Notes: Panel A and C include 77 field experiments that have an attrition rate of
at least 1% for an outcome with baseline data. Panel B includes 47 of those exper-
iments that conducted a selective attrition test (). For details on the classification
of the empirical strategies, see Section D in the appendix.

We further consider if selective attrition tests include both respondents and attritors or
if they include either only respondents or only attritors (Panel B in Table 1). Conditional on
having conducted any type of selective attrition test, authors include both respondents and

attritors in only 28% of those field experiments. Instead, authors conduct a selective attrition

20We also consider some potential determinants of the use of selective attrition tests: overall attrition
rates, differential rates, year of publication, journal of publication. We do not find any strong correlations
given the available data.



test on the sample of respondents in most cases (68%). Although our review is limited to
experiments in which baseline outcome data is available, covariates are typically included
in attrition tests along with the baseline outcome. In particular, 96% of field experiments
that report a selective attrition test include more than one baseline variable in that test.?
A key issue that arises with the inclusion of covariates is how to approach the issue of
multiple testing. We find that 76% of the experiments that implement a selective attrition
test conduct it on an average of 17 variables, and none of those implement a multiple testing
correction (Table SA4 in online appendix). Only a minority of authors conduct a joint test
across all of the baseline variables included in the test (24%).

Another important aspect of testing for attrition bias is testing for differences in the
distributions of respondents and attritors. Such tests can illustrate the implications of the
main results of the experiment for the study population. We define a determinants of attrition
test as a test of whether baseline outcomes and covariates correlate with response status and
find that authors conduct such a test in approximately one-third of field experiments (Panel
C of Table 1). Table 1 illustrates that conducting the determinants of attrition test does
not have a one-to-one relationship with either conducting a differential attrition rate test or

conducting a selective attrition test.??

3 Testing Attrition Bias Using Baseline Data

This section presents a formal treatment of attrition in field experiments with baseline out-

come data.?® First, we motivate the problem with an example from the Progresa evaluation.

21 Although identifying which variables are outcomes or covariates is beyond the scope of this paper, we
note that in 92% of the experiments the selective attrition test includes at least one variable that we can
easily identify as a covariate (such as age or gender).

22 Approximately half of the determinants of attrition tests are conducted using the same regression used to
test for differential attrition rates. We categorize this strategy as both types of tests since authors typically
interpret both the coefficients on treatment and the baseline covariates.

230ur framework focuses on cases where non-response is only an issue at follow-up. In practice, attrition at
baseline is common. This non-response issue does not affect the validity of our framework if the survey were
completed before treatment was assigned. Since the study population is defined by the baseline respondents,
baseline attrition may affect the interpretation of internal validity for the study population. This is a concern
if the baseline sample was intended to be representative of a larger population and the baseline attritors are

10



Then, we present the identifying assumptions in the presence of non-response and show their
sharp testable implications when baseline outcome data is available for both completely and
stratified randomized experiments. We further examine the role of the widely-used differen-
tial attrition rate test and discuss the implications of our theoretical analysis for empirical

practice.

3.1 DMotivating Example

To illustrate the problem of attrition in field experiments, we use data collected for the
randomized evaluation of Progresa, a social program in Mexico that provides cash to eligible
poor households on the condition that children attend school and family members visit
health centers regularly (Skoufias, 2005). The evaluation of Progresa relied on the cluster-
level random assignment of 320 localities into the treatment group and 186 localities into
the control group. These localities, which constitute the study population, were selected
to be representative of a larger population of 6396 eligible localities across seven states in
Mexico.?* The surveys conducted for the experiment include a baseline and three follow-up
rounds collected 5, 13, and 18 months after the program began.?® We examine two outcomes
of the evaluation that have been previously studied: (i) current school enrollment for children
6 to 16 years old, and (ii) paid employment for adults in the last week.

In Table 2, we report the initial sample size and summary statistics for each outcome by
treatment group at baseline and follow-up. The failure to reject the null hypothesis of the
equality of means across the treatment and control groups at baseline is suggestive evidence
that the randomization of localities into treatment and control was implemented correctly.

In the context of treatment randomization and absence of attrition, the difference in a

substantively different from the baseline respondents.

2ALocalities were eligible if they ranked high on an index of deprivation, had access to schools and a clinic,
and had a population of 50 to 2500 people. See INSP (2005) for details about the experiment. For this
analysis, we use the evaluation panel dataset, which can be found on the official website of the evaluation at
https://evaluacion.prospera.gob.mx/es/eval_cuant/p_bases_cuanti.php.

25The baseline was collected in October 1997 and the three follow-ups were collected in October 1998,
June 1999, and November 1999.
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Table 2: Summary Statistics for the Outcomes of Interest for Progresa

Full Sample Respondent Subsample at Follow-up
Control Attrition Control
Round N Mean T-C p-value Rate Mean T-C p-value
Panel A. School Enrollment (6-16 years old)

Baseline 24353 0.824 0.007 0.455

Pooled 0.183 0.793 0.046 0.000
1st 0.142 0.814 0.043 0.000
2nd 0.234 0.829 0.046 0.000
3rd 0.174 0.740 0.047 0.000

Panel B. Employment Last Week (18+ years old)

Baseline 31237 0.471 -0.006 0.546

Pooled 0.161 0.464 0.014 0.002
1st 0.096 0.460 0.016 0.016
2nd 0.196 0.459 0.009 0.138
3rd 0.192 0.472 0.018 0.001

Notes: T and C refer to treatment and control group, respectively. T'— C' is the difference in sample means between
the treatment and control groups and the p-value is estimated with a regression of outcome on treatment that clusters
standard errors at the locality level. The attrition rates reported are conditional on responding to the baseline survey.
Pooled refers to data from all three follow-ups combined.

mean outcome across treatment and control groups at follow-up would identify the average
treatment effect for the study population.?® Pooling data from the three follow-up rounds,
we would conclude that the impact of Progesa on school enrollment (adult employment) is an
increase of 4.6 (1.4) percentage points. The attrition rate, however, varies from 10% to 24%
depending on the outcome and the follow-up round. These attrition rates raise the question
of whether these treatment effect estimates are unbiased for at least one of two objects of
interest: (i) the average treatment effect for the respondent subpopulation (ATE-R) or (ii)
the average treatment effect for the entire study population (ATE).

In order to understand whether attrition affects the internal validity of this experiment,
we inspect the mean baseline outcomes across the four treatment-response subgroups. For
the outcome of school enrollment, there are two distinct patterns. First, baseline school
enrollment is similar across treatment and control respondents as well as treatment and
control attritors. Second, we find meaningful differences when we compare respondents and

attritors: baseline school enrollment is around 87% for the respondents and 61% for the

26Here we follow our convention of referring to a “difference in population means” as a “difference in
7
means.
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attritors in the pooled follow-up sample. Taken together, these two patterns suggest that
while the unobservables that affect the outcome are correlated with response, they are still
independent of the treatment within respondents and within attritors. As we formalize in
the next section, independence between treatment status and the unobservables that affect
the outcome conditional on response status constitutes the identifying assumption of internal
validity for the respondents (IV-R assumption). We show that the IV-R assumption implies
the identification of treatment effects for the respondent subpopulation and that its testable
implication is that the distribution of a baseline outcome is identical across treatment and
control respondents as well as treatment and control attritors. Applying this test to school
enrollment in Column 7 of Table 3, we do not reject the IV-R assumption.?’ If the IV-R
assumption does hold for this outcome, then the difference in means across treatment and

control respondents at follow-up identifies an average treatment effect for the respondents

(ATE-R).
Table 3: Internal Validity in the Presence of Attrition for Progresa
Follow-up . . Test of Test of
Sample Attrition Rate Mean Baseline Outcome by Group IV-R IV-P
C letfie;‘f e TR CR TA CA p-value p-value
(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. School Enrollment (6-16 years old)
Pooled 0.187 -0.007 0.878 0.874 0.615 0.605 0.836 0.000
1st 0.150 -0.013 0.875 0.871 0.550 0.554 0.810 0.000
2nd 0.244 -0.017 0.901 0.897 0.590 0.595 0.824 0.000
3rd 0.168 0.009 0.859 0.856 0.697 0.663 0.217 0.000
Panel B. Employment Last Week (18+ years old)
Pooled 0.157 0.007 0.463 0.468 0.472 0.486 0.698 0.132
1st 0.100 -0.007 0.464 0.471 0.472 0.473 0.825 0.860
2nd 0.195 0.001 0.463 0.465 0.474 0.496 0.566 0.058
3rd 0.175 0.027 0.463 0.469 0.471 0.481 0.769 0.503

Notes: The mean baseline outcomes correspond to the groups of treatment respondents (TR), control respondents (CR),
treatment attritors (TA), and control attritors (CA). Pooled refers to all the three follow-ups. The tests of internal validity
were conducted using the regression tests proposed in Section B. All regression tests use clustered standard errors at the
locality level.

2TNote that the two outcomes we examine here are binary, so the equality of means is equivalent to a
distributional equality. It is worth noting that a multiple testing correction would not change the decisions
of any of the tests in our example. For instance, applying the Bonferroni correction for each outcome would
yield a significance level for each hypothesis of 0.63% to control a family-wise error rate of 5% across the
eight tests we conduct.

13



Next, we examine the second outcome, adult employment, as observed at baseline. In
contrast to school enrollment, adult employment is similar across all four treatment-response
subgroups. This pattern indicates that the unobservables that determine the outcome are
independent of treatment and response status. This is consistent with the identifying as-
sumption for internal validity for the study population (the IV-P assumption), which we
formally define in the next section. We then show that under random assignment the IV-P
assumption implies the identification of treatment effects for the study population and its
testable implication is indeed that the distribution of baseline outcome is identical across
all four treatment-response subgroups. When we formally test the implication of the IV-P
assumption for adult employment, we do not reject it (Column 8 of Table 3). Thus, we
do not reject the assumption that ensures that the difference in mean employment rates
between treatment and control respondents at follow-up identifies not only the ATE-R but
also the average treatment effect (ATE). For the outcome of school enrollment, however, we
do reject the IV-P assumption (Column 8 of Table 3), and thus the estimated treatment
effect cannot be interpreted as internally valid for the study population. This is consistent
with our previous observation that the children that are observed in the follow-up data are
substantially different at baseline from those that are not.

Understanding treatment effects for the study population is especially relevant to under-
standing the impact of large-scale programs such as Progresa, where the study population
is representative of a larger population. In this type of study, if we do reject the IV-P as-
sumption but not the IV-R assumption for an outcome such as school enrollment, we can
still draw inferences about an average treatment effect on a larger population. That average
treatment effect, however, is a local average treatment effect for the type of participants for

which there would be follow-up data available for a given outcome.
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3.2 Internal Validity in the Presence of Attrition

In this section, we derive the testable implications of our distributional and mean identifying
assumptions. We also present the extension of the results to stratified randomization and

heterogeneous treatment effects, formally defined as conditional average treatment effects.

3.2.1 Internal Validity and its Testable Restrictions

two time periods, t = 0;1. We will refer to t = 0 as the baseline period, and t = 1 as the
follow-up period. Individuals are randomly assigned in the baseline period to the treatment
and control groups. We use Dj; to denote treatment status for individual i in period t,
where Djy € {0;1}.22 Hence, the treatment and control groups can be characterized by
Di = (Djo;Di1) = (0;1) and Dj = (0;0), respectively. For notational brevity, we let an
indicator variable Tj denote the group membership. Specifically, T; = 1 if individual i
belongs to the treatment group and T; = 0 if individual 1 belongs to the control group.

For each period t = 0; 1, we observe an outcome Yj¢, which is determined by the treatment

status and a dy x 1 vector of time-invariant and time-varying variables, Uiy = ( }; %),

Yit = t«(Dig; Uip): (1)

Given this structural function, we can define the potential outcomes Yjt(d) = ¢(d;Uj¢) for
d = 0;1. We use structural notation here since it is more common in the panel literature.
This notation also allows us to refer to the unobservables that affect the outcome, which play
an important role in understanding internal validity questions in our problem. To simplify
illustration, we postpone the discussion of covariates to Section 4.2.

Consider a properly designed and implemented RCT such that by random assignment

the treatment and control groups have the same distribution of unobservables. That is,

28The extension to the multiple treatment case is in Section SA3 of the online appendix.
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(Uio; Uir) L Ti, which can be expressed as (Yio(0); Yio(1); Yiz(0); Yiz(1)) L T; using the poten-
tial outcomes notation. This implies that the control group provides a valid counterfactual
outcome distribution for the treatment group, i.e. Y (0)|T; = 1 4 Yir|Ti = 0, where 4
denotes the equality in distribution. In this case, any difference in the outcome distribution
between treatment and control groups in the follow-up period can be attributed to the treat-
ment. The ATE can be identified as the difference in mean outcomes between the treatment
and control group,

E[Yis(1) - Yia(0)] = E[Yaa|Ti = 1] — E[Yu|Ti = 0]: 2)

J

-~

ATE

We now introduce the possibility of attrition in our setting. We assume that all indi-
viduals respond in the baseline period (t = 0), but there is possibility of non-response in
the follow-up period (t = 1). Response status in the follow-up period is determined by the

following equation,?®

Ri= (Ti;Vi), (3)

where Vj denotes a vector of unobservables that determine response status and potential
response can be defined as Ri( ) = Rij( ;V;) for = 0;1. If individual i responds, then R; =
1, otherwise it is zero. As a result, instead of observing the outcome for all individuals in the
treatment and control groups at follow-up, we can only observe the outcome for respondents
in both groups. Random assignment in the presence of attrition, (Ujo; Uj1; Vi) L Ti, does not
ensure that comparisons between treatment and control respondents are solely attributable
to the treatment, since these comparisons are conditional on being able to observe individuals

at follow-up (R; = 1).%

29Gince non-response is only allowed in the follow-up period, we omit time subscripts from the response
equation for notational convenience.

30We use a random assignment condition similar to Lee (2009). Using potential outcome and response
notation, we can express the random assignment condition as (Yijo(0), Yio(1), ¥i1(0), Yi1(1), Ri(0), Ri(1)) L T;
which is similar to Lee (2009).
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Two questions arise in this setting. First, do the control respondents provide an appropri-
ate counterfactual for the treatment respondents, Yi1|Ti = 0;R; = 1gYi1(O)]Ti =1Ri =17
This would imply that we can obtain internally valid estimands for the respondent subpopu-
lation, such as the ATE-R, E[Yi1(1)—Yi1(0)|Ri = 1]. Second, do the outcome distributions of
treatment and control respondents in the follow-up period identify the potential outcome dis-
tribution of the study population with and without the treatment, Yj;|Ti = ;Rj =1 4 Yir( )
for = 0;1?7 This would imply that we can obtain internally valid estimands for the study
population, such as the ATE.

The next proposition provides sufficient conditions to obtain each of the aforementioned
equalities as well as their respective sharp testable restrictions. Restrictions are sharp when
they are the strongest implications that can be tested given the available data (see Figure 4).
Part a (b) of the following proposition refers to the case where we can obtain valid estimands
for the respondent subpopulation (study population). The proof of the proposition is given

in Section C.
Proposition 1. Assume (Ujo; Ui1; Vi) L T3t
(a) If (Uip; Uiz) L Ti|R; holds, then
(i) (Identi cation) Yi|Ti = O;R; = 1 2 Y1 (0)|Ti = LRy = 1
(i) (Sharp Testable Restriction) Yio|Ti = 0;Rj =r 4 Yio|Ti = 1;Rj = r for r = 0; 1.
(b) If (Uio;Ui1) L Ri|T; holds, then
(i) (ldenti cation) Yj;|Ti= ;Ri=1 4 Yir( ) for =0;1.
(ii) (Sharp Testable Restriction) Yio|Ti = ;Ri =r = Y for =0;1, r =0;1.

Proposition 1(a) relies on the assumption of random assignment conditional on response
status (IV-R assumption). This assumption implies that the outcome distributions of treat-

ment and control respondents at endline would have been the same if the treatment status

31The random assignment condition can be expressed as (Yio(0), Yio(1), Yi1(0), Yi1(1), Ri(0), Ri(1)) L T;
in potential outcome and response notation.
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had never been assigned. We refer to this equality (a.i) as internal validity for the respon-
dent subpopulation (IV-R). When IV-R holds, the difference in means between treatment
and control respondents identifies the ATE-R. IV-R cannot be tested directly, however, since
treatment was in fact assigned. Thus, we derive a sharp testable restriction (a.ii) of the IV-R
assumption, which exploits the information in the baseline data.3? This restriction implies
that the appropriate attrition test (when the object of interest is the treatment effect on the
respondent subpopulation) is a joint test of the equality of the baseline outcome distribution
between treatment and control respondents as well as treatment and control attritors.3
The assumption in Proposition 1(b), under random assignment, implies that treatment
and response status are jointly independent of the unobservables in the outcome equation.®*
As a result, in the absence of treatment, all four treatment-response subgroups would have
the same outcome distribution. We refer to this case as internal validity for the study
population (IV-P) and the assumption in (b) as the IV-P assumption. When IV-P holds, the
ATE is identified, and so are quantile and other distributional treatment effects for the study

population. The sharp testable restriction of the IV-P assumption under random assignment

is given in (b.ii).®

32While it is theoretically possible for identification to hold while the testable restriction is violated, it is
not an interesting case empirically. If a field experimentalist finds violations of the testable implication of
the IV-R (or IV-P) assumption at baseline, it is highly unlikely that they will discount this evidence and
argue that identification of the ATE-R (or ATE) remains possible from a simple difference of means between
treatment and control respondents.

33If IV-R is of interest, a natural question is whether one should simply test the implication of
(Uio,Ui1) L Ti|Ri = 1 in lieu of the IV-R assumption ((Ujg,Ui1) L Tji|Ri). This would be empirically
relevant if it is plausible that (Uijo,Uj1) L Ti|Ri = 1 holds while (Uio, Uj1) L Ti|Ri = 0 is violated. Using
the subgroups defined by potential response status, we note that a primitive condition for this to hold is
(Uio, Uin)|(Ri(0), Ri(1)) 4 (Uio, Ui1)|maz{Ri(0), Ri(1)}. This condition is not empirically plausible since it
implies that the unobservable distribution is the same for always-responders, treatment-only and control-only
responders, but different for the never-responders.

34This implies missing-at-random as defined in Manski (2005). In the cross-sectional setup, the missing-

at-random assumption is given by Yi|Tj, R; 4 Yi|Ti. Manski (2005) establishes that this assumption is
not testable in that context. We obtain the testable implications by exploiting the panel structure. It is
important to emphasize that this definition of missing-at-random is different from the assumption in Hirano
et al. (2001) building on Rubin (1976), which would translate to Yj1 L R;|Yio,7i in our notation. Finally,
while we do not distinguish between observables and unobservables here, it is worth noting that Assumption
3 in Huber (2012) provides a set of conditions that imply the assumption in Proposition 1(b).

35We can use a similar version of these tests to understand the implications of attrition for the internal
validity of the intent-to-treat analysis in the presence of imperfect treatment compliance. Developing tests
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3.2.2 Mean Tests of Internal Validity

The vast majority of selective attrition tests implemented in the literature are based on re-
strictions on the mean of the baseline variables in question. The IV-R and IV-P assumptions
we present above ensure the identification of distributional treatment effects in addition to
average treatment effects. In some experiments, however, researchers may be solely inter-
ested in average treatment effects. Here, we discuss the weaker conditions required to identify
these objects and their sharp testable implications. Section B presents regression-based tests
for these restrictions.

If the researcher is interested in mean impacts for the respondent subpopulation, then the
IV-R assumption in Proposition 1(a), while sufficient, is stronger than required. A weaker
condition that ensures that the average potential outcome without the treatment is identical

for treatment and control respondents as well as treatment and control attritors, specifically

E[Yit(0)|Ti; Ri] = E[Yit(0)|Ri]; t=10;1; (Mean IV-R Assumption) (4)

implies the identification of the ATE-R. Its testable implication is the mean version of the

testable restriction in Proposition 1(a.ii),

E[Yio|Ti; Ri] = E[Yio|Ril; (5)

so it also includes testable restrictions on attritors and respondents. We will refer to a test
of the mean equality restrictions in (5) as a mean IV-R test.

Similarly, if the object of interest is the ATE for the study population, then the relevant

of the identifying assumptions for LATE-type objects in the presence of both attrition and noncompliance is
beyond the scope of the present paper. For researchers interested in corrections in this setting, the bounding
approaches for LATE-type objects proposed in Chen and Flores (2015b) may be useful.
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identifying assumption is

E[Yie(d)|Ti;Ri] = E[Yit(d)]; d=10;1; t=0;1;  (Mean [V-P Assumption) (6)

which ensures that the average potential outcomes are identical across the four treatment-

response subgroups. The testable restriction of this assumption,

E[Yio|Ti; Ri] = E[Yiol; (7)

involves all treatment-response subgroups as its distributional version in Proposition 1(b.ii).
We will refer to a test based on (7) as a mean IV-P test.

In Section SA4 of the online appendix, we conduct a simulation exercise to analyze the
performance of the mean and distributional tests of the IV-R and IV-P assumptions under
different scenarios of internal validity. The results illustrate that the tests control size and

behave according to our theoretical analysis.

3.2.3 Heterogeneous Treatment Effects and Stratified Randomization

In this section, we extend our analysis to discuss heterogeneous treatment effects and strati-
fied randomization. Heterogeneous treatment effects, more formally referred to as conditional
average treatment effects (CATE), are of interest in many experiments. Stratified random-
ization is also common in empirical practice. Sometimes it is a necessity of the design, such
as when the study is randomized within roll-out waves or locations. At other times, it is
included in the experimental design with the aim of increasing precision and reducing bias
of both average and heterogeneous treatment effects. The results in this section are relevant
both for stratified randomized experiments and for completely randomized experiments that

estimate heterogeneous treatment effects.3®

36This framework can also be extended to test unconfoundedness assumptions, which motivate IPW-type
attrition corrections (Huber, 2012), using baseline data. While interesting, this issue is outside the scope of
the present paper.
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In the following, let S; denote the stratum of individual 1 which has support S, where
|S| < 00.3" To exclude trivial strata, we assume that P (S; = s) > 0 for all s € S through-
out the paper. In a stratified randomized experiment, random assignment is defined by
(Uio; Uiz; Vi) L Ti|Si, whereas in a completely randomized experiment this conditional inde-
pendence assumption holds as an implication of simple randomization ((S;; Ujo; Uiz; Vi) L Tj).
As a result, the following proposition applies to both completely and stratified randomized

experiments.
Proposition 2. Assume (Ujo; Uis; Vi) L TilS;.
(a) If (UiO; Uil) 1 Ti|Si; R;, then

() (ldenti cation) Yi1|T; = 0;S; = ;R = 1 4 Yir(0)|Ti = 1;Si = s;R; = 1, for
ses.

(i) (Sharp Testable Restriction) Yio|T;i = 0;Si =s;Rij =1 4 YiolTi=1;Si=s;Ri=r
forr=0;1,seS8.

(b) If (Uio; Uir) L Ri|T;; Si, then

(i) (ldenti cation) Yj;|Ti= ;Si=s;Ri=1 4 Yir( )|Si=s,for =0;1,s€S8.
(i) (Sharp Testable Restriction) Yio|Ti= ;Si=s;Ri=r 4 Yio(0)|Si =s for =0;1,
r=0,1,sed8.
The equality in (a.i) implies that we can identify the average treatment effect conditional

on S for respondents as the difference in mean outcomes between treatment and control

respondents in each stratum,

E[Yir(1) = Yi(0)[Ti = 1;Si = s;Ri = 1]

:E[Yil‘Ti =1;Sij=5;Rj = 1] — E[Yi1|Ti =0;Si=5s;Rj = 1} (CATE—R) (8)

37The finiteness of the number of strata motivates the finite-support assumption on S. It is worth noting,
however, that the results in the proposition hold for continuous conditioning variables as well.
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Alternatively, the ATE-R can then be identified by averaging over Sj, i.e. Y ,sP(Si =
sIRi = 1) (E[Yi|Ti = 1,Si = s;Ri = 1] — E[Yi1|Ti = 0; Sij = s; Rj = 1]). The testable restric-
tion in (a.ii) is the identity of the distribution of baseline outcome for treatment and control
groups conditional on response status and stratum. In other words, the equality of the out-
come distribution for treatment and control respondents (as well as for treatment and control
attritors) conditional on stratrum is the sharp testable restriction of the IV-R assumption in
the case of block randomization. The results in part (b) of the proposition refer to IV-P in
the context of block randomization. Thus, they are also conditional versions of the results
in Proposition 1(b).

Randomization and regression-based tests of the restrictions in Proposition 2(a.ii) and
(b.ii) are provided in Sections A and B, respectively. The key distinction between the tests
for stratified and completely randomized experiments is that in the former permutations are

performed within strata.

3.3 Differential Attrition Rates and Internal Validity

The differential attrition rate test is the most widely used according to our review. Thus, we
examine the relationship between internal validity and differential attrition rates (P (Rj =
0|Ti = 1) # P(Ri = 0|Ti = 0)). Our goal in this section is to formally understand the
properties of the differential attrition rate test as a test of internal validity.

We first adapt the LATE framework (Imbens and Angrist, 1994; Angrist et al., 1996)
to potential response. Specifically, in order to understand how treatment and control
respondents and attritors consist of different response types, we modify the four types
from the LATE literature: never-takers, always-takers, compliers and defiers. We establish
four similar types as shown in Figure 2: never-responders ((R;(0); Ri(1)) = (0;0)), always-
responders ((Ri(0); Ri(1)) = (1; 1)), treatment-only responders ((R;i(0); Ri(1)) = (0;1)), and
control-only responders ((Rj(0); Ri(1)) = (1;0)).

We can now examine the attrition rates in the treatment and control group and how
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Figure 2: Respondent and Attritor Subgroups

Control Treatment
(Ti = 0) (Ti=1)
Attritors Treatment-only responders Control-only responders
(Ri =0) Never responders Never responders
Respondents | Control-only responders Treatment-only responders
(Ri=1) Always responders Always responders

they relate to the different response types. By random assignment, the distribution of re-
sponse types is identical across treatment and control groups, (Ri(0); Ri(1)) L Tj. In other
words, the treatment and control groups consist of the same proportion of never respon-
ders, treatment-only responders, control-only responders and always responders, which we
denote by Poo, Po1, Pro and P11, respectively. With the aid of Figure 2, we note that the
attrition rate in the control group equals the proportion of never-responders and treatment-
only responders, whereas the attrition rate in the treatment group equals the proportion of

never-responders and control-only responders, specifically

P(Ri =0|Ti =0) = poo + Po1; P(Ri =0[Ti=1) = poo + Pao: (9)

The difference in attrition rates across groups depends on the difference between the pro-
portion of treatment-only and control-only responders, i.e. P(Rj = 0|T; = 0) — P(R; =
0|Ti = 1) = pox — P1o- Thus, attrition rates are equal if the proportions of treatment-only
and control-only responders are equal.

Next, we illustrate the relationship between differential attrition rates and the IV-R
assumption (Proposition 1(a)), (Ujo; Ui1) L Ti|Ri. The proof of the proposition is given in

Section C.

Proposition 3. Suppose, in addition to (Ujp; Ui1; Vi) L Ti, one of the following is true,
() (Uio; Vi) L (Ri(0); Ri(1)) (Unobservables in Y L Potential Response)
(i)  Ri(0) < Ri(1) (wlog), (Monotonicity)
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& P(Ri =0[Ti) =P(Ri =0) (Equal Attrition Rates)

(iii)  (Uio; Uin)[Ri(0); Ri(1) < (Uio; Uin)|Ri(0) + Ri(1) (Exchangeability)
& P(Rj =0|Ti) =P(R;j =0) (Equal Attrition Rates)

then (UiO; Uil) 1 T.’R.

The main takeaway from the above proposition is that equal attrition rates alone do not
constitute a sufficient condition for internal validity. Proposition 3(i) provides a case in which
equal attrition rates are not necessary for internal validity. The assumption requires that all
four treatment-response subgroups have the same unobservable distribution, which not only
implies IV-R, but also IV-P, under random assignment. In the two other cases, (ii) and (iii),
equal attrition rates together with an additional assumption imply the IV-R assumption. The
monotonicity assumption in (ii) is from Lee (2009) and rules out control-only responders.
The exchangeability restriction allows for both treatment-only and control-only responders,
but it assumes that these two types have the same distribution of (Ujg; Uiz). This assumption
may be plausible in experiments with two treatments.

Using these insights, we now provide two simple examples that illustrate that differential
attrition rates can coincide with internal validity (Example 1) and that equal attrition rates
can coincide with a violation of internal validity (Example 2). In Section SA4 of the online
appendix, we design simulation experiments that mimic both examples to illustrate these

points numerically.

Example 1. (Internal Validity & Di erential Attrition Rates)

Assume that potential response satis es monotonicity, i.e. pyg = 0, and all response types
have the same unobservable distribution, (Uio;Uiz) L (Ri(0); Ri(1)). Panel A of Figure 3
illustrates the resulting distribution of U;;. By the above proposition, 1V-P holds under ran-
dom assignment, since (Ujo; Uiz) L (Ri(0); Ri(1)) = (Uio; Uir)|Ti; Ry 4 (Uio; Ui1). Suppose
that there is a group of individuals for whom it is too costly to respond if they are in the

control group, so they only respond if assigned the treatment. Due to the presence of these
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treatment-only responders (po; = 0), the attrition rates in the treatment and control groups
are not equal, speci cally P(R;j = 0|T; = 1) = pgoo, and P (R = 0|T; = 0) = poo + Po1- This
example thereby provides a case where we have di erential attrition rates even though not
only IV-R but also IV-P holds. Under these conditions, the di erential attrition rate test
would not control size as a test of internal validity as we illustrate in the simulation section

in the appendix.

Figure 3: Distribution of Uj; for Different Response Types

Panel A: Example 1 Panel B: Example 2
B z
(2] [7]
B0y & 36 B 3
U Us

Notes: The above figure illustrates the distribution of Uit for the different subpopulations in Examples
1 and 2, where we assume Ujt|(Ri(0), Ri(1)) = (r0,71) RSa N(6rory, 1) for all ro,71 € {0,1}2 for t =0, 1.
Panel A represents Example 1 where we assume (Ujg, Ui1) L (R;i(0), Ri(1)), hence dpo = dp1 = d11. Panel
B represents Example 2 where y,r, is unrestricted for (rg,71) € {0, 1}2.

Example 2. (Equal Attrition Rates & Violation of Internal Validity)
Assume that potential response violates monotonicity, such that there are treatment-only and

control-only responders,® but their proportions are equal (p1g = poz = 0), which yields equal

38Violations of monotonicity are especially plausible in settings where we have two treatments. For the
classical treatment-control case, a nice example of a violation of monotonicity of response is given in Glen-
nerster and Takavarasha (2013). Suppose the treatment is a remedial program for public schools targeted
toward students that have identified deficiencies in mathematics. Response in this setting is determined by
whether students remain in the public school, which depends on their treatment status and initial mathe-
matical ability, Vj. On one side, low-achieving students would drop out of school if they are assigned to the
control group, but would remain in school if assigned the treatment. On the other side, parents of high-
achieving students in the treatment group may be induced to switch their children to private schools because
they are unhappy with the larger class sizes, while in the control group those students would remain in the
public school. Furthermore, in the context of the LATE framework, de Chaisemartin (2017) provides several
applications where monotonicity is implausible and establishes identification of a local average treatment
effect under an alternative assumption.
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attrition rates across treatment and control groups.®® If (Ujo; Ui1) £ (Ri(0); Ri(1)), then the
di erent response types will have di erent distributions of unobservables, as illustrated in
Panel B of Figure 3. As a result, the distribution of (Ujo;U;;) for treatment and control

respondents de ned in (19)-(20) will be di erent and hence IV-R is violated.

A further limitation of the focus on the differential attrition rate test in empirical practice
is that we cannot use it to test IV-P, even in cases where the differential attrition rate test
is a valid test of IV-R. For instance, consider the case in which monotonicity holds and
the attrition rates are equal across groups. We can then identify the ATE-R, since the
respondent subpopulation is composed solely of always-responders as pointed out above. If
the researchers are interested in identifying the treatment effect for the study population,
however, they would have to rely on our proposed tests of the IV-P assumption, specifically

Proposition 1(b.ii).

4 Implications for Empirical Practice

Our theoretical analysis has multiple implications for empirical practice. For one, it un-
derscores the importance of the object of interest in determining the appropriateness of an
attrition test. Hence, explicitly stating the object of interest, whether it is the ATE-R, ATE,
CATE-R or CATE, is important to justify a particular attrition test.

Our results further clarify the interpretation of attrition tests in the field experiment
literature. The differential attrition rate test, which is implemented in 79% of papers in
our review, is not based on a necessary condition of IV-R, and is not designed to test IV-P.
The selective attrition tests, used in 61% of the papers, are implemented with substantial
heterogeneity.

The null hypotheses of the selective attrition tests in the literature are largely implications

of the IV-R assumption. The most common version of this test (42% of all papers) uses

39In the multiple treatment case, equal attrition rates are possible without requiring any two response
types to have equal proportions in the population. See Section SA2 in the online appendix for a derivation.
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respondents only; and hence, it does not exploit all the information in the baseline sample,
specifically the attritors.*® In contrast, the null hypothesis of our proposed IV-R test is a
joint hypothesis of the equality of the baseline outcome distribution between the treatment
and control respondents as well as the treatment and control attritors.** Seventeen percent of
papers do implement a selective attrition test that includes both respondents and attritors,
suggesting that some authors are aware of the value of this information.*? Some of the
null hypotheses they use, however, do not constitute IV-R or IV-P tests. This is perhaps
unsurprising given the wide range of null hypotheses tested. Although authors do not in
general conduct a direct test of IV-P, the inclusion of respondents and attritors in some
selective attrition tests as well as the use of determinants of attrition tests suggest that some
authors are likely interested in internally valid estimates for the study population.

While the focus in the literature on testing for internal validity for the respondents is nat-
ural given that it is the first-order consideration for internal validity, an important question
remains: in what settings are the respondents a policy-relevant population? In answering
this question, the researchers may first consider whether there is likely to be treatment effect
heterogeneity along response status, and what the implications of that heterogeneity might
be. For example, if more educated people benefit more from a job training program due to
human capital complementarities, and also are more likely to respond to surveys, then the

ATE-R may be larger than the ATE. In such a circumstance, the question that the researcher

40See Section D.2 in the online appendix for details on the empirical strategies used in the field experiment
literature to conduct this test. In addition to the null hypotheses used, an important distinction between
our proposed approach to attrition testing and the approach taken in the literature is the role of baseline
covariates. For a discussion of these issues, see Section 4.2.

41The regression versions of our tests are in Section B.

42The implementation of the tests that include respondents and attritors fall broadly into two categories.
The first relies on regressions of the baseline variables on a fully saturated regression model of response and
treatment (see Section D). While the regression model is the one we use in our regression test in Section
B, the null hypothesis we found in the literature only tests the equality of means between the treatment
and control respondents. The second category of tests relies on a linear probability model of response on
treatment, baseline variables and their interactions. However, there is a variety of null hypotheses used which
are provided in Section D. Some of the null hypotheses test whether response is independent of treatment
conditional on baseline variables, while others test whether response is independent of treatment and all
baseline variables. This second category of tests relies on a parametric model of response that will likely
suffer from misspecification bias due to the use of the linear specification with a binary outcome. In contrast,
our proposed tests are nonparametric.
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must consider is whether the program can and should be targeted to the respondent sub-
population or if it should still be targeted to the study population. To answer this question,
attrition corrections can uncover a range of plausible values for the ATE, and those values
can be weighed against the potential cost-effectiveness of the program when targeted either
to the respondents or to the study population. In other cases, however, the ATE-R may
suggest a null result when the ATE could be positive. For example, if everyone who benefits
from a human capital intervention migrates, then the ATE-R may not be the local aver-
age treatment effect of interest. Thus, researchers should combine contextual understanding
with findings from attrition corrections.

It is also relevant to consider the role of interpreting the ATE-R or the ATE with regards
to external validity. Many RCTs rely on samples of convenience. Thus, if researchers reject
internal validity for the study population, but not for the respondents, then the researcher
will assess external validity from a somewhat different sample of convenience than originally
intended. In some cases, however, including the Progresa example, the study population
is randomly selected from a larger population of interest. In these cases, we would argue,
the ATE is always an object of interest. That said, the ATE-R is still potentially an object
of interest in these settings, since the respondents are still representative in such cases of a

larger population of potential respondents.

4.1 Attrition Tests as Identification Tests

Our approach emphasizes that attrition tests are identification tests. While rejection of such
tests is clear evidence against the identifying assumption in question, it is possible to fail to
reject such tests when the assumption is in fact violated. This is because in general we can
only test identifying assumptions by implication. In other words, their testable restrictions
are necessary, but not sufficient for the identifying assumption to hold.*® Figure 4 graphically

presents this issue. The light gray area represents cases where the identifying assumption is

43In Footnote 32, we elaborate on why the theoretical case where the testable restriction is violated while
identification holds is not empirically relevant in our setting.
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Figure 4: Graphical Illustration of Sharp Testable Restriction

A B

Identifying N - Sharp Testable h
Assumption Restriction

C

= Implication of B

violated yet the sharp testable restriction holds true.

Figure 4 also illustrates that the sharp testable restriction is the strongest testable impli-
cation of the identifying assumption. Basing a test of the identifying assumption on another
implication (C) leads to more cases where the implication holds yet the identifying assump-
tion fails, represented by the dark gray area. Using sharp testable restrictions eliminates
the cases in the dark gray area. The cases in the light gray area, which are unavoidable in
general, complicate the interpretation of non-rejection of any identification test. Fortunately,
our framework allows us to characterize the set of conditions under which this may or may
not be a concern.

For both the IV-R and IV-P assumptions, there is a set of conditions in our setup under
which identification and the testable implication hold jointly. These conditions consist of
time homogeneity of the structural function and the unobservable distribution for the dif-
ferent treatment-response subpopulations (Chernozhukov et al., 2013).#* This assumption
may be plausible in some field experiments where researchers do not expect the structural
function or the determinants of the outcome to vary between the baseline and follow-up

surveys. To provide a simple example, suppose that the outcome equation is determined by

“Formally, po(d, ) = pa(d,u) and Uio|T;, R; 4 Ui1|Ti, R;.
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ability (Ul) and the opportunity cost of time (U2), where the super-script is an index for
the unobservables. We assume that both unobservables are time-invariant here to simplify
notation. For a more general example with time-varying variables, see Section C.1. Now
suppose that ability fulfils the IV-R assumption (U} L Ti|R;), whereas the cost of time does
not (U2 £ Ti|R;). If ability and the cost of time both enter the baseline and follow-up

outcomes, for instance,

Yio = Ul 4+ U?

Yio = Ui + U2 + Ti(Uj' + UP)

then comparisons between treatment and control respondents at follow-up would not be
solely attributable to the treatment. Baseline outcome data would allow us to detect a
violation of internal validity by comparing treatment and control respondents as well as
treatment and control attritors.

Now let us consider a case where baseline outcome data would not help us detect such a
violation of internal validity. This would require baseline outcome to only be a function of

ability and not the cost of time, which only determines the outcome in the follow-up period,

Yio = U}

Yip = Ul +UZ 4+ T;(Ul + U?):

Since ability fulfils the IV-R assumption, when comparing baseline outcome data of treatment
and control respondents as well as treatment and control attritors, we would not detect any
substantial differences between these subgroups, even though internal validity is violated.*
While we focus the example on the IV-R assumption, similar arguments can be made for

the IV-P assumption.

45 An interesting case that we illustrate in Section C.1 is that if the cost of time only interacts with the
treatment, the difference in mean outcome between treatment and control respondents identifies an internally
valid estimand that is not equal to the ATE-R.
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A practical implication of our analysis is that when interpreting non-rejection of tests
of the IV-R or IV-P assumptions, practitioners should consider whether the relationship
between the outcome and its determinants may have changed over the time span between

baseline and follow-up periods.

4.2 The Role of Covariates

The baseline outcome is a function of the same time-invariant and time-varying unobservables

as the follow-up outcome.*®

Thus, our approach to attrition testing as an identification
problem in a panel model yields testable restrictions of the IV-R and IV-P assumptions
on the baseline outcome data. Furthermore, in practice, baseline outcome is often the most
informative determinant of future outcomes in various datasets (Bruhn and McKenzie, 2009).
As discussed in Section 4.1, this approach is particularly relevant in field experiments where
researchers do not expect the relationship between the outcome and its determinants to vary
much between the baseline and follow-up surveys.

An important question that arises in empirical practice, however, is whether to include
covariates in attrition tests. In our review of field experiments, we find that most authors
use covariates in their tests. Furthermore, there are settings where using covariates may be
the only way to test attrition bias. In some experiments, it may not be possible to collect
baseline outcome data. Other experiments target populations for which the baseline outcome
(almost) always takes on the same value by design. For example, job training programs are
typically targeted to unemployed people and employment may be the main outcome.

The use of covariates in attrition tests is also appropriate in settings where baseline co-
variates may be more informative for an endline outcome than that outcome at baseline.
Over the long-term, the relationship between the outcome and its determinants may change

over different phases of the lifecycle ( o(d;u) # 1(d;u)). For example, labor force partic-

46Since our framework is explicit about the possibility that the structural function is varying across time,
it is possible that baseline and follow-up outcomes depend on different unobservables as we discuss in Section
4.1.
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ipation at age 15 may not be determined by the same outcome equation as it would be at
age 25. The determinants of other outcomes, such as test scores, may be more stable even
over long periods of time, however (Muralidharan, 2017).

Even over relatively short-time periods, if a study examines a population at different
phases of their life cycle, baseline covariates may be informative at endline relative to base-
line outcome. For instance, consider enrollment as an outcome of interest. In some settings,
enrollment in elementary school is highly prevalent and similar across treatment groups due
to strict policies on education and child labor for young kids, while enrollment in secondary
education depends on the opportunity cost of schooling as the potential for labor force partic-
ipation in the study population increases. Thus, if enrollment is measured during elementary
school at baseline and during secondary school at follow-up, the structural function governing
the relationship between the outcome and its determinants would change over time in such
a setting. Under these conditions, despite the relatively short time between baseline and
follow-up surveys, baseline covariates such as parents’ income, which can determine student
labor force participation at endline, may be more relevant than the baseline outcome for
detecting violations of internal validity.

Short-term aggregate shocks can also affect the relationship between an outcome and
its determinants.*’ In this case, baseline covariates might be informative of the outcome at
endline if they help explain how individuals cope with the impacts of the shock. Consider,
for instance, a setting where consumption is the outcome of interest, and a recession at
follow-up induces individuals to deplete assets and use risk-sharing strategies in order to
smooth consumption (i.e., there is a change in the structural function that determines the
outcome). In this setting, data on assets and social networks at baseline may be informative
for consumption at endline and thereby helpful in detecting violations of internal validity.
Baseline covariates, however, would not be more relevant for detecting violations of internal

validity if the shock does not change the determinants of consumption.

4TFor instance, Rosenzweig and Udry (2019) show that price fluctuations and weather shocks affect the
returns to education and investments in agriculture and nonfarm enterprises.
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Building on our framework, we introduce two types of covariates appropriate for the tests
if authors choose to use covariates. Recall that U;j; denotes the determinants of the outcome.
Now suppose that there is a set of covariates Wj; that are functions of the determinants of

the outcome, formally

Yit = t(Dit; Uit); (10)

Wit = t(Uit) fort = O, 1: (1].)

This definition implies two types of covariates that are appropriate for the attrition tests:

k

(i) covariates that are themselves determinants of the outcome, i.e. Wi = Uijt for some K; J,

the same factors as the outcome Yir.*® Since the structural function  may change over
time, researchers should choose covariates Wi that determine both the outcome at baseline
and the outcome at endline. Adding these types of covariates to the test can help detect
violations of internal validity when changes in the relationship between the outcome and
its determinants limit the ability to detect such violations using baseline outcome data.*®
For instance, in the enrollment example discussed above, parental income is an appropriate
covariate for the test since it is more informative regarding potential violations of internal
validity for high school enrollment than enrollment in elementary education at baseline.
When including covariates, the testable restrictions of the IV-R and IV-P assumptions
for a given outcome Yj; are conditions on the joint distribution of the baseline outcome and
covariates Zjo = (Yio; W})".>° This outcome-specific approach to including other variables

in attrition tests resonates with the seminal work on clinial trials by Altman (1985), which

“BFor instance, if the outcome of interest is children’s test scores, a covariate determinant of the outcome
would be parental education and a “proxy” variable would be a Raven’s or I1Q test.

49See Section 4.1 for a discussion of the cases where baseline outcome data can and cannot detect violations
of internal validity.

50Naturally, if there is not baseline data available, the testable restrictions of the IV-R and IV-P assump-
tions would only be on the joint distribution of the covariates (Wj,). Section B in the appendix provides
details on the implementation of the regression tests for this multivariate case.
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emphasizes that imbalance should only concern the researcher if the variable in question is
related to the outcome.

The inclusion of covariates that do not meet any of these criteria (Xj; # Wit) may lead
to a false rejection of the identifying assumption in question. Thus, if authors plan to
use covariates in their attrition tests, we recommend pre-specifying the baseline covariates
that will be included in the attrition tests for each of the main outcomes. In addition, we
bring attention to two potential sources of over-rejection of internal validity in the literature
when including covariates in the selective attrition test. First, studies that implement the
selective attrition tests on all baseline variables, Zig = (Yio; Wip; X%)?, are testing the IV-
R assumption for all variables in the survey as opposed to the outcome in question only.
This IV-R assumption is a much stronger condition that may be violated, even if the IV-

%1 Second, a substantial proportion of

R assumption for the outcome in question holds.
the implementation of selective attrition tests consists of individual tests for each baseline

variable without correcting for multiple testing.

4.2.1 Covariates in the Progresa Example

To illustrate the implementation of attrition tests with covariates, we return to the Progresa
example from Section 3.1, where we examine two outcomes: (i) current school enrollment
for children 6 to 16 years old, and (ii) paid employment for adults in the last week. This is a
short-term experiment where the time span between baseline and follow-up surveys does not
exceed 21 months.®? In addition, these outcomes are not degenerate or close to degenerate
at baseline. For a subset of the children, however, the baseline outcome is measured in the
last two years of primary school. This means that the outcome at baseline as opposed to

endline may be measured at different points in the lifecycle. The adult employment outcome,

S1Formally, the IV-R assumption relevant to all variables in the survey is (o, &i1) L Ti|Ri, where Zjy =
& (&ir) and &ir = (Uip, miy)’- However, the IV-R assumption that ensures identification of treatment effects
for the outcome in question is weaker, since it imposes the conditional random assignment restriction on the
unobservables relevant to that outcome only, Usit.

52Baseline data was collected in October 1997 and the last follow-up was collected in November 1999.
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however, does not meet the criteria outlined in this section for settings where covariates are
required. Nonetheless, we apply covariates to both outcomes as an illustration of how to
specify covariates for different outcomes and conduct the IV-R and IV-P tests including
covariates. In particular, we choose outcome-specific covariates for inclusion in the attrition

5 Of course,

tests that are likely determinants of the outcome at baseline and endline.
we recommend researchers choose such covariates before endline data becomes available if
possible.

First, we consider the outcome of school enrollment. We choose variables that are par-
ticularly likely to be determinants of the outcome at endline that are in the available data.
Specifically, we include two important determinants of schooling outcomes that may interact
with opportunities for additional investment in education such as Progresa: the household
poverty index and the household head’s years of education in the test.® In addition, we in-
clude information on the child’s age at baseline since younger kids are more likely to attend
school relative to older peers.*®

Table 4 presents the results for the outcome of school enrollment. We report separate
results for the children that were in the last two years of primary school (1st to 6th grade) at
baseline since the determinants of school enrollment may vary across time for those children
that are likely to have transitioned from primary to lower-secondary school (7th to 9th grade)
between baseline and follow-up.®® When we add these variables to the test, we obtain the
same results as in the test without covariates. In particular, we reject the null hypothesis of
IV-P but cannot reject the null hypothesis of IV-R. These results are similar for both the full
sample and the sample of students that are likely to be undergoing a shift in the life-cycle

during that time period. They also remain unchanged when the test includes each covariate

53We exclude covariates with a response rate at baseline below 95% to avoid significant changes in sample
size. As mentioned in Section 3, our framework focuses on cases where non-response is only an issue at
follow-up.

54We obtain comparable results when including the information on the education of the child’s parents.

55 Although the opportunity cost of schooling is also an important determinant of enrollment, we exclude
labor force participation from this analysis since baseline attrition leads to a substantial sample loss (20%).

56 As discussed before, labor force participation is an essential determinant of enrollment in lower-secondary
despite being likely irrelevant for enrollment in primary school.
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separately, suggesting that they are not driven by one single dimension or group.

In order to interpret the results of the tests with and without covariates, we inspect the
mean value of these covariates across the four treatment-response subgroups at baseline (see
Table SA7 in the online appendix). The main pattern that emerges is that treatment and
control children are very similar in terms of these characteristics within each response group.
Meanwhile, consistent with the IV-P rejection, respondents and attritors are fairly different
in all dimensions. On average, children in the attritor subsample are older and belong to less
wealthy households with lesser educated household heads. We note that these patterns are in
line with the differences in mean baseline enrollment across treatment-response subgroups.
When we include these covariates in the attrition tests, the results do not change relative to

when we only use the baseline outcome.

Table 4: Attrition Tests using Covariates for Progresa: School Enrollment

Follow-up Attrition Rate Tests W,ithout IV-R Test with Covariates IV-P Test with Covariates
Sample Covariates
Differ- Poverty  Head’s Poverty  Head’s
¢ ential IV-R v-p Age Index Educ All Age Index Educ All
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel A. All children between 6-16 years old
Pooled 0.188 -0.008 0.824 0.000 0.608 0.952 0.922 0.841 0.000 0.000 0.000 0.000
1st 0.151 -0.014 0.827 0.000 0.485 0.923 0.798 0.605 0.000 0.000 0.000 0.000
2nd 0.245 -0.018 0.790 0.000 0.395 0.542 0.913 0.564 0.000 0.000 0.000 0.000
3rd 0.169 0.008 0.200 0.000 0.450 0.462 0.397 0.753 0.000 0.000 0.000 0.000
Panel B. Children that were not in the last two years of primary school at baseline
Pooled 0.164 -0.008 0.762 0.000 0.461 0.921 0.856 0.740 0.000 0.000 0.000 0.000
1st 0.128 -0.013 0.514 0.000 0.311 0.783 0.718 0.518 0.000 0.000 0.000 0.000
2nd 0.211 -0.021 0.928 0.000 0.299 0.350 0.915 0.338 0.000 0.000 0.000 0.000
3rd 0.152 0.011 0.487 0.000 0.573 0.741 0.552 0.748 0.000 0.000 0.000 0.000
Panel C. Children that were in the last two years of primary school at baseline

Pooled 0.259 -0.011 0.679 0.000 0.712 0.928 0.735 0.904 0.000 0.000 0.000 0.000
1st 0.217 -0.019 0.883 0.000 0.957 0.981 0.838 0.985 0.000 0.000 0.000 0.000
2nd 0.342 -0.014 0.843 0.000 0.969 0.980 0.940 0.997 0.000 0.000 0.000 0.000
3rd 0.219 -0.001 0.211 0.000 0.044 0.530 0.337 0.228 0.000 0.000 0.000 0.000

Notes: This table presents the p-values of the attrition tests with and without baseline covariates. The sample size in Panels A, B, and
C are 24,094, 17,822, and 6,272. All columns within each panel use the same sample. The tests were conducted using the regression tests
proposed in Section B. Columns (5)-(7) and (9)-(11) present the results of the tests that only include one baseline covariate in addition
to the baseline outcome. Columns (8) and (12) report the results of the tests that include the three baseline covariates plus the baseline
outcome. Pooled refers to all the three follow-ups. All regression tests use clustered standard errors at the locality level.

We now examine the attrition tests with covariates for the outcome of adult employment
(see Table 5). In this case, we focus on covariates that are either related to work experience

or determinants of labor supply. Given the available information, we include data on age,
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gender, and marital status. We also add measures on the number of family members by age
group since labor supply may depend on the household’s labor endowment and the demand
for supervision tasks at home. For instance, women with young children are less likely to
work when public childcare is not typically available. When we add these covariates to
the tests, we still cannot reject the IV-R assumption. Yet, in contrast to the test without
covariates, we reject the IV-P assumption. This test rejects at 1% across all follow-ups and
each of the covariates, suggesting that every single one of these characteristics is correlated
57

with response.

Table 5: Attrition Tests using Covariates for Progresa: Employment Last Week (184 years old)

Test
Follow-up Attrition Rate Wltho‘,lt Test with Covariates
Sample Covari-
ates
Differen- Baseline " Male Married ~ # Chldn.  # Chldn. .
C tial orteome Age (=1) (=1) 5 518 # Adults All
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A. Test of IV-R (p-values)
Pooled 0.158 0.007 0.711 0.309 0.706 0.893 0.949 0.844 0.892 0.436
1st 0.101 -0.006 0.839 0.890 0.649 0.915 0.981 0.903 0.942 0.950
2nd 0.196 0.000 0.574 0.417 0.619 0.541 0.861 0.764 0.498 0.270
3rd 0.175 0.028 0.797 0.140 0.739 0.958 0.958 0.832 0.951 0.610
Panel B. Test of IV-P (p-values)
Pooled 0.158 0.007 0.150 0.000 0.000 0.000 0.408 0.000 0.000 0.000
1st 0.101 -0.006 0.905 0.000 0.459 0.000 0.960 0.000 0.000 0.000
2nd 0.196 0.000 0.068 0.000 0.000 0.000 0.206 0.014 0.000 0.000
3rd 0.175 0.028 0.534 0.000 0.564 0.000 0.872 0.000 0.000 0.000

Notes: This table presents the p-values of the attrition tests with and without baseline covariates. The sample size in both panels is 31,175
individuals. The tests were conducted using the regression tests proposed in Section B. Columns (4)-(9) present the results of the tests that
only include one baseline covariate in addition to the baseline outcome. Column (10) reports the results of the tests that include the six
baseline covariates plus the baseline outcome. Pooled refers to all the three follow-ups. All regression tests use clustered standard errors at
the locality level.

One important question that arises in this context is how to interpret the differences in
the results of the attrition test with and without covariates for the IV-P assumption. If all the
covariates included in the test satisfy any of the criteria for Wi, these findings suggest that
IV-P no longer holds. To understand the difference in findings for the IV-P tests with and
without covariates, we examine the mean baseline value of adult employment and covariates
across treatment-response subgroups (see Table SA8 in the online appendix). While we do

not find meaningful differences in employment across respondents and attritors, we note that

57We obtain similar results when we split the sample by gender and discretize the age variable across three
important stages of work life: 18-25, 25-55, and 55+ years old.
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they are different in several of the other dimensions. Relative to attritors, respondents were
older, lived in smaller households, and were more likely to be married. If these characteristics
are determinants of both untreated and treated potential employment at endline, our results
including covariates suggest a violation of internal validity for the study population.
Overall, these results suggest that the inclusion of relevant covariates in the attrition
tests can help detect violations of internal validity. We recommend that researchers carefully
pre-specify the covariates for each outcome-specific test following our criteria. In assessing
differences in conclusions of attrition tests due to the inclusion of covariates, we suggest that

authors consider the relevance of these covariates for potential outcomes at endline.

5 Empirical Applications

To further illustrate the empirical relevance of our theoretical analysis, we apply the pro-
posed tests of attrition bias to four published field experiments. The data comes from field
experiments with both high reported attrition rates for survey outcomes and publicly avail-
able data that includes attritors.® Thus, the exercise is not intended to draw inference about
the implications of applying various attrition tests to a representative sample of published
field experiments, since we expect that these studies received additional scrutiny given their
relatively high attrition rates. In addition, field experiments that are published in prestigious
journals may not be representative of all field experiment data, especially if perceptions of
attrition bias had an impact on publication.

Across the four selected articles included in this exercise, we conduct attrition tests for
a total of 26 outcomes. This includes all outcomes with baseline data that are reported

in the abstracts as well as all other unique outcomes with baseline data.>® Our systematic

58We selected the articles with the four highest survey attrition rates for which the data required to
implement the attrition tests is available. We recognize that other important outcomes for these papers may
be from other sources, and attrition may not be relevant for those outcomes. (see Section SA1.2 in the online
appendix for details).

59If the article reports results separately by wave, we report attrition tests for each wave of a given
outcome. We did not, however, report results for each heterogeneous treatment effect unless those results
were reported in the abstract. We also exclude results on outcomes with an effective attrition rate of 0%,

38



approach to choosing outcomes for this analysis sometimes leads us to focus only on secondary
or tertiary outcomes for a given study. Thus, the results from this exercise should not be
interpreted as definitive in assessing the importance of attrition to all outcomes in these
papers or its impact on their main results.

Since we recommend that authors pre-specify covariates based on their contextual un-
derstanding of the outcome in question, we focus our analysis in this exercise on outcomes
for which covariates are not required according to our criteria in Section 4.2. First, we only
include outcomes with baseline data. Second, we exclude outcomes that are (nearly) degen-
erate.® Third, across all studies, the time frame between baseline and follow-up surveys is
relatively short, and the populations are at similar phases of their life cycle.! It is worth
noting that even for those outcomes, relevant covariates as per our criteria in Section 4.2

may be informative, and it may therefore be appropriate to include them.

5.1 Implementation of Attrition Tests

For each outcome included in this exercise, the appropriate attrition test depends on the
type of outcome and the approach to randomization used in the experiment. For fully ran-
domized experiments, we apply the tests of the IV-R and IV-P assumptions in Proposition
1. For stratified experiments, we instead apply the tests of the assumptions in Proposition
2.%2 For binary outcomes and also for all outcomes from clustered experiments, we apply

regression-based mean tests (see Section B). For continuous outcomes in non-clustered exper-

or outcomes from baseline surveys collected only for a subsample of the population in the treatment effect
analysis.

60Specifically, we exclude binary outcomes that have low variance at baseline due to the sample proportions
of the event being less than 10%.

61In particular, two studies target entrepreneurs and business owners, one targets school teachers, and
another focuses on migrants sending remittances back home. As for the time frame between baseline and
follow-up surveys, it ranges between 8 and 24 months across all four studies. See Table SA5 and Table SA6
in the online appendix for more details on these articles and the outcomes that we study in these empirical
applications.

62When the number of strata in the experiment is larger than ten, we conduct a test with strata fixed
effects only as opposed to the fully interacted regression in Section B in order to avoid high dimensional
inference issues. Under the null, this specification is an implication of the sharp testable restrictions proposed
in Proposition 2.
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iments, we report p-values of the KS distributional tests using the appropriate randomization
procedure.®3

In addition to applying our proposed attrition tests, we also consider how those tests
might compare to other approaches. Thus, we apply a version of the tests commonly used in
the literature to the data, including: the differential attrition rate test, the IV-R test using
the respondent subsample only, and the IV-R test using the attritor subsample only. We use
the same approaches to handling stratification and continuous outcomes in all three IV-R
tests to ensure they are directly comparable, but that also means that we do not necessarily
replicate the exact tests that are used in the articles from which we drew data for this
exercise. Instead, we indicate whether authors’ attrition tests reject for the outcomes for
which they are available.

As highlighted in Section 4, there is heterogeneity in the implementation of the selective
attrition tests in practice. Each of the four articles selected for this exercise relies on a
different approach. Three articles examine experiments that are randomized within strata.
One article includes strata fixed effects in its selective attrition test, whereas the other two

do not. We also note that three articles also implement a differential attrition rate test. Our

results may differ since we rely on outcome-level rather than survey-level attrition rates.

5.2 Results of the Empirical Applications

Our IV-R and IV-P test results reported in Table 6 have promising implications for the
internal validity of randomized experiments. The joint IV-R test does not reject for any of
the 26 outcomes at the 5% level. The IV-R tests using only respondents or attritors yield
the same conclusion for all outcomes. Although there is often a substantial difference in the
p-values for these two simple tests relative to the joint test for a given outcome, there is no
consistent pattern in the direction of those differences. The IV-P test also does not reject

the IV-P assumption at the 5% level for 21 out of the 26 outcomes (this finding remains the

63We apply the Dufour (2006) randomization procedure to accommodate the possibility of ties.
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64 While keeping in mind the usual

same after correcting for multiple hypothesis testing).
caveats regarding the power of any test in finite samples, our results suggest that a researcher
interested in treatment effects for the respondent subpopulation would not reject the relevant
identifying assumption for any of the outcomes in our analysis, even when exploiting all the
information in the baseline sample (i.e. respondents and attritors). It is particularly notable
that, for a majority of the outcomes we consider, a researcher would also not reject the
assumption that ensures the identification of the treatment effects for the study population.

Given its wide use in empirical practice, we also implement the differential attrition rate
test. Using outcome-level attrition rates, we reject the null hypothesis of equal attrition
rates at the 5% level for 8 of 26 outcomes (3 outcomes after correcting for multiple hypoth-
esis testing). For all 8 outcomes where the differential attrition rate test rejects the null
hypothesis at the 5% level, the IV-R and IV-P assumption are not rejected at the 5% level
using our tests as depicted in Figure 5. These empirical cases are consistent with the testable
implications of Example 1, which illustrates the shortcomings of the differential attrition rate
test as a test of internal validity.

Next, we consider the results of the attrition tests reported by the authors (Table 6).
The authors report a differential attrition rate test that is relevant to 23 out of the 26
outcomes and a selective attrition test for 17 outcomes. They report differential attrition
rate tests that reject at the 5% level for 18 outcomes. The higher frequency of rejections of
the authors’ differential attrition rate test relative to ours is driven by their use of survey-
level, as opposed to outcome-level, attrition rates. The authors of these four articles largely
do not find evidence of selective attrition. They do, however, reject their version of the test
at the 10% level for 2 of the 17 outcomes.

When we compare our test results with the authors’, we note several differences. While
we do not reject the IV-R assumption for any of the outcomes we consider, the authors

reject their survey-level differential attrition rate test for 18 outcomes. Once we account

64 Although the number of outcomes from a given field experiment varies widely, these non-rejection results
are not driven by any one experiment or type of outcome.
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for outcome-level attrition, we only reject equal attrition rates for 8 outcomes. As we note
above, in all of these cases, our IV-P (or IV-R) test does not reject. In addition, authors do
not consistently account for the stratification of the experimental design in their selective
attrition test, which may lead to a false rejection of internal validity.®® Another possible
source of false rejection in the literature is the fact that many authors do not correct for
multiple hypothesis testing across outcomes. One limitation in comparing our results with
the authors’ is that, since they do not state their object of interest, it is not clear whether
they intend to test for IV-R or IV-P.

We draw several conclusions from this empirical exercise. Our analysis highlights the dis-
advantages of the lack of consensus in empirical practice. Our results show the importance
of consistent implementation of IV-R and IV-P tests that allow researchers to better under-
stand the implications of attrition for internal validity. In line with our theoretical analysis,
the results of the differential attrition rate test are not consistent with our proposed tests.
Thus, while attrition rates by group remain important summary statistics that should be
reported, conclusions regarding internal validity and subsequent attrition analysis should
not be based on whether or not there are differences in attrition rates.®® Finally, we note
that findings from IV-R and IV-P tests should be complemented with attrition corrections

to better evaluate the magnitude of potential bias resulting from attrition.

6 Conclusion

This paper presents the problem of testing attrition bias in field experiments with baseline

outcome data as an identification problem in a panel model. The proposed tests are based

85To provide a simple example, consider a case where there are two strata (men and women). For simplicity,
assume all men respond in the follow-up period. Now suppose 10% (5%) of women in the control (treatment)
group do not respond to the follow-up survey, but the unobservables that affect outcome are independent
of response. As a result, the treatment and control respondents consist of different proportions of men and
women. It follows that, even though women in the different treatment-response subgroups have the same
mean baseline outcome, the pooled treatment and control respondents may differ in that regard. Thus, a
regression-based IV-R test that does not account for the stratification may falsely reject internal validity.

66This recommendation is not solely based on the usual pre-test bias concern, but also because the differ-
ential attrition rate test is not a test of internal validity in general.

42



on the sharp testable restrictions of the identifying assumptions of the specific object of
interest: either the average treatment effect for the respondents, the average treatment
effect for the study population or a heterogeneous treatment effect. This study also provides
theoretical conditions under which the differential attrition rate test, a widely used test,
may not control size as a test of internal validity. The theoretical analysis has important
implications for current empirical practice in testing attrition bias in field experiments. It
also highlights that the majority of testing procedures used in the empirical literature have
focused on the internal validity of treatment effects for the respondent subpopulation. The
theoretical and empirical results, however, suggest that the treatment effects of the study
population are important and possibly attainable in practice.

While this paper is a step forward toward understanding current empirical practice and
establishing a standard in testing attrition bias in field experiments, we emphasize the impor-
tant role of corrections to complement any assessment of the impact of attrition on internal
validity of a given study. Despite the availability of several approaches to correct for attrition
bias (Lee, 2009; Huber, 2012; Behagel et al., 2015; Millan and Macours, 2021), alternative
approaches that exploit the information in baseline outcome data as in the framework here
may be useful to complement existing methods that rely on unconfoundedness or identify
effects for a subgroup of the population, such as always-responders. For instance, Ghanem
et al. (2022) extend the changes-in-changes approach to identify treatment effects for the
respondents and the entire study population.

Several practical aspects of the implementation of the proposed test may lead to pre-test
bias, and inference procedures that correct for these and other pre-test bias issues are a
priority for future work. For instance, the proposed tests may be used in practice to inform
whether an attrition correction is warranted or not in the empirical analysis. Empirical
researchers may also be interested in first testing the identifying assumption for treatment
effects for the respondent subpopulation and then testing their validity for the entire study

population.
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Finally, this paper has several policy implications. Attrition in a given study is often used
as a metric to evaluate the study’s reliability to inform policy. For instance, What Works
Clearinghouse, an initiative of the U.S. Department of Education, has specific (differential)
attrition rate standards for studies (IES, 2017). Our results indicate an alternative approach
to assessing potential attrition bias. Furthermore, questions regarding external validity of
treatment effects measured from field experiments are especially important from a policy
perspective. This paper points to the possibility that in the presence of response problems,
the identified effect in a given field experiment may only be valid for the respondent subpop-
ulation, and hence may not identify the ATE for the study population. This is an important

issue to consider when synthesizing results of field experiments to inform policy.
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Figure 5: P-values of Attrition Tests in Empirical Applications
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Notes: This figure presents the p-values of the attrition tests for the 26 outcomes included in the
empirical applications in Section 5. Panel A (B) displays the p-values of the differential attrition
rate test against the p-values of the IV-R (IV-P). The red lines depict a p-value of 0.05.

A Randomization Tests of Internal Validity

We present randomization procedures to test the [V-R and IV-P assumptions for completely
and stratified randomized experiments. The proposed procedures approximate the exact
p-values of the proposed distributional statistics under the cross-sectional i.i.d. assumption
when the outcome distribution is continuous.®’ They can also be adapted to accommodate
possibly discrete or mixed outcome distributions, which may result from rounding or censor-
ing in the data collection, by applying the procedure in Dufour (2006). In this section, we
focus on distributional statistics for the testable restrictions on the baseline outcome as in
Propositions 1 and 2. The randomization procedures we propose, however, can be applied
to test joint distributional hypotheses that include covariates as in Section 4.2.

We first outline a general randomization procedure that we adapt to the different settings
we consider.®® Given a dataset Z and a statistic T, = T (Z) that tests a null hypothesis Ho,
we use the following procedure to provide a stochastic approximation of the exact p-value
for the test statistic T exploiting invariant transformations g € Gy (Lehmann and Romano,

2005, Chapter 15.2). Specifically, the transformations g € Gy satisfy Z 4 g(Z) under Hg
only.

Procedure 1. (Randomization)

67We maintain the cross-sectional i.i.d. assumption to simplify the presentation. The randomization pro-
cedures proposed here remain valid under weaker exchangeability-type assumptions.
68See Lehmann and Romano (2005); Canay et al. (2017) for a more detailed review.
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1. For gy, which is i.i.d. Uniform(G,), compute Tn(gy) = T(gs(2)),

3. Compute the p-value, png = 521 (1 + 30, H{Tnlgy) > Tn})-

A test that rejects when ppg <  is level for any B (Lehmann and Romano, 2005,
Chapter 15.2). In our application, the invariant transformations in Gy consist of permuta-
tions of individuals across certain subgroups in our data set. The subgroups are defined
by the combination of response and treatment in the case of completely randomized trials,
and all the combinations of response, treatment, and stratum in the case of trials that are
randomized within strata.

A.1 Completely Randomized Trials

The testable restriction of the IV-R assumption, stated in Proposition 1(a.ii), implies that
the distribution of baseline outcome is identical for treatment and control respondents as
well as treatment and control attritors. Thus, the joint hypothesis is given by

H& : FYiojTizoiRizr = FYinTizl;Ri:r for r =0; 1 (12)

The general form of the distributional statistic for each of the equalities in the null hypothesis
above is

Tl’::-;l’ - H\/ﬁ (FniYiojTi=0;Ri=r - Fn;YiojTi=l;Ri=r) H for r =0;1;

where for a random variable Xj, Fn.x, denotes the empirical cdf, i.e. the sample analogue
of Fx;, and ;|| denotes some non-random or random norm. Different choices of the norm
give rise to different statistics. For instance, the KS and CM statistics are the most widely
known and used. The former is obtained by using the L1 norm over the sample points, i.e.
|f|ln.a = max; |[F(y;)|, whereas the latter is obtained by using an L? norm, i.e. |[f|n2 =
S F(yi)2=n. In order to test the joint hypothesis in (12), the two following statistics that
aggregate over T3, for r = 0;1 are standard choices in the literature (Imbens and Rubin,
2015),%°

Tr};m = maX{Tr};O; Tr};l};
n
Thp = PnoTro+ Py where Py = Y 1{Rj = r}=n for r = 0; 1:

i=1
The joint KS statistic we use to test H in the simulation and empirical section is given by

KSh.m = max{KS},; KS}, }; where for r = 0;1
KSh, = max [/ (Fr (Yiol Ti = 1 Ri = 1) = Frvio (Yo Ti = 0, Ri = 1)) (13)

89There are other possible approaches to construct joint statistics. We compare the finite-sample perfor-
mance of the two joint statistics we consider numerically in Section SA4.3 of the online appendix.

47



Let G& denote the set of all permutations of individual observations within respondent
and attritor subgroups, for g € G&, 9(Z) = {(Yio; Tq(iy: Reciy) : Rgiy = Ri; 1 <1 < n}. Under
H} and the cross-sectional i.i.d. assumption, Z 4 g(Z) for g € Gi. Hence, we can obtain
p-values for Tr{m and Tr};p under H by applying Procedure 1 using the set of permutations
G-

We now consider testing the restriction of the IV-P assumption stated in Proposition
1(b.i). This restriction implies that the distribution of the baseline outcome variable is
identically distributed across all four subgroups defined by treatment and response status.
Let (Ti;Ri) = ( ;r), where ( ;r) € T xR = {(0;0);(0;1);(1;0);(1;1)} and ( j;rj) denote
the j™ element of 7 x R. Then, the joint hypothesis is given wlog by

Hg : FYiojTi= pRi=rj — FYinTi= j+1Ri=rj+1 fOl“j =10 |T X R| — 1 (14>

In this case, the two statistics that we propose to test the joint hypothesis are:

2 _ :
Tn;m = j=1;::I:¥j11aXRj 1 H\/ﬁ (FinojTi: iRi=rj — Fl’l;YiojTi= j+1;Ri=rj+1) || )
iT Rj 1
Tr%;p = Z Wi H\/ﬁ (Fn:YiojTi= i'Ri=rj — I:n;YiojTi= j+1;Ri=l’j+1)H
=1
for some fixed or data-dependent non-negative weights wj for j = 1;:::; |7 x R| — 1. In the

simulation and empirical sections, we use the following KS statistic to test HZ

KS? = max KS2.::
"og=nzz M

KSh = max [N (Fryo (YiolTi = jiRi = 1j) = Frvio (YiolTi = juss Ri = )|

where (15)

and { j;rj} is the j™ element of 7 x R = {(0;0); (0;1); (1;0); (1;1)}.

Under HZ and the cross-sectional i.i.d. assumption, any random permutation of individ-
uals across the four treatment-response subgroups will yield the same joint distribution of
the data. Specifically, for g € GZ, 9(Z) = {(Yio; Tgqi); Ryciy) : 1 < i< n}. We can hence apply
Procedure 1 using G3 to obtain approximately exact p-values for the statistic Tr?;m or Tr%;p
under H3.

A.2 Stratified Randomized Trials

As pointed out in Section 3.2.3, the testable restrictions in the case of stratified or block
randomized trials (Proposition 2) are conditional versions of those in the case of completely
randomized trials (Proposition 1). Thus, in what follows we lay out the conditional versions of
the null hypotheses, the distributional statistics, and the invariant transformations presented
in Section A.1.

We first consider the restriction in Proposition 2(a.ii), which yields the following null
hypothesis

Hg;s : FYiojTi=0;Si=S:Ri=l’ = FYiojTi=1;Si=s;Ri=r for r =0; 1, ses: (16)
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To obtain the test statistics for the joint hypothesis Hé;s, we first construct test statistics
for a given s € S,

s
Tn;m;s - {Il%}f H\/ﬁ (Fn§YiojTi=0;Si=S;Ri=l’ - Fn;YiojTi=1;5i=S;Ri=r)

Tr:IL;;s;s = Z p:]js H\/ﬁ (Fn:YiojTiZO:SiZS;RiZF - Fn:YiojTizlisiZS;RiZl’) H .
r=0;1

where pi® = S H{Ri=r;Si=s}=>"1, 1{S; = s}. We then aggregate over each of those
statistics to get

;S __ 1S .
Tom =max T 0
’ s2S e

n

Tos = PaTans: where ph = 1{Sj=s}=nforseS.

s2S i=1

In this case, the invariant transformations under Hé S are the ones where n elements are per-
muted within response-strata subgroups. Formally, forg € Go>, 9(Z) = {(Yio; Tqcy; Seciy; Ryciy) :
Sg(i) =Sj; Rg(i) =Rj;1 < i< n}, where Z = {(Y.o,T.,S., R.) 1<i < n}. Under Hé.;S and
the cross-sectional i.i.d. assumption within strata, Z 4 g(Z) for g € G;°. Hence, using Go'°,
we can obtain p-values for T1S and TS under Hg'™.

We now consider testing the restriction in Proposition 2(b.ii). The resulting null hypoth-
esis is given wlog by the following

(17)

To obtain the test statistics for the joint hypothesis Hg;s, we first construct test statistics
for a given s € S,

2,8 _ . . .
Tn;m:s = . max H\/ﬁ (FinOJTi: iSi=sRi=rj — I:n?YioJ'ri: j+1?Si=S?Ri=rJ'+1) !
J=15T Rj 1
iT Rj1
2,8 __ A i o i .
Tn;p:s - E , Wij:s H\/ﬁ (Fn;YioJTi= §:Si=s;Ri=rj I:n:YioJTi= j+1:Si=S;Ri=rj+1) H J
=1
given fixed or random non-negative weights wj.s for j = 1;:::;|7T x R|—1land s e S. We

then aggregate over each of those statistics to get

2;S __ 2;S .
Tom =max T
’ s2S e
2;S __ 2;S .
Tn;p = E WsTn;p;s,
s2S

given fixed or random non-negative weights wg for s € S.
Under the above hypothesis and the cross-sectional i.i.d. assumption within strata, the
distribution of the data is invariant to permutations within strata, i.e. for g € gg;s 9(Z) =
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{(Yio; Tgqiy: Sacip: Raiy) : Sgiy = Si; 1 < i < n}. Thus, applying Procedure 1 to TZ5, or TZD
using Qg;s yields approximately exact p-values for these statistics under Hg S,

In practice, it may be possible that response problems could lead to violations of internal
validity in some strata but not in others. If that is the case, it may be more appropriate to
test interval validity for each stratum separately. Recall that when the goal is to test the V-
R assumption, the stratum-specific hypothesis is Hé;s : Fypimi=ossi=siRi=r = FyiojTi=1si=s:Ri=r
for r = 0;1. Hence, for each S € §, one can use Qé;s in the above procedure to obtain
p-values for T3S, and T,};ﬁs, and then perform a multiple testing correction that controls
either family-wise error rate or false discovery rate. We can follow a similar approach when
the goal is to test the IV-P assumption conditional on stratum.

The aforementioned subgroup-randomization procedures split the original sample into
respondents and attritors or four treatment-response groups. This approach does not directly
extend to cluster randomized experiments.”® Given the widespread use of regression-based
tests in the empirical literature, we illustrate how to test the mean implications of the
distributional restrictions of the IV-R and IV-P assumptions using regressions for completely,

cluster, and stratified randomized experiments in Section B.

B Regression Tests of Internal Validity

In this section, we show how to implement the mean IV-R and IV-P tests using regression-
based procedures. In completely and cluster randomized experiments, the null hypothesis of
the IV-R test (Hg.\,) consists of the equality of means across treatment and control respon-
ders as well as treatment and control attritors. Meanwhile, the null hypothesis of the IV-P
test (Hg.n) consists of the equality of means across all treatment/respondent subgroups.
In the stratified randomization case, the null hypotheses of the IV-R and IV-P tests con-
sist of analogous restrictions within strata, ng,f,, and ng,f,,, respectively. Here, we present
these hypotheses as joint restrictions on linear regression coefficients, which are straight-
forward to test using the appropriate standard errors. The Stata ado file to implement
those regression-based tests is available at the SSC archive and can be downloaded using the
following command: ssc install attregtest.

B.1 Completely and Cluster Randomized Experiments

If the experiment is completely or cluster randomized and Yjg is the baseline outcome, the
practitioner may implement one of two equivalent approaches to conducting the mean tests.
The first approach is given by:

Yio= uTiRi+ o(1-Ti)Ri+ 10Ti(1 —Ri) + ool —Ti)(1 —Rj) + ;
Hom: 1= o0& 10= oo

2
Him: 11= 01= 100= o0

70T test the distributional restrictions for cluster randomized experiments, the bootstrap-adjusted critical
values for the KS and CM-type statistics in Ghanem (2017) can be implemented.
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The second approach allows for an intercept in the regression, which captures the mean
baseline outcome for the control attritors:

Yio= + oRi+ wli+ uTiRi+ i
Hom: 0= 11=0;
Him: o1= 100= 11=0:
In some cases, the practitioner may have collected baseline data on determinants of
(or proxies for) the outcome of interest, Wijp (as defined in Equation 11). If the practi-
tioner chooses to include these determinants in testing for attrition bias, the regression-

based procedure should test the joint hypotheses across the baseline outcome (if available)
and the dy baseline covariates that are relevant for such outcome, i.e. Zip = (Yio; W),

Zh = LTiRi+ L -TORi+ LTi(l =R+ &1 —T)(1 —Ri) + |
Hom: 1= 5& fo= % ¥V i=5Lu5(dw+1)
Hom: 1= = 1o= & YV J=1:115(dw +1)
As in the univariate case above, the null hypotheses in this multivariate case can also be
tested using the specification that inlcudes an intercept. Note that if the researcher is inter-

ested instead in testing across multiple outcomes we recommend testing these individually
rather than jointly (as in Section 3.1), while accounting for multiple testing.

B.2 Stratified Randomized Experiments

As in Section B.1, we again present two equivalent formulations of the tests for stratified
experiments. In these fully saturated models, the null hypotheses test the equality of means
within strata. The first version of the test is given by:

Yio=) [ HTiRi+ STi(1 =R+ 5(1-T)Ri+ &1 —Ti)(1 - Ri)]1{Si =8} +

Hence, for s € S,
Hl;S_s_s&s_s.f il .
om: 1= a& 0= g forallses;
Him: 51= $1= 0= 5o forallsesS:
In this case, the equivalent formulation uses a model with strata fixed effects and strata-
specific coefficients,

S
Yo=Y { °+ GRi+ LTi+ HTiRi}1{Si=s}+ |
s=1
Hom: 0= 5=0forallses;

Hg;l?/l . (S)l = ]S_O = ]S_l = 0, for aH S & S
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When the number of strata is large, however, testing the equality of means across groups
within each stratum may result in high-dimensional inference issues. In that case, practi-
tioners can instead test implications of Hé;’,f,, and Hg;’f,, as follows:

s
Yo=Y ( *+ sROHSi=s}+ wTi+ uTiRi+
=1
0.
Hom @ 10= 1=0;
s
Yio = Z *1{Si=s}+ oRi+ 1w0Ti+ uTiRi+ ;i
s=1
0.
HS;.’S.: o= 10= 11=0

If the practitioner chooses to include baseline covariates for a stratified experiment, as in
Section B.1, she should test the joint hypotheses across the baseline outcome and all relevant
baseline covariates.

C Proofs

Proof. (Proposition 1)

(a) Under the assumptions imposed it follows that Fy,, U|1]T| Ry = Fuio:Unjri» Which implies
that for d = 0; 1, FYit(d)jTi;Ru f]_{ d U < }dFUnJTn | f]_{ d U < }dFUnJR ( )Z
Fyi@jr; for t=0;1. (i) follows by lettlng t=1andd= O while condltlomng the left-hand
side of the last equation on Tj = 0 and R; = 1, and the testable implication in (ii) follows
by letting t =d = 0.

Following Hsu et al. (2019), we show that the testable restriction is sharp by showing
that if (Yio; Yie; Ti; Ri) satisty Yio|Ti = 0;Ri = r £ Yio|Ti = 1;R; = r for r = 0;1, then
there exists (Ujo; Uiz) such that Yit(d) = ¢(d; Uj) for some ¢(d;:) for d =0;1 and t =0; 1,
and (Ujo; Ui1) L Ti|R; that generate the observed distributions. By the arbitrariness of Uj
and ¢, we can let Ujy = (Yit(0); Yie(1))? and  ¢(d; Ujt) = dYie(1) + (1 — d)Yie(0) for d = 0; 1,
t =0; 1. Note that Yijp = Yio(0) since Djo = 0 w.p.1. Now we need to construct a distribution
of Ui = (U)y; UY)) that satisfies

Fuiitiri = FYio):vio):¥in (v iTiRi = FYio(0):Yio(0):¥i (0):Yi (iR

as well as the relevant equalities between potential and observed outcomes. We proceed by
first constructing the unobservable distribution for the respondents. By setting the appro-
priate potential outcomes to their observed counterparts, we obtain the following equalities
for the distribution of U; for the treatment and control respondents

FUijTi=0:Ri=1 = FYio(O)?Yio(l);Yil(O);Yu(l)jTi=0;Ri=1 = FYio(1);Yi1;Yi1(1)jYio;Ti=0:Ri=1FYiojTi=0:Ri=1

Fuimi=tri=1 = Frio@:vin@:virjvioTi=tiRi=1Fyioimi=1:ri=1

By construction, Fv,jr;;ri=1 = Fvyjri=1. Now generating the two distributions above using
Fio@:Yia (0:via @ivio:Ti;Ri=1 Which satisfies Fyioyvis v iviomi=ori=1 = FYio@ivia©@):uivioTi=1iRi=1
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yields Uj L Tj|Rj = 1 and we can construct the observed outcome distribution (Yip; Yi1)|Ri =
1 from U;j|R; = 1.
The result for the attritor subpopulation follows trivially from the above arguments,

Fuiimi=o:ri=0 = Fvio1):vi1(0):Yir (iVio:Ti=0;Ri=0F Y;0jTi=0:Ri=0;

Fuiimi=1:ri=0 = Fyio2):vi1(0):Yir iVio:Ti=1;Ri=0F YiojTi=1:Ri=0;

Since Fyjti;ri=0 = Fyjojri=o by construction, it remains to generate the two distributions
above using the same Fy,o1):vi10):vir (1)jvio:Ri=0- Lhis leads to a distribution of Uj|Rj = 0 that
is independent of Tj and that generates the observed outcome distribution Yjg|R; = 0.

(b) Under the given assumptions, it follows that Fu,.u,,jTi:ri = Fuie:UinjTi = Fuio:ui, Where
the last equality follows by random assignment. Similar to ( ) the above implies that for d =
0;1 and t = 0;1, FYit(d)jTi§R| fl{ d U < }dFUnJT. | fl{ d U < }dFU.t< ) =
Fyi@- (i) follows by letting t = 1, while condltlonmg the left hand side of the last equation
onTi= and Rj=1ford= and =0;1, whereas (ii) follows by letting d = t = 0 while
conditioning on Tj= and Rj=rfor =0;1,r=0;1.

To show that the testable restriction is sharp, it remains to show that if (Yio; Yis; Ti; Ri)
satisfies Yio|Ti; Ri 4 Yio(0), then there exists (Ujo; Uiz) such that Yi(d) = ¢(d;Uj) for
some ¢(d;:) for d = 0;1 and t = 0;1, and (Ujo; Ujz) L (Ti; Rj). Similar to (a.ii), we let
Uit = (Yit(());Yit(l))O and t(d; Uit) = dY.t(l) + (1 — d)Y.t(O) Then Yjo = Y|Q(0) by similar
arguments as in the above. Furthermore, Fy,r;:r; = Fvi, by construction and it follows
immediately that

FUijTi=0§Ri=1 = FYio(l);Yil;Yil(l)jYioTi=0;Ri=1FYio;
Fuimi=tri=1 = Fyio@):vir @:vauivieTi=1:Ri=1Fvio;
FUijTiZO:RiZO = FYio(l)JYil(O)JYil(l)jYio:TiZOJRiZOFYio;

FUijTi=1:Ri=0 = FYio(l);Yil(O);Yil(1)jYio;Ti=1;Ri=0 FYiO:

Now constructing all of the above distributions using the same Fy;o1).vii0):viajTi;r: that
satisties Fyiovinva@ivioi=oRi=1 = FYio@)¥ia(0):vaaiviomi=1Ri=1 implies the result. O

Proof. (Proposition 2) The proof is immediate from the proof of Proposition 1 by condition-
ing all statements on §;. O]

Proof. (Proposition 3) For notational brevity, let U; = (Uf;U). We first note that by
random assignment, it follows that

Fuimirioiri = Fuimi: ov: avo=Fuii v avi) = Fuiri@ri@: (18)
As a result,

Po1Fuijri 0):RiW)=0:1) + P11FUijRi):Ria)=(1:1) .
PRy = 1[Ti = 1) ’

P1oFuijRi):RiW)=1:0) + P11FusjrRi O):Ri(W)=(1; .
P(Ri = 1|T; = 0)

Fuimi=tri=1 =

Fumi=ori=1 =
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If (i) holds, then Fy,jr;(oy:ri(1) = Fu;, hence

PoiFu; + P1iFy;
PRi=1Ti=1)

CE B o PwFu +PuFu
Ui UijTi=0;R;j=1 P(RI _ ]_|T| _ 0) Ui

Fuimi=tri=1 =

We can similarly show that Fy,jr;:r;=0 = Fu;, it follows trivially that U;|T;; R; 4 UilRi.
Alternatively, if we assume (ii), Ri(0) < Ri(1) implies pig = 0. As a result, P (R;
0|Ti = 1) = P(Ri = 0|T; = 0) iff poa = 0. It follows that the terms in (19) and (20
both equal FUij(Ri(O);Ri(l))=(l;l)‘ Slmllarly, it follows that FUijTi=1;Ri=0 = FUijTi=0;Ri=0
FUij(Ri(O);Ri(l))Z(O;O)a which implies the result.
Finally, suppose (iii) holds, then equal attrition rates imply that poy = pio. The ex-
changeability restriction implies that FUij(Ri(O);Ri(l))Z(O;l) = FUij(Ri(O);Ri(l))Z(l;O)' Hence,

~—

Po1Fuijri):Ri(W)=(0;1) + P11F iR (0):Ri (1))=(1:2)
PR =1T; = 1)

_ PuoFuijri):Ri)=1:0) + P11FUijRi):Ria))=(1:1)

- P(Ri = 1|T; = 0)

Fuijri=tri=1 =

= Fuiimi=o;ri=1: (21)
Similarly, it follows that Fy;jr;=1.r;=0 = Fu;jT;=0:r;=0, Which implies the result. O

C.1 Supplementary Example for Section 4.1

Suppose that there are two unobservables that enter the outcome equation, Uiy = (Ul; UZ)
for t = 0;1, such that (UL;UL) L Ti|R; whereas (UZ;U3) X Ti|R;. Let the outcome at

1
baseline be a trivial function of U3, whereas the outcome in the follow-up period is a non-

trivial function of both U} and U3, e.g.

Yio = Uj
Yip = UL + U2 + Ti( UL+ ,U3)

As a result, even though Yio|Ti = 1; R; 4 Yio|Ti = 0;R; holds, Yi1(0)|T; = I;R; = 1 ;é
Yi1|Ti = 0;R; = 1. In other words, the control respondents do not provide a valid coun-
terfactual for the treatment respondents in the follow-up period despite the identity of the
baseline outcome distribution for treatment and control groups conditional on response sta-
tus. We can illustrate this by looking at the average treatment effect for the treatment
respondents,

E[Yi1(1> — Yi1(0)|Ti =1; Ri = 1]
=E[Uj; + U3 + Ui+ 2UiTi= LR = 1] - E[Uj; + Uji|Ti = LR = 1]

-~ -~

E[Yi1jTi=1:R;=1] 6E[Yi1jTi=0;R;=1]

Hence, E[YillTi =1,Rj = 1]—E[Yi1|Ti =0;Rj = 1] 7'é 1E[U|:5_|T| =1,Rj = 1]+ QE[UIZ:L|T| =
1;Rj = 1], i.e. the difference in mean outcomes between treatment and control respondents
does not identify an average treatment effect for the treatment respondents.

We could however have a case in which the control respondents provide a valid coun-
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terfactual for the treatment respondents even though the treatment effect for individual I
depends on an unobservable that is not independent of treatment conditional on response,
i.e. UA. Specifically, let

Yie = Uit + Ti( Ut + 2U7) (22)

and consider the identification of an average treatment effect, E[Yi1(1) — Yi1(0)|Ti = I; Ry =
1] = E[Ulll + 1Ui11 + 2U|21|T| =1,R; = 1] — E[Ulll|T| =1,R; = 1] = E[YillTi = 1R =
1] — E[Yis|Ti = 0; Ri = 1], since E[U}|Ti = 1;Ri = 1] = E[U}|Ti = 0; Ri = 1]. Note however
that in this case what we identify is no longer internally valid for the entire respondent
subpopulation, but for the smaller subpopulation of treatment respondents.

D Attrition Tests in the Field Experiment Literature

In this section, we describe the different empirical strategies used to test for attrition bias in
the articles we review and classify them into differential attrition rate tests, selective attrition
tests, and determinants of attrition tests. We classify the strategies for the differential
attrition rate test and the determinants of attrition test as broadly as possible and include
any article that performs a regression under any of these two categories as performing the
relevant test. For the selective attrition tests, we specify the null hypotheses since they are
closely related to the tests that we propose. Throughout this section, we use the following
notation to facilitate the exposition of each strategy and the comparison across them:

-Let Rj take the value of 1 if individual 1 belongs to the follow-up sample.

-Let T; take the value of 1 if individual I belongs to the treatment group.

-Let Xjo be a k x 1 vector of baseline variables.

-Let Yjo be a | x 1 vector of outcomes collected at baseline.

-Let Zip = (X! Y5

-For a vector w, W) denotes the J element of w.

D.1 Differential Attrition Rate Test

The di erential attrition rate test determines whether the rates of attrition are statistically
significantly different across treatment and control groups.

1. t-test of the equality of attrition rate by treatment group, i.e. Ho : P(Rj =0|Ti =1) =
P(R;i = 0|T; = 0).

2. Ri= +T; + Uj; may include strata fixed effects.

3. Ri= +Ti +X!, +Y +Uj; may include strata fixed effects.

D.2 Selective Attrition Test

The selective attrition test determines whether, conditional on response status, the distri-
bution of observable characteristics is the same across treatment and control groups. We
identify two sub-types of selective attrition tests: i) a test that includes only respondents or
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attritors, and ii) a test that includes both respondents and attritors. We note that the selec-
tive attrition tests are usually conducted on both baseline outcomes and baseline covariates.
Some authors conduct multiple tests for individual baseline variables while others test all
baseline variables jointly (see Table SA4 for details). Thus, for each estimation strategy, we
report the null hypotheses that are used in each case.

D.2.1 Tests that include only respondents or attritors

1. t-test of baseline characteristics by treatment group among respondents:

(a) Multiple hypotheses for individual baseline variables:
For each j = 1;2;:::; (1 + k)

Hl E[ZLTi=1;Ri =1 = E[ZL|Ti = 0;Ri = 1]:

(b) Joint hypothesis for all baseline variables:

2. Ti= + X} +Y) +Uiif Rj =1; may include strata fixed effects.
(a) Joint hypothesis for all baseline variables:

Ho: = =0

3. Kolmogorov-Smirnov (KS) test of baseline characteristics by treatment group among
respondents.

(a) Multiple hypotheses for individual baseline variables:
For each j = 1;2;:::; (1 + k)

J. g . —E_.
Ho Fz{OjTi;Rizl - FZ{OjRizl

4. Z0 = 4T I+U}if Ry =1, for j = 1;2;::1; (1 +k); may include strata fixed effects.

(a) Multiple hypotheses for individual baseline variables:
For each j = 1;2;:::; (1 + k)

Hi: 1=0
(b) Joint hypothesis for all baseline variables:

HO: 1: 2:"-: I+k:0

5.7 = +Ti J+U}if Ry =0, for j = 1;2;:::; (1+k); may include strata fixed effects.
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(a) Multiple hypotheses for individual baseline variables:
For each j =1;2;:::; (1 + k)

Hi: =0

D.2.2 Tests that include both respondents and attritors

1. Zh= 14T 1+ (1-R) 1 +Ti(1 =Ry) 14U} for j =1;2;:::; (1 + k); may include
strata fixed effects.

(a) Multiple hypotheses for individual baseline variables:’
For each j = 1;2;:::; (1 + k)

Hi: 1=0
2. Ri= +Ti +X}y +Y& +TiX)h 1 +TiYy 2+ Ui; may include strata fixed effects.

(a) Multiple hypotheses for individual baseline variables I:
Foreach m=1;2;:::;kand J =1;2;:::;1

Hy™: M=0 ; Hyd: 1=0 ; Hy*: M"=0 ; H,2®: 1=0
(b) Multiple hypotheses for individual baseline variables 11:
For each m=1;2;:::;kand J =1;2;:::;1
Ho"™: T'=0 ; H®: 1=0
(c) Joint hypothesis for all baseline variables I:

Ho: = = = 1= 2:0

(d) Joint hypothesis for all baseline variables 11:

3. t-test of the equality of the difference in baseline outcome between respondents and
attritors across treatment groups.

(a) Multiple hypotheses for individual baseline outcomes:
For each J = 1;2;:::;1
Hi:EYA|Ti = LR = 1] —E[YA|Ti = Ry = 0]
= E[Y§|Ti = 0;Ri = 1] — E[Yg|Ti = 0;Ri = 0]

" Although this null hypothesis is testing for the equality of means for treatment and control respondents,
we classify this strategy as one that includes both respondents and attritors given that the regression test is
based on both samples.
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D.3 Determinants of Attrition Test

The determinants of attrition test determines whether attritors are significantly different
from respondents regardless of treatment assignment.

I.Ri= +Ti +X) +Y% +U; may include strata fixed effects.
2. Zf_o = I+ (1-R) 1+ Uij, J =1;2;:::; (1 + K); may include strata fixed effects.
3. Ri= + X}, +Y% +Ui; may include strata fixed effects.

4. Let Reason; take the value of 1 if the individual identifies it as one of the reasons for
which she dropped out of the program. The test consists of a Probit estimation of:
Reason; = +T; + Uj if Rj = 1; may include strata fixed effects.
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SA1 Selection of Articles from the Field Experiment Literature

SA1.1 Selection of Articles for the Review

In order to understand both the extent of attrition as well as how authors test for attrition
bias in practice, we systematically reviewed articles that report the results of field exper-
iments. We include articles that were published in the top five journals in economics, as
well as five highly regarded applied economics journals: American Economic Review, Amer-
ican Economic Journal: Applied Economics, Econometrica, Economic Journal, Journal of
Development Economics, Journal of Human Resources, Journal of Political Economy, Re-
view of Economics and Statistics, Review of Economic Studies, and Quarterly Journal of
Economics.”? By searching for RCT, randomized controlled trial, or eld experiment in each
journal’s website, we identified 160 articles that estimate the impacts of a field experiment
intervention and were published between 2009 and 2015.7

Of these 160 experiments, we exclude five articles with a study design for which attrition
is irrelevant due to the use of repeated cross-sections or the fact that attrition is the only

outcome reported in the abstract. Further, since the testable restrictions proposed in Section

"2We chose these four applied journals because they are important sources of published field experiments.

B0ur initial search using these keywords yielded a total of 235 articles, but 75 of them were neither field
experiments nor studies that report the impacts of an intervention on a specific outcome for the first time.
Of these 75 papers, 33 were observational studies exploiting quasi-experimental variation, and 27 were lab
experiments or lab in the field (which usually take place over a very short period of time). The remaining 15
articles had a primary goal different from reporting an intervention’s impact. In particular, some papers used
existing field experiments to calibrate structural models or illustrate the application of a new econometric
technique, and others used the random allocation of survey formats to test for the best approach to elicit
information on variables such as consumption and poverty.



3 are conditions on the baseline outcome, we also excluded 62 articles that did not have
available baseline data for any of the abstract outcomes. Half of these papers did not collect
baseline outcomes (29) or had a response rate at baseline below fifty percent (4). The other
experiments targeted a population for which the baseline outcome takes the same value for
everyone by design (29).7*

Thus, we review 93 papers with a study design for which attrition is relevant and baseline
data on at least one main outcome variable reported in the abstract.” Of these articles, 61%
were published in the Journal of Development Economics, the American Economic Journal:
Applied Economics, and the Quarterly Journal of Economics (see Table SA2).

One challenge that arose in our review was determining which attrition rates and attrition
tests are most relevant, since the reported attrition rates usually vary across different data
sources or different subsamples. We chose to focus on the results that are reported in the
abstract in our analysis of attrition rates. But, since many authors do not report attrition
tests for each of the abstract results, in our analysis of attrition tests we focus on whether

authors report a test that is relevant to at least one abstract result.

SA1.2 Selection of Articles for the Empirical Applications

In order to conduct the empirical applications in Section 5, we identified 47 articles that had
publicly available analysis files from the 93 articles in our review (see Section 2). To select the
four articles included in the empirical applications, we reviewed the data files of the twelve
articles with the highest reported survey attrition rates. We excluded field experiments for
a variety of reasons that would not, in the majority of cases, affect the ability of the authors
to implement our tests. Of the eight experiments that were excluded: two did not provide

the data sets along with the analysis files due to confidentiality restrictions, two provided

"4Some examples in this last category include training interventions that target unemployed individuals
and measure impacts on employment, as well as studies that estimate the effect of an intervention on the
take-up of a newly introduced product.

"5These 93 articles correspond to 96 field experiments since some papers report results for more than one
intervention.



the data sets but did not include attritors, one did not provide sufficient information to
identify the attritors, and one had a unique outcome of interest that was nearly degenerate
at baseline. In two cases, an exceptionally high number of missing values at baseline was
the limiting factor since the attrition rate at follow-up conditional on baseline response was

lower than the attrition rate reported in the paper.

SA2 Equal Attrition Rates with Multiple Treatment Groups

In this section, we illustrate that once we have more than two treatment groups and violations
of monotonicity, then equal attrition rates are possible without imposing the equality of
proportions of certain subpopulations unlike Example 2 in the paper. Consider the case
where we have three treatment groups, i.e. Tj € {0;1;2}. For brevity, we use the notation

Pi((ro; r1;12)) = P ((Ri(0); Ri(1); Ri(2)) = (o ri;12)) for (ro;ry;r2) € {0;1}°. Hence,

P(Ri = 0[T; = 0) = Pi((0;0,0)) + P;i((0;0;1)) 4+ P;((0;1,0)) + P;((0;1;1))
P(Ri =0[T; = 1) = Pi((0;0;0)) + P;i((0;0; 1)) 4+ Pi((1;0;0)) + P;((1;0;1))

P(Ri = 0[Ti = 2) = P;((0;0;0)) + Pi((1;0;0)) + Pi((0;1;0)) + Pi((1;1;0))  (SA2.1)

The equality of attrition rates across the three groups, i.e. P(Rj = 0|Ti = 0) — P(Ri =
0|Ti=1) =P (Ri =0|Ti =0) — P(Ri = 0|Ti = 2) = 0 implies the following equalities,

Pi((0;1;0)) +Pi((0; 1;1)) = Pi((1;0; 0)) + Pi((1;0; 1))

Pi((0;0;1)) + Pi((0;1;1)) = Pi((1;0;0)) + Pi((1; 1;0)) (SA2.2)

which can occur without constraining the proportions of different subpopulations to be equal.



SA3 Identification and Testing for the Multiple Treatment Case

In this section, we present the generalization of Propositions 1 and 2 (Section SA3.1) as
well as the distributional test statistics (Section SA3.2) in the paper to the case where the
treatment variable has arbitrary finite-support. As in the paper, we provide results for
completely and stratified randomized experiments. We maintain that Djo = 0 for all i, i.e.
no treatment is assigned in the baseline period, Dj; € D, where wlog D = {0;1;:::;|D|—1},
|D| < 0o. Dj = (Dig; Di1) € {(0;0);(0;1);:::;(0;]D| — 1)}. Let Tj denote the indicator for
membership in the treatment group defined by Dj, i.e. T; € T ={0;1;:::;|D| — 1}, where

Ti = Di; and hence |T| = |D| by construction.

SA3.1 Identification and Sharp Testable Restrictions
SA3.1.1 Completely Randomized Trials

PI‘OpOSitiOIl 4. Assume (UiO; Uil;Vi) 1 T;.

(a) If (Uip; Uiz) L Ti|R; holds, then

(i) (Identi cation) Yir|Ti= ;Ri=12Yy( )|Ri=1for €T.
(ii) (Sharp Testable Restriction) Yio|Ti = ;Ri =7 4 YiolTi= %Ri=rforr=0;1,
for ; YeT; #

(b) If (UiO; Uil) 1 Ri’Ti hOldS, then

(i) (Identi cation) Y |Ti = ;Ri=12Yy( ) for 7.

(i) (Sharp Testable Restriction) Yio|Ti= ;Ri=r 4 Yio for € 7,r=0;1.

Proof. (Proposition 4) (a) Under the assumptions imposed it follows that Fy,g.u,jriri =
FUio;UiljRH which implies that for d € D, FYit(d)jTi;Ru fl{ d U < }dFU|tJT| I(U) =
J1{ «(d;u) < :}dFy,r, (U) = Fyajri- (1) follows by letting t =1 and d = , while condi-

tioning the left-hand side of the last equation on T = and Rj = 1 and the right-hand side



on Rj = 1. The testable implication in (ii) follows by letting t = d = 0 and conditioning the
left-hand side on T; = and R;j = r and the right-hand side on T; = ’and R; = r, where
£
Following Hsu et al. (2019), we show that the testable restriction is sharp by showing
that if (Yio; Yi1; Ti; Ri) satisfy Yio|Ti= ;Ri=r 4 Yio|Ti = "Ri=rforr=0;1, ; 'eT,
# " then there exists (Ujo; Uj1) such that Yii(d) = ¢(d; Ujt) for some ¢(d;:) for d € D and
t =0;1 and (Ujp; Ujy) L Ti|R; that generate the observed distributions. By the arbitrariness
of Uit and ¢, we can let U}, = Yit(:) = (Yie(0); Yie(1);::2;Yie(|D] — 1)) and  ¢(d; Uy) =
2}3201 1{j = d}Yit(j) for d € D, t = 0;1. Note that Yjp = Yio(0) since Djp = 0 w.p.1. Now

we have to construct a distribution of Uj = (UJ); UY)) that satisfies
Fuitiri = Fyioovaoimr = Frooyaoirs

as well as the relevant equalities between potential and observed outcomes. We proceed by
first constructing the unobservable distribution for the respondents. By setting the appro-
priate potential outcomes to their observed counterparts, we obtain the following equalities

for the distribution of U; for the respondents in the different treatment groups

FUijTi: Ri=l — I:ino(d)ngj LY OiYioTi= ;Ri=1FYi0jTi= Ri=1

d=1
- Fino(d)QLZjl 1;in1(d)gd:é:Yiliinl(d)gszj +11]Yio:Ti= ;Ri=1FYi0jTi= Ri=1- (SAS'l)
By construction, Fyjri:ri=1 = Fvijri=1. Now generating the above distribution for all

€ T such that F , Which satisfies the following

ino(d)QLZjl 1;inl(d)gdzé;Yil;inl(d)g{jDzj Yo Ti= Ri=

equality V.; e T, # U

F iDj iDj 1.
ino(d)gﬁDzjl l:inl(d)gdzcl,:Yil:inl(d)gdi:J 4:.L1]YiO;Ti= Ri=1

—F . . oL -
Yio(d)gl 2, 1;in1(d)9d:01;Yil;inl(d)gdi:J oillYio:TF GRi=1



yields Uj L Tj|Rj = 1 and we can construct the observed outcome distribution (Yip; Yi1)|Ri =
1 from Uj|R; = 1.
The result for the attritor subpopulation follows trivially from the above arguments,
FUijTi: Ri=0 — FfY.o(d)ngJ LY OiYioTi= ;Ri=0FYi0jTi: Ri=0 (SA3‘2)

Since Fy,ojti:ri=0 = Fy;ojri=0 by construction, it remains to generate the above distribution for

all € T using the same F . This leads to a distribution of Uj|Rj = 0

io(d)ol, b Yit()iYio:Ri=0
that is independent of Tj and that generates the observed outcome distribution Yjo|R; = 0.
(b) Under the given assumptions, it follows that Fu,,.u,,jti:ri = Fuio:UinjTi = Fuio:uin Where

the last equality follows by random assignment. Similar to (a), the above implies that for

d € D, Frymari(0) = [ H{ «(diu) < JdFygmiri(U) = [1{ «(diu) < }dFy, (U) = Fyiyo)-
(i) follows by letting d = and t = 1, while conditioning the left-hand side of the last
equation on Tj = and Rj = 1, whereas (ii) follows by letting d = t = 0 while conditioning

onTi= andRj=rfor €7,r=0;l.
To show that the testable restriction is sharp, it remains to show that if (Yjo; Yis; Ti; Ri)
satisfies Yio|Ti; Ri 4 Yio(0), then there exists (Ujo; Ui1) such that Yi(d) = ¢(d;Uj) for
some ¢(d;:) for d € D and t = 0;1 and (Ujp;Uiz) L (Ti;Ri). Similar to (a.ii), we let
Ul = Yiet) = (Yae(0); Yie(1); 2255 Yie(|D| = 1)) and  o(d; Uie) = 30q 1{5 = d}Yie(i) for
d € D, t =0; 1. By construction, Yijo = Yio(0). Furthermore, Fy,yjt;:r; = Fv,, by assumption.
It follows immediately that for all € 7T
Fvios

Fuit= r=1=F .
UiiTi= (Ri=1 Yo, HiFYia(d)gyd Vi FYia (@) L jTi= ;Ri=1" Yio®

Fuiiti= \Ri=0o = F iDj . Fy.,:
UilTi= iRi=0 io(d)al?, L Yi(iYioiTi= ;Ri=0" Yio

Now constructing all of the above distributions using the same F that

o), 1 Yie(ivioTiiRi

satisfies the above equalities for all € 7 implies the result. O



SA3.1.2 Stratified Randomized Trials
Proposition 5. Assume (Ujo; Uis; Vi) L TilS;.
(a) If (Uijo; Uip) L Ti|Si; R; holds, then

(i) (Identi cation) Yir|Ti = ;Si=s;Ri =12 Yiu( )Si=s;Ri =1,
for €T;seS.

(i) (Sharp Testable Restriction) Yio|Ti = ;Si=s;Ri=r 4 YiolTi= %Si=s;Ri=r,
V,'eT, # :seSr=01.

(b) If (Uio;Ui1) L Ri|Ti holds, then

(i) (ldenti cation) Yi1|Ti= ;Si=s;Ri=1 4 Yir( )|Si=sfor €T,seS.

(i) (Sharp Testable Restriction) Yijo|Ti = ;Si =S;Ri =r 4 Yio|Si =s for €T,

r=0;1,seS.

Proof. (Proposition 5) The proof for this proposition follows in a straightforward manner

from the proof for Proposition 4 by conditioning all statements on S;. O]

SA3.2 Distributional Test Statistics

Next, we present the null hypotheses and distributional statistics for the multiple treatment
case. For simplicity, we only present the joint statistics that take the maximum to aggre-
gate over the individual statistics of each distributional equality implied by a given testable

restriction.

SA3.2.1 Completely Randomized Trials

The null hypothesis implied by Proposition 4(a.ii) is given by the following,

HS;T : FYiojTi= Ri=r = FYinTi= oR;=r fOr ; e T, # 07 r=0;1 <SA33>



Consider the following general form of the distributional statistic for the above null

hypothesis is THT = maxrzfo,19 Ty » Where for r = 0; 1,

Tr};;;’r - (: O)Ig'lélgi & 0 H\/ﬁ (Fn:YiojTF Ri=r — Fn?YiojTiz 03Ri=r) H :

The randomization procedure proposed in the paper using the transformations G} can be
used to obtain p-values for the above statistic under HS T
Let (;r) € T x R, where R = {0;1}. Let ( j;rj) denote the j™ element of 7 x R, then

the null hypothesis implied by Proposition 4(b.ii) is given by the following:

HET © Fyigiti= j:Rimr; = FioiTi= jesRizrias for j = 1110 |T x R — Lt (SA3.4)
the test statistic for the above joint hypothesis is given by

Tﬁ;;rTn = max H\/_ (Fn YioTi= jRi=r; — FnivieiTi= j+1;Ri=rj+l)|| ;

The randomization procedure proposed in the paper using the transformations G2 can be

used to obtain p-values for the above statistic under H3' ' .

SA3.2.2 Stratified Randomized Trials

The null hypothesis implied by Proposition 5(a.ii) is given by the following,

1,S;T .0 0 L -
H FYiojTi= Si=s:Rj=r — FYinTi= 0:5;=s;R;=r for ; € T, 7& , S € S, r=20;1:

(SA3.5)

Consider the following general form of the distributional statistic for the above null

TST = where for s € S and r = 0; 1,

hypothesis is = maxXsps MaXr2f0:1g T p’

nrs:

Tr} :s = ¢ O)IQTaZ}f & 0 H\/ﬁ (Fn;YiojTi= Si=s;Rij=r — Fn;YiojTiz O;Si=s;Ri:r) H .



The randomization procedure proposed in the paper using the transformations gé;s can be
used to obtain p-values for T}ST under H é.;S;T _
Let ( ;r) € T x R. Let ( j;r;) denote the j™ element of 7 x R, then the null hypothesis

implied by Proposition 5(b.ii) is given by the following:

2;S;T R TR .
Ho D Fyioimi= iSi=siRi=rj = FYioiTi= j+1;Si=S;Ri=rj+1 forj=1,:10]T xR|-1,s€S:
(SA3.6)
the test statistic for the above joint hypothesis is given by
Tr?;;r?l;T = max max ”\/ﬁ (Fn;YiojTi= §i:Si=siRi=rj — Fn;YiojTi= j+1:Si=S;Ri=rj+1) || ;

The randomization procedure proposed in the paper using the transformations gg?s can be

used to obtain p-values for the above statistic under H3°' .

SA4 Simulation Study

We illustrate the theoretical results in the paper using a numerical study. The simulations
examine the performance of the differential attrition rate test as well as both the mean and

distributional tests of the IV-R and IV-P assumptions.

SA4.1 Simulation Design and Test Statistics

The data-generating process (DGP) is described in Panel A of Table SA1. We assign indi-
viduals to one of the four response types: always-responders, never-responders, control-only
responders, and treatment-only responders. The unobservables that determine the outcome
consist of time-invariant and time-varying components. We introduce dependence between
the unobservables in the outcome equation and potential response by allowing the means of
the time-invariant component to differ for each response type. We also allow for heteroge-

neous treatment effects, so that the ATE-R can differ from the ATE.



We conduct simulations using four variants of this simulation design that feature different
cases of IV-R and IV-P as summarized in Panel B of Table SA1.7® Designs I and II present
cases where the differential rate test would have desirable properties as a test of IV-R.”’
Both designs allow for dependence between the unobservables in the outcome equation and
potential response and impose monotonicity in the response equation by ruling out control-
only responders. Design I allows for non-zero proportions of treatment-only responders and
thereby a violation of IV-R. Design II rules out treatment-only responders and, as a result,
we have IV-R, but not IV-P.

Designs IIT and IV illustrate Examples 1 and 2 in Section 3.3, respectively. Design III
demonstrates a setting in which we have differential attrition rates and IV-P. It imposes
monotonicity and differential attrition rates as in Design I, but allows the unobservables in
the outcome equation and potential response to be independent. Finally, Design IV follows
Example 2 in demonstrating a case in which there are equal attrition rates and a violation
of internal validity. Here, we allow for a violation of monotonicity and dependence between
the unobservables in the outcome equation and potential response. We impose that the
proportion of treatment-only and control-only responders is identical and, as a result, the
design features equal attrition rates.

In all four designs, we chose a range of attrition rates from the results of our review of
the empirical literature (see Figure 1). Specifically, we allow for attrition rates in the control
group from 5% to 30%, and differential attrition rates from zero to ten percentage points. To
illustrate the implication of the designs for estimated mean effects, we report the simulation
mean and standard deviation of the estimated difference in mean outcomes for the treatment

and control respondents in the follow-up period (Y,/R — Y,CR).

"6We only consider these four designs to keep the presentation clear. However, it is possible to combine
different assumptions. For instance, if we assume po; = p1o and (Uio, Uir) L (Ri(0), Ri(1)), then we would
have equal attrition rates and IV-P. We can also obtain a design that satisfies exchangeability by assuming
do1 = d10. If combined with pp1 = p10, then we would have equal attrition rates and IV-R only (Proposition
3(iii)).

"TTo be precise, in these designs, the differential attrition rate test would have non-trivial power when
IV-R is violated while controlling size when IV-R holds.

10



Table SA1: Simulation Design

Panel A. Data-Generating Process

Yit = B1Dit + B2Ditai + i + it for t = 0,1

Outcome: where 81 = 85 = 0.25.
Treatment: Ti el Bernoulli(0.5), Dip = 0, Di; = Ti.
. Ri = (1 -Ty)Ri(0) + TiRi(1)
Response: where pror, = P((Ri(0), Ri(1)) = (ro, 1)) for o,y € {0,112
Uit = (ci,mir)'s t=0,1,
N (oo, 1) if (Ri(0), Ri(1)) = (0,0),
1D, i izi:d: N(éol, 1) lf (Ri (0), Ri(l)) = (0, 1)7
UDObSGTV&bleSZ QI‘RI(O)aRI(l) N(610,1> Zf (R|<O),R|(1)) _ (1,0)7
nia = 0.5mi0 + €io, (M0, €i0) "~ N(0,0.512)
Panel B. Variants of the Design
Design I 11 111 v
Monotonicity in the Response Equation Yes Yes Yes No
Equal Attrition Rates No Yes No Yes
IV-R Assumption No Yes Yes No
IV-P Assumption ((Uig, Ui1) L Rj) No No Yes No

Notes: For an integer k, Ik denotes a k x k identity matrix. In Designs I and II, we let dgo = —0.5,
do1 = 0.5, and 13 = —(doopoo + do1po1)/p11, such that Elaj] = 0. In Design III, 6y, = 0 for
all (ro,71) € {0,1}?, which implies Uit L (Ri(0), Ri(1)) for ¢ = 0,1. In Design IV, doo = —0.5,
do1 = —d10 = 0.25, and 011 = —(Joopoo + do1po1 + d10p10)/pP11. As for the proportions of the
different subpopulations, in Designs I-ITI, we let pog = P(Rj = O|T; = 1), po1 = P(Ri = 0|T; =
0)—P(R; =0|T; = 1), and p11 = 1 —poo — po1, whereas in Design IV, we fix p1o = po1, poo = p10/4,
and P(Rj = 0|T; = 0) = poo + p10-

The primary goal of our simulation analysis is to compare the performance of the differen-
tial attrition rate test as well as the mean and distributional IV-R and IV-P tests using a 5%
level of significance. The differential attrition rate test is a two-sample t-test of the equality

of attrition rates between the treatment and control group, P (Rj = 0|T;) = P (Rij = 0). The

11



hypotheses of the mean IV-R and IV-P tests (denoted with an M subscript) are given by:

Yio= uTiRi+ a1(1—-T)Ri+ 10Ti(1 —Rj)+ ool =Ti)(1 — Rj) + ;i (SA4.1)
Hoan s 10= oo; (CRTR)
Hé;fa D11 = o1 (CA-TA)
Hom: 0= o0& 1= o (IV-R)  (SA4.2)
Him: 1= o= 10= o; (IV-P)  (SA4.3)

ng,{,, (Héf,%,,) tests the significance of mean differences between the treatment and control
respondents (attritors) only. These two hypotheses are similar to widely used tests in the
literature and are both implications of the IV-R assumption. Hg.n, (Hg ) are the hypotheses
of the mean IV-R (IV-P) tests in Section 3.2.2, which we implement using Wald statistics
and asymptotic 2 critical values. To implement the distributional IV-R and IV-P tests, we

use Kolmogorov-Smirnov-type (KS) statistics of their respective hypotheses,

HI: YiolTiRi=r<YyoRi=r; forr=0;1; (SA4.4)

HZ: YiolTi:Ri 2 Yio: (SA4.5)

We formally define the KS statistics for the above hypotheses in Section A.1, where we also

describe the randomization procedures we use to obtain their p-values.

SA4.2 Simulation Results

Table SA9 reports simulation rejection probabilities for the differential attrition rate test
as well as the mean and distributional tests of the IV-R and IV-P assumptions for Designs
[-IV. First, we consider the performance of the differential attrition rate test. Columns 1
through 3 of Table SA9 report the simulation mean of the attrition rates for the control

(C) and treatment (T) groups as well as the probability of rejecting a differential attrition

12



rate test. Designs I and II, which obey monotonicity and allow for dependence between the
unobservables in the outcome equation and potential response, illustrate the typical cases in
which the differential attrition rate test can be viewed as a test of IV-R. In Design I, where
internal validity is violated, the test rejects above 5%, while in Design II, where IV-R holds,
the test controls size. Designs III and IV, on the other hand, illustrate the concerns we
raise regarding the use of the differential attrition rate test as a test of IV-R. In Design III,
the differential attrition rate test rejects at a frequency higher than 5% simply because the
attrition rates are different even though IV-P holds. In Design IV, however, the differential
attrition rate test does not reject above 5% when internal validity is violated because attrition
rates are equal.

Next, we examine the performance of the IV-R tests, which are given in Columns 4
through 7 of Table SA9. As expected, where IV-R holds (Designs IT and III), the tests
control size. Similarly, where IV-R is violated (Designs I and IV), the tests reject above 5%.
In general, the relative power of the test statistics may differ depending on the DGP. In our
simulation design, however, the rejection probabilities of the attritors-only test (CA-TA) and
the joint tests (Mean and KS) are significantly higher than the test based on the difference
between the treatment and control respondents (CR-TR)."®

The test statistics of the IV-P assumption (Columns 8 and 9 in Table SA9) also behave
according to our theoretical predictions. In Designs I, II and IV, where there is dependence
between the unobservables in the outcome equation and potential response, the IV-P test
rejects above 5%. Of particular interest is Design II, since internal validity holds for the
respondents, but not for the population (i.e. IV-R holds, but IV-P does not). Thus, although
the IV-P test does reject, the IV-R test does not reject above 5%. In this case, the difference
in mean outcomes between treatment and control respondents (i.e. the estimated treatment
effect) is not unbiased for the ATE (0.25), but it is internally valid for the respondents. In

Design III, which is the only design where IV-P holds, both the mean and KS tests control

"8This may be because the treatment-only responders are proportionately larger in the control attritor
subgroup than in the treatment respondent subgroup.
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size. Examining the difference in mean outcomes between treatment and control respondents
at follow-up in this design, we find that it is unbiased for the ATE across all combinations
of attrition rates.

Overall, the simulation results illustrate the limitations of the differential attrition rate
test and show that the tests of the IV-R and IV-P assumptions we propose behave according
to our theoretical predictions. In what follows, we examine the finite-sample performance of

a wider variety of the distributional tests of the IV-R and IV-P assumptions.

SA4.3 Extended Simulations for the Distributional Tests
SA4.3.1 Comparing Different Statistics of the Distributional Hypotheses

We consider the Kolmogorov-Smirnov (KS) and Cramer-von-Mises (CM) statistics of the
simple and joint hypotheses. For the joint hypotheses, we include the probability weighted
statistic in addition to the version used in the paper.

For the IV-R assumption, consider the following hypotheses implied by Proposition 1(b.ii)

in the paper

Hy': YiolTi = L,Ri = 02 Y;o|Ti = 0; R = 0; (CA-TA)
HS;Z : Yi0|Ti =1;Rj=1 4 Yi0|Ti =0;Rj =1, (CR - TR)
HE  : Hyt & Hy%: (Joint) (SA4.6)

For r = 0;1, the KS and CM statistics to test Hé;rﬂ is given by

KS%;r = |HR1.a=Xr ’\/ﬁ“:n;Yio(yiO‘Ti =LRi= r) - Fn;Yio(yiOITi =0;Ri = I’))| :

> iri=r (VN(Fryio (Yiol Ti = 1Ry = 1) = Frovio (Vi Ti = O;Ri = 1))
> H{Ri =r}

2
C'\/Irll;r =

(SAL.7)

For the joint hypothesis Hg, which is the sharp testable restriction in Proposition 1(b.ii) in

the paper, we consider either KS{. ., = max{KS[;; KS}, } or KS{.) = pn,oKSg0+Pnia KSg.1,

14



where pp;r = >in; {Ri = r}=n for r = 0;1. CM}., and CMy, are similarly defined.

Table SA10 presents the simulation rejection probabilities of the aforementioned statis-
tics of the IV-R assumption. For each simulation design and attrition rate, we report the
rejection probabilities for the KS statistics of the simple hypotheses, KS}];O and KSrll;l, using
asymptotic critical values (KS (Asym:)) as a benchmark for the KS (KS (R)) and the CM
(CM (R)) statistics using the p-values obtained from the proposed randomization procedure
to test H3 (B = 199). The different variants of the KS and CM test statistics control size
under Designs II and III, where IV-R holds. They also have non-trivial power in finite sam-
ples in Designs I and IV, when IV-R is violated. The simulation results for the distributional
statistics also illustrate the potential power gains in finite samples from using the attritor
subgroup in testing the IV-R assumption. In testing the joint null hypothesis, we find that

KS}

am and CMg. - (Joint (m)) exhibit better finite-sample power properties than KSg.)
and CMy., (Joint (p)). We also note that the randomization procedure yields rejection
probabilities for the two-sample KS statistics, KS}, and KS}.;, that are very similar to
those obtained from the asymptotic critical values. In addition, in our simulation design,
the CM statistics generally have better finite-sample power properties than their respective
KS statistics, while maintaining comparable size control.

We then examine the finite-sample performance of the distributional statistics of the IV-

P assumption. Proposition 1(b.ii) in the paper implies the three simple null hypotheses as

well as their joint hypothesis below,

HE: YiolTi = 0;Ri = 0= Yio|Ti = O; Ry = 1; (CA-CR)
Ha? : YiolTi = 0;Ri = 1 £ Yyo| Ty = 1;R; = 0; (CR-TA)
HZ®: YiolTi= LRi =02 Yio|Ti = ;R = 1; (TA-TR)
HZ : HI' & HG? & HE®: (Joint) (SA4.8)

Let ( j;rj) denote the j™ element of 7 x R = {(0;0); (0;1); (1;0); (1;1)}. We can define the
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KS and CM statistics for Hg;j for each J = 1;2;3 by the following,

Ksﬁ;j -

‘\/ﬁ (FI’I:YiojTi:j LRi=r 1 Fn;YiojTi= j;Ri=l’j) ;

(\/ﬁ (Fn;YinTi: i sRi=r 1 I:n;YiojTi: j;Rinj))
CMZ o (Ti;RD2F( )i j+1:rj+1) |
h ZF:ll{Cri;Ri) e {( j;rj);( j+1;rj+1>}} '

_ max
i:(Ti;Ri)2F( j:rj);( j+1:rj+1)9
2

(SA4.9)

The joint hypothesis HZ is tested using the joint statistics KSZ.,, = maxj=1.3 KSrz];j and
CM{,, = maxj=1,23 CMZ;.

In Table SA11, we report the simulation rejection probabilities for distributional tests
of the IV-P assumption. In addition to the aforementioned statistics whose p-values are
obtained using the proposed randomization procedure to test H3 (B = 199), the table also
reports the simulation results for the KS statistics of the simple hypotheses using the asymp-
totic critical values. Under Designs I, IT and IV, IV-P is violated, the rejection probabilities
for all the test statistics we consider tend to be higher than the nominal level, as we would
expect. The joint KS and CM test statistics behave similarly in this design and have compa-
rable finite-sample power properties to the test statistic of the simple hypothesis (TA-TR),
which has the best finite-sample power properties in our simulation design. Finally, in Design
ITI, where IV-P holds, our simulation results illustrate that the test statistics we consider

control size.

SA4.3.2 Additional Variants of the Simulation Designs

To illustrate the relative power properties of using the simple vs joint tests of internal validity,
we present additional results using variants of the simulation designs. We show the results
of the KS tests for the case where P (R; = 0|T; = 0) = 0:15.”° For the joint hypotheses, we

report the simulation results for the KS statistic that takes the maximum over the individual

We use an attrition rate of 15% in the control group as reference since that is the average attrition rate
in our review of field experiments. See Section 2 in the paper for details.
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statistics.

Panel A in Figure SA1 displays the simulation rejection probabilities of the tests of the
IV-R assumption while Panel B displays the simulation rejection probabilities of the tests
of the IV-P assumption. We present these rejection probabilities for alternative parameter
values of the designs we consider in Section SA4 in the paper. Design Il to | depicts
the case in which we vary the proportion of treatment-only responders, po;, from zero to
0:9 x P(Rj = 0|T; = 0), where pg; = 0 corresponds to Design II and pp; > 0 to variants of
Design I. Design 111 to | depicts the case in which we vary the correlation parameter between
the unobservables in the outcome equation and the unobservables in the response equation,

, from zero to one. Hence, = 0 corresponds to Design III while > 0 corresponds to
different versions of Design I. Finally, the results under Design Il to IV are obtained by fixing
Por = P10 and varying them from zero to 0:9 x P (R; = 0|Ti = 0). Design II corresponds to
the case in which pg; = p1o = 0 and po; = P10 = 0 corresponds to different versions of Design
IV.

Overall, the simulation results illustrate that the joint tests that we propose in Section
A in the paper have better finite-sample power properties relative to the statistics of the
simple null hypotheses. Most notably, the results under Design Il to | in Panel A of Figure
SA1 show that when IV-R does not hold (i.e. pos > 0), the simulation rejection probabilities
of the joint test are generally above the simulation rejection probabilities of the simple test

that only uses the respondents.

SA5 Tables and Figures
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Table SA2: Distribution of Articles by Journal and Year of Publication

Year

Journal Total
2009 2010 2011 2012 2013 2014 2015

AEJ: Applied 0 0 0 3 3 3 8 17
AER 0 1 1 2 0 2 2 8
EJ 0 0 1 2 0 5 0 8
Econometrica 1 0 0 0 0 1 0 2
JDE 0 0 1 1 3 11 6 22
JHR 0 0 0 1 1 1 2 5
JPE 0 0 1 0 0 0 0 1
QJE 1 1 4 3 2 4 3 18
REstat 2 0 2 1 1 1 3 10
REstud 0 0 0 0 1 1 0 2
Total 4 2 10 13 11 29 24 93

Notes: The 93 articles that we include in our review correspond to 96 field
experiments. The two articles that reported more than one field experiment
are published in the AER(2015) and the QJE(2011), respectively.

Table SA3: Overall Attrition Rate by Country’s Income Group

Prop. of
. . . : Experiment
Field Experiments in: N Mean SD Min Max p25 p75 o Rote
> 15%
High income countries 28 207 242 0 87 3 28 46%
Upper middle income countries 18 156 131 0 54 7 20 55%
Low and lower middle income countries 47 11.9 12.6 0 59 2 18 34%
All countries 93 153 172 0 87 33 21 42%

Notes: This table considers the highest overall attrition rate for each field experiment in our review
and excludes one paper that does not report overall attrition rates. We classify countries by income
group according to the official definition of the World Bank.

Table SA4: Number of Baseline Variables Included in The Selective Attrition Test

Category No. of Baseline Variables Included
Mean SD Min Max p25 p75
All papers that conduct a selective attrition test 173 103 1 46 10 22

Papers that test on multiple baseline variables:
Multiple hypotheses for individual variables (76%) 16.9 9.7 2 46 10 21
Joint hypothesis for all variables (24%) 203 113 4 4 13 23

Notes: Of the 47 experiments that conduct a selective attrition test, 45 test on multiple baseline
variables. This table excludes one experiment that tests on multiple baseline variables but does
not provide sufficient information for it to be categorized. Percentages are a proportion of the 45
experiments that test on multiple baseline variables.
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Figure SA1: Additional Simulation Analysis for the KS Statistic of Internal Validity
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Panel B. Internal Validity for the Study Population
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