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Abstract

This paper develops an optimal combined estimator to forecast out-of-sample under structural

breaks. When it comes to forecasting, using only the post-break observations after the most

recent break point may not be optimal. In this paper we propose a new estimation method that

exploits the pre-break information. In particular, we show how to combine the estimator using

the full-sample (i.e., both the pre-break and post-break data) and the estimator using only the

post-break sample. The full-sample estimator is inconsistent when there is a break while it is

efficient. The post-break estimator is consistent but inefficient. Hence, depending on the severity

of the breaks, the full-sample estimator and the post-break estimator can be combined to balance

the consistency and efficiency. We derive the Stein-like combined estimator of the full-sample

and the post-break estimators, to balance the bias-variance trade-off. The combination weight

depends on the break severity, which we measure by the Wu-Hausman statistic. We examine

the properties of the proposed method, analytically in theory, numerically in simulation, and

also empirically in forecasting real output growth across nine industrial economies.
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1 Introduction

In a regression framework, structural breaks are shifts in the regression coefficients and/or error

variance. An important problem is how to make an accurate forecast in the presence of possible

structural breaks. Since the seminal work by Bates and Granger (1969), forecast combination

has been a common practice to improve forecasting performance. Especially under the model

uncertainty, the forecasting performance can be boosted by a forecast combination method, see

Diebold and Pauly (1987), Clements and Hendry (1998, 1999, 2006), Stock and Watson (2004),

Pesaran and Timmermann (2002, 2005, 2007), Timmerman (2006), Hansen (2009), Pesaran and

Pick (2011), Rossi (2013), and Pesaran et al. (2013) inter alia.

An obvious method for forecasting under structural breaks is to use the post-break data to

estimate the parameters of the model. But this post-break estimator by itself may not be optimal

in the mean squared forecast errors (MSFE) either when a break occurs close to the end of the

sample and thus there are only a few observations in the post-break sample or when a break is weak

and therefore hard to detect. In such cases, the post-break parameters are likely to be inefficiently

estimated relative to those obtained using the pre-break data as well. As pointed out by Pesaran

and Timmermann (2007) and Pesaran et al. (2013), it is not always optimal to base the forecast only

on post-break observations. However, using the pre-break data would make the forecast biased,

while it reduces the forecast error variance.

A key question that arises under the presence of structural breaks therefore is how to use the pre-

break data to estimate the forecasting model such that the loss function like MSFE is minimized.

In this paper we propose a combined estimator of the post-break estimator and the full-sample

estimator which uses all observations in the sample, t = {1, . . . , T}, to improve the performance

of a forecast model. The combination weight takes the form of the James-Stein weight, cf. Stein

(1956) and James and Stein (1961). The proposed Stein-like combined estimator exploits the

trade-off between the bias and variance of the forecast error. The full-sample estimator is biased if

there are structural breaks, while it may have smaller forecast error variance because it uses more

observations. The post-break estimator (which is a common solution under structural breaks) is

unbiased but less efficient. Therefore, we can improve the performance of forecast measured by

MSFE by exploiting the trade-off between the bias and forecast error variance. See Saleh (2006)

1



for a comprehensive review for the Stein-like estimators.1

The goal of this paper is to develop an estimator with a minimum MSFE under a structural

break, which we introduce in Section 2 and examine its asymptotic properties. In the simulation

study and the empirical analysis presented in Sections 4 and 5, we estimate the break points

following Bai and Perron (1998, 2003) which gives a consistent global minimizer of the sum of

squared residuals.2 We assume that the break points are away from the beginning and the end of

the sample which is crucial for consistency of estimating break points, see Andrews (1993).

We undertake an empirical analysis for forecasting the real output growth across nine industrial

economies by using quarterly data from 1979 to 2016 to compare the forecasting performance of our

proposed Stein-like combined estimator with the post-break estimator and a range of alternative

methods existing in the literature. Specifically, we compare the forecasting performance of our

estimator with the five methods proposed by Pesaran and Timmermann (2007), the average window

method proposed by Pesaran and Pick (2011), and the weighted least square estimator proposed by

Pesaran et al. (2013). We also compare the methods using the optimal window proposed by Inoue

et al. (2017), which is designed for the smoothly time-varying parameters. Our empirical results

confirm the benefits of using the pre-break data in estimation of the forecasting model relative to

using only the post-break data.

The outline of the paper is as follows. Section 2 sets up the structural break model with a

single break, introduces the Stein-like combined estimator, and presents its asymptotic risk. For

simplicity, we discuss the problem under a single break, which simplifies the essential idea without

unduly complicating notation. However the generalization of the method for the multiple breaks is

straightforward as considered in Section 3. Section 4 reports Monte Carlo simulation and Section

5 presents empirical analysis. Section 6 concludes.

1Hansen (2016, 2017) considers a Stein-like estimator in combining 2SLS and ordinary least square (OLS)
estimators. A main difference between our paper and Hansen (2017) is that, here we minimize the asymptotic
risk for any user specific positive definite weight matrix to find the optimal combination. Hansen (2017) sets this
weight matrix to the inverse of the difference between variances of the two estimators.

2Alternatively, the break points can be detected by the Impulse Indicator Saturation (IIS) approach of Hendry
et al. (2008). See also Castle and Hendry (2019). IIS creates a complete set of impluse indicator variables for every
observation and a computer algorithm, such as the split-half approach by Hendry et al. (2008), can be employed to
search the indicators that match with break points. As the IIS generally incurs a high-dimensionality problem, a
machine learning algorithm such as L2-Boosting or Lasso can also be a natural consideration for selecting the impulse
indicators to estimate the break points. We thank a referee for bringing the IIS method to our attention.
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2 The structural break model

Consider the linear structural break model as yt = x′tβt + ut, where ut = σtεt, εt ∼ i.i.d.(0, 1), and

xt is a k×1 vector of regressors that may contain lagged values of yt. In this model, the k×1 vector

of coefficients, βt, and the error variance, σ2
t , are subject to breaks. Let m denote the number of

breaks. For simplicity we assume one break (m = 1) that happens at time T1 with 1 < T1 < T . So

we can rewrite the model as

yt =

x
′
tβ(1) + σ(1)εt for 1 < t ≤ T1

x′tβ(2) + σ(2)εt for T1 < t ≤ T,
(1)

where

βt =


β(1) for 1 < t ≤ T1

β(2) for T1 < t ≤ T,
(2)

and

σt =


σ(1) for 1 < t ≤ T1

σ(2) for T1 < t ≤ T.
(3)

In this set up we have only one break (two regimes). Let U =
(
u1, . . . , uT

)′
, so the variance of the

error term is V (U |X) = Ω = diag
(
σ2

(1)IT1 , σ
2
(2)IT−T1

)
, where IT1 is a T1 × T1 identity matrix and

IT−T1 is a (T − T1) × (T − T1) identity matrix. Therefore, we assume that the disturbances are

uncorrelated within and across the regime, but heteroskedastic across the regime.

Assumption 1: E(ut|xt) = 0, and σ2
t = E(u2

t |xt).

2.1 Stein-like combined estimator

As our interest is on forecasting, the parameter of interest is β(2). Our proposed combined estimator

of β(2) is

β̂α = αβ̂Full + (1− α)β̂(2), (4)

where β̂α is the Stein-like combined estimator which is k × 1, β̂Full is the estimator using all

observations in the sample, t ∈ {1, . . . , T}, and β̂(2) estimates the coefficient only by using the post-

break observations, t > T1, and it is called the post-break estimator. We define the combination
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weight as

α =


τ
HT

if HT ≥ τ

1 if HT < τ,

(5)

where τ controls the degree of shrinkage, and HT is the Hausman statistic test that measures the

break size in the coefficients and is equal to

HT = T
(
β̂(2) − β̂Full

)′(
V̂(2) − V̂Full

)−1(
β̂(2) − β̂Full

)
, (6)

where V̂Full and V̂(2) are the consistent estimators of the asymptotic variances of the full-sample

estimator, β̂Full, and the post-break estimator, β̂(2), respectively, as defined in Theorem 1 below.

The degree of shrinkage depends on the ratio of τ/HT . When HT < τ , then α = 1 and β̂α = β̂Full.

A small HT can be interpreted as a small break size in the coefficients. This is when the bias of the

full-sample estimator is small, and we can gain a lot from the efficiency of the full-sample estimator.

On the other hand, a large HT is interpreted as a big break in the coefficients which results in a

large bias in β̂Full. So, for the extreme case of a large HT , the combination weight α would be close

to zero and β̂α ≈ β̂(2). Other than these extreme cases, when HT > τ , β̂α is a weighted average of

the full-sample estimator and the post-break estimator.

It can be shown that cov
(
β̂(2), β̂Full

)
= VFull, where VFull < V(2), i.e., the covariance between

the estimators is equal to the variance of the efficient estimator. The interesting idea behind the

Hausman statistic is that the efficient estimator, β̂Full, must have zero asymptotic covariance with

β̂(2)− β̂Full under the null hypothesis of no break in the coefficients (β(1) = β(2)), because otherwise

we could find another linear combination which would have smaller asymptotic variance than β̂Full

which contradicts as β̂Full is asymptotically efficient. Therefore we combine the full-sample and

the post-break estimators. See Hausman (1978) for more discussion.

Remark 1: Model uncertainty arises due to lack of information about the timing and size of the

break. If the break size is “small”, then one may get a better forecast by ignoring the break and

using the full-sample estimator which is efficient. If a break size is “large”, the full-sample estimator

suffers from a large bias which may dominate the benefit from its efficiency. Our combined estimator

is to balance the trade-off between the bias and variance efficiency. As the Hausman statistic is

the ratio of the bias over efficiency, it helps to assign appropriate weight to the full-sample and the
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post-break estimators.3 �

In the next subsections, we develop the asymptotic distribution for the estimators under a local

asymptotic framework where the break size is local to zero

β(1) − β(2) =
δ1√
T
. (7)

2.1.1 The full-sample estimator using all observations

When there is no break in the coefficients, β(1) = β(2), the full-sample estimator uses all of the

observations to estimate β. This assumption lines up with the fact that, with a small break,

ignoring the break and estimating the coefficient using all the observations would result in a better

forecast (lower MSFE), see Boot and Pick (2020). Thus we consider the local alternative hypothesis

that β(1) − β(2) = δ1√
T

.

We denote the full-sample estimator by β̂Full, and estimate the coefficient by the generalized

least squares (GLS) estimator

β̂Full =
(
X ′Ω−1X

)−1
X ′Ω−1Y, (8)

where X =
(
x1, x2, . . . , xT

)′
=
(
X ′(1) X

′
(2)

)′
is a T × k matrix of regressors, X(1) is a T1× k matrix

of pre-break observations, and X(2) is a
(
T − T1

)
× k matrix of post-break observations. Assume

that T − T1 ≥ k + 1, so at least we have the minimum number of observations in the post-break

sample to estimate the coefficient. The choice of shortest estimation window selected is arbitrary,

but we choose around two to three times the dimension of β to avoid the extreme variation in the

post-break parameter estimates.

Assumption 2: We assume that
X′

(i)
Ω−1

(i)
X(i)

Ti−Ti−1
, with i = {1, . . . ,m + 1} and T0 = 0, Tm+1 = T ,

converges in probability to some non-random positive definite matrix not necessarily the same for

all i, i.e.,
(
X′Ω−1X

T

)
p−→ Q and

(
X′

(i)
Ω−1

(i)
X(i)

∆Ti

)
p−→ Qi where Q and Qi are positive definite matrices,

and ∆Ti = Ti − Ti−1.

Throughout this section, m = 1 since we have only one break. Therefore, the distribution of

3Other structural break tests that have power against the local alternatives may be used as long as they can be
written as the weighted distance of the full-sample estimator and the post-break estimator. In addition, one needs to
know the analytical form of the test to derive its asymptotic distribution and calculate the asymptotic distribution
of the proposed Stein-like combined estimator and its asymptotic risk, as we have done in Theorems 1-3 using the
Hausman statistic. This is beyond the scope of this paper and we leave it for future study.
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the full-sample estimator is

√
T
(
β̂Full − β(2)

)
d−→ N

(
Q−1Q1b1δ1, Q

−1
)
, (9)

where Q−1 ≡ plim
T→∞

(
X′Ω−1X

T

)−1
= VFull, Q1 ≡ plim

T→∞

(
X′

(1)
Ω−1

(1)
X(1)

T1

)
, b1 ≡ lim

T→∞

(
T1
T

)
denotes the

proportion of pre-break observations, and Ω(1) = σ2
(1)IT1 is a T1×T1 diagonal matrix. Note that in

practice, we need to estimate the value of the unknown parameters, σ2
(1) and σ2

(2). For this, we use

the two-step GLS estimator method. The two-step estimator is computed by first obtaining the

estimates of σ̂2
(1) and σ̂2

(2) by using the OLS residuals for each regime, and then plug Ω̂ back into

equation (8). Since Ω̂ is a consistent estimator for Ω , we also have V̂Full =
(
X′Ω̂−1X

T

)−1 p−→ Q−1.

Remark 2: The full-sample estimator is calculated under the null hypothesis that there is no break

in the coefficient β(1) = β(2), but we allow a break in the variance, σ(1) 6= σ(2). Because we have

variance heteroskedasticity in the full-sample estimator, we use the GLS method which is more

efficient than the OLS. �

2.1.2 The post-break estimator using post-break observations

The post-break estimator uses only the observations after the most recent break point and is equal

to

β̂(2) =
(
X ′(2) Ω−1

(2) X(2)

)−1
X ′(2) Ω−1

(2) Y(2), (10)

where Ω(2) = σ2
(2)IT−T1 is a

(
T − T1

)
×
(
T − T1

)
diagonal matrix, and Y(2) is the dependent

variable in the second regime. The post-break estimator is the simple OLS estimator, since Ω−1
(2)

will be cancelled out in this equation. But we write it in the GLS format to be consistent with the

full-sample estimator. The distribution of this estimator is

√
T
(
β̂(2) − β(2)

)
d−→ N

(
0,

1

1− b1
Q−1

2

)
, (11)

where 1
1−b1Q

−1
2 ≡ 1

1−b1 plim
T→∞

(
X′

(2)
Ω−1

(2)
X(2)

T−T1

)−1
= V(2). This is an unbiased estimator. As the break

happens towards the end of the sample, b1 increases, and the variance of the post-break estimator

increases.
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2.1.3 Stein-like combined estimator

To derive the distribution of the Stein-like combined estimator in (4), we first obtain the joint

asymptotic distribution of the full-sample estimator and the post-break estimator. Theorem 1

below shows the joint distribution, the distribution of the Hausman statistic, and the distribution

of the Stein-like combined estimator.

Theorem 1: Under Assumptions 1-2, along the sequences (7), the joint asymptotic distribution

of the full-sample estimator and the post-break estimator is

√
T

β̂Full − β(2)

β̂(2) − β(2)

 d−→ V 1/2Z, (12)

where Z ∼ N
(
θ, I2k

)
, θ = V −1/2

Q−1Q1b1δ1

0

, and V =

VFull VFull

VFull V(2)

.

Besides, the distribution of the Hausman statistic is

HT = T
(
β̂(2) − β̂Full

)′(
V̂(2) − V̂Full

)−1(
β̂(2) − β̂Full

)
d−→ Z ′V 1/2 G

(
V(2) − VFull

)−1
G′ V 1/2Z

≡ Z ′MZ,

(13)

where G =
(
− Ik Ik

)′
and M ≡ V 1/2 G

(
V(2) − VFull

)−1
G′ V 1/2 is an idempotent matrix with

rank k. Finally, the distribution of the Stein-like combined estimator is

√
T
(
β̂α − β(2)

)
=
√
T
(
β̂(2) − β(2)

)
− α
√
T
(
β̂(2) − β̂Full

)
d−→ G′2 V

1/2Z −
( τ

Z ′MZ

)
1
G′ V 1/2Z,

(14)

where G2 =
(
0 Ik

)′
and (a)1 = min[1, a].

See Appendix A.1 for the proof of this theorem. The joint asymptotic distribution of the full-

sample and post-break estimators is normal. The Hausman statistic has asymptotic noncentral

chi-squared distribution. In the next subsection, we show that the asymptotic risk depends on this

non-centrality. The asymptotic distribution of the Stein-like combined estimator is a function of the

normal random vector, Z, with the non-centrality parameter θ which depends on the proportion of

the pre-break observations b1 and the break size δ1.
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2.2 Asymptotic risk for the Stein-like combined estimator

In this section we derive the asymptotic risk for the Stein-like combined estimator. The risk of an

estimator β̂ may not be finite unless it has sufficient finite moments. Therefore, we use a trimmed

loss to ensure its existence, and take limits as the sample size and the trimming parameter increase:

ρ
(
β̂,W

)
= lim

ξ→∞
lim inf
T→∞

Emin
[
T
(
β̂ − β

)′
W
(
β̂ − β

)′
, ξ
]
, (15)

where the expected scaled loss is trimmed at an arbitrarily trimmed parameter ξ. We note that

as ξ → ∞, the trimming becomes negligible. This definition of the asymptotic risk is well-defined

and easy to calculate whenever an estimator has an asymptotic distribution,
√
T (β̂ − β)

d−→ $. For

then, we define the asymptotic risk for this estimator as ρ(β̂,W) = E($′W$), see Lemma 6.1.14

of Lehmann and Casella (1998).4 In this paper, β̂ would be like the full-sample, the post-break,

and the Stein-like combined estimators, and β would be β(2).

Given the asymptotic distribution of the Stein-like combined estimator in (14), we first write

the asymptotic risk for this estimator. Since our focus is on forecasting, we consider β(2) as the

true parameter vector in defining the asymptotic risk. Then, we derive the optimal combination

weight, α, which minimizes the asymptotic risk, and consequently we obtain the optimal Stein-like

combined estimator, β̂α. Throughout the calculation of the asymptotic risk, we do not specify any

specific form for W, and calculate the asymptotic risk for any positive definite choice of weight

W > 0.5 Theorem 2 shows the asymptotic risk for the Stein-like combined estimator.

Theorem 2: Under Assumptions 1-2, the asymptotic risk of the Stein-like combined estimator is

ρ
(
β̂α,W

)
= ρ
(
β̂(2),W

)
+

τ θ′Aθ

k(k + 2)

[
τ − 2

(
tr
(
W(V(2) − VFull)

)
θ′Mθ

θ′Aθ
− 2

)]
e−µ1F1

(k
2

;
k

2
+ 2;µ

)
+
τ tr

(
W(V(2) − VFull)

)
k(k − 2)

[
τ − 2(k − 2)

]
e−µ1F1

(k
2
− 1;

k

2
+ 1;µ

)
,

(16)

provided k > 2, where A ≡ V 1/2GWG′V 1/2, and 1F1(.; .; .) is the confluent hypergeometric function

4We use lim inf
T→∞

in (15) because we do not make any assumptions for the moment convergence, as in Hansen (2014,

2016, 2017) who adopted Lemma 6.1.14 of Lehmann and Casella (1998) in a related context.
5We note that the one-step-ahead mean squared forecast error for the Stein-like combined estimator is MSFE =

E
(
yT+1 −x′T β̂α

)2
= σ2

(2) +E
((
β̂α−β(2)

)′
xTx

′
T

(
β̂α−β(2)

))
. By choosing W accordingly, we use the asymptotic risk

in (16) to approximate the second term on the right hand side of the MSFE. This along with σ2
(2) corresponds to the

one-step-ahead MSFE. Therefore, minimizing the MSFE is equivalent to minimizing the asymptotic risk.

8



which is defined as 1F1(a; b;µ) =
∑∞

n=0
(a)n µn

(b)n n! , where (a)n = a(a+ 1) . . . (a+ n− 1), (a)0 = 1, and

µ = θ′Mθ/2 is the non-centrality parameter. �

Proof: See Appendix A.2.

We note that k > 2 is the condition for the existence of the asymptotic risk in Theorem 2 in

the sense that the exact moment of a ratio of quadratic forms involved in the derivation exists.

Further, from Theorem 2 the asymptotic risk of the combined estimator is lower than that of the

post-break estimator, if the terms inside the square brackets be negative. These terms are negative

if tr(ν) > 2 λmax(ν), where ν ≡
(
V(2) − VFull

)1/2 W (
V(2) − VFull

)1/2
, and k > 2. For the special

case that W =
(
V(2) − VFull

)−1
, both conditions are simplified to k > 2, which means that as long

as we have more than two regressors, the risk of the Stein-like combined estimator is lower than

the risk of the post-break estimator for any break size, δ1 in Eq. (7), and any break point, b1.

Using Theorem 2, we can find the optimal τ , denoted by τopt, which minimizes the asymptotic

risk. For 0 ≤ τ ≤ 2
(

tr
(
W(V(2)−VFull)

)(
θ′Mθ

)
θ′Aθ − 2

)
, the τopt which depends on W is

τopt(W) =
tr
(
W(V(2) − VFull)

) (
θ′Mθ

)
θ′Aθ

− 2. (17)

Notice that τopt(W) is positive when tr(ν) > 2 λmax(ν). This is a necessary condition for the

efficiency of the Stein-like combined estimator.

Remark 3: We note that the optimal shrinkage parameter in (17) depends on the unknown

variances, V(2), VFull, and θ. As shown in Appendix A.2, the optimal value in (17) can be replaced

with τ∗(W) ≡ tr(ν)
λmax(ν)

− 2 which is positive. Thus, by replacing a consistent estimation of the

variances, the results of Theorem 2 holds so long as τ̂∗(W)
p−→ τ∗(W) as T →∞. �

Remark 4: As b1 increases, V(2) increases, consequently τopt increases. Besides, because HT

inversely depends on V(2), HT decreases. Hence, a larger b1 results in a bigger α =
τopt
HT

. Thus

the full-sample estimator, β̂Full, gets a bigger weight when b1 is larger. �

By plugging back the optimal τopt(W) in (17) into the asymptotic risk function in (16), we can

derive the optimal risk. Theorem 3 summarizes the result for any W > 0.

Theorem 3: Under Assumptions 1-2, if 0 ≤ τ ≤ 2
(

tr
(
W(V(2)−VFull)

) (
θ′Mθ

)
θ′Aθ − 2

)
and tr(ν) >

2λmax(ν), then the risk of the Stein-like combined estimator for any user specific choice of W > 0 is

9



ρ
(
β̂α,W

)
= ρ
(
β̂(2),W

)
− 1

k − 2

[[
tr
(
W(V(2) − VFull)

)(
θ′Mθ

)
− 2
(
θ′Aθ

) ]2

(θ′Mθ) (θ′Aθ)

][
e−µ1F1

(k
2
− 1;

k

2
;µ
)]

− 1

k − 2

[[
tr
(
W(V(2) − VFull)

)]2(
θ′Mθ

)2(
θ′Aθ

)2 − 4

][
θ′Aθ

θ′Mθ
−

tr
(
W(V(2) − VFull)

)
k

]

×

[
e−µ 1F1

(k
2
− 1;

k

2
+ 1;µ

)]
,

where ρ
(
β̂(2),W

)
= tr

(
WV(2)

)
.

Note that in Theorem 3, all the terms inside the square brackets are positive, and so the

Stein-like combined estimator has a smaller asymptotic risk than the post-break estimator.

Corollary 3.1: For the special case that W =
(
V(2)−VFull

)−1
, the asymptotic risk of the Stein-like

combined estimator simplifies to

ρ
(
β̂α,W

)
= ρ
(
β̂(2),W

)
−
(
k − 2

)[
e−µ 1F1

(k
2
− 1;

k

2
;µ
)]
, (18)

where the risk of the Stein-like combined estimator is less than that of the post-break estimator if

we have more than two regressors, k > 2. �

Remark 5: For the special case when W =
(
V(2) − VFull

)−1
, then from (17) we have τopt = k − 2

which is independent of any unknown parameters. This is the well-known results of James and

Stein (1961). In this case, τopt is positive when the number of regressors is larger than two, k > 2.

This choice of W is considered in Hansen (2017). �

Remark 6: Our results in Theorems 2 and 3 show the asymptotic risk of the Stein estimator, while

Hansen (2017) provides its upper bound. �

Based on Corollary 3.1, the gain obtained by using the Stein-like combined estimator can be

derived by calculating the percentage difference between ρ
(
β̂(2),W

)
and ρ

(
β̂α,W

)
, as numerically

demonstrated in Figure 1. Figure 1 shows the relationship between the break size in the coefficients

(the horizontal axis) and the percentage change in asymptotic risks,
ρ(β̂(2),W)−ρ(β̂α,W)

ρ(β̂(2),W)
, (vertical axis).

For example, when the vertical axis shows the percentage difference equal to 50%, it means that,
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by using the Stein-like combined estimator instead of the post-break estimator, we can reduce the

asymptotic risk by 50%. We draw the graphs for different break ratios in the error variance, q.

Comparing the three lines in each panel of Figure 1, we note that, as the number of regressors,

k, increases, the percentage difference between risks increases in favor of the Stein-like combined

estimator. Also, when the error variance of the pre-break period is lower than error variance of

the post-break period, q < 1, there is more gain from using the pre-break observations. Besides,

for the case that the break point is near the end of the sample, b1 = 0.8, the gain from the Stein-

like combined estimator is higher than for the case that the break point is near the beginning

of the sample, b1 = 0.2. The reason is that when there is not enough observations in the post-

break sample, when b1 is large, the post-break estimator performs poorly due to the lack of the

observations after the break. Furthermore, when the break size in the coefficient increases (as bias

increases), the risk of the Stein-like estimator gets closer to that of the post-break estimator. But

still the Stein estimator always outperforms the post-break estimator.

2.3 Comparing the Stein with an alternative estimator by Pesaran et al. (2013)

In a similar context, Pesaran et al. (2013) (hereafter “PPP”) propose a method that can reduce

MSFE under the structural breaks by weighting the full-sample observations. Their weighted least

squares estimator takes the form

β̂PPP = (X ′WX)−1(X ′WY ), (19)

where W is diagonal taking a value w(1) for the pre-break observations and another value w(2) for

the post-break observations, i.e., W = diag
(
w(1), . . . , w(1), w(2), . . . , w(2)

)
. They derive the following

optimal weights with k ≥ 1 and stationary regressors:w(1) = 1
T

1
b1+(1−b1)(q2+Tb1φ2)

,

w(2) = 1
T

q2+Tb1φ2

b1+(1−b1)(q2+Tb1φ2)
,

(20)

where λ = β(1) − β(2) is the break size in the regression coefficient, φ =
x′T+1λ

σ(2)(x
′
T+1Ω−1

xx xT+1)1/2
, and

Ωxx = E(xtx
′
t) is a positive definite matrix. See Pesaran et al. (2013) for more details.

Given the diagonal form of W , we rewrite the PPP estimator in equation (19) as

β̂PPP = Λβ̂(1) + (I − Λ)β̂(2), (21)
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where Λ =
(
w(1)

w(2)
X ′(1)X(1) + X ′(2)X(2)

)−1(w(1)

w(2)
X ′(1)X(1)

)
. Basically, the PPP estimator can

be viewed as a combined estimator of the pre-break and the post-break estimators, with the

combination matrix weight Λ.

To compare the Stein estimator and the PPP estimator, we first rewrite the PPP estimator in

terms of the full-sample estimator and the post-break estimator, noting that β̂Full = Γβ̂(1) +
(
Ik −

Γ
)
β̂(2), where Γ =

(
1
q2
X ′(1)X(1) + X ′(2)X(2)

)−1( 1
q2
X ′(1)X(1)

)
. Under the stationarity assumption of

the regressors, the PPP estimator is

β̂PPP =
b1 + (1− b1)q2

b1 + (1− b1)(q2 + T1φ2)
β̂Full +

(
1− b1 + (1− b1)q2

b1 + (1− b1)(q2 + T1φ2)

)
β̂(2), (22)

where the combination weight is between zero and one.

Next, we consider a general combined estimator, denoted by β̂c, as

β̂c = wc β̂Full + (1− wc) β̂(2), wc ∈ [0 1]. (23)

Denote the asymptotic risk for this estimator by ρ(β̂c,W), where W > 0. We find the optimal value

of wc, denoted by w∗c , by minimizing the asymptotic risk or equivalently minimizing the weighted

mean squared error, which takes the following form

w∗c =
tr
(
W(V(2) − VFull)

)
θ′Aθ + tr

(
W(V(2) − VFull)

) . (24)

Consider a statistic HT = T
(
β̂(2)− β̂Full

)′W (
β̂(2)− β̂Full

)
, where HT is the Hausaman statistic

if W =
(
V̂(2)− V̂Full

)−1
. We note that E

(
HT

)
= θ′Aθ+tr

(
W(V(2)−VFull)

)
. Therefore, an unbiased

estimator for the denominator of the weight in (24) is HT . Thus, the feasible optimal combination

weight, denoted by ŵ∗c , is

ŵ∗c =
tr
(
W(V̂(2) − V̂Full)

)
HT

. (25)

Hence, when the difference between the full-sample estimator and the post-break estimator is small

(a small HT ), the combined estimator in (23) assigns a higher weight to the full-sample estimator

which is more efficient. The opposite is true for a large break size (a large HT ). Consequently,

the combined estimator in (23) is in a class of the Stein-like estimator that balances the trade-off

between the bias and variance efficiency of the full-sample estimator. Let us call the estimator

in (23) as the “general combined estimator”. Thus, the asymptotic risk of the general combined

12



estimator for W =
(
V(2) − VFull

)−1
is6

ρ
(
β̂c,W

)
= ρ
(
β̂(2),W

)
− k(k − 4)

k − 2

[
e−µ 1F1

(k
2
− 1;

k

2
;µ
)]
, (26)

where its asymptotic risk is less than that of the post-break estimator if k > 4.7 The detailed

proof can be found in the supplementary online appendix. By comparing the asymptotic risk of the

general combined estimator and that of the Stein-like combined estimator presented in Corollary

3.1, we see that

ρ
(
β̂α,W

)
− ρ
(
β̂c,W

)
= −2(k − 1)

k − 2

[
e−µ 1F1

(k
2
− 1;

k

2
;µ
)]
≤ 0, (27)

if k > 2. Therefore, the Stein-like combined estimator always out-performs or performs as good as

the general combined estimator if k > 2. For large break sizes (large µ), we expect to see an almost

equal performance between the two estimators.

Looking at the PPP estimator in (22), it is clear that the PPP estimator can be seen as the

general combined estimator in (23) with weight wc =
(
b1+(1−b1)q2

)
/
(
b1+(1−b1)(q2+T1φ

2)
)
. Thus,

as we show in (27), the Stein-like combined estimator always out-performs the general combined

estimator and therefore the PPP estimator as long as k > 2. This is confirmed in the simulation

and empirical study in Sections 4-5.

3 Extension to multiple breaks

So far, we have talked about the case of having a single break, but in practice a time series model

may be subject to multiple breaks. The case of multiple breaks is a straightforward extension

of the previous section. The combined estimator is defined as the combination of the full-sample

estimator and the estimator using observations after the most recent break point. For example,

consider a model with two breaks (three regimes)

yt =


x′tβ(1) + σ(1)εt for 1 < t ≤ T1

x′tβ(2) + σ(2)εt for T1 < t ≤ T2

x′tβ(3) + σ(3)εt for T2 < t < T.

(28)

6This choice of W simplifies the calculations and allows us to compare the asymptotic risks between the Stein-like
combined estimator and the general combined estimator.

7The condition under which the Stein-like combined estimator outperforms the post-break estimator is k > 2. See
Corollary 3.1 above.
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Thus the combined estimator is

β̂α = αβ̂Full + (1− α)β̂(3), (29)

where α is defined as in equation (5), in which HT = T
(
β̂(3) − β̂Full

)′(
V̂(3) − V̂Full

)−1(
β̂(3) − β̂Full

)
and V(3) is the asymptotic variance of the post-break estimator. The asymptotic risk of the Stein-

like combined estimator is ρ
(
β̂α,W

)
= E

[
T
(
β̂α − β(3)

)′W (
β̂α − β(3)

)]
. In order to derive the

asymptotic risk, first we need to find the asymptotic distributions of the two estimators. Let

b1 ≡ lim
T→∞

(
T1
T

)
and b2 ≡ lim

T→∞

(
T2
T

)
where b1 < b2. Under the local asymptotic framework,

(
β(1) −

β(2), β(2) − β(3)

)
=
(
δ1√
T
, δ2√

T

)
. Thus, the distribution of the full-sample estimator is

√
T
(
β̂Full − β(3)

)
d−→ N

(
Q−1Q1b1(δ1 + δ2) +Q−1Q2(b2 − b1)δ2, VFull

)
,

where X =
(
X ′(1) X

′
(2) X

′
(3)

)′
is T × k, with X(1), X(2), X(3) representing the regressors in the three

regimes, and Ω = diag
(
σ2

(1)IT1 , σ
2
(2)IT2−T1 , σ

2
(3)IT−T2

)
is a T × T matrix. With two breaks, the

distribution of the post-break estimator is

√
T
(
β̂(3) − β(3)

)
d−→ N

(
0, V(3)

)
, (30)

where V(3) = 1
1−b2 plim

T→∞

(
X′

(3)
Ω−1

(3)
X(3)

T−T2

)−1
= 1

1−b2Q
−1
3 . Also, the notations Q1, Q2, Q3,Ω(1),Ω(2),Ω(3)

are defined similarly to those in Section 2. As in Theorem 1, we write the joint asymptotic

distribution of the full and post-break estimators as:

√
T

β̂Full − β(3)

β̂(3) − β(3)

 d−→ V 1/2Z, (31)

where Z ∼ N(θ, I2k), θ = V −1/2

Q−1Q1b1(δ1 + δ2) +Q−1Q2(b2 − b1)δ2

0

 and V =

VFull VFull

VFull V(3)

.

Having the joint asymptotic distribution, we calculate the asymptotic risk similarly to Theorem 2.

The point is that we consider the multiple breaks model as if it were a single break. The main

difference between the two cases with multiple breaks and a single break is the bias term, θ.
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We can extend this to the case of m breaks occuring at {T1, . . . , Tm}

yt =



x′tβ(1) + σ(1)εt if 1 < t ≤ T1,

x′tβ(2) + σ(2)εt if T1 < t ≤ T2,
...

x′tβ(m+1) + σ(m+1)εt if Tm < t < T.

(32)

In the case of m breaks, the bias vector θ (which is 2k × 1) can be written as

θ = V −1/2

Q−1
(
Q1b1(δ1 + · · ·+ δm) + · · ·+Qm(bm − bm−1)δm

)
0

 . (33)

Remark 7: Under two breaks, one may think of other combined estimators, e.g., the combination

of the full-sample estimator and the subsample estimator based on the second and third subsamples.

But, this subsample estimator is not consistent for β(3). Also, because the full-sample estimator is

the most efficient one, the efficiency of the combined estimator can not be enhanced by combining

with this inconsistent subsample estimator using the second and third subsamples. Therefore, this

combined estimator does not balance the trade-off between the bias and variance efficiency.8 �

4 Monte Carlo evidence on forecasting performance

This section presents Monte Carlo results on the forecasting performance of the Stein-like combined

estimator, in comparison with the following seven methods: (1) the post-break method (labeled

as “Postbk” in figures and tables); (2) the trade-off method (“Troff”); (3) weighted average of

forecasts (“WA”); (4) the pooled forecast combination (“Pooled”); (5) cross validation (“CV”), (6)

the full-sample forecast (“Full”), and (7) the estimator proposed by Pesaran et al. (2013) (“PPP”).

The first five methods are used in Pesaran and Timmermann (2007).

8Another example is to combine the full-sample estimator, a subsample estimator using the second and third
subsamples, and another subsample estimator using the third subsample. Although combining three estimators does
not fit into our current setup of the Stein-like combined estimator, similarly to the above discussion, this combined
estimator does not balance between bias and variance efficiency. This can be extended to more than two break cases
as well. We leave the possibility of using multiple estimators for future works.
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4.1 Simulation designs

First, we consider m = 1. Let t = 1, ..., T with T = 100, b1 ∈ {0.2, 0.4, 0.6, 0.8}, q1 ≡
σ(1)
σ(2)
∈

{0.5, 1, 2} and k = 5. The results with k ∈ {3, 8} are available in the supplementary online

appendix. The data generating process is

yt =

x
′
tβ(1) + σ(1)εt if 1 < t ≤ T1

x′tβ(2) + σ(2)εt if T1 < t ≤ T,
(34)

where xt ∼ N(0, 1), εt ∼ i.i.d. N(0, 1), β(2) is a vector of ones, and β(1) = β(2) + δ1√
T

. Note that

the break size is determined by δ1 and T . We consider different break sizes in the coefficients,

β(1)−β(2), ranging from 0 to 2 in increments of 0.1. To incorporate the uncertainty associated with

the estimation of the unknown parameters, we assume that T1, q, and break size are unknown and

have to be estimated.9 This setup is similar to that in Pesaran et al. (2013).

Next, we consider m = 2 with two breaks at T1 = T
3 and T2 = 2T

3 . The data generating process

follows

yt =


x′tβ(1) + σ(1)εt if 1 < t ≤ T1

x′tβ(2) + σ(2)εt if T1 < t ≤ T2

x′tβ(3) + σ(3)εt if T2 < t ≤ T.

(35)

In order to consider different possibilities under the two breaks, we conduct various experiments,

as summarized in Table 1. Experiment 1 has no breaks. Moderate breaks and large breaks are

considered in Experiments 2 to 5. Also, we consider the cases that the direction of breaks changes

from decreasing to increasing or vice versa (Experiments 6 to 9). Experiments 10 and 11 consider

partial changes in the coefficients, i.e., β(1) = β(2) 6= β(3) and β(1) 6= β(2) = β(3), respectively.

Finally, Experiments 12 and 13 represent the higher and lower post-break volatility, respectively.

We compare one-period ahead forecasts in MSFE, with forecasts based on the post-break

observations as a benchmark. We report ratios of MSFEs relative to that of the forecast using

post-break observations, so that for method i we have RMSFEi = MSFEi/MSFEPostbk. Thus,

an RMSFE less than one has a lower MSFE than the post-break forecast, and an RMSFE exceeding

9We have also implemented these methods imposing the true break point and the results are qualitatively similar
to those with the estimated break point. Because imposing the true break date is infeasible in practice, we only
report the results with estimated break point here to save space.
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one has a higher MSFE than the benchmark. The number of Monte Carlo replications is 5,000.

4.2 Simulation results

Figure 2 shows the Monte Carlo results of the single break case with different break sizes and

different q. In this figure, we compare the MSFE of the Stein-like combined estimator with

“Postbk”, “Full”, “PPP”, “Troff” , “CV”, “WA”, and “Pooled”.10 The vertical axis shows the

RMSFE for different methods while the horizontal axis shows the break size in the mean.

When q = 0.5, the error variance of the pre-break data is less than that of the post-break data.

In such a case, using the pre-break data in forecasting can improve the forecast accuracy. When

q = 1, there is no break in the error variance. When q = 2, the pre-break data is more volatile

than the post-break data, and one may gain less from using the pre-break data. The results in

Figure 2 confirm Theorems 2 and 3 that the Stein-like combined estimator is uniformly better than

the post-break estimator. When the break size gets larger, the Stein-like combined estimator gets

closer to the post-break estimator, but never performs worse than that. This is expected because

as the break size gets larger, the Stein-like combined estimator assigns more weight to the post-

break estimator and less weight to the full-sample estimator. This confirms that there is no cost in

using the Stein-like combined estimator even under a large break size. The advantage of the Stein

estimator relative to the post-break estimator is even more apparent when q = 0.5 than when q = 1

or q = 2.

The out-performance of the Stein-like combined estimator over the PPP estimator is also clear

in Figure 2. The performance of the PPP estimator deteriorates under large break sizes, often even

worse than the post-break estimator. The trade-off (Troff) method performs almost in line with the

post-break method for q = 2, while it often performs worse than that for q = 0.5 and a large break.

The performance of the cross validation (CV) approach deteriorates when T1 gets close to T . The

weighted average (WA) and pooled forecast combination (Pooled) methods perform better than

the post-break estimator only for small break sizes. However, they perform poorly for large breaks.

The full-sample method performs good under small break sizes, but as the break size increases, it

10See sections 3.2-3.5 in Pesaran and Timmermann (2007) for details of the Troff, CV, WA, and Pooled methods.
For the last three methods, as used in Pesaran and Timmermann (2007), we set the size of the forecast evaluation
window to 0.25T and size of the minimum estimation window to 0.1T , in the simulation study in this section and
the empirical study in the next section.
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performs much worse than the post-break estimator. We note that the Stein, CV, Troff, WA, and

Pooled methods generally perform better than the full-sample estimator, except for a small break

size as expected. This mirrors the findings in Pesaran and Timmermann (2007).11

Table 2 shows the results for the two break cases under the experiments specified in Table 1,

with T = {100, 200} and k = 5. The results with k ∈ {3, 8} are available in the supplementary

online appendix. For comparison, we report the relative MSFE for different methods with estimated

break dates under the label estimated break dates in columns 2-8 of Table 2. Besides, as the “CV”,

“WA” and “Pooled” methods can also be implemented without an estimation of the break dates,

we report the MSFE of these methods without estimating the break dates as well. The results

without estimating break dates, treating the break date as unknown, are reported under the label

unknown break dates in columns 9-11 of Table 2.

The results in Table 2 follow the similar pattern of those for the single break case shown in

Figure 2. We find that the Stein-like combined estimator has a lower MSFE than the post-break

estimator and the PPP estimator in all experiments. Note that, from Theorem 3, the risk of the

Stein-like combined estimator is a function of the bias term, θ. No matter whether the break

size has an increasing or decreasing pattern, in all Experiments #2 to #11, the Stein estimator

outperforms the post-break estimator. Similarly to the single break case, when q < 1 and so the

pre-break sample is less volatile than the post-break sample (Experiment #12), the dominance of

the Stein forecast is clearer relative to the post-break estimator.

When there is no break (Experiment #1), the full-sample estimator performs best as expected.

However, other methods also perform quite well under the no break case. In other experiments,

the full-sample estimator performs worst among all the methods, followed by the WA method that

conditions on an estimate of the break dates. The WA method based on the estimated break

dates performs rather poorly when q = 1. However, when the break only affects the variance

(Experiments #12 and #13), this method performs quite well. The CV method performs better

than the other methods from Pesaran and Timmermann (2007), however it performs worse than

the post-break estimator in some cases.

11We note that the CV, WA and Pooled methods can also be implemented without estimating the break point,
treating the break date as unknown. See Sections 3.3-3.5 in Pesaran and Timmermann (2007) for details. The results
are similar to those reported in Figure 2, and figures for comparing these methods are available upon request. Table
2 reports such cases for multiple breaks.
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In summary, the Stein-like combined estimator uniformly outperforms the post-break estimator

(and most often other methods) in all experiments, while other methods performs worse than the

post-break estimator in many experiments. The pattern of the results remains the same as we

increase the sample size T from 100 to 200. The MSFE of the post-break estimator gets improved

under the larger sample size, as there are more observations in the post-break sample. We note that,

even with a very large sample size, the Stein-like combined estimator never performs worse than

the post-break estimator. We have also compared the methods with k = 3 and k = 8 regressors

in the supplementary online appendix, which shows that as the number of regressors increases, the

RMSFE for the Stein-like combined estimator decreases even more.

5 Empirical analysis

This section presents an empirical application of our method. We consider forecasting output

growth rate of various countries using a quarterly data set (2016 vintage) available with the GVAR

toolbox, Mohaddes and Raissi (2018). To predict the output growth rate, we consider the following

eight macroeconomics and financial predictors for each country: the lag of the real GDP (yt−1),

real equity prices (eqt), real short term interest rate (rt), the difference between the real long term

interest rate and the real short term interest rate (lt − rt), and the corresponding country-specific

foreign variables for each of the predictors. The foreign variables are constructed using rolling

three year moving averages of the annual trade weights which are computed as shares of exports

and imports for each country. The data set starts in 1979:Q2 and ends in 2016:Q4, and we focus on

the following nine industrialized economies in which all have long term bond markets: Australia,

Canada, France, Germany, Italy, Japan, Spain, UK, and USA.12 Therefore, the h-step ahead linear

forecasting model for output growth is

y
(h)
t+h = µt + β

(h)′

t xt + u
(h)
t+h, (36)

where xt = (yt−1, eqt, rt, lt − rt, y∗t−1, eq
∗
t , r
∗
t , l
∗
t − r∗t )′, in which a “star” indicates foreign variables.

We compute h-step-ahead forecasts (h = 1, 4) for different forecasting methods described in

this paper, using both expanding and rolling windows. Each time that we expand the estimation

12These are the same countries studied in Pesaran et al. (2013).
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window, we apply the Schwarz’s Bayesian Information Criteria (BIC) to select predictors out of

the eight predictors. In other words, we select a forecasting model using the BIC criterion from all

28 possible specifications. For the methods that require the knowledge of the break, we use the Bai

and Perron (1998, 2003) method based on the significance level of 5% and trimming rate of 0.2. The

rolling window forecasts is based on the most recent 10 years (40 quarters) of observations, the same

window size used by Stock and Watson (2003) and Inoue et al. (2017). We also report the MSFE

using the optimal window size proposed by Inoue et al. (2017), which is designed for smoothly time-

varying parameters. Moreover, we present the forecasting results using the approach proposed by

Clark and McCracken (2010) (labeled as “CM” in Table 3), which is the equally weighted average

of the rolling and expanding window forecasts. In the supplementary online appendix, we compare

the MSFEs for different methods based on the selected optimal window size using Inoue et al.

(2017) method.13

In order to evaluate the performance of our proposed estimator, we compute its MSFE and

compare it with those from the existing methods: the method proposed by Pesaran et al. (2013)

(“PPP”), the five methods used in Pesaran and Timmermann (2007), namely, “Postbk”, “Troff”,

“Pooled”, “WA”, “CV”, the full-sample forecast (“Full”), the average window forecast proposed by

Pesaran and Pick (2011) (“AveW”), and the forecast using the optimal window size proposed by Inoue

et al. (2017) (“IJR”). We also test for equal forecast performance of different methods compared

to the post-break forecast using a generalization of the panel version of the Diebold–Mariano test

proposed by Pesaran et al. (2009).14

Table 3 gives cross-country averages of MSFEs for different methods. In the aggregation of

the individual country MSFEs, we use both GDP with Purchasing Power Parity based weights

(GDP-PPP) and the equal weights. The results of cross country averages with GDP-PPP scheme

are presented in Panels A-C of Table 3 while the results for the equal weights are in Panels D-F.

The first column of the table shows the forecast horizon, h. The table also shows the results of

the panel version of Diebold and Mariano test statistic, indicated by asterisks. The 1% and 5%

significance levels are denoted by ∗∗ and ∗, respectively.

Based on the results, forecasts using the Stein method provide improved forecasts over the post-

13See also Hong et al. (2021) regarding the optimal window size using nonparametric smoothing techniques.
14See also Appendix of Pesaran et al. (2013) for details of this test for cross-country aggregation weights.
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break forecast for rolling, expanding, and CM approaches over different forecast horizons, no matter

which cross country aggregation scheme is used. The improvement ranges from 3 to 8.7 percent

for the rolling window, from 6.5 to 17.8 for the expanding window, and from 5.2 to 12.2 percent

for the CM method. This improvement is statistically significant at 1% or 5% levels. Besides,

the Stein forecasts most often perform better than other existing forecasting methods. With fixed

rolling windows, other methods perform poorly relative to the Stein method, and sometimes even

worse than the post-break forecasts. However, under expanding windows, their performance gets

improved and we do not see them under-performing the post-break forecasts, except the full-sample

forecasts for h = 4.

We have also applied our method in another empirical application, forecasting equity premium.

The results are available in the supplementary online appendix, where it is shown that the Stein

method outperforms the post-break forecast and other methods in forecasting equity premium using

the data of Welch and Goyal (2008).

6 Conclusion

In this paper we introduce the Stein-like combined estimator of the full-sample estimator (using all

the observations in the sample) and the post-break estimator (using the observations after the most

recent break point). A common practice for forecasting under structural breaks may be to use the

post-break estimator. We show that using the pre-break observations can improve the post-break

estimator. The combined estimator uses the pre-break observations to reduce the variance of the

forecast error at the cost of adding some bias. We show that the Stein-like combined estimator has a

lower asymptotic risk than the post-break estimator. We compare the performance of our proposed

Stein-like combined estimator with a range of alternative methods existing in the literature, in the

simulation study and the empirical study. Our simulation results show that the Stein-like combined

estimator uniformly outperforms the post-break estimator, for any break sizes and break points.

The results from the empirical application for forecasting output growth rate of nine industrialized

economies confirms that the Stein-like combined estimator performs significantly better than the

post-break estimator, and most often better than other alternative methods.

21



References

Andrews, D.W.K. (1993). “Tests for parameter instability and structural change with unknown

change point.” Econometrica 61, 821-856.

Bai, J. and Perron, P. (1998). “Estimating and testing linear models with multiple structural

changes.” Econometrica 66, 47-78.

Bai, J. and Perron, P. (2003). “Computation and analysis of multiple structural change models.”

Journal of Applied Econometrics 18, 1-22.

Bates, J.M. and Granger C.W.J. (1969). “The Combination of Forecasts.” Operations Research

Quarterly 20, 451-468.

Boot, T. and Pick A. (2020). “Does modeling a structural break improve forecast accuracy?”

Journal of Econometrics 215, 35-59.

Castle, Jennifer L. and David F. Hendry (2019). Modelling Our Changing World. Palgrave Texts

in Econometrics, Chapter 5 Detectives of Change: Indicator Saturation.

Clark, T. E. and McCracken, M. W. (2010). “Averaging forecasts from VARs with uncertain

instabilities.” Journal of Applied Econometrics 25, 5-29.

Clements, M.P. and Hendry D.F. (1998). Forecasting Economic Time Series. Cambridge University

Press.

Clements, M.P. and Hendry D.F. (1999). Forecasting Non-Stationary Economic Time Series. The

MIT Press.

Clements, M.P. and Hendry D.F. (2006). “Forecasting with breaks.” In Elliott, G., C.W.J. Granger

and Timmermann A. (Eds.), Handbook of Economic Forecasting, Vol. 1, 605-658.

Diebold, F.X. and Pauly P. (1987). “Structural change and the combination of forecasts.” Journal

of Forecasting 6, 21-40.

Hansen, B. (2009). “Averaging estimators for regressions with a possible structural break.”

Econometric Theory 25, 1498-1514.

22



Hansen, B. (2014). “Model averaging, asymptotic risk, and regressor groups.” Quantitative

Economics 5, 495-530.

Hansen, B. (2016). “Efficient shrinkage in parametric models.” Journal of Econometrics 190, 115-

132.

Hansen, B. (2017). “Stein-like 2SLS estimator.” Econometric Reviews 36, 840-852.

Hausman, J. A. (1978). “Specification tests in econometrics.” Econometrica 46, 1251-1271.

Hendry, D. F., Johansen, S., and Santos, C. (2008). “Automatic selection of indicators in a fully

saturated regression.” Computational Statistics 33, 317–335. Erratum, 337–339.

Hong, Y., Sun, Y. and Wang, S. (2021) “Selection of an optimal rolling window in time-varying

predictive regression.” Working paper, Chinese Academy of Sciences.

Inoue, A., Jin, L. and Rossi, B. (2017). “Rolling window selection for out-of-sample forecasting

with time-varying parameters.” Journal of Econometrics 196, 55-67.

James, W. and Stein C. M. (1961). “Estimation with quadratic loss.” Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 361–380.

Judge, G.G. and Bock M.E. (1978). The Statistical Implications of Pretest and Stein-rule Estimators

in Econometrics. North-Holland, Amsterdam.

Lebedev, N. N. (1972). Special Functions and their Applications. Dover Publications, New York.

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. 2nd ed., New York, Springer.

Mohaddes, K., and Raissi M. (2018). “Global VAR (GVAR) database, 1979Q2-2016Q4”.

https://doi.org/10.17863/CAM.27337.

Pesaran, M.H. and Timmermann A. (2002). “Market timing and return prediction under model

instability.” Journal of Empirical Finance 9, 495–510.

Pesaran, M.H. and Timmermann A. (2005). “Small sample properties of forecasts from auto-

regressive models under structural breaks.” Journal of Econometrics 129, 183-217.

23

https://doi.org/10.17863/CAM.27337


Pesaran, M.H. and Timmermann A. (2007).“Selection of estimation window in the presence of

breaks.” Journal of Econometrics 137, 134-161.

Pesaran, M.H. and Pick A. (2011). “Forecast combination across estimation windows.” Journal of

Business and Economic Statistics 29, 307–318.

Pesaran, M.H., Pick A. and Pranovich M. (2013). “Optimal forecasts in the presence of structural

breaks.” Journal of Econometrics 177, 134-152.

Pesaran, M.H., Schuermann, T. and Smith, L.Vanessa, (2009). “Forecasting economic and financial

variables with global VARs.” International Journal of Forecasting 25, 642-675.

Rossi, B. (2013). “Advances in forecasting under instability.” In G. Elliott and A. Timmermann

(Eds.), Handbook of Economic Forecasting, Vol. 2, Part B, Chapter 21, 1203 - 1324. Elsevier.

Saleh, A. K. Md. Ehsanses (2006). Theory of Preliminary Test and Stein-type Estimation with

Applications. Wiley, Hoboken.

Stein, C. M. (1956). “Inadmissibility of the usual estimator for the mean of a multivariate normal

distribution.” In Proc. Third Berkeley Symp. Math. Statist. Probab., Vol. 1, 197–206.

Stock, J. H. and Watson, M. W. (2003). “Forecasting output and inflation: The role of asset prices.”

Journal of Economic Literature 41, 788–829.

Stock, J. H. and Watson, M. W. (2004). “Combination forecasts of output growth in a seven-country

data set.” Journal of Forecasting 23, 405–430.

Timmerman, A. (2006). “Forecast combinations.” In G. Elliott, C. W. Granger, and A.

Timmermann (Eds.), Handbook of Economic Forecasting, Vol. 1, 135-196. Elsevier.

Ullah, A. (1974). “On the sampling distribution of improved estimators for coefficients in linear

regression.” Journal of Econometrics 2, 143-150.

Welch, I. and Goyal A. (2008). “A Comprehensive look at the empirical performance of equity

premium prediction.” Review of Financial Studies 21, 1455-1508.

24



A Appendix: Mathematical details

A.1 Proof of Theorem 1

For the proof of Theorem 1, we derive the distributions of the full-sample and post-break estimators.

First, the full-sample estimator is written as

β̂Full =
(
X ′Ω−1X

)−1
X ′Ω−1Y

=

(
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t
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]
,

(A.1)

and its distribution around the true parameter β(2) is
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(A.2)

Next, the distribution of the post-break estimator is

√
T
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(A.3)

where U(2) = σ(2)

(
εT1+1, . . . , εT

)′
. Having these distributions, we can write the joint distribution

and the proof of Theorem 1 is complete. �

A.2 Proof for Theorem 2

The asymptotic risk of the Stein-like combined estimator is

ρ
(
β̂α,W

)
= E
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(A.4)
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where A ≡ V 1/2GWG′V 1/2 and B ≡ V 1/2GWG′2V
1/2. The challenging part for calculation of this

risk function is to take expectation from the noncentral chi-squared distribution, with noncentrality

parameter equal to θ′Mθ/2. For calculating these expectations, we use the following Lemmas.

Lemma 1: Let χ2
p(µ) denote a noncentral chi-square random variable with the noncentral parameter

µ and the degrees of freedom p. Besides, let p denote a positive integer such that p > 2r. Then

E
[(
χ2
p(µ)

)−r]
= 2−re−µ

Γ(p2 − r)
Γ(p2)

1F1

(p
2
− r; p

2
;µ
)
,

where 1F1(.; .; .) is the confluent hypergeometric function which is defined as 1F1(a; b;µ) =
∑∞

n=0
(a)n µn

(b)n n! ,

where (a)n = a(a+ 1) . . . (a+ n− 1) and (a)0 = 1. See Ullah (1974). �

Lemma 2: The definition of the confluent hypergeometric function implies the following relations:

1. 1F1(a; b;µ) = 1F1(a+ 1; b;µ)− µ
b 1F1(a+ 1; b+ 1;µ),

2. 1F1(a; b;µ) = b−a
b 1F1(a; b+ 1;µ) + a

b 1F1(a+ 1; b+ 1;µ), and

3. (b− a− 1) 1F1(a; b;µ) = (b− 1) 1F1(a; b− 1;µ)− a 1F1(a+ 1; b+ 1;µ).

See Lebedev (1972), pp. 262. �

Lemma 3: Let the T × 1 vector Z be normally distributed with mean vector θ and covariance

matrix IT , M be any T × T idempotent matrix with rank r, and A be any T × T matrix. We

assume φ(·) is a Borel measurable function. Then:
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where µ ≡ θ′Mθ
2 is the non-centrality parameter.

Proof: Let P be an orthogonal matrix such that

PMP ′ = D =


d1 0 . . . 0

0 d2
...

0 . . . 0 dT

 =

Ir 0

0 0T−r

 ; di ∈ {0, 1}.
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Define the T × 1 vector ω = PZ, which has a N(Pθ, IT ) distribution. Therefore
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where the third equality holds by Lemma 1 of Appendix B.1 in Judge and Bock (1978). Substituting

for D and C, Lemma 3 is proved. �

Using Lemmas 1 - 3, we calculate the expectations in (A.4). Let the non-centrality parameter

of the chi-squared distribution based on Lemma 3 be defined as µ ≡ θ′Mθ
2 . For clarity, we focus on

the second and third terms in equation (A.4) one by one. The second term can be simplified as
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where E
[
χ2
k+2(µ)

]−2
can be obtained for k > 2 from Lemma 1, and the last equality follows from

using Lemma 2 several times, AM = MA = A, and MAM = A. Note that M is an idempotent

matrix. The third term in equation (A.4) can be simplified as
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where the last equality is obtained by using Lemma 2 several times, BM = A, MB = B, Bθ = 0,

and MBM = A. Finally, plugging (A.5) and (A.6) into (A.4) produces
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where 1F1
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Thus, the risk of the Stein-like combined estimator is less than the risk of the post-break estimator

if:

(I) 0 ≤ τ < 2

(
tr
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)
,
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(A.8)

where ϑ ≡ (V(2) − VFull)−1/2G′V 1/2θ. Besides, the upper bound in condition (II) is positive if the

number of regressors is greater than 2, i.e., k > 2. This completes the proof of Theorem 2. �
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(a) T1 = 20, σ(1) = 1 < σ(2) = 2 (b) T1 = 20, σ(1) = σ(2) = 1 (c) T1 = 20, σ(1) = 2 > σ(2) = 1

(d) T1 = 50, σ(1) = 1 < σ(2) = 2 (e) T1 = 50, σ(1) = σ(2) = 1 (f) T1 = 50, σ(1) = 2 > σ(2) = 1

(g) T1 = 80, σ(1) = 1 < σ(2) = 2 (h) T1 = 80, σ(1) = σ(2) = 1 (i) T1 = 80, σ(1) = 2 > σ(2) = 1

Figure 1: Risk-gain(%) between the Stein-like combined estimator and the post break estimator,
when T = 100.
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(a) T1 = 20, q = 0.5 (b) T1 = 20, q = 1 (c) T1 = 20, q = 2

(d) T1 = 40, q = 0.5 (e) T1 = 40, q = 1 (f) T1 = 40, q = 2

(g) T1 = 60, q = 0.5 (h) T1 = 60, q = 1 (i) T1 = 60, q = 2

(j) T1 = 80, q = 0.5 (k) T1 = 80, q = 1 (l) T1 = 80, q = 2

Figure 2: Simulation results with T = 100, k = 5.
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Table 1: Break specifications (m = 2)

Experiments β(1) β(2) β(3) σ(1) σ(2) σ(3)

#1 : No break 1 1 1 1 1 1

#2 : Moderate break in coefficients (decrease) 1.3 1 0.7 1 1 1

#3 : Large break in coefficients (decrease) 2 1 0 1 1 1

#4 : Moderate break in coefficients (increase) 0.7 1 1.3 1 1 1

#5 : Large break in coefficients (increase) 0 1 2 1 1 1

#6 : Moderate decreasing and increasing breaks 1.6 1 1.6 1 1 1

#7 : Large decreasing and increasing breaks 2 1 2 1 1 1

#8 : Moderate increasing and decreasing breaks 0.4 1 0.4 1 1 1

#9 : Large increasing and decreasing breaks 0 1 0 1 1 1

#10 : No break, then increasing break 1 1 1.5 1 1 1

#11 : Decreasing, then no break 1.5 1 1 1 1 1

#12 : Higher post-break volatility 1 1 1 0.5 1 2

#13 : Lower post-break volatility 1 1 1 2 1 0.5

32



T
ab

le
2:

S
im

u
la

ti
on

re
su

lt
s

fo
r

m
u

lt
ip

le
b

re
ak

s
w

it
h
k

=
5

E
st

im
at

ed
b

re
a
k

d
a
te

s
U

n
k
n

ow
n

b
re

ak
d

at
es

E
x
p

er
im

en
ts

S
te

in
P

P
P

T
ro

ff
C

V
W

A
P

o
o
le

d
F

u
ll

C
V

W
A

P
o
o
le

d

T
=

1
0
0

#
1

0
.9

91
0.

99
3

0
.9

98
0.

97
6

0.
97

2
0.

97
2

0.
97

0
1.

02
3

0.
98

8
1.

00
8

#
2

0
.9

95
0.

99
7

1
.0

02
0.

98
0

1.
08

0
1.

06
5

1.
28

6
0.

96
1

1.
02

8
0.

97
0

#
3

0
.9

99
1.

24
7

1
.0

19
1.

05
0

3.
02

8
2.

24
3

5.
23

9
1.

04
3

3.
00

9
1.

64
0

#
4

0
.9

88
0.

99
1

0
.9

96
1.

19
2

1.
01

6
1.

01
7

1.
19

7
1.

19
3

0.
96

8
0.

93
8

#
5

0
.9

99
1.

27
7

1
.0

19
4.

94
1

2.
07

0
2.

14
8

5.
02

0
4.

94
1

2.
04

2
1.

57
6

#
6

0
.9

72
1.

01
6

0
.9

98
1.

13
9

1.
02

2
1.

01
4

0.
98

1
1.

19
9

1.
03

2
0.

96
1

#
7

0
.9

82
1.

04
5

1
.0

16
1.

88
3

1.
41

7
1.

39
5

1.
31

6
1.

90
0

1.
41

9
1.

18
1

#
8

0
.9

75
1.

01
2

1
.0

02
0.

97
3

1.
05

4
1.

03
1

1.
01

1
0.

93
9

1.
07

1
0.

97
0

#
9

0
.9

86
1.

04
2

1
.0

14
1.

05
1

1.
55

7
1.

45
2

1.
39

4
1.

04
2

1.
56

0
1.

21
9

#
10

0.
9
7
8

0
.9

82
1.

00
1

1.
24

5
1.

05
8

1.
05

0
1.

23
2

1.
24

7
1.

04
2

0.
96

7

#
11

0.
9
9
5

0
.9

99
0.

99
9

0.
98

6
1.

01
6

1.
01

4
1.

12
3

1.
01

0
0.

98
5

0.
99

5

#
12

0.
9
8
8

0
.9

91
0.

99
6

0.
96

5
0.

96
2

0.
96

4
0.

95
8

1.
00

5
0.

99
0

1.
01

6

#
13

0.
9
9
8

0
.9

99
1.

00
0

0.
99

7
0.

99
3

0.
99

2
0.

99
2

0.
94

4
0.

85
4

0.
83

7

T
=

2
0
0

#
1

0
.9

98
0.

99
8

0
.9

98
0.

99
2

0.
99

1
0.

99
1

0.
99

0
1.

01
4

0.
99

8
1.

00
6

#
2

1
.0

00
1.

00
8

1
.0

04
0.

99
2

1.
11

8
1.

10
4

1.
34

1
0.

97
4

1.
07

7
1.

01
1

#
3

1
.0

00
1.

11
0

1
.0

11
1.

03
6

3.
20

9
2.

36
6

5.
60

6
1.

03
4

3.
20

4
1.

73
4

#
4

1
.0

00
1.

00
2

1
.0

03
1.

33
5

1.
09

7
1.

09
8

1.
33

7
1.

33
5

1.
05

5
1.

00
6

#
5

1
.0

00
1.

10
8

1
.0

09
5.

61
0

2.
29

0
2.

38
3

5.
63

7
5.

61
0

2.
27

8
1.

74
1

#
6

0
.9

91
1.

00
9

1
.0

01
1.

37
5

1.
17

0
1.

15
9

1.
12

8
1.

38
1

1.
17

1
1.

07
1

#
7

0
.9

97
1.

01
8

1
.0

07
2.

17
5

1.
59

4
1.

57
4

1.
49

3
2.

17
5

1.
59

4
1.

30
7

#
8

0
.9

91
1.

00
8

1
.0

04
0.

99
6

1.
18

4
1.

15
3

1.
13

0
0.

99
1

1.
18

5
1.

06
9

#
9

0
.9

97
1.

01
4

1
.0

07
1.

03
6

1.
68

1
1.

56
7

1.
49

9
1.

03
6

1.
68

1
1.

30
6

#
10

0.
9
9
6

1
.0

00
1.

00
9

1.
46

4
1.

19
9

1.
19

3
1.

45
6

1.
46

4
1.

19
7

1.
09

0

#
11

0.
9
9
9

1
.0

02
1.

00
2

0.
99

7
1.

03
0

1.
02

8
1.

12
3

1.
01

2
1.

00
3

1.
00

5

#
12

0.
9
9
6

0
.9

97
0.

99
6

0.
98

9
0.

98
7

0.
98

8
0.

98
5

1.
00

9
0.

99
9

1.
01

1

#
13

0.
9
9
9

0
.9

99
1.

00
0

1.
00

3
1.

00
0

1.
00

0
0.

99
9

0.
97

6
0.

92
6

0.
91

4

N
ot

e:
T

h
is

ta
b

le
re

p
or

ts
th

e
re

su
lt

s
of

th
e

re
la

ti
v
e

M
S

F
E

fo
r

d
iff

er
en

t
m

et
h

o
d
s.

A
ll

M
S

F
E

s
ar

e
re

p
or

te
d

re
la

ti
v
e

to
th

e
as

so
ci

at
ed

M
S

F
E

b
a
se

d
on

th
e

p
os

t-
b

re
ak

sa
m

p
le

.
T

h
e

fi
rs

t
co

lu
m

n
sh

ow
s

th
e

ex
p

er
im

en
t

n
u

m
b

er
s

w
h

ic
h

re
p

re
se

n
ts

th
e

sp
ec

ifi
ca

ti
o
n

of
b

re
ak

s
b

as
ed

on
T

ab
le

1.

33



T
a
b

le
3:

E
m

p
ir

ic
al

re
su

lt
s

fo
r

fo
re

ca
st

in
g

re
al

ou
tp

u
t

gr
ow

th
av

er
ag

ed
ac

ro
ss

co
u

n
tr

ie
s

E
st

im
at

ed
b

re
ak

d
at

es
U

n
k
n

ow
n

b
re

ak
d

at
es

h
P

os
tb

k
S

te
in

P
P

P
T

ro
ff

C
V

W
A

P
o
o
le

d
F

u
ll

C
V

W
A

P
o
o
le

d
A

v
eW

IJ
R

P
an

el
A

:
R

ol
li

n
g,

G
D

P
w

ei
gh

te
d

av
er

ag
e

1
0
.0

6
2

0
.0

5
7
∗∗

0.
0
6
0∗
∗

0
.0

63
0
.0

65
0
.0

58
0
.0

58
0
.0

60
0
.0

78
0
.0

58
0
.1

28
0
.0

97
0
.0

60
4

0
.2

39
0
.2

3
2
∗

0.
25

8
0
.2

51
0
.2

53
0
.3

06
0
.2

93
0
.3

32
0
.2

15
∗

0
.2

73
3
.3

87
0
.2

96
0
.3

29

P
an

el
B

:
E

x
p

an
d

in
g,

G
D

P
w

ei
gh

te
d

av
er

ag
e

1
0
.0

6
6

0
.0

5
6
∗∗

0.
0
6
3

0
.0

64
0
.0

59
0
.0

51
∗

0
.0

52
∗

0
.0

53
∗

0.
05

9
0
.0

50
∗

0
.0

49
∗∗

0.
04

9∗
∗

-
4

0
.4

0
6

0
.3

81
∗∗

0.
3
95

0
.3

9
5

0
.3

97
0
.3

80
0
.3

73
0
.4

23
0
.3

75
0
.3

60
∗

0
.3

03
∗∗

0.
30

3∗
∗

-

P
an

el
C

:
C

M
,

G
D

P
w

ei
gh

te
d

av
er

ag
e

1
0
.0

6
4

0
.0

5
7
∗

0.
0
6
1

0
.0

64
0
.0

62
0
.0

55
0
.0

55
0
.0

56
0
.0

68
0
.0

54
0
.0

89
0
.0

73
-

4
0
.3

2
2

0
.3

06
∗

0.
3
27

0
.3

2
3

0
.3

25
0
.3

43
0
.3

33
0
.3

77
0
.2

95
∗∗

0
.3

17
1
.8

45
0
.2

99
-

P
an

el
D

:
R

ol
li

n
g,

E
q
u

al
ly

w
ei

gh
te

d
av

er
a
g
e

1
0
.0

5
5

0
.0

5
1
∗

0.
0
5
4

0
.0

57
0
.0

57
0
.0

53
0
.0

53
0
.0

55
0
.0

68
0
.0

53
0
.1

40
0
.1

07
0
.0

51
4

0
.2

69
0
.2

5
4
∗∗

0.
28

4
0
.2

80
0
.2

80
0
.3

14
0
.3

03
0
.3

23
0
.2

43
0
.2

84
2
.9

13
0
.3

88
0
.3

04

P
an

el
E

:
E

x
p

an
d

in
g,

E
q
u

al
ly

w
ei

gh
te

d
av

er
a
g
e

1
0
.0

5
7

0
.0

4
9
∗∗

0.
0
5
5∗
∗

0
.0

57
0
.0

53
0
.0

46
∗

0
.0

46
∗

0
.0

47
0
.0

55
0
.0

45
∗

0
.0

44
∗∗

0.
04

4∗
∗

-
4

0
.3

7
6

0
.3

44
∗∗

0.
3
77

0
.3

7
4

0
.3

65
0
.3

46
0
.3

38
∗

0
.3

81
0
.3

48
0
.3

33
∗

0
.2

79
∗∗

0.
27

9∗
∗

-

P
an

el
F

:
C

M
,

E
q
u

al
ly

w
ei

gh
te

d
av

er
ag

e

1
0
.0

5
6

0
.0

5
0
∗

0.
0
5
5∗

0
.0

57
0
.0

55
0
.0

49
0
.0

50
0
.0

51
0
.0

62
0
.0

49
0
.0

92
0
.0

75
-

4
0
.3

2
3

0
.2

99
∗

0.
3
31

0
.3

2
7

0
.3

23
0
.3

30
0
.3

20
0
.3

52
0
.2

96
∗∗

0
.3

08
1
.5

96
0
.3

34
-

N
o
te

:
T

h
is

ta
b

le
re

p
or

ts
th

e
1
0
0
×

M
S

F
E

fo
r

d
iff

er
en

t
fo

re
ca

st
in

g
m

et
h

o
d

s.
T

h
e

ou
t-

of
-s

am
p

le
fo

re
ca

st
p

er
io

d
is

19
94

:Q
1-

20
16

:Q
4.
h

in
th

e
fi

rs
t

co
lu

m
n

sh
ow

s
th

e
fo

re
ca

st
h

o
ri

zo
n

.
In

th
e

h
ea

d
in

g
of

th
e

ta
b

le
,

S
te

in
sh

ow
s

th
e

re
su

lt
s

fo
r

ou
r

p
ro

p
os

ed
S

te
in

-l
ik

e
co

m
b

in
ed

es
ti

m
a
to

r,
P

P
P

is
th

e
on

e
p

ro
p

o
se

d
b
y

P
es

ar
an

et
al

.
(2

01
3)

,
P

os
tb

k
,

T
ro

ff
,

C
V

,
W

A
,

an
d

P
o
ol

ed
ar

e
th

e
fi

ve
m

et
h

o
d

s
u

se
d

in
P

es
ar

an
a
n

d
T

im
m

er
m

an
n

(2
0
0
7)

,
A

ve
W

is
th

e
m

et
h
o
d

p
ro

p
os

ed
b
y

P
es

ar
an

an
d

P
ic

k
(2

01
1)

w
it

h
T

(1
−
w

m
in

)
+

1
w

in
d

ow
s

an
d
w

m
in

=
0.

1,
an

d
IJ

R
is

th
e

op
ti

m
al

w
in

d
ow

m
et

h
o
d

p
ro

p
os

ed
b
y

In
ou

e
et

al
.

(2
01

7)
w

it
h
R

=
m

ax
(1
.5
T

2
/
3
,2

0)
an

d
R

=
m

in
(4
T

2
/
3
,T
−
h

).
P

an
el

s
A

-C
re

p
or

t
th

e
re

su
lt

s
b

a
se

d
o
n

th
e

G
D

P
w

ei
gh

te
d

av
er

ag
e

w
it

h
ro

ll
in

g
w

in
d

ow
of

m
os

t
re

ce
n
t

40
ob

se
rv

at
io

n
s,

ex
p

an
d

in
g

w
in

d
ow

,
an

d
th

e
C

la
rk

an
d

M
cC

ra
ck

en
(2

01
0
)

m
et

h
o
d

(C
M

),
re

sp
ec

ti
ve

ly
,

w
h

il
e

P
an

el
s

D
-F

re
p

or
t

th
e

re
su

lt
s

of
eq

u
al

ly
w

ei
gh

te
d

av
er

ag
e

ac
ro

ss
co

u
n
tr

ie
s.

T
h

e
G

D
P

w
ei

gh
te

d
av

er
ag

e
u

se
s

w
ei

gh
ts
w
i

=
Y
i/

(∑ s j=
1
Y
j
),

w
h

er
e
Y
i

is
th

e
20

08
G

D
P

in
p

u
rc

h
as

in
g

p
ow

er
te

rm
s

fo
r

co
u

n
tr

y
i

av
ai

la
b

le
fr

o
m

th
e

G
V

A
R

d
at

a
b

a
se

an
d
s

=
9

is
th

e
n
u

m
b

er
of

co
u

n
tr

ie
s.

T
h

e
eq

u
al

w
ei

gh
ts

av
er

ag
e

u
se

s
w
i

=
1/
s.

A
n

as
te

ri
sk

d
en

o
te

fo
re

ca
st

th
a
t

is
si

g
n
ifi

ca
n
tl

y
b

et
te

r
th

an
th

at
ob

ta
in

ed
fr

om
th

e
p

os
t-

b
re

ak
fo

re
ca

st
s

ac
co

rd
in

g
to

th
e

p
an

el
D

ie
b

ol
d

–M
ar

ia
n

o
te

st
st

at
is

ti
c.

T
h

e
1
%

an
d

5%
si

g
n

ifi
ca

n
ce

le
ve

ls
ar

e
d

en
ot

ed
b
y
∗∗

an
d
∗ ,

re
sp

ec
ti

ve
ly

.

34


	Introduction
	The structural break model
	Stein-like combined estimator
	The full-sample estimator using all observations
	The post-break estimator using post-break observations
	Stein-like combined estimator

	Asymptotic risk for the Stein-like combined estimator
	Comparing the Stein with an alternative estimator by pesaranet2013

	Extension to multiple breaks
	Monte Carlo evidence on forecasting performance
	Simulation designs
	Simulation results

	Empirical analysis
	Conclusion
	Appendix: Mathematical details
	Proof of Theorem 1
	Proof for Theorem 2


