
ARTICLE TEMPLATE

Model Averaging Estimation of Panel Data Models with Many

Instruments and Boosting

Hao Haoa Bai Huangb and Tae-hwy Leec

aFord Motor Company, Dearborn, Michigan, USA; bCentral University of Finance and
Economics, Beijing, China; c University of California, Riverside, Riverside, California, USA

ARTICLE HISTORY

Compiled April 7, 2022

ABSTRACT
Applied researchers often confront two issues when using the fixed effect-two-stage
least squares (FE-2SLS) estimator for panel data models. One is that it may lose
its consistency due to too many instruments. The other is that the gain of using
FE-2SLS may not exceed its loss when the endogeneity is weak. In this paper, an
L2Boosting regularization procedure for panel data models is proposed to tackle the
many instruments issue. We then construct a Stein-like model-averaging estimator
to take advantage of FE and FE-2SLS-Boosting estimators. Finite sample properties
are examined in Monte Carlo and an empirical application is presented.
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1. Introduction

In the social and behavioral sciences, research on the causal effect of one variable on
another is far from settled. Regression analysis may fail to give a reliable estimate of
the causal effect due to many reasons. In a panel data or longitudinal data model,
the fixed-effects estimator may suffer from the endogeneity issues that arise due to
the correlated unobserved effects or the correlation between explanatory variables and
idiosyncratic errors. In the presence of such correlations, both fixed effects (FE) and
random effects (RE) estimators yield biased and inconsistent estimates of the pa-
rameters. The resulted bias can not be removed via the differencing estimation. The
commonly used technique to overcome this problem is to use instruments for those
endogenous explanatory variables. The most basic approach to doing this is the two-
stage least squares (2SLS) estimation. In most applied settings, many analysts have
favored the 2SLS approach as shown in [2, 10, 19]. These papers use instrumental
variable (IV) procedures to estimate the parameters of the panel data model with
endogenous regressors. The IV estimation is first introduced by [28]. A major break-
through comes out later with the proposition of 2SLS by [6, 27]. [4] studies the widely
used fixed effects-two-stage least squares (FE-2SLS) estimator which is very popular
mainly because of its efficiency among the class of IV estimators under conditional
homoscedasticity.
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However, there are two issues that often arise in practice. The first issue is when
the endogeneity is weak: the consistency gain of using FE-2SLS may not exceed its
efficiency loss. The other issue is when there are too many instruments: FE-2SLS may
converge to FE, losing its consistency even when all the instruments are relevant and
valid. In this paper, we propose a two-step procedure to handle these two issues.

First, if the endogeneity is strong, FE is inconsistent and the gains from FE-2SLS
may be big. However, if the endogeneity is weak, the consistency gain from using FE-
2SLS can be small. As FE-2SLS is less efficient than FE, there is a trade-off between
the inefficient FE-2SLS estimation and the inconsistent FE estimation. Under this
scenario, FE-2SLS and FE estimations can be combined to take advantage of both
estimators to obtain a combined estimator with a lower total mean squared error risk.

Second, 2SLS needs enough number of IVs. Otherwise, the finite order integer mo-
ments of the 2SLS estimator may not exist [21]. [22] use the Web of Science Database
across all papers published between January 2000 and October 2018 on the topic of
instruments in the top five economic journals, and find that more than half of these
empirical studies report results from a specification based on multiple IVs in the use
of 2SLS. Their results confirm that empirical researchers often use more number of
IVs than that of endogenous variables in the 2SLS estimation. However, applied re-
searchers often confront problems when having a large number of instruments in panel
data models, e.g., in the case when the IVs are formed from lagged endogenous vari-
ables. As shown in [7], too many instruments will cause inconsistency in the 2SLS
estimator. Since the FE-2SLS estimator is sensitive to a large number of instruments,
a regularization method is necessary to reduce the dimension of instruments for con-
sistent estimation. For the cross-sectional models, there is a rich literature on the
regularization approaches. For example, in [8, 9], Lasso is used for instrument selec-
tion. [12, 13, 15] extend the Lasso-type regularization to the generalized method of
moments (GMM). Other than these regularized methods, [14] use information criteria
for moment selection, while [23] use L2Boosting for instrumental variable selection. For
the panel data models, little research is available on data-driven regularization. In this
paper, we extend L2Boosting by [11] for regularization of the FE-2SLS estimator for a
large n and large T panel data model. We call this estimator the “FE-2SLS-Boosting”.
We perform a series of Monte Carlo simulations to examine the issue that FE-2SLS
becomes inconsistent if too many instruments are used and show that the proposed
FE-2SLS-Boosting restores the consistency when there are many instruments.

We finally apply the proposed two-step approach to U.S. real house prices data
and examine the extent to which house price fluctuations are driven by fundamental
factors. This application is policy relevant. The empirical results indicate that the
house prices that deviate from the equilibrium will eventually revert [20] (hereafter
HPY). In this paper, the original HPY panel data of 49 States over the 29 year period
of 1975–2003 is used to discuss the responses of the U.S. housing market to three
fluctuations in incomes, population, and interest rates.

In sum, our procedure handles these two problems in the following two steps: First,
L2Boosting (modified for a panel data model) is applied to regularize FE-2SLS for
selecting instruments. Then FE and FE-2SLS-Boosting is combined to deal with the
weak endogeneity. Using too many instruments, FE-2SLS can be inconsistent and can
be worse than FE. Regularization by L2Boosting maintains the consistency for the FE-
2SLS-Boosting estimator. The combination of FE and FE-2SLS-Boosting is shown to
further improve over the FE-2SLS-Boosting estimator. Our Monte Carlo experiment
demonstrates the relative performance of FE, FE-2SLS, FE-2SLS-Boosting, and the
regularized combined (model-averaging) estimators.
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The rest of the paper is organized as follows: In Section 2, FE and FE-2SLS estima-
tors are discussed. In Section 3 we present a combined estimator that combines the FE
and FE-2SLS estimators. In Section 4, we discuss the needs and benefits of using regu-
larization method when there are many instruments and introduce FE-2SLS-Boosting.
Section 5 provides a Monte Carlo simulation. Section 6 presents an empirical example
of real house prices in the US. Section 7 concludes with a brief discussion. All proofs
are in appendices A and B.

2. FE and FE-2SLS

Consider the following large n and large T panel data model with fixed effects:

yit = x′itβ + αi + uit, i = 1, . . . , n, t = 1, . . . , T, (1)

where xit is q× 1, and β is a q× 1 vector of unknown parameters. αi’s are fixed effects
and uit’s are the random disturbances. In matrix notation, Equation (1) can be written
as

y = Xβ +Dα+ u, (2)

where y = (y11, . . . , y1T , . . . , yn1, . . . , ynT )′ is nT × 1, X =
(x11, . . . , x1T , . . . , xn1, . . . , xnT )′ is nT × q, u is nT × 1, D ≡ In ⊗ ιT is nT × n
where ιT is a vector of ones, α is n×1, and u ∼

(
0, σ2

uInT
)
. Pre-multiplying Equation

(2) by Q ≡ InT −D (D′D)−1D′:

Qy = QXβ +QDα+Qu, (3)

where QD = 0. Noting that Q is idempotent, β̂FE can be obtained as

β̂FE =
(
X ′QX

)−1
X ′Qy. (4)

According to Corollary 1 in [3], as n, T → ∞, under i.i.d. assumption of uit, the

asymptotic distribution of β̂FE is

√
nT
(
β̂FE − β

)
d→ N (0, V1) , (5)

Let plim denote the probability limit operator as n, T → ∞, and V1 =

σ2
u

(
plimX′QX

nT

)−1
. The feasible estimator of σ̂2

u of σ2
u can be obtained by first running

the ordinary least squares (OLS) regression y on X to get ε̂it = yit − xitβ̂OLS as the

OLS residual and β̂OLS = (X ′X)−1X ′y. This gives

σ̂2
u =

1

n (T − 1)

n∑
i=1

T∑
t=1

(
ε̂it − ε̂i

)2
. (6)

The endogeneity occurs due to the (i) correlation of αi with xit or (ii) correlation of
uit with xit. We consider the latter case here for which the FE estimator becomes
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inconsistent. With uit and xit correlated, the vector xit is endogenous. Performing
2SLS on (3) with QZ as the set of instruments

Z ′QQy = Z ′QQXβ + Z ′QQu, (7)

one gets the FE-2SLS estimator

β̂FE-2SLS =
(
X ′HZX

)−1
X ′HZy, (8)

where HZ = QZ (Z ′QZ)−1 Z ′Q. Under both large n and large T , the asymptotic

distribution of β̂FE-2SLS follows

√
nT
(
β̂FE-2SLS − β

)
d→ N (0, V2) , (9)

where V2 = σ2
u

(
plimX′HZX

nT

)−1
.

Remark 1: If a subset of regressors is treated as endogenous, consider the following
structural equation of a panel data model:

y = Xβ +Dα+ u, (10)

where X = (X1 Z1) and β = (β1 β2) . Let X1 be q1 endogenous variables, Z1 be
`1 included exogenous variables, and q = q1 + `1. Let Z = (Z1 Z2) be the set of `
(= `1 + `2) exogenous variables (instrumental variables). This equation is identified if
` ≥ q, and therefore `2 ≥ q1. In this case, QZ can be used as the set of instruments to
get the FE-2SLS estimator as

β̂FE-2SLS =
(
X ′HZX

)−1
X ′HZy,

with HZ = QZ (Z ′QZ)−1 Z ′Q.

3. Combined Estimator of FE and FE-2SLS

The FE-2SLS estimator is preferred to the FE estimator as it is consistent under
endogeneity (which can be ensured by the regularization of many instruments), while
the FE estimator is inconsistent. However, in small samples, FE-2SLS can have a much
larger variance so FE can have smaller mean squared errors (MSE) especially when
the extent of endogeneity is not severe. Motivated by this observation, we follow [17]

to propose the following combined estimators β̂c, which is the weighted average of FE
and FE-2SLS estimators with the weights depending on the Hausman statistic [18].
The combination of FE and FE-2SLS is expected to improve the estimation precision.
Let

β̂c = wβ̂FE + (1− w)β̂FE-2SLS, (11)
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where β̂FE-2SLS is the FE-2SLS estimator, and

w =

{
τ

HnT
if HnT ≥ τ

1 if HnT < τ,
(12)

HnT = nT (β̂FE-2SLS − β̂FE)′
(
V̂2 − V̂1

)−1
(β̂FE-2SLS − β̂FE), (13)

where HnT is the Hausman statistics, τ is a shrinkage parameter, V̂1 = σ̂2
u

(
X′QX
nT

)−1

and V̂2 = σ̂2
u

(
X′HZX
nT

)−1
.

The model has the following reduced-form representation for xit as

xit = Π′zit + vit, (14)

with E (zitvit) = 0. Next, write the structural equation error uit as a linear function
of vit and εit

uit = v′itρ+ εit, (15)

with E (vitεit) = 0. We use the local asymptotic approach. ρ is local to zero

ρ =
1√
nT

δ, (16)

where δ is a q×1 localizing parameter, which indexes the degree of correlation between
uit and vit. δ (and thus ρ) controls the degree of endogeneity.

We make the following assumptions:
Assumption A1. xi are distributed independently across i. E ‖xit‖4 <∞.
Assumption A2. uit are i.i.d. over t and i. αi are independent over i. αi and xit are
independent of uit for any i and t. E

(
u4
it

)
<∞, E ‖vit‖4 <∞, E

(
ε4
it

)
<∞.

Assumption A3. σ2
u

(
plimn,T→∞

1
nTX

′QX
)−1

= V1, σ2
u

(
plimn,T→∞

1
nTX

′HZX
)−1

=

V2. σ̂
2
u = σ2

u + op (1) .

Assumption A4. E ‖zit‖4 <∞; rank(Π) = q.

In Assumptions A1, xi are distributed not necessarily identically across different
i. More details can be found in [1]. For a vector or matrix A, its norm is defined

as ‖A‖ = (tr (A′A))1/2. Assumption A2 rules out the cases in which the regressors
include lagged dependent variables, although a dynamic panel introduces an even
larger number of instruments for which the proposed method of using L2Boosting to
select instruments would be useful. More discussion of the i.i.d. assumption about the
idiosyncratic errors in a large T panel is provided in [3]. Assumption A3 is standard in
the literature. Assumption A4 is the rank condition on Π to ensure that the coefficient
β is identified.

Denote V = (v′11, . . . , v
′
1T , . . . , v

′
n1, . . . , v

′
nT )′, and Σ = E (V V ′) . We then have the

following theorem for the joint asymptotic normality of FE and FE-2SLS estimators.
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Theorem 1: Under Assumptions A1-A4,

√
nT

(
β̂FE − β

β̂FE-2SLS − β

)
d→ h+ ξ, (17)

where

h =

(
σ−2
u V1tr (QΣ) δ

0

)
, (18)

ξ ∼ N(0, V ), (19)

V =

(
V1 V1

V1 V2

)
. (20)

Furthermore,

HnT
d→ (h+ ξ)′B(h+ ξ), (21)

√
nT
(
β̂c − β

)
d→ Ψ = G′2ξ −

(
τ

(h+ ξ)′B(h+ ξ)

)
1

G′ (h+ ξ) , (22)

where B = G (V2 − V1)−1G′, G =
(
−I I

)′
, and G2 =

(
0 I

)′
, and (a)1 =

min [1, a] . �
Proof. See Appendix A.

Theorem 1 extends [17] for the panel data models and gives expressions for the joint

asymptotic distribution of β̂FE and β̂FE-2SLS estimators, the Hausman statistic, and
the combined estimator under the local-to-exogeneity setup in Equation (16). These
alternative estimators (FE, FE-2SLS, and combined estimators) are compared in the
asymptotic risk. Following [16, 17], the asymptotic risk of any sequence of estimators

β̂ of β is defined as

R
(
β̂, β,W

)
= lim

n,T→∞
E

[
nT
(
β̂ − β

)′
W
(
β̂ − β

)]
≡ R

(
β̂
)
. (23)

Denote the largest eigenvalue λ1 ≡ λmax (W (V2 − V1)) of the matrix W (V2 − V1)
and the ratio d ≡ tr(W (V2 − V1)) /λ1. The following theorem is an extension of the
Theorem 2 of [17] for the panel data model with general weighting matrix W .

Theorem 2: Under Assumptions A1-A4, if

d > 2 and 0 < τ ≤ 2 (d− 2) , (24)
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then

R
(
β̂FE-2SLS

)
= tr (WV2) , (25)

and

R
(
β̂c

)
< R

(
β̂FE-2SLS

)
− τλ1 (2 (d− 2)− τ)

σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q

. (26)

�

Proof. See Appendix A.

Equation (26) shows that the asymptotic risk of the combined estimator is strictly
less than that of the FE-2SLS estimator, so long as the shrinkage parameter τ satisfies
the condition (24). In the special case W = (V2 − V1)−1 , the condition (24) simplifies
to q > 2 and 0 < τ ≤ 2 (q − 2). The assumption q > 2 is Stein’s (1956) classic condition
[26] for shrinkage.

The following two corollaries are obtained with W = (V2 − V1)−1.

Corollary 1: Under Assumptions A1-A4 and the local-to-exogeneity setup,

R
(
β̂FE

)
= tr (WV1) + σ−4

u δ′tr (QΣ)V1WV1tr (QΣ) δ,

and R
(
β̂FE

)
≤ R

(
β̂FE-2SLS

)
if σ−4

u δ′tr (QΣ)V1WV1tr (QΣ) δ ≤ q

R
(
β̂FE

)
> R

(
β̂FE-2SLS

)
otherwise. �

Corollary 1 indicates that when endogeneity is weak (ρ and hence δ is close to zero),
the FE estimator may perform better than the FE-2SLS estimator.

Corollary 2: Under Assumptions A1-A4, If q < σ−4
u δ′tr(QΣ)V1WV1tr(QΣ) δ, d > 2,

and 0 < τ ≤ 2 (d− 2) , then R
(
β̂c

)
< R

(
β̂FE

)
. �

Corollary 2 indicates that, when endogeneity is strong, d > 2, and 0 < τ ≤ 2 (d− 2) ,
the combined estimator is better than both the FE and FE-2SLS estimators.
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4. FE-2SLS-Boosting

According to [7], the 2SLS estimator is inconsistent when the number of instruments
` is large. By replacing X with X∗ = (x∗′11, . . . , x

∗′
1T , . . . , x

∗′
n1, . . . , x

∗′
nT )′ = QX and Z

with Z∗ = (z∗′11, . . . , z
∗′
1T , . . . , z

∗′
n1, . . . , z

∗′
nT )′ = QZ, we extend the Bekker theorem on

the inconsistency result of 2SLS to FE-2SLS in the panel data models, i.e., the FE-
2SLS is inconsistent unless `

nT → 0. As shown in Appendix B, while β̂FE is inconsistent

due to the endogeneity, β̂FE-2SLS may also be inconsistent due to the large number of
instruments.

The reduced form equation for x∗it can be written as

x∗it = Π′z∗it + vit (27)

with E (z∗itvit) = 0. Instruments z∗it is ` × 1. Π is an ` × q matrix, and Πk is the kth

column of Π for k = 1, . . . , q.
In order to ensure the consistency of the FE-2SLS estimator, we extend the regular-

ization method L2Boosting by [11] to Equation (27) for the panel data model. We use
this regularization method to select a subset of instruments and compute the FE-2SLS
estimator based on the selected instruments. We refer to the FE-2SLS estimator using
L2Boosting as “FE-2SLS-Boosting”.

Let m denote the mth iteration in the Boosting procedure, and M̄ denote the max-
imum number of iteration. At each iteration m, we have a weak learner fm,it,k that
gives a less accurate estimation on X∗k . But the summation of the weak learners up
to step M̄ will give a strong estimation on X∗k . We refer to this summation as a

strong learner FM̄,it,k =
∑M̄

m=0 cmfm,it,k, where cm is the learning rate that controls
the step of the learning process in Boosting. To simplify the notation, we drop the
subscription k in the procedure. So, fm,it = fm,it,k and Fm,it = Fm,it,k. However, the
procedure is repeated for each k ∈ {1, . . . , q}. The algorithm for instrument selection
using L2Boosting for each X∗k is as follows:

(1) When m = 0, the initial estimate for x∗it,k is

f0 =
1

nT

n∑
i=1

T∑
t=1

x∗it,k, (28)

which is the simple mean of x∗it,k. Denote F0,it = f0 for all i and t.

(2) For each iteration m = 1, . . . , M̄ :

(a) Compute the “current residual”, v̂m,it = x∗it,k − Fm−1,it.

(b) Regress the current residual v̂m,i on each instrument z∗j,it, for j = 1, . . . , `.

The estimators Π̂kj are solved as

Π̂m,kj = arg min
Πkj

n∑
i=1

T∑
t=1

(
v̂m,it −Πkjz

∗
j,it

)2
. (29)

We select the instrument that has the minimum sum of squared residuals,
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such that

jm = arg min
j∈{1,...,`}

n∑
i=1

T∑
t=1

(
v̂m,it − Π̂m,kjz

∗
j,it

)2
. (30)

(c) The weak learner is

fm,it = Π̂kjmz
∗
jm,it, (31)

where z∗jm,it is the instrument that is selected at iteration m.
(d) The strong learner Fm,it is updated as

Fm,it = Fm−1,it + cmfm,it, , (32)

where cm > 0 is a learning rate.

(3) We repeat Steps 1 and 2 for k = 1, . . . , q.

A stopping rule is necessary in order to avoid over-fitting. Extending [11], we intro-
duce a modified AIC for panel data models to choose the optimal number of iterations
M̂ . Let V̂m = (v̂m,11 . . . v̂m,nT )′, fm = (fm,11 . . . fm,nT )

′
, Fm = (Fm,11 . . . Fm,nT )

′
.

We define Pm = Z∗jm(Z ′∗jmZ
∗
jm

)−1Z ′∗jm to be an nT × nT matrix. From Equation (31),

Z∗jmΠ̂kjm = PmV̂m

fm = Pm (X∗k − Fm−1) . (33)

When m = 0, Pj0 is an nT×nT matrix of 1
nT . Then the strong learner at each iteration

m is

Fm = Fm−1 + cmPm (X∗k − Fm−1)

=

[
InT −

m∏
a=0

(In − cjaPja)

]
X∗k ≡ BmX∗k .

Since the AICc in [11] does not provide enough penalty in the panel data models, we
modify the AICc and denote it as AIC∗c ,

AIC∗c (m) = log(σ̂2
k,m) +

1 + trace(Bm) log( nT
n+T )/ nT

n+T

1− (trace(Bm) + 2) log( nT
n+T )/ nT

n+T

, (34)

where log(σ̂2
k,m) = 1

nT

∑n
i=1

∑T
t=1 (v̂m,i − cmfm,it)2. Then M̂ =

arg minm=1,...,M̄ AIC∗c (m) yields the stopping rule for the iterations.
For L2Boosting to be consistent for panel data models, we impose the following

regularity conditions, under which FE-2SLS-Boosting is consistent for the conditional
mean of x∗it in quadratic mean under a panel data model. We make the following
assumptions extending [11]:

Assumption B1. The dimension of instruments satisfies `nT = O
(
exp

(
CnT 1−η)),

n, T →∞, for some 0 < η < 1, 0 < C <∞.
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Assumption B2.
∑`nT

j=1 |Πj | <∞, as n, T →∞.

Assumption B3. sup1≤j≤`nT
‖ Z∗j ‖∞< ∞, where ‖ Z∗j ‖∞= supω∈Ω |Z∗j (ω) | and Ω

denotes the underlying probability space.
Assumption B4. E|vit|s <∞ for some s > 4/η with η in Assumption B1.

In Assumption B1, the dimension of instruments is allowed to grow exponentially
with respect to the number of observations. So instruments can be in a high dimension.
Assumption B2 gives an L1-norm sparseness condition that the sum of the coefficient
Πj for all j is bounded. In this case, all instruments may be relevant, but the contribu-
tion of many instruments is very small. Hence weakly relevant instruments are allowed
in the model. Assumption B3 states that by restricting the growth rate of `nT , the
maximum realization of random variable Z∗j under sample space needs to be bounded.
Assumption B4 specifies the existence of some higher moments of the error term vit,
and the number of existing moments depends on η from assumption B1. Thus the
number of existing moments and the growth rate of `nT are related.

Similarly to Theorem 1 in [11], under Assumptions B1-B4, the L2Boosting esti-
mation converges to the conditional mean of x∗it in quadratic mean. Thus, the FE-

2SLS-Boosting is able to shrink some elements of the coefficient matrix Π̂ to zero
corresponding to weak instruments, and the subsequent application of FE-2SLS will
consider those removed instruments Z∗ as irrelevant to the endogenous variables X∗.
Once the instruments are selected, we use the selected instruments to compute the
FE-2SLS-Boosting estimator, and then the combined estimator of FE and FE-2SLS-
Boosting.

Remark 2: Suppose some elements in Π are zeros, then only a subset of zit is relevant
to xit. However, L2Boosting does not require some elements in Π to be zeros. What is
required is

∑`nT

j=1 |Πj | <∞, as n, T →∞. Assumption B2 only requires a much weaker

form of sparsity, the sparseness condition that the sum of the coefficient |Πj | for all j
is bounded. Hence, only a finite number of instruments are strongly relevant even if
all elements of Πj may not be zero.

5. Monte Carlo

In this section, we carry out a series of simulations to show that FE-2SLS can go
bad if too many instruments are used, and then the regularization method FE-2SLS-
Boosting restores the consistency of the FE-2SLS estimator and the efficiency of the
combined estimator. We also evaluate the finite sample performance of the regularized
combined estimator and compare the risk of other estimators. A design similar to [17]
is used. We consider the following data generating progress (DGP),

yit = xitβ + αi + uit (35a)

xit = θ vit−1 + vit (35b)

(
uit
vit

)
∼ N

0,


1 ρ/

√
q · · · ρ/

√
q

ρ/
√
q 1 0 0

... 0 1 0
ρ/
√
q 0 0 1


 . (35c)

Recall that xit is a q × 1 vector. For simplicity, we consider the case when all
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elements of the q × 1 moving average (MA) parameter vector θ are the same and set
at the value 0.3. ρ is then simplified as a scalar. All elements of vit are i.i.d. N (0, Iq).
Each pair of elements of errors uit and vit has covariance ρ√

q , but all other correlation

zero. αi are i.i.d. N (0, 1). The parameter ρ can vary in (−1, 1) to control the extent
of endogeneity of xit. The results are not quantitatively sensitive to the value of β,
thus we set β to be zero without loss of generality.

Our goal is the consistent and efficient estimation of the structural parameter β. In
the DGP, the variable xit is endogenous following an invertible vector moving average
VMA(1) process in (35b), which we approximate by the VAR(p) model of order p ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} . We consider the lagged variables of xit as instruments,
i.e., zit ≡ (xi,t−1 . . . xi,t−p). The parameter θ controls the strength of the instruments
zit as they are taken from the lagged xit. The number of instruments equals to ` = q×p.
To mimic the situation in the empirical application for estimation of the U.S. house
prices using three endogenous variables in 49 states over 29 years, we consider n = 49,
T = 29, q = 3. We set the range of ρ on a 20-point grid on [0, 0.975] . Estimates of three

estimators, β̂FE-2SLS, β̂FE, and β̂c, are computed from 2000 Monte Carlo replications.
To compare these three estimators, we calculate the median squared error (MSE) of
each estimator

MSE
(
β̂
)

= median

((
β̂ − β

)′ (
β̂ − β

))
. (36)

We present the results graphically. In Figure 1: (a) plots MSE
(
β̂
)

for p = 1, ` = 3.

This context is with just-identified instruments. Fig. 1(a) shows that the combined

estimator has lower MSE
(
β̂
)

than FE-2SLS, regardless of the degree of endogeneity.

It also shows that the classical 2SLS estimator problem that its moments do not exist

for the just-identified case, [cf. 24, 25]. Observe that MSE
(
β̂
)

of FE-2SLS in Fig. 1(a)

is quite large compared to that in Fig. 1(b) for all degrees of endogeneity ρ. It shows
that the number of instruments in Fig. 1(a) is too small and it would be necessary to
increase the number of instruments. If there are more instruments, then the system
is over-identified with more moment restrictions than parameters to estimate. It will
ensure FE-2SLS has a finite mean with one over-identifying restriction and a finite
variance with two over-identifying restrictions [21]. Fig. 1(b) plots the MSE for p = 2,
` = 6. Now the model is over-identified and FE-2SLS is well behaved. Fig. 1(b) shows

that the combined estimator has similar MSE
(
β̂
)

to FE for the small values of

ρ where FE has small MSE
(
β̂
)

. The reduction in risk achieved by the combined

estimator is large unless ρ is large. Fig. 1(c) plots the MSE
(
β̂
)

for p = 3, ` = 9.

Fig. 1(d) plots the MSE
(
β̂
)

for p = 4, ` = 12. Fig. 1(e) plots the median squared

error for p = 5, ` = 15. The four figures in (b), (c), (d), (e) look similar. The combined

estimator achieves some reduction in MSE
(
β̂
)

relative to FE-2SLS for small values

of ρ. However, when the number of instruments becomes larger in Fig. 1(f) with p = 6,
` = 18, it starts to show that for large ρ, FE-2SLS becomes biased towards FE. It
becomes more apparent as ` becomes even larger as shown in the subsequent plots.
Continuing to Fig.(g)–Fig.(l), it is easy to see that the FE-2SLS is biased and the bias
in FE-2SLS tends to get worse as more instruments are used.
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(i) p = 9
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(k) p = 11
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(l) p = 12

Figure 1. Median Squared Error of FE, FE-2SLS and Combined Estimators, n = 49,
T = 29, q = 3.
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(b) n = 50, T = 25, q = 3, p = 12
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(c) n = 25, T = 50, q = 3, p = 12

Figure 2. Median Squared Error of FE, FE-2SLS, Combined, F2SLS-Boosting, and
Combined Boosting Estimators.
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To fix this bias problem in FE-2SLS, we use the extended L2Boosting for panel
data models to select the instruments, which makes the FE-2SLS estimator and the
combined estimator more robust and restore their consistency when there are many
potential instruments. To demonstrate this, we consider the setup in Fig. 1(l) with
p = 12, ` = 36. In Fig. 2(a), we zoom in Fig. 1(l) and add “FE-2SLS-Boosting” and
“Combined-Boosting”, where FE-2SLS-Boosting is the Boosting-regularized FE-2SLS
estimator and Combined-Boosting is the combined estimator of the FE estimator and
the FE-2SLS-Boosting estimator. Notice that the vertical scale of Fig. 2(a) is between
0 and 0.2. By using the L2Boosting to regularize a panel data model with many
instruments, the FE-2SLS-Boosting estimator restores its consistency. The FE-2SLS-
Boosting is the post-selection FE-2SLS estimator. The combined-Boosting estimator
is the combined estimator of FE and FE-2SLS-Boosting estimators. The MSEs of the
FE-2SLS-Boosting estimator and the Combined-Boosting estimator are significantly
reduced when compared to the MSE of the FE-2SLS estimator. When the endogeneity
is weak (small values of ρ), the Combined-Boosting estimator (cyan-colored long-
dashed) dominates the FE-2SLS-Boosting (green-colored dotted). As the endogeneity
gets stronger, the combining weight in the Combined-Boosting goes toward the FE-
2SLS-Boosting. The MSE of FE-2SLS-Boosting estimator is significantly reduced when
compared to the MSE of the FE-2SLS estimator without instrument selection. The
Combined-Boosting estimator dominates the FE-2SLS-Boosting estimator when the
endogeneity is weak. However, the weight in the Combined-Boosting increases toward
the FE-2SLS-Boosting as the endogeneity gets stronger.

In addition, we examine the effect of the sample size on the risk behavior in finite
samples with different n and T . We fix the maximum lag at 12, and thus the effective
time length is T −12. When we have n = 49 and T = 29 (as in Fig. 2(a)), n(T −12) =
833. For Fig. 2(b), n(T − 12) = 650. For Fig. 2(c), n(T − 12) = 950. As δ = ρ

√
nT

from Equation (16) increases with
√
nT , the endogeneity is weaker in Fig. 2(b) than in

Fig. 2(c). Therefore the conclusion in Fig. 2(a) is more clearly pronounced in Fig. 2(b)
than in Fig. 2(c).

Remark 3: In the presence of many instruments, the combined estimator may behave
poorly, and Theorem 2 may not hold for moderate to large values of ρ. Theorem 2 says
the combined estimator is always better than the FE-2SLS estimator in the asymptotic
risk. Figures 1(g)-(l) and Fig. 2 show, however, that Theorem 2 does not hold when
p is large. This is because Theorem 2 holds only when FE-2SLS is consistent. When
both p and ` are large, FE-2SLS is inconsistent and therefore Theorem 2 does not hold
when there are many instruments. After selecting instruments through L2Boosting, we
reduce the dimension of instruments to estimate the FE-2SLS estimator. This restores
Theorem 2 and ensures the consistency of the FE-2SLS-Boosting estimator and the
efficiency of the Combined estimator.

6. Estimation of House Prices Panel Data Model in United States

The U.S. housing price index, published by the Federal Housing Finance Agency
(FHFA), is a measure designed to capture changes in the value of houses in the U.S.
based on the data provided by Fannie Mae and Freddie Mac. HPY (2010) suggest a
possible spatial pattern in U.S. housing prices using the common correlated effects es-
timator. [5] replicated the results of HPY by extending the period of research to 2011,
and the housing price indexes at the metropolitan area level are used. The HPY results
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are shown to be robust. As noted in [5], “The U.S. housing price index rose by nearly
46 percent from 2000 to 2006, followed by a sharp 28 percent drop, unprecedented in
American history”, the extended period of 2004–2011 covers quite rare housing statis-
tics of boom, bubble, crash, and recovery circle. What drives house prices? In this
paper, the original HPY panel data of 49 States over the 29 year period of 1975–2003
is used to examine the extent to which housing price fluctuations in the U.S. are driven
by the fundamental fluctuations.1 We consider the following panel data model

pit = β0 + βyyit + βggit + βccit + αi + uit, (37)

where i = 1, . . . , 49, t = 1, . . . , 29, pit is the logarithm of the real house price for
the ith State of year t. yit is the logarithm of the real disposable income per capita.
cit = rit −∆pit is the net cost of borrowing. rit is the long-term real interest rate. git
is the population growth rate. αi is the State-specific factor including the endowment
of location, culture and etc. A more detailed description of the data can be found in
HPY.

Let xit ≡ (yit git cit)
′ . We consider the lagged variables of the q × 1 vector xit as

instruments, i.e., zit ≡ (xi,t−1 . . . xi,t−p). Let us assume that q <∞ is fixed while p is
allowed to grow with nT. Write a VAR(p) model for xit as

xit = Π′zit + vit (38)

= Π1xi,t−1 + · · ·+ Πpxi,t−p + vit,

where Π′ = (Π1 . . .Πp) and zit = (xi,t−1 . . . xi,t−p)
′ . Note that the lag order p in

VAR(p) may increase with T so that the number of instruments is `nT = q × p may
increase with nT. Note that, even with p → ∞, Assumption B2 is satisfied because∑q

k=1

∑p
s=1 |Πsk| < ∞ under stationarity. In this example, xit = (yit git cit)

′, we
consider the lag order p = 12, which gives a large number of instruments with ` =
q × p = 36.

Table 1 shows that the income elasticity of real house prices for the combined
estimator is significant and positive but widely changing in the range from 0.8038 to
0.2525. We find a positive population growth and a negative net cost of borrowing in
the real house prices, which are consistent with our expectation. Both are insignificant
in Table 1(c) and 1(d). Similar to the HPY results, we find that the fluctuations in
U.S. housing price can be attributed to the fluctuations in incomes, population, and
interest rates, although the housing prices appears to have been affected by more
fundamental factors. The estimators on the population growth and the net cost of
borrowing also exhibit wild variation over different lag orders p and different number
of instruments `. We find that the combined estimators are almost the same as the
FE-2SLS estimators for all cases. The Hausman statistics are very large, thus most
weights are going toward the FE-2SLS estimators. However, when the number of lag
order increases, the Hausman statistic decreases from 139.8735 (FE-2SLS when p = 1)
to 16.4602 (FE-2SLS when p = 12). In addition, the estimators of FE-2SLS-Boosting
and Combined-Boosting are different from the estimators of FE-2SLS under the same
lag order. This is because Boosting selects 19 out of 36 instruments during the selection
process. On the other hand, FE-2SLS uses all 36 instruments.

The standard errors of estimators are computed using bootstrap. It is important to
note that the combined estimators in each panel in Table 1(c) and 1(d) have smaller

1Data are available at http://qed.econ.queensu.ca/jae/2014-v29.3/baltagi-li/
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Table 1. Economics of Real House Prices for 49 U.S. States, 1975–2003.

p β̂y β̂g β̂c
(a) FE 0.7303 1.5180 -0.2485

(0.0395) (0.4681) (0.0790)
FE-2SLS 1 0.2525 3.3145 -1.8542

(b) (0.0633) (0.8154) (0.1578)
Combined 1 0.2559 3.3016 -1.8427

(0.0631) (0.8101) (0.1581)
FE-2SLS 12 0.8038 1.2853 -0.1185

(c) (0.0474) (0.6093) (0.1082)
Combined 12 0.7993 1.2994 -0.1264

(0.0467) (0.5880) (0.1051)
FE-2SLS-Boosting 12 0.7643 1.3192 -0.2377

(d) (0.0493) (0.6410) (0.1153)
Combined-Boosting 12 0.7615 1.3354 -0.2386

(0.0476) (0.6125) (0.1099)

Notes: Standard errors are in parentheses. “p” is the order of VAR(p)
for the reduced form equation.
(a) reports FE,
(b) reports FE-2SLS and the combined estimator of FE and FE-2SLS
when lag p = 1,
(c) reports FE-2SLS and the combined estimator of FE and FE-2SLS
when lag p = 12,
(d) reports FE-2SLS-Boosting estimator which is the post-selection
FE-2SLS estimator using the instruments selected by L2Boosting,
and Combined-Boosting combines FE and FE-2SLS-Boosting when
lag p = 12.

standard errors than the corresponding FE-2SLS estimators, which is in accordance
with Theorem 2. For example in Table 1(d), the standard errors of the FE-2SLS-
Boosting estimators of the three coefficient estimators are 0.0493, 0.6410, and 0.1153
respectively. After combined with FE, the standard errors of the Combined-Boosting
estimators reduce to 0.0476, 0.6125, and 0.1099. The combined estimator yields smaller
standard errors than FE-2SLS-Boosting.

7. Conclusion

The FE-2SLS estimator for panel data models is a widespread choice in empirical
research. However, the FE-2SLS estimator is sensitive to the number of selected in-
struments and can be inconsistent when many instruments are used even when all the
instruments are relevant and valid. In this paper, we propose a two-step procedure –
using the L2Boosting to select instruments and combining FE with FE-2SLS-Boosting.
It is demonstrated that L2Boosting for the selection of relevant instruments is impor-
tant as it ensures the consistency of the FE-2SLS-Boosting estimator and the efficiency
of the combined estimator. The proposed procedure provides improvement over both
FE and FE-2SLS-Boosting estimators in terms of the asymptotic risk. Our empirical
application shows that our results are similar to those in [20] that the economic fun-
damentals play an important role in affecting the U.S. real house prices at the state
level.
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Appendix A. Proofs of Theorems

Proof of Theorem 1: The joint convergence (17) is a straightforward and standard
calculation. Let h1 = G1h and ξ1 = G1ξ with G1 = (I 0)′ . Here we derive the
asymptotic distribution of the FE estimator under the local-to-exogeneity setup. From
Equation (4), β̂FE = (X ′QX)−1X ′Qy.

β̂FE − β =
(
X ′QX

)−1
X ′QDα+

(
X ′QX

)−1
X ′Qu =

(
X ′QX

)−1
X ′Qu.

Given that u = vρ+ ε,

β̂FE − β =
(
X ′QX

)−1 (
X ′Qvρ+X ′Qε

)
.

Since ρ = 1√
nT
δ, we have

β̂FE − β =
(
X ′QX

)−1
(
X ′Qv

δ√
nT

+X ′Qε

)
√
nT
(
β̂FE − β

)
=

(
1

nT
X ′QX

)−1( 1

nT
X ′Qvδ

)
+

(
1

nT
X ′QX

)−1( 1√
nT

X ′Qε

)
d→ h1 + ξ1,

where

h1 =

(
plim

1

nT
X ′QX

)−1(
plim

1

nT
X ′Qvδ

)
.

Since X = ZΠ + v, we have

h1 = σ−2
u V1tr (QΣ) δ,

and

ξ1 ∼
(

plim
1

nT
X ′QX

)−1

Z,
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with

Z =
1√
nT

X ′Qε ∼ N
(

0, σ2
u

(
plim

1

nT
X ′QX

))
.

Hence,

ξ1 ∼ N

(
0, σ2

u

(
plim

1

nT
X ′QX

)−1
)

= N (0, V1) ,

and

√
nT
(
β̂FE − β

)
d→ N (h1, V1) ,

where

V1 = σ2
u

(
plim

X ′QX

nT

)−1

.

The rest follows by the continuous mapping theorem, as in Theorem 1 of [17].

Proof of Theorem 2: The proof is based on the arguments in Theorem 2 of [17]

closely. Noting that
√
nT
(
β̂FE-2SLS − β

)
d→ G′2ξ ∼ N (0, V2) , then

R
(
β̂FE-2SLS

)
= E

(
ξ′G′2WG′2ξ

)
= tr (WV2) .

Define Ψ∗ as a random variable without positive part trimming

Ψ∗ = G′2ξ −
(

τ

(h+ ξ)′B(h+ ξ)

)
G′ (h+ ξ) .

Then using the fact that the pointwise quadratic risk of Ψ is strictly smaller than that
of Ψ∗, then we have

R
(
β̂c

)
= E

(
Ψ′WΨ

)
< E

(
Ψ∗′WΨ∗

)
.

We can calculate that

E
(
Ψ∗′WΨ∗

)
= R

(
β̂FE-2SLS

)
+τ2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)
−2τE

(
(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)
.

If Z ∼ N(0, V ) is q× 1, K is q× q, and η (x) is absolutely continuous, then by Stein’s
Lemma

E
(
η (Z + h)′KZ

)
= E tr

(
∂

∂x
η (Z + h)′KV

)
,
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η (x) = x/ (x′Bx) , and

∂

∂x
η (x) =

1

x′Bx
I − 2

(x′Bx)2Bxx
′.

Therefore,

E

(
(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)
= Etr

(
GWG′2V

(h+ ξ)′B(h+ ξ)
− 2GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)

= E

(
tr (GWG′2V )

(h+ ξ)′B(h+ ξ)

)
− 2Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
.

Since

GWG′2V = WG′2V G = W (V2 − V1) ,

GWG′2V B = GWG′2V G (V2 − V1)−1G′ = GWG′,

we have

Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
= Etr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)
.

Thus

E
(
ψ∗′Wψ∗

)
= R

(
β̂FE-2SLS

)
+ τ2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)

+ 4τEtr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)
− 2τEtr

(
(W (V2 − V1))

(h+ ξ)′B(h+ ξ)

)
.

Define

B1 = (V2 − V1)−
1

2 G′

A∗ = (V2 − V1)
1

2 W (V2 − V1)
1

2 .

Note that GWG′2V P = GWG′ = B′1A
∗B1, B

′
1B1 = B.

Using the inequality b′ab ≤ (b′b)λmax (a) for symmetric a, and let

λmax (a) = λmax (W (V2 − V1)) = λ1.

Then

tr
(
B(h+ ξ)(h+ ξ)′GWG′2V

)
= (h+ ξ)′B′1A

∗B1(h+ ξ) (A1)

≤ (h+ ξ)′B(h+ ξ)λ1.

20



Using Equation (A1) and Jensen’s inequality, we have

E
(
ψ∗′Wψ∗

)
≤ R

(
β̂FE-2SLS

)
+
(
τ2 + 4τ

)
E

(
λ1

(h+ ξ)′B(h+ ξ)

)
− 2τEtr

(
(W (V2 − V1))

(h+ ξ)′B(h+ ξ)

)
= R

(
β̂FE-2SLS

)
− E

(
τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

(h+ ξ)′B(h+ ξ)

)
≤ R

(
β̂FE-2SLS

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

E
(
(h+ ξ)′B(h+ ξ)

) . (A2)

Since tr(BV ) = tr
(
G (V2 − V1)−1G′V

)
= q, we have

E
(
(h+ ξ)′B(h+ ξ)

)
= h′Bh+ tr (BV )

= σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q.

Substituted into (A2) we have

R
(
β̂c

)
< R

(
β̂FE-2SLS

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q

= R
(
β̂FE-2SLS

)
− τλ1 (2 (d− 2)− τ)

σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q

with 0 < τ ≤ 2
(

tr(W (V2−V1))
λ1

− 2
)
.

Proof of Corollary 1 and Corollary 2: The proofs of Corollary 1 and Corollary 2
are a straightforward and standard calculation.

Appendix B. When there are too many instruments

In this appendix we show the inconsistency of the FE and the FE-2SLS estimators in
the panel data models when there are too many instruments.

First, consider the FE estimator under endogeneity. β̂FE is obtained as

β̂FE =
(
X ′QX

)−1
X ′Qy = β +

(
X ′QX

)−1
X ′Qu,

Premultiplying X by Q,

QX = QZΠ +Qv. (B1)

Let y∗ = Qy, X∗ = QX, Z∗ = QZ, u∗ = Qu, and v∗ = Qv, the β̂FE can be rewritten
as

β̂FE = β +
(
X∗′X∗

)−1
X∗′u∗.
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Define ξ = [Qu,Qv], and the variance-covariance matrix of ξ is

Ω =

[
Ωu Ωuv

Ωvu Ωv

]
. (B2)

Then

E

(
1

nT
X ′Qu

)
=

1

nT
E
(
Π′Z∗′u∗ + v∗′u∗

)
=

1

nT
E
(
v∗′u∗

)
= Ωuv,

and

E

[
1

nT
X ′QX

]
=

1

nT
E
[
(ZΠ + v)′Q (ZΠ + v)

]
=

1

nT
E
[
Π′Z∗′Z∗Π + Π′Z∗′v∗ + v∗′Z∗Π + v∗′v∗

]
=

1

nT
Π′E

(
Z∗′Z∗

)
Π + Ωv.

If X is endogenous, Ωuv 6= 0. Then the OLS estimator β̂FE is inconsistent because

β̂FE − β
p→
[

1

nT
Π′E

(
Z∗′Z∗

)
Π + Ωv

]−1

Ωuv 6= 0. (B3)

Next, we show that the FE-2SLS estimator is inconsistent when there are too many
instruments. The β̂FE-2SLS is

β̂FE-2SLS =
(
X ′HZX

)−1
X ′HZy = β +

(
X∗′HZX

∗)−1
X∗′HZu

∗, (B4)

where HZ = QZ (Z ′QZ)−1 Z ′Q = Z∗ (Z∗′Z∗)−1 Z∗′. Let the idempotent matrix HZ

decompose into HZ = ΨΛΨ, where Λ = diag(I`, 0nT−`), and Ψ is a nT × nT matrix
that has orthonormal properties. There exist an nT × (q + 1) matrix R = Ψ′ξΩ−1/2

that satisfies

E(R′R) = E(Ω−1/2ξ′ΨΨ′ξΩ−1/2) = E(Ω−1/2ξ′ξΩ−1/2) = Ik+1. (B5)
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We partition R = [r1, r2]′, where r1 is `× q + 1. Then,

E

(
1

nT
ξ′HZξ

)
=

1

nT
E
(
ξ′ΨΛΨξ

)
(B6)

=
1

nT
Ω1/2E

(
Ω−1/2ξ′ΨΛΨξΩ−1/2

)
Ω1/2

=
1

nT
Ω1/2E

(
R′ΛR

)
Ω1/2

=
1

nT
Ω1/2E

(
[r′1, r

′
2]

[
I` 0
0 0nT−`

] [
r1

r2

])
Ω1/2

=
1

nT
Ω1/2E

(
r′1r1

)
Ω1/2

=
`

nT
Ω,

which implies that E
(

1
nT v

′HZv
)

= `
nT Ωv and E

(
1
nT v

′HZu
)

= `
nT Ωvu. So,

E

(
1

nT
X∗′HZX

∗
)

=
1

nT
E
(
(Z∗Π + v∗)′HZ(Z∗Π + v∗)

)
(B7)

=
1

nT
E
(
Π′Z∗′HZZ

∗Π + Π′Z∗′HZv
∗ + v∗′HZZ

∗Π + v∗′HZv
∗)

=
1

nT
E
(
Π′Z∗′Z∗Π

)
+

1

nT
E
(
v∗′HZv

∗)
=

1

nT
E
(
Π′Z∗′Z∗Π

)
+

`

nT
Ωv,

and

E

(
1

nT
X∗′HZu

∗
)

=
1

nT
E
(
(Z∗Π + v∗)′HZu

∗) (B8)

=
1

nT
E
(
v′HZu

)
=

`

nT
Ωvu.

Hence,

β̂FE-2SLS − β
p→ `

nT

[
1

nT
Π′E

(
Z∗′Z∗

)
Π +

`

nT
Ωv

]−1

Ωuv 6= 0, (B9)

and β̂FE-2SLS is inconsistent unless `
nT → 0.
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