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Abstract

In forecasting a time series containing a structural break, it is important to determine how

much weight can be given to the observations prior to the time when the break occurred. In

this context, Pesaran et al. (2013) (PPP) proposed a weighted least squares estimator by giving

different weights to observations before and after a break point for forecasting out-of-sample. We

revisit their approach by introducing an improved weighted generalized least squares estimator

(WGLS) using a weight (kernel) function to give different weights to observations before and

after a break. The kernel weight is estimated by cross-validation rather than analytically derived

from a parametric model as in PPP. Therefore, the WGLS estimator facilitates implementation

of the PPP method for the optimal use of the pre-break and post-break sample observations

without having to derive the parametric weights which may be misspecified. We show that

the kernel weight estimated by cross-validation is asymptotically optimal in the sense of Li

(1987). Monte Carlo simulations and an empirical application to forecasting equity premium

are provided for verification and illustration.
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1 Introduction

In forecasting with a time series model when there is a structural break in the conditional mean

and/or in the conditional variance, the usual OLS estimator using all the observations (i.e., the

full-sample, that is, observations before and after a break) is inconsistent. When the post-break

sample is relatively large, a consistent estimator can be obtained from using only the post-break

observations. However, as pointed out by Pesaran and Timmermann (2007), Pesaran and Pick

(2011), Rossi (2013), Pesaran et al. (2013) (hereafter PPP), forecasts based on the post-break

observations may not be optimal in terms of the mean squared forecast error (MSFE) as the

estimation uncertainty may be large due to the relatively smaller number of observations in the

post-break sample. Therefore, one can improve forecasting using the pre-break sample observations.

When the break is “strong” (large break magnitude), the post-break estimator may be optimal.

When there is “no” break, the full-sample estimator is clearly preferred and is optimal. However,

when the break is “weak” (small break magnitude) or is of a moderate magnitude, a combination

of the full-sample estimator and the post-break estimator would be optimal, where the combination

weight is between 0 and 1 depending on the magnitude of the structural break and the timing of the

structural break. This is because the combined estimator takes advantage of the trade-off between

the bias and variance efficiency of the full-sample estimator.

An alternative approach to the fully parametric regression model is a semi-parametric kernel-

based regression model. Under structural breaks, kernel smoothing of coefficients across regimes

provides an appealing method of “combining information” (before the break and after the break)

without forcing the choice between regression using full-sample observations and regression using

only the post-break sample observations. This can also be viewed as the frequentist methods for

model averaging (averaging the pre-break and post-break estimators as shown in equation (11)

below, or equivalently averaging between the post-break and full-sample estimators) introduced by

Hjort and Claeskens (2003), Hansen (2007, 2008), and Hansen and Racine (2012), among others. See

also Clements and Hendry (2006, 2011), Pesaran and Timmermann (2002, 2005, 2007), Timmerman

(2006) and the references therein, for different forecast combination methods.

The contribution of this paper is that we introduce the improved weighted estimator which

facilitates implementation of using the pre-break data in addition to the post-break data, and
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improves the forecasting performance under structural breaks. Motivation of the proposed estimator

comes from the paper by Li et al. (2013) in which they focus on semi-parametric kernel estimation

of varying-coefficient models with categorical variables.1 In structural break models, as the slope

parameters change across different regimes, they can be viewed as a function of a discrete covariate

which takes different values across the regimes.2 Inspired by the estimation method of Li et al.

(2013), we develop a weighted generalized least squares (WGLS) estimator for time series structural

break models. The approach is similar to semi-parametric methods since it uses kernel smoothing

for the discrete covariate across regimes while the relationship between dependent variable and

independent variables is parametrically specified. The kernel is based on the work of Aitchison and

Aitken (1976) who offer the kernel smoothing of discrete covariates by borrowing information from

neighboring subsets. For choosing the smoothing parameters we use leave-one-out cross-validation

(CV) which was initially introduced by Stone (1974) and Geisser (1974). We prove theoretically

that the weight estimated by CV is asymptotically optimal in the sense of Li (1987), in that the

average squared error of the CV is asymptotically as small as the average squared error of the

infeasible best possible estimator. We compare our WGLS estimator with the one proposed by

Pesaran et al. (2013). We show that our estimator facilitates implementation of their approach in

exploiting the pre-break sample observations. More specifically, the advantage of using this method

is that we can find the kernel by CV without having to estimate unknown parameters such as break

size in the regression coefficients or the error variance.

We conduct Monte Carlo experiments that compare the WGLS forecast with the PPP forecast,

the five methods used in Pesaran and Timmermann (2007) including the post-break forecast, and

the average window method proposed by Pesaran and Pick (2011). We evaluate the forecasting per-

formance of these methods under different break size and different break points. We also apply the

WGLS method to forecasting the equity premium. The results show the superior predictive ability

of the WGLS forecast relative to the PPP, post-break forecast and other alternative approaches.

The outline of the paper is as follows. Section 2 sets up the structural break model and

introduces the estimator proposed by Pesaran et al. (2013). Section 3 introduces our proposed

1Also, see the paper by Su et al. (2009) for a more general semi-parametric functional coefficient regression model
with both continuous and discrete variables, and Su et al. (2013) where continuous variables are endogenous.

2For example, when there is a break, the discrete covariate for the pre-break observations take one value, say 0,
and another value for the post-break observations, say 1.
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WGLS estimator and its asymptotic properties. We also compare the WGLS estimator with the

one proposed by Pesaran et al. (2013) and show their relationship. Section 4 reports Monte Carlo

simulation. An empirical application is presented in Section 5. Section 6 concludes.

2 The model

Consider the linear structural break model with m breaks or m+ 1 regimes. There are T observa-

tions, and for simplicity we assume only one break, m = 1, that occurs at T1. The method can be

easily extended to the cases with multiple breaks. Let the model have the form of yt = x′tβt + σtεt,

where xt is a k × 1 vector of stationary regressors, εt ∼ i.i.d.(0, 1), and the vector of coefficients,

βt, and the error variance, σ2t , are subject to breaks as

βt =


β(1) for 1 < t ≤ T1

β(2) for T1 < t < T

(1)

and

σt =


σ(1) for 1 < t ≤ T1

σ(2) for T1 < t < T.

(2)

Let Y = (Y ′(1) Y
′
(2))
′ be a T ×1 vector of the dependent variable where Y(i) =

(
yTi−1+1, . . . , yTi

)′
,

X = (X ′(1) X
′
(2))
′ be a T × k matrix of the independent variables where X(i) = (xTi−1+1, . . . , xTi)

′,

with i = 1, 2, and the convention that T0 = 0, and T2 = T . Let
(
σ(1)ε

′
(1) σ(2)ε

′
(2)

)′
represent the

vector of the error terms where ε(i) = (εTi−1+1, . . . , εTi)
′, i = 1, 2, and the variance of the error

term is denoted by Ω = diag
(
σ2(1)IT1 , σ

2
(2)IT−T1

)
which has heteroscedasticity across regimes. Also,

b1 ≡ T1
T ∈ (0, 1) denotes the proportion of observations before the break. In matrix form, the model

can be written as


Y(1) = X(1)β(1) + σ(1)ε(1) for 1 < t ≤ T1

Y(2) = X(2)β(2) + σ(2)ε(2) for T1 < t < T.

(3)

We note that the method of break point estimation is based on the least-squares principle. That
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is, for the break point T1, the associated least-squares estimates of slope coefficients are obtained by

minimizing the sum of squared residuals. Substituting these estimated coefficients in the objective

function, the estimated break point is obtained. See Bai and Perron (1998, 2003).

Remark 1: In structural break models, it is often assumed that some of the slope coefficients can

stay constant across the regimes; for example see Bai (1997). The current framework in (3) can also

allow for partial structural change model. To see this, following Bai (1997), consider xt = (w′t z
′
t)
′,

where wt is k1 × 1, zt is k2 × 1, and k1 + k2 = k. Let β(1) = (α′ δ′1)
′, β(2) = (α′ δ′2)

′, δ = δ2 − δ1,

β(1)− β(2) = −Rδ with R′ =
(
0k2×k1 Ik2

)
, and zt = R′xt. Then, we can write Bai’s equation (1) as

our equation (3). We note that the case where k2 < k denotes a partial change model, while the

case where k2 = k is for a full change model. �

2.1 Estimator by Pesaran et al. (2013)

Pesaran et al. (2013) propose that one can reduce MSFE under the structural breaks by using

the full-sample observations instead of using only the post-break observations. Their proposed

estimator is

β̂PPP = (X ′WX)−1(X ′WY ). (4)

They derive the optimal weight, W , such that MSFE of the one-step-ahead forecast based on (4) is

minimized, and find that the optimal weight takes one value, w(1), for the pre-break observations

and another value, w(2), for the post-break observations. In other words

W = diag
(
w(1), . . . , w(1), w(2), . . . , w(2)

)
, (5)

where 
w(1) = 1

T
1

b1+(1−b1)(q2+Tb1φ2) ,

w(2) = 1
T

q2+Tb1φ2

b1+(1−b1)(q2+Tb1φ2) ,

(6)

b1 = lim
T→∞

T1
T is the proportion of observations before the break, q =

σ(1)
σ(2)

measures the break in the

error variance, λ = β(1)−β(2) is the break size in the regression coefficient, φ =
x′T+1λ

σ(2)(x
′
T+1Q

−1xT+1)1/2
,

and Q = E(xtx
′
t). See Pesaran et al. (2013) for details.
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We can rewrite the PPP estimator in equation (4) as

β̂PPP =
(
w(1) X

′
(1)X(1) + w(2) X

′
(2)X(2)

)−1(
w(1) X

′
(1)X(1)β̂1 + w(2) X

′
(2)X(2)β̂(2)

)
= Λβ̂(1) + (I − Λ)β̂(2),

(7)

which can be viewed as the combined estimator of the pre-break and the post-break estimators,

β̂(1) = (X ′(1)X(1))
−1(X ′(1)Y(1)) and β̂(2) = (X ′(2)X(2))

−1(X ′(2)Y(2)), respectively, with the combination

weight Λ =
(
w(1)

w(2)
X ′(1)X(1) + X ′(2)X(2)

)−1(w(1)

w(2)
X ′(1)X(1)

)
.

3 Weighted least squared errors estimator

Li et al. (2013) introduce a semi-parametric method for estimating the parameters of varying-

coefficient models with categorical covariates. Also, see Su et al. (2009) and Kiefer and Racine

(2017). Inspired by these, we propose an estimator for the time series structural break model

where breaks may occur in both the coefficients and the error variance. Specifically, since our

interest is in forecasting, we are interested in estimating the coefficients after a break, while also

exploiting the pre-break information. We estimate the post-break coefficients using the following

discrete kernel weighted generalized least squares estimator (WGLS)

β̂WGLS(γ) = argmin
β(2)

T∑
t=1

(yt − x′tβ(2)
σt

)2
K
(
t, γ
)
, (8)

where

K
(
t, γ
)

= γ 1
(
t ≤ T1

)
+ 1
(
t > T1

)
, γ ∈ (0, 1], (9)

is a discrete kernel. β̂WGLS(γ) is the estimator of β(2) (the post-break parameter value), which is to

be used forecasting yt at t = T . As more recent information is usually more relevant for forecasting,

this kernel-weight estimator gives the weight 1 to the post-break observations and the weight γ to

the pre-break observations. When γ is very close to zero, this estimator is heavily weighting the

post-break observations. When γ = 1, all of the observations in the sample are weighted equally and

the estimator is the full-sample estimator. This case is particularly useful under a small break size.

As pointed out by Boot and Pick (2020), under a small break, ignoring the break and estimating
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the coefficient using all the observations would result in a better forecast (lower MSFE). For other

cases, γ ∈ (0, 1), we have the combination of the pre-break and post-break observations. We note

that (8) depends on the break point and σt. However, given the break point, not knowing σt turns

out not to matter in light of Remark 3 below.

3.1 The weighted squared error estimator is a model averaging estimator

The first order condition for equation (8) is

T∑
t=1

K
(
t, γ
) xt(yt − x′tβ(2))

σ2t
= 0, (10)

leading to

β̂WGLS(γ) =

(
T∑
t=1

K
(
t, γ
) (xtx′t

σ2t

))−1 T∑
t=1

K
(
t, γ
) (xtyt

σ2t

)

=

(
γ

σ2(1)
X ′(1)X(1) +

1

σ2(2)
X ′(2)X(2)

)−1(
γ

σ2(1)
X ′(1)Y(1) +

1

σ2(2)
X ′(2)Y(2)

)

=

(
γ

q2
X ′(1)X(1) +X ′(2)X(2)

)−1(
γ

q2
X ′(1)X(1) β̂(1) +X ′(2)X(2) β̂(2)

)

= ∆∗ β̂(1) + (I −∆∗) β̂(2), (11)

where ∆∗ =
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1 (
γ∗X ′(1)X(1)

)
, γ∗ ≡ γ/q2, β̂(1) =

(
X ′(1)X(1)

)−1
X ′(1)Y(1) and

β̂(2) =
(
X ′(2)X(2)

)−1
X ′(2)Y(2).

3 A feasible version of this estimator is

β̂WGLS(γ̂) = ∆̂∗ β̂(1) + (I − ∆̂∗) β̂(2), (12)

for which we first estimate q̂ = σ̂(1)/σ̂(2) by using the least squares estimators of σ2(1) and σ2(2), then

we estimate γ̂ by the cross-validation using equation (13), and then we let γ̂∗ = γ̂/q̂2.

We estimate γ̂ by minimizing the following leave-one-out CV criterion function

CV (γ) =
1

(T − T1)

T∑
s=T1+1

(
ys − x′s β̂

(−s)
WGLS(γ)

σ(2)

)2

, (13)

3It is easy to see that the WGLS estimator is similar to the PPP estimator in equation (4). To show that, let

Γ = diag
(
γIT1 , IT−T1

)
. Define W ≡ Γ1/2Ω−1Γ1/2. Therefore, β̂WGLS(γ) =

(
X ′WX

)−1(
X ′WY

)
.
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where β̂
(−s)
WGLS(γ) denotes the estimate of β based on (11) in which the index s goes over the

post-break period, and at each time the sth row of the observations is deleted. We note that the

estimation of γ is cross-validated over the post-break observations. The reason is that we need to

find an estimator that fits best the post-break sample observations in order to use it for forecasting.

Once we have estimated γ̂, we calculate the feasible WGLS estimator in equation (12).

Remark 2: In the special case where σ(1) = σ(2), there is no structural break in the error variance

(q = 1), the WGLS estimator reduces to the weighted ordinary least squares (WOLS) estimator,

which is

β̂WGLS(γ) = β̂WOLS(γ) = ∆ β̂(1) + (I −∆) β̂(2), (14)

where ∆ =
(
γX ′(1)X(1) + X ′(2)X(2)

)−1 (
γX ′(1)X(1)

)
. Note that γ∗ = γ when q = 1. The feasible

WOLS estimator is obtained by estimating γ̂ using the cross validation in equation (13). �

Remark 3: Using the WGLS estimator, one can estimate only one unknown parameter, γ∗, by

CV. In other words, even though the combination weight is in the form of the fraction, γ/q2, one

can consider it as a single unknown parameter, γ∗, and estimate it by CV without dealing with

estimation of break in the error variance (q2).4 �

Remark 4: By comparing ∆∗ in equation (11) with Λ in equation (7), we see that the PPP

estimator is a WGLS estimator if

γ∗ =
w(1)

w(2)
=

1

q2 + T1φ2
. (15)

In the WGLS method, we only estimate the unknown parameter, γ∗, which depends on the break

in the coefficients, φ, the break in error variance, q, and T1. We note that for both WGLS and

PPP estimators, the break point needs to be known or estimated. �

3.2 Consistency of the cross-validation

We now prove that the estimator γ̂ by CV is asymptotically optimal in the sense of Li (1987), in

that the average squared error of the CV is asymptotically as small as the average squared error of

4Monte Carlo simulation results show that the results are very close to the two step feasible WGLS method in
(12). To save space, we do not report the results in the paper.
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the infeasible best possible estimator. Define L(γ) =
[(
β̂WGLS(γ)−β(2)

)′ W (
β̂WGLS(γ)−β(2)

)]
=(

µ̂(γ) − µ
)′(

µ̂(γ) − µ
)

to be the loss function where W = X ′(2)X(2)/σ
2
(2), µ = σ−1(2) X(2)β(2) and

µ̂(γ) = σ̂−1(2) X(2)β̂WGLS(γ), and the expected loss (risk) is R(γ) = E
[
L(γ)

]
. Theorem 1 shows the

asymptotic optimality of the weight γ̂ estimated by CV in the sense of making L(γ) and R(γ) as

small as possible among all feasible weights γ.

Theorem 1: As T →∞,

L(γ̂)

inf
γ∈H

L(γ)

p−→ 1, (16)

R(γ̂)

inf
γ∈H

R(γ)

p−→ 1. (17)

Theorem 1 shows that conditional on knowing the break date, the average squared error of the

WGLS estimator obtained by CV is asymptotically as small as the average squared error of the

infeasible best possible estimator. Online Appendix has the full proof of this theorem.

3.3 Efficiency of the WGLS estimator

In this subsection, we compare the bias and variance of the WGLS estimator with the PPP estimator

and the post-break estimator. Denote V(1) = T1 V ar(β̂(1)), V(2) = (T − T1) V ar(β̂(2)), VWGLS =

T V ar(β̂WGLS) and VPPP = T V ar(β̂PPP ) to be the covariance matrices of the pre-break estimator,

the post-break estimator, the WGLS estimator and the PPP estimator, respectively.

The bias of the WGLS estimator and the PPP estimator are

Bias(β̂WGLS) =
(
X ′(1)X(1) +

1

γ∗
X ′(2)X(2)

)−1
X ′(1)X(1) (β(1) − β(2)) (18)

and

Bias(β̂PPP ) =
(
X ′(1)X(1) +

w(2)

w(1)
X ′(2)X(2)

)−1
X ′(1)X(1) (β(1) − β(2)). (19)

Thus, the bias of the WGLS estimator is less than that of the PPP estimator if γ∗ <
w(1)

w(2)
.

Besides, the variance of the WGLS estimator is
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V ar(β̂WGLS) =
1

T
VWGLS

=
1

T

(
γb1V

−1
(1) + (1− b1)V −1(2)

)−1(
γ2b1V

−1
(1) + (1− b1)V −1(2)

)(
γb1V

−1
(1) + (1− b1)V −1(2)

)−1
,

(20)

and the variance of the PPP estimator is

V ar(β̂PPP ) =
1

T
VPPP

=
1

T

(w(1)

w(2)
q2b1V

−1
(1) + (1− b1)V −1(2)

)−1((w(1)

w(2)

)2
q4b1V

−1
(1) + (1− b1)V −1(2)

)
×
(w(1)

w(2)
q2b1V

−1
(1) + (1− b1)V −1(2)

)−1
. (21)

Thus, the variance of the WGLS estimator is less than that of the PPP estimator if γ∗ >
w(1)

w(2)
. This

highlights the bias-variance tradeoff feature of the WGLS estimator. When the WGLS estimator

assigns a higher weight to the pre-break sample observations, it increases the bias while reducing

the variance. The goal of our WGLS method is to obtain the weighted estimator and forecast

where the weight is to use the pre-break observations and is determined by cross-validation. When

γ∗ =
w(1)

w(2)
, both estimators are equal as noted in Remark 4.

To compare the variance of the WGLS estimator with the post-break estimator, we note that

since γ ∈ (0, 1], using (20), we have

V ar(β̂WGLS) ≤ 1

T

(
γb1V

−1
(1) + (1− b1)V −1(2)

)−1
=

1

T (1− b1)
V

1/2
(2)

( γb1
1− b1

V
1/2
(2) V

−1
(1) V

1/2
(2) + Ik

)−1
V

1/2
(2) .

(22)

Also, the variance of the post-break estimator is

V ar(β̂(2)) =
( 1

T − T1
)
V(2). (23)
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Therefore, using (22) and (23),

T
(
V ar(β̂(2))− V ar(β̂WGLS)

)
=

1

1− b1
V

1/2
(2)

[
Ik −

( γb1
1− b1

V
1/2
(2) V

−1
(1) V

1/2
(2) + Ik

)−1]
V

1/2
(2)

=
1

1− b1
V(2)A

∗V(2),

(24)

where A∗ ≡
(
1−b1
γb1

V(1)+V(2)

)−1
, and the second equality holds using the Woodbury matrix identity.

Thus the WGLS estimator is more efficient than the post-break estimator. As to be expected, the

superiority in the efficiency of the WGLS estimator compared to the post-break estimator diminishes

as T (1− b1)→∞. Besides, the WGLS estimator is biased under a break. This highlights the fact

that the WGLS method trade-offs between the bias and variance efficiency. Based on the simulation

study and the empirical example results presented in Sections 4 and 5, respectively, the WGLS

estimator outperforms the post-break estimator in the sense of mean squared forecast errors, for

any break size and break points. This means that the bias created by the WGLS method would be

offset by its variance efficiency, and therefore it results in a better forecast.

4 Monte Carlo evidence on forecasting performance

In this section, we use Monte Carlo simulation to compare forecasting performance of the WGLS

estimator in equation (11), in comparison with the PPP estimator in equation (7) (labeled as “PPP”

in tables), the five methods used in Pesaran and Timmermann (2007), namely the post-break

method (“Postbk”); the trade-off method (“Troff”); weighted average of forecasts (“WA”); the

pooled forecast combination (“Pooled”); cross validation (“CV”), the full-sample forecast (“Full”),

and the average window forecast proposed by Pesaran and Pick (2011) (“AveW”). We also report

the results with the infeasible PPP method (“PPPinf.”) in which it uses the true break point and

true break size in the coefficient and error variance. We generate data from the following equation,

yt =

x
′
tβ(1) + σ(1)εt if 1 < t ≤ T1

x′tβ(2) + σ(2)εt if T1 < t ≤ T,
(25)

where xt is k × 1, xt ∼ N(0, Ik), εt ∼ i.i.d. N(0, 1), T = 100, q1 =
σ(1)
σ(2)
∈ {0.5, 1, 2} and k ∈ {5, 10}.

We consider different values for T1 which are proportional to the pre-break sample observations,

10



b1 ≡ T1
T ∈ {0.2, 0.5, 0.8}. Let β(2) be a k×1 vector of ones, and the break size in the coefficients, λ =

β(1) − β(2) ∈ {0.1, 0.3, 0.6, 1}.5 To incorporate the uncertainty regarding the unknown parameters

(b1, λ, q), we estimate the break point, break size in the coefficient and the ratio of break in error

variance. For the estimation of the break point, we use Bai and Perron (1998, 2003) approach and

set the trimming parameter at 0.2.6 The number of replications is 1000.

Tables 1-3 report the Monte Carlo results. For comparison, we report the one-period ahead

forecasts in MSFE for different methods relative to that of the forecast using post-break observa-

tions, i.e., for method i we have RMSFEi = MSFEi/MSFEPostbk. The MSFE for each method

is calculated as MSFEi = 1
1000

∑1000
m=1

(
y
(m)
i,T+1 − ŷ

(m)
i,T+1

)2
, where ŷ

(m)
i,T+1 is the forecast computed

using method i for the mth replication. Thus, an RMSFE less than one has a lower MSFE than

the post-break forecast, and an RMSFE exceeding one has a higher MSFE than the benchmark.

We report the relative MSFE for different methods with estimated break dates in columns 2-8 of

Table 1.7 Columns 9-10 show the results for the average window forecast and the infeasible PPP

estimator, respectively.8

As it is clear from the tables, the WGLS estimator outperforms the post-break estimator.

Specifically, for the small to medium break sizes in the coefficients (approximately λ < 0.6), there

is a huge gain from using the WGLS estimator rather than the post-break estimator. This gain

increases even more, as we increase the number of regressors, k. For the large break size in the

coefficient, the WGLS estimator becomes close to the post-break estimator, as CV chooses the

weight close to zero.

When the break point is close to the end of the sample (b1 close to 1), the out-performance of

the WGLS estimator is much larger than when the break happens close to the beginning of the

sample (b1 close to 0). This is due to the small number of observations in the post-break sample.

For example, with T = 100, if the break happens at T1 = 80, then the post-break sample has only

5We have tried different break size, ranging from 0 to 1 in increments of 0.1. The pattern of results are similar to
those that we present in the paper.

6The results are similar when trimming of 0.15 is used.
7We have also implemented these methods imposing the true break point and the results are qualitatively similar

to those with the estimated break point. Because imposing the true break date is infeasible in practice, we only
report the results with estimated break point here to save space.

8See Sections 3.2-3.5 in Pesaran and Timmermann (2007) for details. For the CV, WA and Pooled methods, as
used in Pesaran and Timmermann (2007), we set the size of the forecast evaluation window to 0.25T and size of the
minimum estimation window to 0.1T , in the simulation study in this section and the empirical study in the next
section.
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20 observations. This is when exploiting the pre-break observations can help, and therefore the

WGLS estimator performs much better than the post-break estimator. But when break happens at

T1 = 20, it does not significantly improve the forecast. This is expected as discussed above based

on equation (24), i.e., the gain decreases as b1 gets smaller.

We also compare the performance of the proposed estimator under different break ratio in the

error variance, q = σ(1)/σ(2), before and after the break. For q < 1, the pre-break observations

are less volatile than the post-break observations. Thus, including the pre-break observations can

benefit the estimator as we are using more information. When q > 1, the pre-break observations

are more volatile compare to the post-break observations. But as we can see from the tables, even

under this case, we still can gain by using the WGLS estimator over the post-break estimator but

the gain is bigger when q < 1.

Furthermore, we compare the performance of the WGLS estimator with the PPP estimator

of Pesaran et al. (2013). Results in Tables 1-3 show that, the WGLS estimator performs better

than the PPP estimator for any break points and break size. Besides WGLS estimator overall

outperform other methods. The performance of the cross validation (CV) approach deteriorates

when T1 gets close to T . The trade-off (Troff) method performs almost in line with the post-break

method. The weighted average (WA) and pooled forecast combination (Pooled) methods perform

better than the post-break estimator only for small break sizes. However, they perform poorly

for large breaks. Similarly, the AveW forecast perform better than the post-break forecast for

small break size. The full-sample method performs good under small break sizes, but as the break

size increases, it performs much worse than the post-break estimator. We note that the WGLS,

PPP, AveW, CV, Troff, WA, and Pooled methods generally perform better than the full-sample

estimator, except for a small break size as expected. This mirrors the findings in Pesaran and

Timmermann (2007), Pesaran and Pick (2011) and Pesaran et al. (2013).

We have also included the MSFE for the infeasible PPP method in Tables 1-3, which as expected,

it almost always outperforms all other methods. To see how far our estimated optimal CV weight

is from the PPP infeasible optimal weights, we plot the frequency of the pre-break and post-break

sample observations weights for the PPP infeasible estimator and compare them with that of the

normalized WGLS weights.9 The simulation results are for T = 100, T1 = 80, k = 5, q = 1 and

9The normalized pre-break and post-break observations weights for the WGLS estimator are γ/(T1γ + T − T1)
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presented in Figure 1. Based on the results, the frequency of the WGLS optimal weights are

close to that of the infeasible optimal weights. However, since the infeasible version uses the true

parameters instead of estimates, and estimation of weights using CV introduces additional noise for

the WGLS estimator, the pattern of weights are not exact between the two methods. We observed

similar pattern for frequency of weights under other specifications.

5 Empirical analysis

In this section, we present an empirical application of our method. We consider forecasting the

equity premium using the six predictors from Welch and Goyal (2008), which are dividend yield,

earning-price ratio, stock variance, long term return, inflation and treasury bill rate.10 The data

are quarterly which we examine from 1950:Q1-2018:Q4 to assess the performance of our model.

This provides the time-series dimension of 276 observations. The equity premium is the return on

the stock market minus the return on a short-term risk-free treasury bill. We use the return on

S&P 500 index as the proxy of the stock market return.

We recursively compute one-step-ahead forecasts using the WGLS estimator, and the same

alternative methods used in the simulation study in Section 4. We divide the sample of observations

into two parts. The first T observations are used as the initial in-sample estimation period, and the

remaining observations are the pseudo out-of-sample evaluation period. Forecasts are recursively

generated at each point in the out-of-sample period using only the information available at the time

the forecast is made. As we expand the estimation window, we re-estimate break points by the

sequential procedure introduced by Bai and Perron (1998, 2003), where we search for up to eight

breaks and set the trimming parameter to 0.1 (i.e., the minimal permissible length of a regime is

0.1T ) and the significance level at 5%.

We consider two different estimation window sizes so the beginning of the forecast evaluation

periods start from 1995:Q1 and 2005:Q1, respectively. Table 4 shows the out-of-sample forecasting

results. We evaluate the forecasts for horizons h = 1, 2, 3, 4 quarters. The WGLS estimator has

lower MSFE than the post-break estimator and the PPP estimator for all forecast horizons. Besides,

the WGLS estimator overall performs better than other forecasting methods. However, there are

and 1/(T1γ + T − T1), respectively.
10We use the first difference transformation for the dividend yield, earning price ratio and treasury bill rate.
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some cases that other forecasting methods underperform the post-break forecast.

Finally, we evaluate the statistical significance of superior predictive ability of method i by

testing for the null hypothesis H0 : MSFEPostbk = MSFEi against the alternative hypothesis

H1 : MSFEPostbk > MSFEi. The Diebold and Mariano (1995) statistics reported in Table 4,

show that the WGLS estimator produces forecasts with significantly smaller MSFEs than the post-

break estimator does for all forecast horizons h = 1, 2, 3, 4. MSFEs from using the PPP estimator

are not significantly smaller than those of the post-break estimator.

6 Conclusion

In this paper, we introduce the novel WGLS method for forecasting under structural breaks. As

it uses the discrete kernel function instead of the parametrically derived weights as in the PPP

method, WGLS facilitates implementation of the PPP method. The discrete kernel weight is

estimated by cross-validation, which we show is asymptotically optimal in the sense of Li (1987),

i.e., the average squared error of the loss or risk estimated by cross-validation is asymptotically

as small as that of the oracle estimator. Monte Carlo simulation illustrates the superiority of the

WGLS forecast relative to the post-break forecast, the PPP forecast, and other methods. When the

breaks happen closer to end of the sample or when there are larger number of regressors, the WGLS

method outperforms them even more. The empirical application of predicting equity premium is

presented which shows the superiority of the WGLS method over other forecasting methods.
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A Appendix: Mathematical details

A.1 Proof of Theorem 1

To derive L(γ) and R(γ), rewrite (14) as

β̂WGLS(γ)− β(2) =
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1(
γ∗ X ′(1)X(1)λ+ γ∗ X ′(1)σ(1)ε(1) +X ′(2)σ(2)ε(2)

)
,

(A.1)

where λ = β(1) − β(2), ε(1) = (ε1, . . . , εT1)′, ε(2) = (εT1+1, . . . , εT )′. Then,

R(γ) = E
[(
β̂WGLS(γ)− β(2)

)′
W
(
β̂WGLS(γ)− β(2)

)]
= E

[(
γ∗ λ′X ′(1)X(1) + γ∗ σ(1)ε

′
(1)X(1) + σ(2)ε

′
(2)X(2)

)(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W
×
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1(
γ∗ X ′(1)X(1)λ+ γ∗ X ′(1)σ(1)ε(1) +X ′(2)σ(2)ε(2)

)]
= (γ∗)2 λ′X ′(1)X(1)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(1)X(1)λ

+ (γ∗)2 E
[
σ2(1) ε

′
(1)X(1)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(1)ε(1)

]
+ E

[
σ2(2) ε

′
(2)X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(2)ε(2)

]
= λ′A1λ+ (γ∗)2 σ2(1) tr(A2) + σ2(2) tr(A3),

(A.2)

where γ∗ = γ/q2, A1 = (γ∗)2 X ′(1)X(1)

(
γ∗X ′(1)X(1)+X

′
(2)X(2)

)−1W (
γ∗X ′(1)X(1)+X

′
(2)X(2)

)−1
X ′(1)X(1),

A2 = X ′(1)X(1)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
and

A3 = X ′(2)X(2)

(
γ∗X ′(1)X(1) + X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) + X ′(2)X(2)

)−1
. Since λ is the break size

which is not known, we can plug the unbiased estimator for this term instead. The unbiased

estimator for λ′A1λ is equal to

λ̂′A1λ̂− σ̂2(1) tr
(
A1(X

′
(1)X(1))

−1
)
− σ̂2(2) tr

(
A1(X

′
(2)X(2))

−1
)
, (A.3)
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where σ̂2(1) and σ̂2(2) are an unbiased estimator for the variance of the pre-break and post-break

observations, respectively. By plugging (A.3) back into (A.2) we have:

R̂(γ) = λ̂′A1λ̂+ σ̂2(1) tr
(

(γ∗)2A2 −A1(X
′
(1)X(1))

−1
)

+ σ̂2(2) tr
(
A3 −A1(X

′
(2)X(2))

−1
)

= λ̂′A1λ̂+ 2σ̂2(2) tr
(
W
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1)− k, (A.4)

where W = X ′(2)X(2)/σ
2
(2) and (γ∗)2A2 − A1(X

′
(1)X(1))

−1 = 0. Also, A3 − A1(X
′
(2)X(2))

−1 =

2 tr
(
W
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1)− k/σ2(2). Besides, we can rewrite λ̂′A1λ̂ as

λ̂′A1λ̂ =
(
β̂(1) − β̂(2)

)′
A1

(
β̂(1) − β̂(2)

)
= β̂′(1)A1β̂(1) + β̂′(2)A1β̂(2) − 2β̂′(2)A1β̂(1)

= (γ∗)2 Y ′(1)X(1)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(1)Y(1) + β̂′(2)W β̂(2)

− 2β̂′(2)W β̂WGLS(γ) + 2β̂′(2)W
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
γ∗X ′(1)Y(1) + β̂′WGLS(γ)W β̂WGLS(γ)

− 2β̂′WGLS(γ)W
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
γ∗X ′(1)Y(1)

+ (γ∗)2 Y ′(1)X(1)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(1)Y(1)

− 2β̂′(2)W
(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
γ∗X ′(1)Y(1) + 2β̂′WGLS(γ)W

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
γ∗X ′(1)Y(1)

− 2(γ∗)2 Y ′(1)X(1)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1W (
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X(1)Y(1)

= β̂′(2)W β̂(2) − 2β̂′(2)W β̂WGLS(γ) + β̂′WGLS(γ)W β̂WGLS(γ)

= σ−2(2) β̂
′
(2) X

′
(2)X(2) β̂(2) − 2 σ−2(2) Y

′
(2)X(2) β̂WGLS(γ) +

(
µ̂(γ)− σ−1(2) Y(2) + σ−1(2) Y(2)

)′
×
(
µ̂(γ)− σ−1(2) Y(2) + σ−1(2) Y(2)

)
= σ−2(2) β̂

′
(2) X

′
(2)X(2) β̂(2) +

(
µ̂(γ)− σ−1(2) Y(2)

)′(
µ̂(γ)− σ−1(2) Y(2)

)
− σ−2(2) Y

′
(2)Y(2),

(A.5)

where we plug W = X ′(2)X(2)/σ
2
(2) to derive the MSFE.

Thus, based on equation (A.4), the MSFE for the WGLS estimator up to the relevant terms

to γ is

R̂(γ) =
(
µ̂(γ)− σ−1(2) Y(2)

)′(
µ̂(γ)− σ−1(2) Y(2)

)
+ 2 tr

(
X ′(2)X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1)
. (A.6)
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Define P (γ) ≡ X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(2). Thus, we can rewrite µ̂(γ) as

µ̂(γ) = σ−1(2) X(2) β̂WGLS(γ)

= σ−1(2) X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1(
γ∗X ′(1)Y(1) +X ′(2)Y(2)

)
= σ−1(2)

(
Φ + P (γ)Y(2)

)
,

(A.7)

where Φ ≡ X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1(
γ∗X ′(1)Y(1)

)
. Based on this definition, we can rewrite the

asymptotic risk in (A.6) as

R̂(γ) =
(
µ̂(γ)− µ− ε(2)

)′(
µ̂(γ)− µ− ε(2)

)
+ 2 tr

(
P (γ)

)
= L(γ) + ε′(2)ε(2) − 2 ε′(2)

(
µ̂(γ)− µ

)
+ 2 tr

(
P (γ)

)
= L(γ) + ε′(2)ε(2) − 2 ε′(2) µ̂(γ) + 2 ε′(2)µ+ 2 tr

(
P (γ)

)
= L(γ) + ε′(2)ε(2) − 2σ−1(2) ε

′
(2)

(
Φ + P (γ)Y(2)

)
+ 2 ε′(2)µ+ 2 tr

(
P (γ)

)
= L(γ) + ε′(2)ε(2) − 2σ−1(2) ε

′
(2) Φ− 2 ε′(2) P (γ)µ− 2 ε′(2)P (γ) ε(2) + 2 ε′(2) µ+ 2 tr

(
P (γ)

)
.

(A.8)

We consider the choice of γ from minimizing (A.8), and by restricting γ to the set H. Thus, the

selected γ is

γ̂ = argmin
γ∈H

R̂(γ). (A.9)

Let ξ = inf
γ∈H

R(γ)→∞ as T →∞. This specifies that the bias of the WGLS estimator is not zero,

and thus the trade-off between bias and variance is present. This condition is similar to that of Li

(1987), Hansen (2007) for Mallows weight selection, Hansen and Racine (2012) and Zhang et al.

(2013) for Jackknife model averaging. We assume that

µ′µ = O(T ), (A.10)

X ′(2)σ(2)ε(2) = Op(
√
T ). (A.11)

As shown by Theorem 2.1 of Li (1987), the estimated weight, γ̂, obtained from CV is asymptotically
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optimal for the WGLS risk R̂(γ), that is

R̂(γ̂)

inf
γ∈H

R̂(γ)

p−→ 1, (A.12)

under λmax(Ω) <∞ (moment bound condition), and lim
T→∞

Sup
γ∈H

λmax

(
P (γ)

)
<∞, where we define

λmax(B) to be the largest eigenvalue of a matrix B. We note that

Sup
γ∈H

λmax

(
P (γ)

)
= Sup

γ∈H
λmax

(
X(2)

(
γX ′(1)X(1)+X

′
(2)X(2)

)−1
X ′(2)

)
≤ λmax

(
X(2)(X

′
(2)X(2))

−1X ′(2)

)
= 1.

(A.13)

Also notice that

R(γ) = E
[(
µ̂(γ)− µ

)′(
µ̂(γ)− µ

)]
= E

[(
σ−1(2) Φ + σ−1(2) P (γ)Y(2) − µ

)′(
σ−1(2) Φ + σ−1(2) P (γ)Y(2) − µ

)]
= E

[(
σ−1(2) Φ + P (γ)µ+ P (γ) ε(2) − µ

)′(
σ−1(2) Φ + P (γ)µ+ P (γ) ε(2) − µ

)]
= E

[
σ−2(2) Φ′Φ + ε′(2)P

2(γ)ε(2) +
(
P (γ) µ− µ

)′(
P (γ) µ− µ

)
+ 2σ−1(2) Φ′

(
P (γ) µ− µ

)]
= E

[
Φ′σ−2(2) Φ

]
+ tr

(
P 2(γ)

)
+
(
P (γ) µ− µ

)′(
P (γ) µ− µ

)
+ 2
(
P (γ) µ− µ

)′
Π

= Υ + q2 tr
(
P (γ)− P 2(γ)

)
+ tr

(
P 2(γ)

)
+
(
P (γ)µ− µ

)′(
P (γ)µ− µ

)
+ 2
(
P (γ) µ− µ

)′
Π

= Υ + q2 tr
(
P (γ)

)
+
(
1− q2

)
tr
(
P 2(γ)

)
+
(
P (γ)

(
µ+ ε(2) − ε(2)

)
− µ

)′
(
P (γ)

(
µ+ ε(2) − ε(2)

)
− µ

)
+ 2
(
P (γ) µ− µ

)′
Π

= Υ + q2 tr
(
P (γ)

)
+
(
1− q2

)
tr
(
P 2(γ)

)
+
(
σ−1(2) P (γ)Y(2) + σ−1(2) Φ− µ− σ−1(2) Φ− P (γ)ε(2)

)′
(
σ−1(2) P (γ)Y(2) + σ−1(2) Φ− µ− σ−1(2) Φ− P (γ)ε(2)

)
+ 2
(
P (γ) µ− µ

)′
Π

= Υ + q2 tr
(
P (γ)

)
+
(
1− q2

)
tr
(
P 2(γ)

)
+
(
µ̂(γ)− µ− σ−1(2) Φ− P (γ)ε(2)

)′
(
µ̂(γ)− µ− σ−1(2) Φ− P (γ)ε(2)

)
+ 2
(
P (γ) µ− µ

)′
Π

= L(γ) + Φ′σ−2(2) Φ + ε′(2)P
2(γ)ε(2) − 2

(
µ̂(γ)− µ

)′(
σ−1(2) Φ + P (γ)ε(2)

)
+ 2ε′(2)P (γ)σ−1(2)Φ

+ Υ + q2 tr
(
P (γ)

)
+
(
1− q2

)
tr
(
P 2(γ)

)
+ 2
(
P (γ) µ− µ

)′
Π

= L(γ) + Φ′σ−2(2) Φ + ε′(2)P
2(γ)ε(2) − 2

(
σ−1(2) Φ + P (γ)

(
µ+ ε(2)

)
− µ

)′(
σ−1(2) Φ + P (γ)ε(2)

)
+ 2ε′(2)P (γ)σ−1(2)Φ + Υ + q2 tr

(
P (γ)

)
+
(
1− q2

)
tr
(
P 2(γ)

)
+ 2
(
P (γ) µ− µ

)′
Π
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= L(γ)−Ψ− ε′(2)P
2(γ)ε(2) − 2σ−1(2) Φ′P (γ)ε(2) − 2

(
P (γ)µ− µ

)′(
σ−1(2) Φ + P (γ)ε(2) −Π

)
+ q2 tr

(
P (γ)

)
+
(
1− q2

)
tr
(
P 2(γ)

)
= L(γ)−Ψ− ε′(2)P

2(γ)ε(2) − 2σ−1(2) Φ′P (γ)ε(2) − 2
(
P (γ)µ− µ

)′(
Θ + P (γ)ε(2)

)
+ q2 tr

(
P (γ)

)
+
(
1− q2

)
tr
(
P 2(γ)

)
, (A.14)

where Φ′σ−2(2) Φ = Υ+Ψ, Υ ≡ (γ∗)2σ−2(2) β
′
(1)X

′
(1)X(1)

(
γ∗X ′(1)X(1)+X

′
(2)X(2)

)−1
X ′(2)X(2)

(
γ∗X ′(1)X(1)+

X ′(2)X(2)

)−1
X ′(1)X(1)β(1), Ψ ≡ (γ∗)2q2 ε′(1)X(1)

(
γ∗X ′(1)X(1) + X ′(2)X(2)

)−1
X ′(2)X(2)

(
γ∗X ′(1)X(1) +

X ′(2)X(2)

)−1
X ′(1)ε(1), Π = γ∗σ−1(2)X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(1)X(1)β(1), and

Θ = σ−1(2)X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
γ∗X ′(1)σ(1)ε(1).

By using the conditions in (A.10) and (A.11), and the proof steps of Theorem 2.2 of Zhang

et al. (2013), in order to establish (A.12) and therefore the optimality condition in Theorem 1, it

suffices to prove that the following conditions hold.

Sup
γ∈H

|ε′(2)Φ|
R(γ)

= op(1), (A.15)

Sup
γ∈H

|ε′(2)P (γ)ε(2)|
R(γ)

= op(1), (A.16)

Sup
γ∈H

| µ′P (γ)ε(2)|
R(γ)

= op(1), (A.17)

Sup
γ∈H

|tr(P (γ))|
R(γ)

= op(1), (A.18)

Sup
γ∈H

|Ψ|
R(γ)

= op(1), (A.19)

Sup
γ∈H

|ε′(2)P
2(γ)ε(2)|
R(γ)

= op(1), (A.20)

Sup
γ∈H

|Φ′P (γ)ε(2)|
R(γ)

= op(1), (A.21)
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Sup
γ∈H

|(P (γ)µ− µ)′ Θ|
R(γ)

= op(1), (A.22)

Sup
γ∈H

|(P (γ)µ− µ)′ P (γ)ε(2)|
R(γ)

= op(1), (A.23)

Sup
γ∈H

|tr(P 2(γ))|
R(γ)

= op(1). (A.24)

Proof of equation (A.15):

ε′(2)Φ = γ∗ ε′(2)X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(1)Y(1)

≤ γ∗ ε′(2)X(2)

(
γ∗X ′(1)X(1)

)−1
X ′(1)Y(1)

= ε′(2)X(2)

(
X ′(1)X(1)

)−1
X ′(1)Y(1)

= ε′(2)X(2) β̂(1) = Op(
√
T ).

(A.25)

Proof of equation (A.16):

Sup
γ∈H

ε′(2)P (γ)ε(2) ≤ ε′(2) X(2)(X
′
(2)X(2))

−1X ′(2) ε(2) = Op(1). (A.26)

Proof of equation (A.17):

µ′P (γ)ε(2) = µ′X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(2)ε(2)

≤ µ′X(2)(X
′
(2)X(2))

−1X ′(2)ε(2)

= σ−1(2) β
′
(2)X

′
(2)X(2)(X

′
(2)X(2))

−1X ′(2)ε(2)

= σ−1(2) β
′
(2)X

′
(2)ε(2) = Op(

√
T ).

(A.27)

Proof of equation (A.18):

Sup
γ∈H

tr
(
P (γ)

)
≤ tr

(
X ′(2)(X

′
(2)X(2))

−1X(2)

)
= k = O(1). (A.28)
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Proof of equation(A.19):

Ψ = (γ∗)2q2 ε′(1)X(1)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(2)X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(1)ε(1)

≤ (γ∗)2q2 ε′(1)X(1)

(
γ∗X ′(1)X(1)

)−1
X ′(2)X(2)

(
γ∗X ′(1)X(1)

)−1
X ′(1)ε(1)

= ε′(1)σ(1)X(1)

(
X ′(1)X(1)

)−1
X ′(2)σ

−2
(2)X(2)

(
X ′(1)X(1)

)−1
X ′(1)σ(1)ε(1)

=
(
β̂(1) − β(1)

)′
X ′(2)σ

−2
(2)X(2)

(
β̂(1) − β(1)

)
= Op(1).

(A.29)

Proof of equation (A.20):

Sup
γ∈H

ε′(2)P
2(γ)ε(2) ≤ Sup

γ∈H
λmax

(
P (γ)

)
ε′(2)P (γ)ε(2) ≤ ε′(2)X(2)(X

′
(2)X(2))

−1X ′(2)ε(2) = Op(1), (A.30)

where the first inequality holds because for any n× 1 vector of x, and any n×n symmetric matrix

A with maximum eigenvalue of λmax(A), we have x′Ax ≤ x′x λmax(A), see Abadir and Magnus

(2005), page 343.

Proof of equation (A.21):

Φ′P (γ)ε(2) = γ∗ Y ′(1)X(1)(γ
∗X ′(1)X(1) +X ′(2)X(2))

−1 X ′(2)X(2)(γ
∗X ′(1)X(1) +X ′(2)X(2))

−1X ′(2)ε(2)

≤ γ∗ Y ′(1)X(1)(X
′
(2)X(2))

−1 X ′(2)X(2)

(
γ∗X ′(1)X(1)

)−1
X ′(2)ε(2)

= Y ′(1)X(1)(X
′
(1)X(1))

−1X ′(2)ε(2)

= β̂1 X
′
(2)ε(2) = Op(

√
T ). (A.31)

Proof of equation (A.22):

Using the Cauchy-Schwarz inequality we have:

[(
P (γ)µ− µ

)′
Θ
]2
≤
(
P (γ)µ− µ

)′(
P (γ)µ− µ

)
Θ′Θ

≤ R(γ) q2ε′(1)X(1)

(
X ′(1)X(1)

)−1(
X ′(2)X(2)

)(
X ′(1)X(1)

)−1
X ′(1)ε(1)

= Op(T ). (A.32)

Therefore,
(
P (γ)µ− µ

)′
Θ = Op(

√
T ).

Proof of equation (A.23):
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Using the Cauchy-Schwarz inequality we have:

[(
P (γ)µ− µ

)′
P (γ)ε(2)

]2
≤
(
P (γ)µ− µ

)′(
P (γ)µ− µ

)
ε′(2)P (γ)2ε(2)

≤ R(γ) λmax

(
P (γ)

)
ε′(2)P (γ)ε(2) = Op(T ).

(A.33)

Therefore,
(
P (γ)µ− µ

)′
P (γ)ε(2) = Op(

√
T ).

Proof of equation (A.24):

tr
(
P 2(γ)

)
= tr

[
X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(2)X(2)

(
γ∗X ′(1)X(1) +X ′(2)X(2)

)−1
X ′(2)

]
≤ tr

[
X(2)(X

′
(2)X(2))

−1X ′(2)X(2) (X ′(2)X(2))
−1X ′(2)

]
= k = O(1).

(A.34)

Based on the above conditions, the proof of Theorem 1 thus follows. Therefore, the weight derives

by CV is optimal. �
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(a) λ = 0.1 (b) λ = 0.1

(c) λ = 0.4 (d) λ = 0.4

(e) λ = 0.7 (f) λ = 0.7

(g) λ = 1 (h) λ = 1

Figure 1: Frequency of weights for T = 100, T1 = 80, k = 5 and different λ

25



Table 1: Simulation results with q = 0.5

λ WGLS PPP CV Troff WA Pooled Full AveW PPPinf.

T = 100, T1 = 20, k = 5

0.1 0.964 0.979 0.955 0.988 0.941 0.941 0.935 0.983 0.936
0.3 0.966 0.985 0.968 0.983 0.942 0.943 0.978 0.970 0.939
0.6 0.993 0.997 0.995 0.993 0.996 0.995 1.358 1.019 0.996
1.0 0.999 1.011 1.001 0.996 1.055 1.049 2.154 1.033 1.013

T = 100, T1 = 50, k = 5

0.1 0.957 0.980 0.960 0.978 0.942 0.941 0.940 0.968 0.934
0.3 0.974 0.983 0.980 0.974 0.960 0.958 1.112 0.953 0.934
0.6 0.997 1.002 0.990 1.002 1.119 1.107 1.919 1.031 0.982
1.0 1.000 1.003 0.994 0.998 1.462 1.404 3.678 1.141 0.994

T = 100, T1 = 80, k = 5

0.1 0.931 0.962 0.921 0.972 0.908 0.911 0.906 0.931 0.902
0.3 0.921 0.935 0.902 0.960 0.919 0.904 1.001 0.878 0.835
0.6 0.962 0.966 1.100 1.002 1.355 1.226 1.825 1.168 0.877
1.0 0.984 1.005 1.688 1.029 2.500 2.093 3.855 1.938 0.928

T = 100, T1 = 20, k = 10

0.1 0.802 0.893 0.791 0.973 0.765 0.768 0.750 0.816 0.746
0.3 0.870 0.927 0.876 0.974 0.840 0.843 0.906 0.881 0.826
0.6 0.998 1.011 1.001 1.004 1.028 1.026 1.665 1.050 1.000
1.0 1.001 1.030 1.009 1.021 1.151 1.138 3.107 1.058 1.022

T = 100, T1 = 50, k = 10

0.1 0.718 0.853 0.729 0.954 0.692 0.699 0.685 0.746 0.669
0.3 0.891 0.926 0.893 0.966 0.862 0.860 1.088 0.879 0.807
0.6 0.990 0.994 0.997 0.995 1.227 1.205 2.447 1.075 0.948
1.0 1.000 1.018 1.002 1.028 1.897 1.795 5.411 1.298 1.006

T = 100, T1 = 80, k = 10

0.1 0.607 0.776 0.627 0.925 0.593 0.602 0.592 0.626 0.579
0.3 0.712 0.784 0.702 0.949 0.713 0.688 0.836 0.675 0.601
0.6 0.856 0.873 1.118 1.027 1.358 1.192 1.921 1.118 0.720
1.0 0.937 0.975 2.074 1.145 2.888 2.383 4.472 2.169 0.833

Note: This table reports the results of the relative MSFE for different methods. All MSFEs are
reported relative to the associated MSFE based on the post-break sample. λ in the first column
shows different break sizes in the mean. In the heading of the table, WGLS shows the results for
our proposed estimator, PPP is the one proposed by Pesaran et al. (2013), Postbk, Troff, CV, WA,
and Pooled are the five methods used in Pesaran and Timmermann (2007), Full is forecast based
on the full-sample observations, AveW is the method proposed by Pesaran and Pick (2011) with
T (1− wmin) + 1 windows and wmin = 0.15, and PPPinf. is the infeasible PPP method.
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Table 2: Simulation results with q = 1

λ WGLS PPP CV Troff WA Pooled Full AveW PPPinf.

T = 100, T1 = 20, k = 5

0.1 0.973 0.985 0.966 0.988 0.950 0.952 0.952 0.990 0.951
0.3 0.986 0.992 0.986 0.993 0.973 0.973 0.986 1.002 0.970
0.6 0.993 0.998 0.997 0.991 1.001 0.999 1.084 1.019 0.992
1.0 0.999 1.003 1.000 0.999 1.060 1.054 1.269 1.034 1.009

T = 100, T1 = 50, k = 5

0.1 0.978 0.987 0.967 0.992 0.964 0.964 0.968 0.976 0.959
0.3 0.984 0.988 0.984 0.991 0.982 0.981 1.038 0.957 0.943
0.6 0.999 1.001 0.991 1.002 1.137 1.124 1.397 1.034 0.983
1.0 1.001 1.005 0.994 0.999 1.482 1.424 2.149 1.143 0.993

T = 100, T1 = 80, k = 5

0.1 0.968 0.983 0.957 0.986 0.945 0.945 0.942 0.968 0.938
0.3 0.946 0.965 0.962 0.991 0.969 0.954 0.987 0.912 0.860
0.6 0.954 0.967 1.119 1.008 1.334 1.224 1.496 1.140 0.849
1.0 0.981 1.006 1.703 1.018 2.489 2.099 2.991 1.927 0.919

T = 100, T1 = 20, k = 10

0.1 0.853 0.921 0.846 0.975 0.822 0.823 0.817 0.871 0.813
0.3 0.904 0.953 0.905 0.991 0.882 0.885 0.918 0.927 0.874
0.6 0.998 1.006 1.003 1.011 1.036 1.033 1.198 1.049 0.995
1.0 1.001 1.015 1.008 1.021 1.158 1.144 1.589 1.060 1.009

T = 100, T1 = 50, k = 10

0.1 0.829 0.917 0.830 0.983 0.811 0.813 0.818 0.861 0.802
0.3 0.923 0.952 0.934 0.981 0.932 0.928 1.019 0.929 0.867
0.6 0.991 0.998 0.999 1.000 1.257 1.234 1.654 1.084 0.963
1.0 1.001 1.016 1.003 1.012 1.926 1.822 3.013 1.304 1.013

T = 100, T1 = 80, k = 10

0.1 0.824 0.912 0.817 0.980 0.780 0.780 0.777 0.822 0.767
0.3 0.784 0.866 0.812 0.994 0.797 0.771 0.826 0.745 0.659
0.6 0.856 0.885 1.159 1.052 1.357 1.207 1.543 1.115 0.716
1.0 0.947 0.987 2.133 1.116 2.897 2.409 3.446 2.176 0.837

Note: See the notes to Table 1.
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Table 3: Simulation results with q = 2

λ WGLS PPP CV Troff WA Pooled Full AveW PPPinf.

T = 100, T1 = 20, k = 5

0.1 1.000 1.000 1.003 0.999 0.999 0.999 1.002 1.014 0.978
0.3 0.997 0.998 1.006 1.001 1.013 1.012 1.007 1.000 0.968
0.6 0.999 1.002 1.004 1.000 1.105 1.098 1.049 1.030 0.997
1.0 1.000 1.003 1.004 1.000 1.317 1.288 1.132 1.048 1.007

T = 100, T1 = 50, k = 5

0.1 0.999 1.000 0.998 1.000 1.005 1.004 1.011 0.941 0.930
0.3 1.000 0.997 0.992 1.002 1.141 1.135 1.089 0.968 0.910
0.6 1.000 1.002 0.999 0.997 1.747 1.690 1.377 1.225 0.988
1.0 1.001 1.007 1.004 1.004 3.099 2.848 1.986 1.639 0.997

T = 100, T1 = 80, k = 5

0.1 0.964 0.985 0.955 0.993 0.941 0.938 0.934 0.912 0.845
0.3 0.972 0.991 1.108 1.000 1.220 1.168 1.128 0.999 0.713
0.6 0.993 1.012 1.981 0.996 2.866 2.443 2.245 2.143 0.811
1.0 0.992 1.032 4.514 0.994 7.753 6.175 5.330 5.469 0.984

T = 100, T1 = 20, k = 10

0.1 0.985 0.994 0.982 1.004 0.986 0.986 0.995 1.026 0.971
0.3 0.998 1.002 1.005 1.005 1.052 1.050 1.033 1.041 0.985
0.6 1.000 1.003 1.020 1.008 1.247 1.235 1.125 1.065 1.000
1.0 1.001 1.002 1.028 0.998 1.716 1.661 1.336 1.093 1.005

T = 100, T1 = 50, k = 10

0.1 0.975 0.990 0.998 1.001 0.996 0.996 0.988 0.918 0.872
0.3 0.999 1.006 0.993 1.000 1.310 1.298 1.183 1.051 0.917
0.6 1.001 1.007 1.007 1.002 2.353 2.258 1.738 1.424 0.982
1.0 1.001 1.025 1.042 1.000 4.990 4.552 3.094 2.263 1.051

T = 100, T1 = 80, k = 10

0.1 0.923 0.966 0.946 0.990 0.894 0.892 0.891 0.863 0.759
0.3 0.890 0.931 1.057 1.023 1.092 1.039 1.021 0.863 0.540
0.6 0.965 1.008 2.580 1.072 3.401 2.862 2.653 2.504 0.784
1.0 0.995 1.155 6.546 1.081 9.624 7.711 6.767 6.811 1.059

Note: See the notes to Table 1.
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Table 4: Empirical results for forecasting equity premium

h Postbk WGLS PPP CV Troff WA Pooled Full AveW

Panel A: 1995:Q1-2018:Q1

1 0.779 0.721∗∗ 0.756 0.713∗∗ 0.830 0.780 0.779 1.048 0.729∗

2 0.833 0.794∗ 0.840 0.818 0.846 0.775∗ 0.769∗ 0.684∗ 0.841

3 0.783 0.742∗ 0.854 0.920 0.810 0.834 0.805 0.795 0.824

4 1.355 1.342∗ 1.014 0.798 1.505 0.768 0.794 0.724 0.803

Panel B: 2005:Q1-2018:Q1

1 0.675 0.627∗ 0.696 0.633 0.759 0.717 0.714 1.102 0.645

2 0.836 0.749∗ 0.842 0.805 0.843 0.713∗ 0.709∗ 0.554∗ 0.841

3 0.654 0.641 0.864 1.033 0.694 0.896 0.840 0.792 0.827

4 1.819 1.796∗∗ 1.221 0.836 2.079 0.785 0.830 0.696 0.840

Note: This table reports the 100×MSFE for different forecasting methods. The out-of-sample
forecast periods are 1995:Q1-2018:Q1 and 2005:Q1-2018:Q1 in Panel A and Panel B, respectively.
h in the first column shows the forecast horizon. In the heading of the table, WGLS shows the
results for our proposed estimator, PPP is the one proposed by Pesaran et al. (2013), Postbk,
Troff, CV, WA, and Pooled are the five methods used in Pesaran and Timmermann (2007), Full
is forecast based on the full-sample observations, and AveW is the method proposed by Pesaran
and Pick (2011) with T (1−wmin) + 1 windows and wmin = 0.1. An asterisk denote forecast that
is significantly better than that obtained from the post-break forecasts according to the Diebold
and Mariano (1995) statistic. ∗∗ and ∗ indicate significance at 5% and 10% levels, respectively.
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