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Abstract

In this paper, under the stationary α-mixing dependent samples, we develop a novel non-

linear modal regression for time series sequences and establish the consistency and asymp-

totic property of the proposed nonlinear modal estimator with a shrinking bandwidth h

under certain regularity conditions. The asymptotic distribution is shown to be identical to

the one derived from the independent observations, whereas the convergence rate (
√
nh3 in

which n is the sample size) is slower than that in the nonlinear mean regression. We nu-

merically estimate the proposed nonlinear modal regression model by the use of a modified

modal-expectation-maximization (MEM) algorithm in conjunction with Taylor expansion.

Monte Carlo simulations are presented to demonstrate the good finite sample (prediction)

performance of the newly proposed model. We also construct a specified nonlinear modal

regression to match the available daily new cases and new deaths data of the COVID-19

outbreak at the state/region level in the United States, and provide forward predictions

up to 130 days ahead (from August 24, 2020 to December 31, 2020). In comparison to the

traditional nonlinear regressions, the suggested model can fit the COVID-19 data better and

produce more precise predictions. The prediction results indicate that there are systematic

differences in spreading distributions among states/regions. For most western and eastern

states, they have many serious COVID-19 burdens compared to Midwest. We hope that

the built nonlinear modal regression can help policymakers to implement fast actions to

curb the spread of the infection, avoid overburdening the health system, and understand the

development of COVID-19 from some points.
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1 Introduction

COVID-19 is caused by a coronavirus called SARS-CoV-2 and was identified in Wuhan, the

capital city of Hubei province, China, for the very first time in December of 2019. On January

30, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak as a Public

Health Emergency of International Concern (PHEIC). COVID-19 is a global threat spreading

exponentially rather than linearly, i.e., the number of new cases is proportional to the existing

number of cases, which has been dramatically affecting the health and safety of people all over

the world. Based on the information from the Johns Hopkins Coronavirus Resource Center

(Dong et al., 2020), due to the extensive spread of COVID-19, there are more than 23 million

cases of COVID-19 and more than 800 thousand deaths worldwide as of August 23, 2020 (Figure

1 shows that compared to other countries, the United States (US) has suffered from COVID-19

in a more severe way (Yancy, 2020)). In the US alone, since the first US case of COVID-

19 infection was identified in Washington state on January 20, 2020, more than 5.6 million

COVID-19 cases and 170 thousand COVID-19 deaths have been identified across the US up to

August 23, 2020 (Figure 2 indicates the urgency and necessity of providing reliable predictions

to understand the growth behavior of COVID-19 in the US). WHO quotes 3.4% as the fatality

rate (% people who contract the coronavirus and then die). The ongoing global outbreak of

the COVID-19 pandemic, which was eventually classified as a pandemic on March 11, 2020 by

WHO, poses serious challenges for countries/regions worldwide in designing tailored methods

of epidemic control to provide effective and reliable health protection while allowing as much

as possible societal and economic activity. It is unclear to anyone where this pandemic will

lead us. In such an emergency situation without globally effective antiviral drugs for treating

COVID-19 infections, a reliable prediction model for COVID-19 data is undoubtedly essential for

policymakers to implement fast actions to curb the spread of the infection, avoid overburdening

the health system, and understand the dynamics of the COVID-19 spread.

(a) COVID-19 Cases (b) COVID-19 Deaths

Figure 1: Visualization of the total number of cases and deaths in the world-August 23, 2020;
data source: Tencent News https://new.qq.com/ch/antip/.

Most of the existing methods for predicting the incidence and prevalence of COVID-19
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provided by researchers with backgrounds in epidemiology, biostatistics, and economics focus on

some mechanistic models, such as the Susceptible-Exposed-Infectious-Recovered (SEIR) model

(Grimm et al., 2020; Hauser et al., 2020; Maugeri et al., 2020), the Institute for Health Metrics

and Evaluation (IHME) model (IHME, 2020; Jewell et al., 2020), and the Risk-Based model

(Barda et al., 2020; Pueyo, 2020), or some statistical models/distributions (Deb and Majumdar,

2020; Fenga, 2020; Linton et al., 2020; Lu et al., 2020; Verity et al., 2020), such as the time

series ARMA model and the machine learning model, for the number of cumulative deaths or

cases. However, the accuracy of prediction largely depends on the reliability of data, and it is

a widespread opinion in the scientific community that the current official COVID-19 data are

often noisy with outliers, biased, skewed, and/or truncated (Linton et al., 2020; Rudnicki and

Piliszek, 2020; Tuli et al., 2020). Therefore, the traditional statistical regression model built on

mean might provide low accuracy and even misleading prediction results.

(a) COVID-19 Cases (b) COVID-19 Deaths

Figure 2: Visualization of the total number of cases and deaths in the US-August 23, 2020;
data source: the GitHub repository managed by The New York Times https://github.com/

nytimes/covid-19-data.

To meet the challenges of the noisy and skewed COVID-19 data, we propose a new statistical

regression tool—nonlinear modal regression—that goes beyond the traditional regression models

to investigate the dynamic of COVID-19 prevalence in different regions, where the dependent

variable of our interest is the official number of daily new cases or new deaths of COVID-19

in a region that could be a state of US (we concentrate on the daily change value as it is a

more representative indicator of epidemic severity and an important metric for assessing the

effectiveness of COVID-19 regulation). Note that the built model can be applied to conduct

predictions for some regions which are still in the early stage of the COVID-19 pandemic or

when the COVID-19 pandemic happens again in the future (there is a growing belief among

epidemiologists that COVID-19 will behave similarly to the seasonal flu and re-emerge annually

in the winter).

It is well-known that the independence assumption for observations is not always valid

in empirical applications. There are many statistical/economics analysis problems with high-

dimensional data or information network data, where the data exhibit some sort of dependency,
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such as Markovian chains, mixing sequences, long-range memory process, and so on. In these

cases, the statistical properties of the estimator presented in the papers considering indepen-

dent identically distributed (i.i.d.) samples may change. Because of this, there has been an

extensive literature concerning the estimator for dependent data (Robinson, 1984; Härdle et

al., 1997; Pagan and Ullah, 1999; Cai and Ould-Said, 2003; Fan and Yao, 2008; Bester et al.,

2011). Nevertheless, nearly all of the existing models/methods regarding dependent samples

were considered from the mean or quantile regression and are especially useful when there is no

outlier in the data, or the density is not very skewed. When the time series dataset contains

several outliers (or aberrant observations) or the data are skewed resulting in non-normally es-

timated standardized residuals (or heavy-tailed error distributions), which is a common feature

of financial/macroeconomics/panel time series data, the traditional mean or quantile regression

may lose robustness/efficiency or have misspecification (Krief, 2017; Ullah et al., 2021). Thus,

modal regression that focuses on the conditional mode, instead of the mean or quantile, of the

response variable given the predictor may be more feasible for modeling processes in such cases.

Furthermore, when the data are symmetrically distributed, where the modal regression line

coincides with the mean regression line, modal regression can overcome the shortcoming of lack

of robustness of mean regression to achieve robust and efficient estimators (Yao et al., 2012).

To the best of our knowledge, besides Kemp et al. (2020) which considered the estimation of

parametric vector autoregressive conditional mode models, there has not been any attempt to

estimate modal regression for dependent samples. Substantially different to Kemp et al. (2020),

in this paper, we fill the literature gap by focusing on the estimation of a nonlinear modal

regression for stationary and weakly dependent samples under α-mixing condition, which is in-

deed omnipresent in time series econometrics and is less restrictive than other mixing conditions

available in the literature. Due to the space constraint, we leave the nonlinear modal-based ro-

bust regression for dependent data derived from mode value in another research, which is based

on but significantly different from the proposed nonlinear modal regression in the current paper;

see Remark 2.3.

This paper is primarily aimed at applying nonlinear modal regression to understand the

characteristics of dependent samples from a mode perspective and settle theoretical properties

rigorously. For the simplicity of notations, in what follows, we let {(Yt, Xt)
n
t=1} be a stationary

discrete-time random process, defined on the probability space (Ω,F ,P), where Ω denotes the

sample space, F is the σ-algebra (the information) of events, and P is a probability measure.

{(Yt, Xt)
n
t=1} has the same marginal distribution as (Y,X), where Yt is the dependent variable

of the main interest and Xt ∈ Rp denotes the covariates that may contain the lagged values of

Yt to reflect the dynamical characteristics of the underlying data generating mechanism. Let

f(Y | X) be the conditional density function of Y given X. The conventional regression model

usually employs the mean (or the median) of f(Y | X) to model the relationship between Y

and X. For example, linear regression assumes that the mean or median of f(Y | X) is a
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linear function of X. The main distinction of modal regression is to find the most probable

value/scenario (i.e., mode) of a dependent variable Y given covariates X, which is defined as

Mode(Y | X) = arg maxY f(Y | X). (1.1)

When the dimension of X is not low, estimating (1.1) directly based on nonparametric

kernel density estimation will raise many challenges due to the “curse of dimensionality”. We in

this paper avoid directly estimating the conditional density by imposing certain model assump-

tions on the conditional mode of the response given the covariates (assuming that the global

mode is uniquely defined), i.e., Mode(Y | X); see Section 2 for more details. There is emerg-

ing literature on studying modal regression. Due to space limitations, we refer the interested

readers to Yao and Li (2014), Chen (2018), Ullah et al. (2021), and the references therein for

a comprehensive review of modal regression. Notice that Khardani and Yao (2017) extended

the results in Kemp and Santos Silva (2012) to put forward a nonlinear modal regression for

the independent samples. However, to the best of our knowledge, there is no existing literature

investigating nonlinear modal regression under stationary α-mixing dependent samples using a

kernel smoother, which is one of the main contributions of the current paper. It is noteworthy

that compared to mean or median regression, modal regression has the following noticeable

advantages (Yao and Li, 2014; Ullah et al., 2021): i) better for reflecting the characteristics of

skewed data; ii) better point prediction and narrower prediction intervals; iii) more robust to

outliers and certain forms of measurement error; iv) consistent estimation even for truncated

data. Therefore, the modal regression can overcome the limitations of the traditional existing

regressions and naturally provide reliable (prediction) models for the noisy COVID-19 data,

which is the main innovation of the present paper contributing to the rapidly growing literature

on predicting the spread of the current COVID-19 pandemic. We also show a new and interest-

ing theoretical result that the asymptotic theorem for the proposed nonlinear modal estimator

under stationary α-mixing dependent samples is the same as that for independent data under

certain conditions, indicating the asymptotic negligence of the dependence. This remarkable

result is intrinsic for nonparametric estimation for dependent samples and was already observed

in the mean regression estimation (Cai and Ould-Said, 2003). Compared to the mean regression

estimator, the modal regression estimator depends heavily on error term observations which are

confined to the neighborhood of a given point (i.e., zero) and will unexpectedly have a much

slower convergence rate (the modal estimation requires a shrinking bandwidth h due to the use

of a small portion of data around the mode), which is the price to be paid in order to estimate

mode (Parzen, 1962). The proposed nonlinear modal estimator is relatively simple to imple-

ment, where we develop a computationally efficient MEM algorithm in conjunction with Taylor

expansion to numerically estimate it.

Generally, most new confirmed cases are infected via contact with the new confirmed cases
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in recent days, indicating the necessity of incorporating lagged value for analyzing and pre-

dicting COVID-19 new cases. Ho et al. (2020) introduced a flexible statistical model for the

infections and deaths caused by COVID-19 in New Zealand, in which the growth rate of the

cumulative number of cases depends on the current cumulative number of cases. Li and Lin-

ton (2021) developed a quadratic time trend model that was applied to the log of new cases

and obtained satisfying results for the trajectory of the epidemic in most countries. Based on

these observations, we apply the proposed nonlinear modal regression to model the log of new

cases/deaths as a function of time (to capture the trend or bell-shaped curve) and its own one-

step lagged value (to capture the dynamics by autoregressive fluctuations) based on the general

structure of the effects and process of infection from a mode perspective; see Section 3 for more

details on the model setting for COVID-19 data. Under the constraint imposed by a reason-

able length of the paper, we compare the performance of nonlinear modal regression to that of

nonlinear mean and median regressions for US COVID-19 data in the paper (for the sake of

thoroughness, we also list the results associated with COVID-19 data obtained from the robust

nonlinear mean regression with the bisquare weight in Online Appendix B. We emphasize that

the outbreak spreads of COVID-19 are largely affected by the policies and social responsibilities

of each state/region, it will be interesting in the future to compare the prediction results from

the proposed model to some well-known predictions such as those from the IMHE model, SIR

models in epidemiology, machine learning methods, or other models that can take policy effects

into account).

The results indicate that the newly proposed model could have better fit performance in

terms of R2 (the coefficient of determination) for most states/regions in the US. We also use

Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE) to compare the

out-of-sample prediction performance of the proposed nonlinear modal regression to that of

nonlinear mean and median (and robust) regressions for the last 20 days of the samples, where

we show that nonlinear modal regression can have considerably more precise predictions. We

then apply the proposed nonlinear modal regression to predict COVID-19 new cases and new

deaths in the US. Based on the prediction results up to the next 130 days (from August 24,

2020 to December 31, 2020), we can observe that there are systematic differences in spreading

distributions across US states. Some states are showing a clear decreasing trend in the number

of new cases and new deaths, such as Connecticut, Illinois, Maine, Maryland, Massachusetts,

New Hampshire, New Jersey, New York, Pennsylvania, among others, while others, such as

Alabama, Arkansas, California, Florida, Georgia, Mississippi, Montana, North Carolina, North

Dakota, Oregon, Texas, Utah, Washington, and so on, are still in the first wave of the COVID-

19 outbreak. Among the states, California, Florida, Texas, and Georgia are the worst affected

ones in terms of the number of predicted new cases and new deaths for the next 130 days. For

most western and eastern states, they have many serious COVID-19 burdens compared to the

Midwest. It is interesting to note that the prediction results may reflect the effect of different

5



possible policy interventions, which can be interpreted as holding the current policies in place or

under minimal interventions in each state/region. With the newly developed nonlinear modal

regression, we hope that the prediction results can provide some timely information (i.e., turning

point) to help policymakers to implement fast actions to curb the spread of the infection and

avoid overburdening the health system.

The remainder of this paper is organized as follows. In Section 2, we introduce a nonlinear

modal regression for dependent samples under the stationary α-mixing condition and develop an

efficient modal estimation algorithm. We also present the asymptotic distributional theory for

the resulting estimator under mild conditions, which gives guidelines for practically selecting a

reliable bandwidth. Monte Carlo simulations are conducted to show the good finite sample per-

formance of the proposed model. A specified nonlinear modal regression is introduced in section

3. Based on the built model, we produce a modal multi-step-ahead point forecast framework

for COVID-19 new cases and new deaths data, and present the out-of-sample prediction results

of the behavior of COVID-19 at the state/region level in the US. The paper is concluded with

some remarks in Section 4. We put additional numerical results, list all figures related to the

prediction results, and outline the proofs for the main theorems in the online appendix.

2 Nonlinear Modal Regression

In order to streamline the discussion, we start in this section with the nonlinear modal esti-

mator for dependent samples, where the numerical solutions are obtained via a modified MEM

algorithm (Li et al., 2007; Yao, 2013) with the help of a first order Taylor expansion. Under the

assumption of α-mixing, we then present the asymptotic property and optimal bandwidth.

2.1 Nonlinear Modal Estimator

As mentioned previously, the traditional method of estimating (1.1) is to directly estimate

the conditional density f(Y | X) nonparametrically based on the multivariate kernel density

estimation; see the related discussions in Chen et al. (2016). However, due to the “curse of

dimensionality”, such a method is practically infeasible when the dimension of covariates is

moderate or high, which also contributes to the lack of enough research interest in modal

regression. In this paper, similar to mean or quantile regression, we propose estimating the

modal regression (1.1) by imposing some model assumptions on Mode(Y | X) directly (assuming

that it is uniquely defined) to avoid the “curse of dimensionality” of the fully nonparametric

kernel method. In particular, we assume the following baseline model{
Yt = r(Xt, β) + εt,

Mode(Yt | Xt) = r(Xt, β), t = 1, · · · , n,
(2.1)
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where t represents calendar day that equals to one for the first date of the data, β ∈ Θ is

an unknown parameter vector with dimension p, Θ is the known compact parameter space,

r(·) : Rp × Θ → R is a parametric nonlinear function measurable on Rp for each β in Θ, and

{εt}nt=1 is a sequence of stochastic random variables with Mode(εt | Ft) = 0 almost surely

(a.s.) for every t in which Ft is the σ-field generated by {Xs, εs}s≤t. Different from the most

existing regressions, we do not impose any second moment conditions on εt, thus it can be

conditional homoskedastic or conditional heteroskedastic. It is worth pointing out that in order

to illustrate the applicability of nonlinear modal regression for time series data in a more general

setting, we focus on dependent observations. However, (2.1) could also be an autoregressive time

series model with finite order p, i.e., Mode(Yt | Yt−1) = r({Yt−l}pl=1, β), which characterizes the

nonlinearity in terms of lags and could be considered as a special case of time series model in

this section. The form of r(·) for analyzing the COVID-19 data will be discussed in Section

3. Then, the modal parameter β can be estimated by maximizing the following kernel-based

objective function given observations {(Yt, Xt)}nt=1 and knowledge of r(·)

Qn(β) =
1

nh

n∑
t=1

K

(
Yt − r (Xt, β)

h

)
, (2.2)

where K(·) is a nonnegatively symmetric kernel function such as the Gaussian kernel (i.e.,

K(t) = (2π)−1/2 exp[−(1/2)t2]) that we will use by default in this paper, and h := h(n) is

a bandwidth that is assumed to go to 0 with n going to infinity (“ :=” denotes “equals by

definition”). To keep the notation simple, we however suppress n throughout the paper. Notice

that K(·) is a function following the same rules as a probability density function, for example,

it is positive and integrable. However, the role of bandwidth h (control mode) is different from

that in nonparametric regression (control smoothness). According to Yao et al. (2012), the

choice of kernel function is not very important in modal regression compared to the choice of

bandwidth. We choose the Gaussian kernel in this paper for the sake of simplicity. In particular,

we can obtain an explicit expression for the M-Step in Algorithm 1.

Remark 2.1. When r (Xt, β) = β∗, only an intercept term, Qn(β∗) is a kernel density estimate

of Y , and thus the maximizer of (2.2) is the estimated mode of f(Y ). Here, we extend this

kernel-type objective function to estimate the modal regression parameter β in the regression

setting. When r (Xt, β) = XT
t β in which T represents the transpose of a matrix or a vector,

the modal regression (2.1) is simplified to the linear modal regression (Kemp and Santos Silva,

2012; Yao and Li, 2014). Note that if K(t) = 2−1I(|t| ≤ h), a uniform kernel, then (2.2) tries

to find the curve r(Xt, β̂) such that the band r(Xt, β̂)±h contains the largest number of response

Yt, where β̂ is the modal estimator. Therefore, the modal regression provides more meaningful

point predictions and shorter prediction intervals than the mean regression.

It is well-known that the estimation of nonlinear models is a notoriously difficult problem,
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especially for modal regression, as maximizing (2.2) does not have an explicit solution. We thus

develop a modified MEM Algorithm 1 originally proposed by Li et al. (2007) and Yao (2013)

to simplify the computations, which decomposes the optimization (2.2) into E-Step and M-

Step. Given the initial value β(0) (e.g., nonlinear least squares (NLS) estimate), we shall repeat

the two steps in the algorithm until it converges. Note that if r(Xt, β) is a linear function of

Xt, then M-Step is just a weighted LS estimation and has an explicit solution. To simplify

the computation of M-Step for a general nonlinear function r(·), we approximate r(Xt, β) by

a first order Taylor expansion around the current parameter estimate. It can be proved that

each iteration of the above algorithm monotonically nondecreases the objective function (2.2)

following the procedures in Yao and Li (2014), i.e., at each iteration Qn(β(g+1)) ≥ Qn(β(g))

and the equality holds if and only if β(g+1) = β(g). Therefore, the algorithm is very stable

and converges. However, for the bandwidth h with a small value, the objective function may

have multiple maxima, and there is no guarantee that the MEM algorithm will converge to the

global maximizer. Accordingly, it is important to try different starting points on each occasion

to compare the values of the target function to choose the best optimal one (Yao and Li, 2014;

Ullah et al., 2021).

Algorithm 1 MEM Algorithm for Nonlinear Modal Regression

E-Step. Calculate the weight π
(
t | β(g)

)

π
(
t | β(g)

)
=

K

(
Yt−r(Xt,β(g))

h

)
∑n

t=1K

(
Yt−r(Xt,β(g))

h

) ∝ K

(
Yt − r

(
Xt, β

(g)
)

h

)
,

where g is the iteration indicator.
Expansion. Approximate r(Xt, β) by a first order Taylor expansion around β(g)

r(Xt, β) ≈ r
(
Xt, β

(g)
)

+
∂r(Xt, β)

∂βT

∣∣∣
β=β(g)

(
β − β(g)

)
.

M-Step. Update β(g+1) by

β(g+1) = arg max
β

n∑
t=1

{
π
(
t | β(g)

)
logK

(
Yt − r (Xt, β)

h

)}

=

[
n∑
t=1

π
(
t | β(g)

) ∂r (Xt, β
(g)
)

∂β

∂r
(
Xt, β

(g)
)

∂βT

]−1 [ n∑
t=1

π
(
t | β(g)

) ∂r (Xt, β
(g)
)

∂β
Y

(g)
t

]
,

where Y
(g)
t = Yt − r

(
Xt, β

(g)
)

+
∂r(Xt,β(g))

∂βT β(g).

Based on the above algorithm, it can be seen that the major difference between the mean

regression by the LS estimation and the modal regression lies in the weight π
(
t | β(g)

)
used in
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E-Step. For the LS estimation, each observation has an equal weight 1/n. On the other hand,

for modal regression estimate, the weight π
(
t | β(g)

)
calculated in E-step depends on how close

Yt is to the modal regression curve r(Xt, β). This weighting scheme allows modal regression to

reduce the effect of observations far away from the modal regression curve to achieve robustness,

which is one of the advantages of modal regression over mean regression.

2.2 Asymptotic Property

Before proceeding to the asymptotic theorem for the estimator under the α-mixing assumption,

it is convenient to introduce some notations that will be used in the remaining part of this

section. We define Tn(x) = T (x) + op(sn) ( or Op (sn)) uniformly for x ∈ X if supx∈X |Tn(x) −
T (x)| = op (sn) ( or Op (sn)), and use “

d→” to represent convergence in distribution. We say

that f(n) = o(g(n)) if for all c > 0, there exists some k > 0 (not depend on n) such that

0 ≤ f(n) < cg(n) for all n ≥ k. Let ‖ · ‖ denote the Euclidean norm, i.e., ‖A‖ = [tr(AAT )]1/2

in which tr(A) is the trace of the matrix or vector A. For positive sequences {an} and {bn},
we write an � bn if an/bn + bn/an is bounded for all large n. To facilitate the derivation of the

consistency and asymptotic theorem for the estimator from (2.2) in a general framework, we

impose the following regularity conditions.

C1 The true value of parameter β0 defined in (2.1) is in the interior of the known compact

parameter space Θ, which is a subset of Rp.

C2 The kernel function K(·) is a nonnegatively symmetric density function with bounded

support and integrates to one. It is four times continuous differentiable with all derivatives

bounded in absolute value. Furthermore,
∫
t2+δK2+δ(t)dt < ∞ with probability one in

which δ ∈ [0, 1) is a constant.

C3 The regression function r(·) has at least a continuous first derivative on an open set that

contains the true parameter point β0. In addition, n−1
∑n

t=1{∂r(Xt, β)/∂β}{∂r(Xt, β)/∂β}T

converges to a finite positive definite matrix at β = β0.

C4 The conditional density of ε given X denoted by q(ε | X) : R → R is bounded away

from zero and infinity, and has the third continuous derivative. q(c)(· | X) denotes the cth

derivative of q(· | X). Furthermore, q(ε | X) < q(0 | X) for all ε 6= 0 and X, and the first

derivative q(1)(ε | X) = 0.

C5 {(Yt, Xt)} is a stationary α-mixing process, and the mixing coefficient ρ(n) = supA∈F0
−∞,B∈F∞t

|P (A ∩ B) − P (A)P (B)| tending to zero for n → ∞ satisfies
∑

n≥1 n
γ(ρ(n))δ/(2+δ) < ∞

for some γ > δ/(2 + δ), where δ is a constant given in C2 and F is the σ-algebra of events

generated by the random variables {(Yt, Xt)}. Moreover, there is a sequence of positive

integers dn such that dn →∞, dnh→ 0, and h4
∑n

k=dn
[ρ(k)]δ/(2+δ) = o(nh−3).
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C6 As n → ∞, n−1
∑n

t=1 q
(2)(0 | Xt)

{
∂r(Xt,β)

∂β

}{
∂r(Xt,β)

∂β

}T
converges in probability to a

negative definite matrix.

Most of the above conditions have been used in Kemp and Santos Silva (2012), Yao and Li

(2014), and Ullah et al. (2021). Condition C1 is a common condition and can be easily satisfied

in practice, as there are no constraints on β. The bounded support in Condition C2 imposed on

the kernel function K(·) is for the brevity of proofs, and may be relaxed somewhat if we impose

certain restrictions on the tail of the kernel function; for example, the Gaussian kernel is allowed

(Ullah et al., 2021), which is the default kernel used in this paper. Condition C3 is a commonly

used condition on the smoothness of the nonlinear function and the information matrix to ensure

the existence of the asymptotic mean and variance for the proposed nonlinear modal estimator,

as the modal estimator β̂ must satisfy − 1
nh2

∑n
t=1 K

(1)(Yt−r(Xt,β̂)
h

)r(1)(Xt, β̂) = 0 where K(1)(·)
and r(1)(·) are the first derivatives of K(·) and r(·), respectively. Condition C4 implies a certain

smoothness of q(εt | Xt) in the neighborhood of zero, which is necessary for identification. It

imposes that the conditional density of ε has a well-defined global mode at zero (Kemp and

Santos Silva, 2012; Ullah et al., 2021). It is to be conceded that this assumption is used for

simple illustration; when the population is not homogeneous, the proposed method could also

be applied to the multimode setting to capture different modal regression lines, under which the

newly developed nonlinear modal regression can reveal the possible heterogeneity of COVID-19

development patterns across different states/regions. Condition C5 is a condition on the data

generating process that permits, and is the standard requirement for the α-mixing process,

which is used to control the dependence between two random variables as the time distance

increases. It is reasonably weak and is known to be satisfied by many stochastic processes, such

as the stationary Markov process and the stationary autoregressive-moving average process. A

sufficient condition for the mixing coefficient ρ(n) to satisfy Condition C5 is to set ρ(n) = O(n−d)

for some d > 2(γ + 1)/γ (Cai and Ould-Said, 2003). When {(Yt, Xt)}nt=1 are independent in

which δ = 0, the results in this paper also hold. Condition C6 is the classic rank condition

placing restrictions on the moments of covariates, which is necessary for deriving the asymptotic

property of the proposed nonlinear modal estimator. All conditions related to bandwidth h are

specified for each of the theorems stated below.

We are now in a position where we can state the main asymptotic results for the proposed

nonlinear modal estimator. The results are presented in the following Theorems 2.1 and 2.2,

where the modal convergence rate
√
nh3 can be considered as a new one in the literature of

nonlinear regression models for dependent samples.

Theorem 2.1. Under the regularity conditions C1-C6, with probability approaching one, as

n→∞, h→ 0, and nh5 →∞, there exists a consistent maximizer β̂ of (2.2) such that

‖β̂ − β0‖ = Op

((
nh3
)−1/2

+ h2
)
.
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Theorem 2.2. With nh5 = O(1), under the same conditions as Theorem 2.1, the parameter

satisfying the consistency result in Theorem 2.1 has the following asymptotic result

√
nh3

[
β̂ − β0 −

h2

2
J−1M{1 + op(1)}

]
d→ N

{
0,

∫
t2K2(t)dtJ−1LJ−1

}
.

If we allow nh5 → 0, the asymptotic theorem becomes

√
nh3

(
β̂ − β0

)
d→ N

{
0,

∫
t2K2(t)dtJ−1LJ−1

}
,

where J = E
[
q(2)(0 | Xt)

{
∂r(Xt,β)

∂β

}{
∂r(Xt,β)

∂β

}T]
,M = E

[
q(3)(0 | Xt)

{
∂r(Xt,β)

∂β

}]
, and L =

E
[
q(0 | Xt)

{
∂r(Xt,β)

∂β

}{
∂r(Xt,β)

∂β

}T]
at β = β0.

The proofs of the above two theorems are outlined in Online Appendix C. For Theorem 2.1,

the first term (nh3)−1/2 in the convergence rates characterizes the magnitude of the estimation

variance, while the second term h2 characterizes the magnitude of the estimation bias. It is

necessary to emphasize that these results are consistent with those in Yao and Li (2014) and

Ullah et al. (2021) for the i.i.d. data. Theorem 2.2 shows that the asymptotic bias term is mainly

determined by the bandwidth and can be successfully removed under certain undersmoothing

conditions. However, the asymptotic mean squared error (AMSE) optimal bandwidth h satisfies

h � n−1/7, which does not meet the condition that nh5 → 0. Hence, undersmoothing is required,

i.e., limn→∞
√
nh7 → 0, which will be incorporated into this paper when selecting bandwidth

in practice. We remark that the asymptotic results hold for both i.i.d. data and dependent

samples under mild conditions including strongly mixing (α-mixing). The asymptotic negligence

of dependence with a large sample size is intrinsic to nonparametric estimation for dependent

samples and it was already observed in the mean regression estimator; see Cai and Ould-Said

(2003). This should be expected as a heuristic principle for nonlinear modal regression as well

due to the fact that under the α-mixing process, the covariance between random variables εt

and εj such that εt, εj ∈ (ε− h, ε+ h) is dominated by the variance of εt through the conditions

imposed on the smoothing parameter; see Lemma 1 in Online Appendix C. Thus, the dependence

between the random variables εt and εj in a short interval is of “short memory” which makes

them behave as if they were independent (Härdle et al., 1997).

Remark 2.2. The convergence rate of the proposed nonlinear modal estimator β̂, n2/7 with

the MSE-optimal bandwidth, is slower than the root-n convergence rate of the traditional NLS

estimator, which is the cost we need to pay in order to estimate the conditional mode (Parzen,

1962). How to improve the convergence rate of the nonlinear modal estimator needs to be re-

searched further in the future. For example, we may assume a certain analytical relationship
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among mean, median, and mode to help estimate the nonlinear modal regression line. Never-

theless, for skewed data with moderate sample size, the modal regression usually provides better

prediction performance than the mean and median regressions, as the mode is trying to capture

the most likely data points; see the Monte Carlo simulation results in Yao and Li (2014) for

cross sectional data and Ullah et al. (2021) for fixed effects panel data. Our analysis of COVID-

19 time series data in Section 3 also shows the superior prediction performance of the proposed

nonlinear modal regression over the nonlinear mean and median (and robust) regressions.

Remark 2.3. It is observed that the proposed nonlinear modal regression focuses on asymmet-

ric data to reveal the characteristics of the data that have been neglected by mean or quantile

regression. In practice, it is also common to encounter symmetric data with outliers/aberrant

observations or heavy tails. In such a case, we might still be interested in estimating the mean

regression, while the proposed modal regression may not be directly applicable owing to the slower

convergence rate and the traditional LS estimator is not robust to outliers or heavy tailed data.

One way in the literature to handle this kind of data is to utilize robust regression models, like

M-estimation, which will lose efficiency for normal errors. We can then supplement the robust

regression literature by demonstrating that with symmetric data having only one mode at the

center and a heavy-tailed distribution, the nonlinear modal regression can be used alternatively

as a robust regression to achieve robustness and efficiency. Compared to the proposed nonlinear

modal regression, the main feature of the nonlinear modal-based robust regression is that we treat

bandwidth h as a constant, which does not depend on sample size. Under suitable conditions,

we can establish the asymptotic normality for the proposed modal-based robust estimator with
√
n consistency, and demonstrate that the modal-based robust estimator could be more efficient

than the NLS estimator with a heavy-tailed distribution, or as efficient as the NLS estimator

with a normal distribution. Due to the space constraint, we leave the detail of the nonlinear

modal-based robust regression for dependent data derived from mode value in another research.

2.3 Optimal Bandwidth

Compared to the bandwidth selection method for density estimation in order to estimate modes,

it is more challenging to calculate the optimal bandwidth for modal regression, as the value of

bandwidth can strongly affect the regression estimates. Particularly, if bandwidth is large

enough, the modal regression will instead capture the mean estimate; see Remark 2.3. In

addition, bandwidth plays an important role in estimating dependent observations, as the de-

pendency can be controlled with the observations in a small window. There exist some methods

for selecting the optimal bandwidths for nonparametric estimation of conditional modes based

on kernel density estimation; see Chen (2018) and Zhou and Huang (2019). However, the meth-

ods for bandwidth selection in modal regression by directly imposing structural assumptions

on Mode(Y | X) are rather limited. One of them is related to the plug-in bandwidth selection
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method for linear modal regression, which was presented in Yao and Li (2014) and Ullah et

al. (2021) by replacing the unknown quantities with the corresponding estimates. Neverthe-

less, such a plug-in method places a heavy burden on calculation. In this part, we discuss the

asymptotic optimal bandwidth for h and suggest a simple data adaptive method to obtain the

bandwidth.

To derive the asymptomatically optimal bandwidth, we minimize the AMSE of the pro-

posed nonlinear modal estimator, i.e.,

E
{

(β̂ − β0)TW (β̂ − β0)
}
≈MTJ−1WJ−1Mh4/4+(nh3)−1tr

(
J−1LJ−1W

) ∫
t2K2(t)dt, (2.3)

where the symbol “cn ≈ dn” indicates that cn/dn → 1 as n → ∞ and W is a weight function,

such as an identity matrix, reflecting which coefficient is more important in inference. Therefore,

the asymptotically optimal bandwidth h is

ĥopt =

[
3
∫
t2K2(t)dt tr (J−1LJ−1W )

MTJ−1WJ−1M

]1/7

n−1/7. (2.4)

If W = (J−1LJ−1)−1, which is proportional to the inverse of the asymptotic variance of β̂, then

tr (J−1LJ−1W ) = p, and we can have

ĥopt =

[
3p
∫
t2K2(t)dt

MTL−1M

]1/7

n−1/7. (2.5)

The optimal bandwidth in the above equation depends on the unknown density q(·) in a

complicated manner, which is not available in practice. However, the expression can give some

guidelines on how to select the optimal data-driven bandwidth in practice. To simplify the

calculations, we can follow Kemp and Santos Silva (2012) to choose the bandwidth, and let

ĥ = 1.6MADn−0.143 (-0.13 comes from the rate -1/7 and undersmoothing requirement) be a

normalized median absolute deviation (MAD) estimate, where

MAD = medj{|(Yj − r(Xj, β̂m))−medt(Yt − r(Xt, β̂m))|}, (2.6)

β̂m represents the corresponding mean estimate, andmed representing the median value. Besides

the above procedure, researchers could also follow the cross-validation method or the weighted

integrated squared error method developed in Zhou and Huang (2019) to select the bandwidth.

2.4 Monte Carlo Experiments

To illustrate that the asymptotic result investigated in the above subsection provides a good

approximation of the finite sample behavior of the proposed nonlinear modal estimator, we
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present two numerical examples based on Monte Carlo experiments (one is shown in Online

Appendix A). We mainly focus on asymmetric data and use DGP to represent the data gen-

erating process in what follows. For comparison, both nonlinear modal regression and mean

regression are considered to estimate parameters with M = 200 replications and sample size

n ∈ {200, 400, 600, 1000}. We examine how estimators behave in finite samples in terms of bias,

standard error, and MSE,

MSE(β̂) =
1

M

M∑
j=1

‖β̂(j) − β‖2

in which β̂(j) is the estimate in the jth replication and β is the true value. In order to validate the

asymptotic normality property, we present the shape of the empirical density of the standardized

(recentered and rescaled) modal estimate. The coverage probabilities to assess the prediction

performance of the proposed nonlinear modal regression are reported as well.

DGP 1 We generate the dependent data from the following model

Yt = X1,t + exp(2X2,t) +X1,tεt,

where X1,t = −0.3X1,t−1 + u1,t, u1,t
i.i.d.∼ N (0, 0.82), X2,t = 0.4X2,t−1 + u2,t, u2,t

i.i.d.∼ N (0, 0.52),

and εt
i.i.d.∼ 0.5N (−1, 2.52) + 0.5N (1, 0.52) with E(εt) = 0 and Mode(εt) = 1 (Yao and Li, 2014;

Ullah et al., 2021). We then have{
Mean Regression: E (Yt | X1,t, X2,t) = X1,t + exp(2X2,t),

Modal Regression: Mode (Yt | X1,t, X2,t) = 2X1,t + exp(2X2,t).

Notice that the median value of εt is around 0.67, which indicates that the nonlinear median

regression line is Median (Yt | X1,t, X2,t) = 1.67X1,t + exp(2X2,t). For space considerations, we

do not present results for median estimates, but they are available upon request.

Table 1: Results of Simulations—DGP 1

Modal Estimation Mean Estimation

Sample Size β1 (SE) MSE(β1) β2 (SE) MSE(β2) βm,1 (SE) MSE(βm,1) βm,2 (SE) MSE(βm,2)

n=200 1.9329 (0.2288) 0.0566 2.0078 (0.0574) 0.0033 1.0073 (0.2371) 0.0560 1.9974 (0.0402) 0.0016

n=400 1.9604 (0.0924) 0.0101 1.9995 (0.0313) 0.0010 1.0000 (0.1816) 0.0328 2.0008 (0.0241) 0.0006

n=600 1.9620 (0.0817) 0.0081 2.0003 (0.0237) 0.0006 0.9956 (0.1440) 0.0207 1.9999 (0.0193) 0.0004

n=1000 1.9620 (0.0603) 0.0051 1.9985 (0.0178) 0.0003 0.9886 (0.1043) 0.0110 1.9990 (0.0153) 0.0002

True Value β1 = 2 β2 = 2 βm,1 = 1 βm,2 = 2

The simulation results are summarized in Table 1 (βm represents the coefficients of mean

regression), from which we can see that the proposed nonlinear estimation procedure can recover
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modal coefficients well with finite samples. Also, when the sample size increases, the perfor-

mance of all estimators improves as expected, both in terms of biases and standard errors. With

skewed data where the mean, median, and mode differ by a location shift, it is necessary to per-

form the nonlinear modal regression to complement the nonlinear mean or quantile regression

and capture the most likely effect that the existing regressions cannot directly reveal.

Figure 3: Empirical Density of the Standardized Estimate

We present the shape of the empirical density of the standardized modal estimate in Figure

3 to examine the asymptotic normality property of the nonlinear modal estimator. In accordance

with the theoretical findings, most of the results manifest asymptotic normality as the sample

size n increases. It is noticed that the performance of the asymptotic normality approximation

is not perfectly good. We attribute it to the value of the bandwidth selected, which has a

substantial effect on the estimation of parameters. How to develop a more efficient way to

select the optimal bandwidth needs to be carefully researched in the future.

Figure 4: Boxplots of average of coverage probabilities: the numbers 2, 4, 6, and 10 represent
the values of n= 200, 400, 600, and 1000, respectively.

To show the advantage of the proposed nonlinear modal regression in prediction, we follow

Yao and Li (2014) and Ullah et al. (2021) to report the coverage probabilities of prediction

intervals of three different lengths (0.1σ, 0.2σ, 0.5σ, σ =
√
V ar(εt) ≈ 2). We use the same DGP

procedure as before but implement the out-of-sample prediction with 200 repetitions for the

additional n data points. The representative results of the coverage probabilities of the pro-

posed nonlinear modal regression model and the nonlinear mean and median regression models
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are reported in Figure 4, which shows that in comparison to the nonlinear mean and median

regressions, the nonlinear modal regression tends to have superior predictive performance by

providing the highest coverage probabilities. Although median regression outperforms mean

regression due to the skewness of the error distribution, its performance is worse than that of

modal regression. As expected, the nonlinear modal regression and mean and median regres-

sions would have closer coverage probabilities with the increase of the interval length. These

simulation findings encourage the use of nonlinear modal regression in prediction.

3 Nonlinear Modal Regression for COVID-19 Data

The prediction advantage of modal regression illustrated in the above section provides underly-

ing support for building a nonlinear modal regression to predict COVID-19. We in this section

develop a nonlinear modal regression based on the general structure of the effects and process

of infection from a mode view and use it to predict COVID-19 new cases and new deaths in the

US, which are the key quantities that determine the epidemic peak. We aim to investigate how

well the proposed model could be used to guide the modeling of the dynamic of the spread.

3.1 Model Framework

We first discuss the choice of a nonlinear modal function r(Xt, β) according to the transmission

characteristics of COVID-19. It has been shown that the COVID-19 spread follows an exponen-

tial distribution, and the number of new cases/deaths does not follow a standard distribution

like Gaussian or Exponential due to the large number of outliers and noise; see the related

literature summarized in Tuli et al. (2020). In addition, Tuli et al. (2020) showed that the

COVID-19 cases/deaths data follow the Generalized Inverse Weibull (GIW) Distribution better

than the Gaussian, which has the following probability density function (de Gusmão al., 2011)

f(y) = abcby−(b+1) exp

[
−a
(
c

y

)b]
, y > 0 (3.1)

with three parameters a ∈ R > 0, b ∈ R > 0, and c ∈ R > 0. It can be easily proven that (3.1) is

a probability density function by substituting u = −acby−b. Instead of considering probability

distribution, Tuli et al. (2020) treated (3.1) as a regression function and used it to establish a

mean regression model of cross countries COVID-19 prediction between a dependent variable

Yt and time trend t, which is expressed as follows

Yt = abcbt−(b+1) exp

[
−a
(c
t

)b]
, (3.2)
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where t > 0 is the time in the number of days from the first case. Tuli et al. (2020) introduced

a machine-learning-based iterative weighting strategy to fit (3.2) with the number of cases data

and compared the prediction performance with the Gaussian fitting by MSE, MAPE, and R2,

where they showed that the proposed GIW model performs significantly better.

By coincidence, the same phenomenon, i.e., the data with a large number of noise follow a

GIW-type shape, appears when we plot the new cases/deaths data against time for most states

in the US, which motivates us to develop a regression model for the COVID-19 data in the US

based on (3.2). This paper however does not use this mean regression model directly as it only

depends on time t and cannot capture the dynamics of COVID-19. Since previous studies have

suggested that the log of new cases/deaths is more suitable to be the dependent variable (Deb

and Majumdar, 2020; Schüttler et al., 2020; Wang et al., 2020; Li and Linton, 2021), as the

logarithm value can weight more evenly values close to the maximum of the objective function

and disregard other values, we then instead take the logarithm on both sides of (3.2), from

which we can see that log(Yt) is linearly associated with log(t) and tδ (δ is a constant number).

We emphasize that it is reasonable to use log value due to the increase in the number of new

cases/deaths rose by multiple orders of magnitude in a short period of time and sensible to

include tδ to capture the fact that most states in the US experience a decreasing trend after

approaching the peak number of cases/deaths per day (in the early stage of the COVID-19

epidemic, the data usually show an exponential growth trend. After a period of time, as the

number of uninfected people decreases, the growth rate starts to decelerate and the number of

cases keeps rising until reaching a peak. Subsequently, the number of new infections begins to

decline). Furthermore, to incorporate the time series structure of the data and the fact that each

infected person will create a chain of new infections, we include the lag variable log(Yt−1) in the

model. Along with the above arguments, we propose the following nonlinear modal regression

for modeling COVID-19 data by taking into consideration the effect of progress evolving over

time

log(Yt) = α + β log(t) + η log(Yt−1) + γtδ + εt, t = 2, · · · , n, (3.3)

where error term {εt}nt=2 is a sequence of stochastic random variables with Mode(εt | Ft−1) = 0

almost surely (a.s.) for model identification in which Ft−1 is the σ-field generated by {Yt−1−s}∞s=0.

Therefore, the nonlinear modal regression line is defined as

r(Xt, θ) = α + β log(t) + η log(Yt−1) + γtδ, (3.4)

where Xt = (1, log(t), log(Yt−1), t) and θ = (α, β, η, γ, δ)T . Compared to (3.2), the proposed

nonlinear modal regression model can better incorporate other covariates into the mode struc-

ture, such as the lag variable or social distance variables. In addition, the new model uses the

conditional mode instead of mean or quantile to model the nonlinear relationship among vari-

ables. We also note that, although not presented here, the model developed in (3.3) performs
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better in terms of MSE and MAPE than using a polynomial regression for t, the model (3.4)

without the lag variable (Yt−1), and the model (3.4) with two lag variables (Yt−1 and Yt−2).

Different from the mean or median regression, we propose estimating the modal regression

(3.3) using the following kernel-based objective function

Qn(θ) =
1

(n− 1)h

n∑
t=2

K

(
log(Yt)− α− β log(t)− η log(Yt−1)− γtδ

h

)
, (3.5)

whose estimation relies on the choice of the regularization parameter—the bandwidth h. We

propose to choose the bandwidth according to Kemp and Santos Silva (2012), where we minimize

MSE and MAPE for a grid of 50 values of h between 50MAD and 0.5MAD(n− 1)−0.143 with

MAD = medt{|log(Yt)− rm(Xt, θ̂m)−medt(log(Yt)− rm(Xt, θ̂m))|} in which θ̂m(·) representing

the corresponding NLS estimate.

With the available parameter estimate θ̂ = (α̂, β̂, η̂, γ̂, δ̂)T obtained from Algorithm 1, we

can formulate a k-step ahead prediction to capture the dynamic behavior of COVID-19 by

fitting the nonlinear modal regression (3.3) recursively for the entire horizon

ˆMode(log(Ŷt+k|t) | t+ k, log(Ŷt+k−1)) ≈ α̂ + β̂ log(t+ k) + η̂ log(Ŷt+k−1) + γ̂(t+ k)δ̂, (3.6)

where log(Ŷt+k|t) represents the estimate of log(Yt+k) based on the data log(Y1), · · · , log(Yt), log

(Ŷt+1), · · · , log(Ŷt+k−1). Particularly, we pretend the pre-step estimate was the true value of Yt

at the corresponding step and use it as part of the input variable for predicting the next step.

To graphically present the prediction procedure, we have the following roadmap

Yt
(Yt, t+1)−−−−−→ Ŷt+1

(Ŷt+1, t+2)
−−−−−−−→ Ŷt+2

(Ŷt+2, t+3)
−−−−−−−→ Ŷt+3 · · ·

(Ŷt+k−1, t+k)
−−−−−−−−→ Ŷt+k.

Remark 3.1. To reduce the computation time, we apply the same modal estimates with the

bandwidth h, which are constructed using samples {Yt}nt=1 and the corresponding time sequence

for all predictions. However, the prediction performance can be improved if we dynamically

reestimate modal parameters each time to incorporate the substantial information contained

in the intermediate variables Yt+1, · · · , Yt+k−1 about the conditional mode when the pre-stage

estimated forecast is added to the samples (for example, we estimate θ with the data {Yt, t}nt=1

and use the corresponding estimate to predict the value of Yn+1. After that, we use the data

({Yt, t}nt=1, Ŷn+1) to reestimate θ and use the corresponding estimate to predict Yn+2. Iterative

this procedure until we achieve all predictions). Although the suggested recursive prediction

procedure performs well for COVID-19 data in this paper, we notice that the accuracy of the

predictions may deteriorate when k is too large, which is due to the accumulation of errors with

the predicting horizon. Therefore, compared to the long-term prediction, the proposed model is

better to be used for the short-term prediction.
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Remark 3.2. It is noticed that there is a basic assumption for (3.6) such that the predicted

value Ŷt+k−1 performs almost the same as the true value Yt+k−1 with Mode(εt+1 | Ŷt+k−1) = 0,

which is the main reason we use “≈” sign in (3.6). How to release this assumption to provide a

more reliable prediction for modal regression needs to be researched further. However, compared

to the prediction procedure of the k-step-ahead predictions based only on the observed data, as is

standard in macro settings, our procedure should be more reliable. For instance, as mode does

not have the additive property, it is difficult to guarantee that Mode(ηεt + εt+1 | Yt−1) = 0 with

equation log(Yt+1) = α+β log(t+ 1) + η(α+β log(t) + η log(Yt−1) + γtδ) + γ(t+ 1)δ + ηεt + εt+1.

Remark 3.3. We in this paper model the new cases and new deaths datasets with equation

(3.3), separately, which indicates that the predicted new deaths and new cases do not appear

to be linked to each other. Such a univariate model may ignore possible comovements with

other available time series. In practice, it is extremely likely that new cases and new deaths are

collectively impactful on observable trends, i.e., there is a dependency nature in the series. Thus,

it is possible to improve predictions and the explanatory power of the model by jointly predicting

these two through a nonlinear vector autoregressive modal regression by extending the results in

Kemp et al. (2020), i.e., Yjt = r(Y−jt, {Yjt−l}Ll=1, Xjt, γ) + ejt with finite order L for j = 1, 2

in which Y−jt collects all but the jth observation at time t and Xjt includes all possible factors

that affect both cases and deaths. With the stationary condition and Mode(ejt | Ft−1) = 0 in

which Ft−1 is the σ-filed generated by {Y−jt, {Yjt−l}Ll=1}, it can be shown that the estimator of

γ is identified and asymptotically normally distributed. In addition, due to the computation

burden, we do not compute the confidence interval for predictions. This should be easily carried

out based on the bootstrapped modal regression method introduced in Ullah et al. (2021), where

we independently draw bootstrapped pseudo samples of residuals from the estimated regression,

use the pseudo residual to minus the corresponding mode value to ensure the mode of residual is

zero, and then follow the standard procedure as in mean regression to get the modal confidence

interval. Future studies could fruitfully explore these issues further.

3.2 Modal Prediction Results

We use publicly available COVID-19 data on the daily number of reported cases and deaths to fit

the proposed model (we use the case and death data from each state/region to fit the model (3.4)

and fully expect that the parameters vary across the states/regions, as different states/regions

are at different stages of the epidemic cycle and have taken different approaches to managing

it), and perform an out-of-sample prediction analysis for all states/regions in the US (including

the District of Columbia and Puerto Rico) to predict the number of daily new cases and deaths.

We remark that the daily data are superior for short-term/medium tactical predicting and are

more informative than weekly or monthly data, as they can reflect the turning point of the curve

timely and encourage policymakers and people to take flexible actions at any moment. The data
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of aggregated US COVID-19 cases/deaths we use are from the GitHub repository managed by

The New York Times (https://github.com/nytimes/covid-19-data), which was accessed

on August 24, 2020 and used to calculate the daily new cases and new deaths data through the

differencing transformation (the last date for the data in this paper is August 23, 2020), i.e.,

New Cases = Casest − Casest−1 and New Deaths = Deathst − Deathst−1. We set all negative

values in the new dataset to be zero for calculation. Due to space limitation, we do not put the

results of the descriptive statistics of data here, but they are available upon request. Note that

this dataset automatically updates every day with new information.

The accuracy and reliability of a model can be tested by comparing the actual values with

the predicted values. Following Tuli et al. (2020), we compare the performance (model accu-

racy) of the newly developed nonlinear modal regression to those of nonlinear mean and median

(and robust) regressions using R2 (higher value indicates better fit). We also use performance

metrics—MSE and MAPE (lower values indicate better fit)—to determine the residuals be-

tween predictions and actual values in order to compare the out-of-sample prediction validity

of the proposed nonlinear modal regression and mean and median (and robust) regressions for

the last 20 days of the samples (they are treated as validation data, while the other data are

used for training)

MSE =
1

20

∑
t

(log(Yt)− log(Ŷt))
2, (3.7)

MAPE =
1

20

∑
t

|log(Yt)− log(Ŷt)|
log(Yt)

× 100, t ∈ last 20 days. (3.8)

The model comparison results are summarized in Table 2 (and Table 7 in Online Appendix

B), with the best performing model highlighted in bold font. As we can see from Table 2 (and

Table 7 in Online Appendix B), the proposed nonlinear modal regression succeeds in predicting

the new cases/deaths for 20 days ahead with better accuracy compared to the nonlinear mean

and median (and robust) regressions for most states/regions. It can fit the data significantly

better with higher R2, and also has more precise predictions with lower MSEs and MAPEs

for most states with the observed data. Overall, we can see that the proposed nonlinear modal

regression model outperforms other competing models in terms of prediction accuracy and can

give reliable guidance on the trend of the epidemic in the future. There is no special reason for

comparing model predictions in terms of MSE and MAPE over 20 days, which was chosen

arbitrarily. To show the results robust to choosing alternative time horizons, we also compared

the prediction performance for the last 30 days of the samples, which does not reveal the large

difference in prediction or comparison results.

We then apply the proposed nonlinear modal regression to predict the number of new cases

and new deaths for up to 130 days (August 24, 2020-December 31, 2020) to show how the

epidemic has evolved over time, which has some differences from many other papers focusing on

20
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the long-term trajectory of COVID-19 using mean regression. To conduct the prediction for the

latest 130 days, we use the same bandwidth obtained from the training data (when comparing

the model prediction performance) to reestimate nonlinear modal regression with a full sample

Table 2: Model Comparison Results

State/ New Cases-Mode New Deaths-Mode New Cases-Mean New Deaths-Mean New Cases-Median New Deaths-Median

Region MSE MAPE R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE R2

AL 0.1712 4.5563 0.9338 0.6943 35.5300 0.3363 0.1734 5.0252 0.8930 0.6953 36.3657 0.3110 0.1384 4.4649 0.7963 0.9213 50.8288 0.4650

AK 0.1569 7.5698 0.7537 0.1095 62.6997 0.1844 0.7199 17.8641 0.7350 0.1198 79.8023 0.0130 2.3017 33.9916 0.3400 0.1682 89.3547 0.1818

AZ 0.3095 6.4026 0.9989 0.7599 24.2938 0.7294 0.9339 12.2357 0.9740 0.8226 24.8236 0.7220 1.5375 17.1057 0.8314 3.2440 32.2442 0.7978

AR 0.1280 4.4861 0.7671 0.4956 23.8808 0.4168 0.1595 4.9279 0.7350 0.6668 28.4478 0.4080 0.0868 3.7454 0.6070 0.9910 34.4291 0.3265

CA 0.2040 4.3817 0.9919 0.5272 13.5211 0.9555 0.2576 4.6241 0.9780 0.5313 13.4917 0.9170 12.0594 36.3353 0.9434 0.6386 13.9525 0.9928

CO 0.1226 4.7919 0.9989 1.2861 63.6700 0.5278 0.1576 5.7275 0.9120 1.5153 72.3817 0.4740 0.4542 10.7173 0.9936 2.0659 66.9498 0.3467

CT 5.0400 44.6875 0.5327 1.1784 133.0601 0.7671 5.4543 51.1498 0.4930 2.1439 179.9120 0.7150 5.2566 48.3522 0.5686 6.5791 171.9621 0.3973

DE 0.2388 7.7782 0.6795 0.4570 85.1702 0.5880 0.2454 8.3739 0.5870 0.8193 125.5970 0.3850 0.2779 5.6415 0.6342 0.7644 36.6193 0.4012

DC 0.4210 14.2005 0.9999 0.4204 82.0909 0.7721 0.7385 19.4940 0.7550 1.6516 175.4791 0.6370 0.4884 15.3523 0.9598 0.8240 55.8350 0.5495

FL 0.1081 3.1617 0.8969 0.2720 8.9638 0.8726 0.2255 4.4887 0.9330 0.4822 11.2948 0.7900 0.1124 3.4112 0.8697 0.3507 9.4744 0.8612

GA 0.0933 3.1374 0.8604 1.17771 22.4311 0.5551 0.0953 3.2290 0.8210 1.3582 24.5763 0.5160 0.2448 5.4379 0.7784 0.6647 16.6072 0.5868

HI 0.8501 15.0967 0.7482 0.3821 73.1096 0.5342 4.5141 36.6774 0.7120 0.5695 95.8169 0.0353 8.1706 51.3927 0.6466 0.6140 97.5388 0.1575

ID 0.1737 6.1939 0.7379 0.9100 43.6542 0.2868 0.4780 10.1412 0.7080 1.1558 49.4825 0.1880 1.5833 20.1322 0.5941 2.6503 91.1905 0.4947

IL 0.2880 5.9163 0.9999 2.0747 45.7357 0.9838 0.3712 7.1152 0.9870 2.8030 523.2636 0.9220 0.5619 9.2363 0.9297 1.6185 48.3631 0.8174

IN 0.1591 5.0592 0.9331 0.5063 29.2463 0.8413 0.3958 8.5265 0.9530 1.5668 40.3907 0.6930 0.1087 4.2200 0.9162 1.1215 51.2706 0.6255

KS 1.3407 19.9173 0.5557 0.6090 42.7460 0.2992 1.3489 19.4022 0.5230 0.6648 44.1607 0.2040 1.5040 18.6129 0.5247 0.6261 42.8812 0.2032

KY 0.2305 5.9564 0.7583 0.4734 21.5414 0.4976 0.3371 8.3026 0.6530 0.8958 36.7502 0.3060 0.2675 7.3576 0.6038 0.4541 23.6336 0.3849

LA 6.5341 14.2872 0.3179 2.1630 29.0675 0.5084 6.5771 11.4450 0.1560 2.9178 42.0480 0.3880 6.5429 19.8462 0.9944 2.6146 37.7073 0.4861

IA 0.1406 5.1942 0.7727 1.0872 39.7959 0.4968 0.1445 5.5619 0.8730 1.2304 44.0175 0.4830 0.2799 7.1513 0.9453 0.4754 23.9231 0.6961

ME 0.7938 23.4699 0.4109 0.1436 43.9784 0.3659 0.8567 25.3532 0.4030 0.1676 91.5552 0.1460 0.5190 31.6516 0.3985 0.3118 124.5080 0.2344

MD 0.0368 2.5438 0.9435 0.8368 33.7025 0.9999 0.1471 5.1483 0.9390 1.1255 41.9215 0.8370 0.0374 2.5885 0.9050 1.6134 62.2135 0.7214

MA 0.1779 6.1324 0.9999 0.4949 27.5922 0.9999 0.4097 9.5495 0.9700 1.6480 42.7498 0.9070 4.0086 84.2134 0.9524 2.1522 61.7372 0.7854

MI 0.4083 7.6109 0.7484 2.0608 50.8842 0.7454 0.86664 13.7508 0.6960 3.3902 76.3392 0.6810 1.1114 15.5525 0.9989 2.4700 59.1702 0.7377

MN 0.0797 3.0202 0.8551 2.1624 62.5585 0.8691 0.1180 4.0501 0.8040 2.8030 73.1131 0.7680 0.7755 12.7442 0.8128 0.2617 23.5088 0.9505

MS 0.2104 5.5623 0.6057 0.4832 21.6170 0.5995 0.2119 5.9219 0.5680 0.5972 24.6271 0.4960 0.3400 7.6840 0.5632 0.4983 21.1192 0.5929

MO 0.1533 4.8664 0.9425 0.4962 17.8628 0.5882 0.2882 7.1869 0.9170 0.9254 30.6017 0.4330 2.0424 19.4914 0.9423 0.7243 26.3912 0.4522

MT 1.0004 19.3589 0.8605 0.4924 60.1072 0.2565 1.6448 26.1567 0.7550 0.4806 59.7919 0.1240 5.3211 48.6101 0.6491 0.7768 95.9944 0.2628

NE 0.1410 5.4894 0.9529 0.4809 37.3174 0.2980 0.4029 9.7425 0.9360 0.4927 36.9213 0.2960 0.5193 11.0812 0.9999 0.5364 38.3479 0.9596

NV 0.0630 3.0931 0.9096 0.8165 32.1520 0.3850 0.0603 3.0970 0.8540 1.2392 36.1752 0.2290 0.2832 7.4281 0.7900 1.3796 36.8643 0.2530

NH 0.2892 15.0186 0.9191 0.6415 125.4310 0.4923 0.5377 20.4409 0.8020 0.7696 142.2721 0.3570 0.4894 19.4310 0.8084 0.3534 22.4967 0.8373

NJ 1.0870 17.8764 0.8583 0.7045 25.4733 0.8089 2.0952 25.1485 0.8170 1.0478 40.9881 0.7440 1.3815 20.2057 0.8490 7.0072 153.6538 0.6002

NM 0.2643 8.5568 0.9046 0.1674 21.8560 0.7441 0.3769 10.7114 0.8780 0.3389 28.0368 0.5900 0.3004 9.3521 0.9010 0.2964 32.2350 0.8484

NY 0.0449 3.0657 0.9968 0.6965 17.1554 0.9841 0.1438 5.3248 0.9600 1.2468 38.8174 0.8900 1.1538 15.5820 0.9992 2.7453 64.9087 0.9858

NC 0.3222 7.0517 0.9310 0.5711 27.0946 0.8095 0.4167 8.2013 0.9430 0.5678 26.9968 0.6890 0.2933 6.6726 0.9529 0.6438 28.1160 0.9207

ND 0.3865 10.4769 0.8256 0.2729 26.3197 0.5332 0.4928 12.2427 0.7420 0.5751 72.0739 0.0923 0.8129 15.8381 0.6120 0.3398 42.7843 0.2809

OH 0.0573 2.8443 0.9999 0.8720 46.1271 0.8514 0.0643 2.8045 0.9540 1.2982 46.2033 0.5820 0.3008 7.2960 0.9999 2.1708 73.6845 0.6820

OK 0.1821 5.2804 0.9135 1.0089 39.1482 0.4061 0.2220 5.9597 0.8970 1.5633 48.5069 0.2630 1.0923 15.2377 0.7034 1.4307 46.3320 0.3782

OR 0.0407 2.7310 0.8674 0.6189 48.0773 0.3032 0.0434 2.8604 0.8620 0.6585 46.4323 0.1930 1.2971 16.7406 0.8478 0.9339 38.1471 0.3004

PA 0.0485 2.6820 0.9332 2.0029 44.4196 0.8239 0.1419 4.8088 0.9430 3.6654 60.8070 0.7110 0.2093 5.9761 0.9074 1.7553 42.5175 0.6950

PR 1.1170 13.2338 0.5786 1.3052 48.8159 0.4122 1.4482 15.9853 0.6820 2.7094 75.2085 0.1060 2.1473 21.9538 0.6611 3.3145 83.7110 0.1182

RI 5.0243 41.8085 0.5909 0.3811 51.8988 0.8547 7.0779 61.0051 0.4840 1.9419 164.4378 0.5520 9.9050 70.2124 0.8195 0.9570 69.1517 0.9258

SC 0.0835 3.5217 0.9999 0.4014 16.4416 0.6935 0.2432 6.1175 0.9400 0.6080 18.1253 0.5910 0.1153 4.0323 0.8632 0.7424 20.3135 0.4535

SD 0.1802 6.7710 0.8605 0.2033 21.1258 0.1757 0.3197 9.9167 0.6880 0.2088 23.0946 0.1040 1.0279 18.9569 0.6765 0.7436 100.0031 0.3583

TN 0.1058 3.6718 0.9785 0.3449 16.2219 0.6200 0.1475 4.2999 0.8990 0.6678 21.8297 0.4620 0.2820 6.3490 0.7760 0.3492 16.3966 0.5805

TX 0.0595 2.1483 0.9928 0.2397 8.5471 0.9690 0.3448 5.6411 0.9760 0.7228 14.0341 0.8860 0.1099 2.6563 0.9530 0.2809 9.1692 0.9474

UT 0.2180 6.6142 0.9601 0.5060 33.4387 0.3575 0.5707 11.4507 0.9510 0.5043 33.1763 0.3140 0.2272 6.3151 0.9275 0.7189 45.1290 0.5394

VA 0.0619 2.7185 0.7473 0.9535 33.2575 0.3727 0.0958 3.7875 0.7250 1.0224 38.1446 0.4330 0.1015 3.4359 0.7826 1.6647 55.0330 0.6826

WA 0.1298 4.8612 0.9781 0.7005 26.9027 0.5764 0.3073 7.4457 0.9380 0.7100 27.0861 0.5520 0.1055 4.0141 0.8863 1.0449 31.2122 0.3787

WV 0.0965 5.6020 0.6729 1.4237 84.2442 0.3243 0.3392 10.2841 0.5900 1.5321 87.9995 0.1940 1.0661 20.3992 0.6033 2.3734 112.7576 0.3147

WI 0.0695 3.3494 0.9246 0.6409 33.9752 0.7993 0.0697 3.3731 0.9040 1.1918 45.2079 0.3300 0.1367 4.6163 0.8481 1.1583 44.6260 0.4433

VT 0.2033 18.0705 0.5094 - - - 0.7570 36.6008 0.3440 - - - 1.8541 65.3600 0.9989 - - -

WY 0.7836 11.2654 0.5681 - - - 0.7930 12.4550 0.4580 - - - 0.9138 16.4421 0.5463 - - -

Note: When the dataset has zero values, we instead use log(Yt + 1) transformation for the whole data. When calculating MAPE,
we eliminate all log(1)=0 values. For VT and WY, the existing death data are not sufficient for predicting (most values are zero).
Thus, we do not have the predicted new deaths results for these two states. The bold numbers represent the best results among
modal, mean, and median regressions. Particularly, for MSE and MAPE, bold numbers represent the smallest values, while they
indicate the largest values for R2 among these three models. For the sake of thoroughness, we also list the results obtained from
the robust nonlinear regression with the bisquare weight in Table 7 in Online Appendix B, where modal regression still shows some
advantages.
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for each state/region (training data+validation data), and then apply the suggested recursive

prediction procedure with the new parameter estimates. We remark that there exist large

variations in the parameter fittings, which indicates that long-term predictions are complicated.

However, the long-term prediction in comparison with the short-term prediction can provide

the pattern of the epidemic. Also, there is an underlying assumption for the prediction results,

which is that the data used are reliable and the outbreak will continue to follow the past pattern

in the future (Petropoulos and Makridakis, 2020). We acknowledge that this assumption is

actually the key issue for predicting the transmission of COVID-19, and it is necessary to

update predictions by the suggested model when new information/data is available. However,

one advantage of modal regression is that it can cope with some forms of measurement errors.

Thus, applying modal regression to predict COVID-19 still has an advantage compared to

traditional regressions.

Table 3: Modal Prediction Results

Predictions of Modal Regression 08/24/2020-12/31/2020 Predictions of Modal Regression 08/24/2020-12/31/2020

State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31 State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31

Region Total New Cases Total New Deaths Region Total New Cases Total New Deaths

AL 45570/46151/52293/61847 600/538/545/583 AK 2759/2735/3025/3503 3/3/3/4

AZ 2772/712/737/945 456/528/634/789 AR 38586/45110/56629/73506 288/272/290/326

CA 296260/380190/446670/530800 2295/3086/3740/4693 CO 10461/73826/63510/58704 9/0/0/0

CT 83/0/0/0 0/0/0/0 DE 2360/1704/1450/1329 0/0/0/0

DC 1569/1107/946/881 0/0/0/0 FL 270170/323480/384240/473570 2738/2860/3256/3870

GA 101620/108200/125330/151120 1315/1137/1121/1170 HI 8046/7494/8178/9367 1/1/1/1

ID 8692/9657/11487/14158 45/41/43/47 IL 45842/14954/4759/1301 46/0/0/0

IN 21824/16657/14641/13683 65/0/0/0 KS 7895/6849/6749/7039 55/35/24/17

KY 17470/17932/20270/23934 134/85/61/44 LA 18705/15715/15186/15651 385/230/167/131

IA 19712/16834/16233/16550 93/27/0/0 ME 508/300/206/148 0/0/0/0

MD 15219/8544/5695/4027 18/0/0/0 MA 1050/0/0/0 134/0/0/0

MI 17657/13613/12608/12549 20/0/0/0 MN 32478/32085/35103/40228 63/0/0/0

MS 34407/35406/40023/47283 649/592/599/642 MO 35374/35535/39682/46351 123/52/18/0

MT 12332/15629/17901/21389 12/12/13/15 NE 4193/2000/1059/636 122/115/121/135

NV 22775/24441/28663/34930 279/249/250/267 NH 295/85/19/0 0/0/0/0

NJ 3104/1123/523/264 0/0/0/0 NM 8305/7397/7328/7681 85/31/5/0

NY 12006/6420/4858/4076 68/0/0/0 NC 82554/81715/88581/100270 538/528/579/665

ND 5588/5533/6095/7036 34/28/26/25 OH 45069/47630/52908/61855 311/142/69/28

OK 24683/26744/31587/38723 122/97/87/83 OR 13887/14217/15953/18724 113/101/101/108

PA 15625/10309/8261/7179 20/0/0/0 PR 16332/18541/22792/29017 87/75/77/84

RI 82/0/0/0 0/0/0/0 SC 70597/91851/120560/163670 847/815/871/977

SD 2663/2052/1859/1799 64/63/70/80 TN 73717/77510/89298/107170 672/669/735/847

TX 994910/1679200/2255200/3082600 3222/3464/4222/5328 UT 19034/19507/20285/22113 90/87/92/104

VA 35771/30929/30338/31505 474/371/340/332 WA 44721/63229/81864/108910 498/473/492/540

WV 4456/4308/4623/5217 14/7/4/2 WI 35719/36597/40896/47835 75/29/8/0

VT 89/53/37/28 - WY 1509/1448/1555/1756 -

Note: The results represent the total number of modal predicted new cases and new deaths between 08/24 and 09/30, between
10/01 and 10/31, between 11/01 and 11/30, and between 12/01 and 12/31, separately.
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(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 5: Visualization of the Total Number of Modal Predicted New Cases and New Deaths
across the US

To clearly show the dynamic of the COVID-19 spread in the US, we divide the prediction

period into four stages, which are 08/24-09/30, 10/01-10/31, 11/01-11/31, and 12/01-12/31.

The prediction results are presented in Table 3, from which we can observe that the COVID-

19 outbreak in the US is dynamic both in time and across different states/regions. Some
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states/regions are showing a clear decreasing trend in the number of new cases and new deaths

(it is tempting to speculate that this result is due to the rapid imposition of alert levels and ever

tighter lockdowns for these states. The detailed analysis of the effect of lockdowns and social

distancing policies on the transmission of COVID-19 is beyond the scope of this paper; see the

related discussions in Section 4), e.g., Connecticut, Illinois, Maine, Maryland, Massachusetts,

New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, among others, while some

other states/regions are still in the first wave of the COVID-19 outbreak with an increase in the

number of new cases and new deaths, e.g., Alabama, Arkansas, California, Florida, Georgia,

Mississippi, Montana, North Carolina, North Dakota, Oregon, Texas, Utah, Washington, and

so on. Furthermore, as Figure 5 shows (the darker the color, the more severe the infection),

it is clear that there are systematic differences in spreading distributions among states/regions

(heterogeneous across the states/regions). In particular, for the next 130 days, California,

Florida, Texas, and Georgia are the most severe states in terms of the number of predicted new

cases and new deaths, which indicates the urgency for these states to take actions to keep social

distancing and necessary precautions.

It should be noted that the number of predicted new cases and new deaths across different

states/regions has orders of magnitude differences, resulting in the almost uniform color in

Figure 5 for other states/regions having small numbers. To better reveal the situations of other

states/regions from visualization, we remove the first three states with the largest numbers of

predicted new cases and new deaths from Figure 5. The new visualizing results are presented

in Figure 6 which shows a stark heterogeneity across states/regions. We find that for most

western and eastern states, the total numbers of new cases and new deaths are incredibly large

for the next 130 days based on the prediction results, and these states are in fact experiencing

significantly more serious COVID-19 burdens compared to the Midwest (under the stress of

economic stagnation, many states/regions have reopened their economies. However, based on

the analysis of modal prediction results, it is clear that the outbreak has not been sufficiently

controlled in many states up to the date of this paper).

Last but not the least, Online Appendix B contains the nonlinear modal prediction figures

for each state/region (including the District of Columbia and Puerto Rico) in terms of new

cases and new deaths, which further demonstrates that the trend of daily confirmed new cases

and new deaths is being nicely captured (except for some noisy fluctuations) and the significant

new trend is detected by the proposed nonlinear modal regression. Based on these figures,

we can also observe that for some states/regions, they have already arrived at a saturation

stage and show a decreasing trend for the number of new cases and new deaths, e.g., Colorado,

Connecticut, Delaware, Maine, Massachusetts, New Hampshire, and Pennsylvania, while for

some other states/regions, such as Alabama, Arkansas, California, Florida, Idaho, Nebraska,

Tennessee, and Texas, they will still be at the initial phase of the epidemics and show an increase

of the trend for the number of new cases and new deaths if the control and intervention policy
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is not implemented more effectively. We also list the prediction results for the nonlinear mean

regression, median regression, and robust regression (including R2 and performance metrics)

in Online Appendix B, although we have shown that nonlinear modal regression is of higher

prediction quality than nonlinear mean and median regressions. The results indicate that there

are systemic prediction differences among these models.

(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 6: Visualization of the Total Number of Modal Predicted New cases and New Deaths
across the US after Removing CA, TX, and FL
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4 Concluding Remarks

The outbreak of COVID-19 has been unprecedentedly affecting the health and safety of people

all over the world, which implies the urgency and importance of accurate prediction. In this

paper, we propose a new model, namely parametric nonlinear modal regression for dependent

samples, which is particularly useful for handling noisy, skewed, or truncated data (such as the

COVID-19 data) and can complement the existing mean or quantile regression. The new model

uses the conditional mode instead of mean or quantile to model the nonlinear relationship

among variables. We employ a kernel-based objective function to simplify the computation

and numerically estimate the proposed model by virtue of a modified MEM algorithm. The

asymptotic theorem and the optimal bandwidth are investigated under mild conditions. We

then use the proposed nonlinear modal regression to predict the COVID-19 outbreak in the US

at the state/region level. We compare the predictions for this novel model with the predictions

for nonlinear mean and median (and robust) regressions, and show that the proposed modal

regression model can quantify the observed dynamics and provide more precise predictions.

Although the outbreak spreads of COVID-19 are largely affected by the policies and social

responsibilities of each state/region, we hope that the newly proposed model can be applied

to analyze and classify the characteristics of COVID-19 in the US to provide more timely

information to help policymakers to implement fast actions to curb the spread of the infection,

avoid overburdening the health system, and understand the development of COVID-19 from

some points.

This work paves the way for a number of exciting research directions in the analysis of modal

regression and COVID-19. In this paper, we focus on parametric nonlinear modal regression. As

pointed out by a referee, the results could be extended to the nonparametric modal regression

for dependent samples under α-mixing without imposing any kind of structural assumptions

on the data generating process. Specifically, we can employ a kernel-based objective function

with the local linear approximation. For our case, as we have both discrete (time variable)

and continuous regressors in the model, we need to smooth the discrete variable using discrete

kernels such that Λλ (Zi, z0) =
∏q

j=1 λ
I{Zi,j 6=z0,j}
j , where I(.) denotes the usual indicator function,

Zi is a q-dimensional discrete random vector, and λ = (λ1, · · · , λq)T , λj ∈ [0, 1] is the bandwidth

for the jth discrete covariate Zi,j. We can then make the bandwidths in the discrete kernel be a

vector of zeros, and the model will be reduced to the local linear modal regression, which splits

the full sample into several subsamples according to different values of the discrete variables.

Nevertheless, such a naive sample-splitting method may increase the estimation variance (Li

and Racine, 2004). How to derive asymptotic properties and provide asymptotic analysis on

the selection of optimal bandwidths for the nonparametric modal regression with mixed discrete

and continuous data would be an interesting but challenging future research topic.

Furthermore, in the current paper, we focus on the new cases and new deaths in the
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US. However, the proposed model could be easily generalized to other countries, say country-

level data, and other quantities of interest, e.g., cumulative recorded cases and deaths, or the

number of people needing hospitalization in an Intensive Care Unit (ICU) each day for a set

of regions. Different from the existing research about COVID-19 data, we can also use the

proposed model to predict the unconditionally most likely (mode) value of new cases/deaths,

which is one of the most important variables/factors when fighting the COVID-19 pandemic.

When new cases/deaths reach their mode value, the healthcare system may have the biggest

pressure and the largest chance of being overwhelmed, which could in turn affect the death

rate. The importance of the mode value can also be seen by noticing that even if the total

number of cases is fixed, if we could spread the cases over time and reduce the mode value, the

health care system can function much better and thus reduce the fatality rate. In addition, it is

important to note that the model for COVID-19 presented in this paper has certain limitations

(we have to take such predictions reticently, as the prediction error will accumulate over time),

as it does not account for any mitigation measures and policy changes. To understand the

factors that contribute to the spread of COVID-19, in the future, we could include many other

covariates into the model, i.e., the factors that might affect new cases/deaths such as social

distancing measures as well as the timing of their implementation, the demographics and health

condition of the population, the state of the epidemic, the capacity of the healthcare system,

the population density, and so on. We can then model how the number of cases/deaths depends

on the above collected covariates to find out whether there are some clusters of countries having

a similar relationship between dependent variable and covariates. Also, it will be interesting

to study the spatiotemporal pattern in the spread of COVID-19 by incorporating the spatial

correlation into the modal regression.
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Online Appendix A: Simulation Results

DGP 2 To further illustrate the proposed nonlinear modal regression, we generate the data

from the following model

Yt = β1 + β2Xt + exp(β3X
2
t ) +Xtεt,

where β1 = 1.5, β2 = 2, β3 = 2, Xt = 0.4Xt−1 + ut, ut∼Uniform[0, 1], and the error εt follows

0.5Ga(k1, θ) + 0.5Ga(k2, θ) in which Ga represents the gamma distribution, kj ∈ N>0, j = 1, 2,

is the shape parameter that can adjust the skewness of vit (coefficient of skewness=
√

4/k), and

θ ∈ N>0 is the scale parameter; see Ullah et al. (2021). Note that E(εt) = 0.5(k1 + k2)θ and

Mode(εt) = 0.5(k1 + k2 − 1)θ. In this simulation, we set k1 = 1, k2 = 2, and θ = 0.5. We then

have E(εt) = 0.5(k1 + k2)θ = 0.75, Mode(εt) = 0.5(k1 + k2 − 1)θ = 0.5, and{
Mean Regression: E (Yt | Xt) = 1.5 + 2.75Xt + exp(2X2

t ),

Modal Regression: Mode (Yt | X1,t, X2,t) = 1.5 + 2.5Xt + exp(2X2
t ).

Notice that if X ∼ Ga(α, θ) and Y ∼ Ga(β, θ) are independently distributed with the same

scale parameter, then X + Y follows Ga(α + β, θ) with variance (α + β)θ2. Ullah et al. (2021)

considered two different settings with different values of kj to formulate distributions with

different magnitudes of skewness. They concluded that when the dataset is from the less skewed

setting, modal regression offers close but less accurate regression estimates than mean regression.

We thus focus on the more skewed case here.

Table 4: Results of Simulations—DGP 3

Sample Size β1 (SE) MSE(β1) β2 (SE) MSE(β2) β3 (SE) MSE(β3)

Modal Regression

n=200 1.5622 (0.1381) 0.0228 2.4782 (0.4692) 0.2195 1.8776 (0.3344) 0.1263

n=400 1.5637 (0.0907) 0.0122 2.4892 (0.3130) 0.0976 1.8699 (0.2295) 0.0693

n=600 1.5515 (0.0683) 0.0073 2.5207 (0.2325) 0.0542 1.8789 (0.1683) 0.0428

n=1000 1.5478 (0.0507) 0.0049 2.5195 (0.1692) 0.0289 1.8819 (0.1232) 0.0290

Mean Regression

n=200 1.4949 (0.0996) 0.0099 2.7607 (0.1593) 0.0254 1.9999 (0.0031) 0.0955

n=400 1.5062 (0.0741) 0.0055 2.7376 (0.1207) 0.0146 2.0002 (0.0018) 0.0344

n=600 1.4983 (0.0629) 0.0039 2.7562 (0.1003) 0.0100 2.0000 (0.0015) 0.0233

n=1000 1.5029 (0.0478) 0.0023 2.7424 (0.0756) 0.0057 2.0001 (0.0011) 0.0129

True Value β1 = 1.5 β2,mode = 2.5 β2,mean = 2.75 β3 = 2

From the above equations, we can see that the nonlinear modal regression shares the

same coefficients with the nonlinear mean regression, but the intercepts are different. Fol-

lowing DGP 1, we estimate parameters with M=200 replications and consider sample size
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n ∈ {200, 400, 600, 1000}. The results are summarized in Table 4, where we report the bias,

standard error, and MSE. The advantage of the proposed nonlinear modal regression observed

from Table 4 shows that employing nonlinear modal estimation can reveal some characteristics

of the data that have been ignored by the nonlinear mean or quantile regression. Although the

nonlinear modal estimation is biased slightly regarding the coefficients, overall it estimates all

coefficients reasonably well.

To confirm the asymptotic property of the proposed nonlinear modal estimator, we report

the empirical density of the standardized modal estimate in Figure 7, which shows that the

distributions are well approximated by standard normal asymptotics for all cases, coinciding

with our expectation. Also, we find that due to the slow convergence rate, the empirical density

converges to the density of the standard normal distribution slowly.

Figure 7: Empirical Density of the Standardized Estimate

Finally, we compare the prediction performance of the proposed nonlinear modal regression

to those of nonlinear mean and median regressions by calculating the coverage probabilities of

prediction intervals of three different lengths (0.1σ, 0.2σ, 0.5σ, σ =
√
V ar(εt) ≈ 0.4330). We

use the same DGP procedure as before, except that we implement the out-of-sample prediction

with 200 repetitions for the extra n data points. The results are shown in Figure 8, from which

we observe the similar patterns as those in DGP 1. As expected , the nonlinear modal regres-

sion performs better than the other two regressions, and the average of coverage probabilities

obtained from the nonlinear median regression is close to that of the nonlinear modal regression.

Figure 8: Boxplots of average of coverage probabilities: the numbers 2, 4, 6, and 10 represent
the values of n= 200, 400, 600, and 1000, respectively.
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Online Appendix B: Prediction Results

(a) AL-New Cases (b) AL-New Deaths (c) AK-New Cases (d) AK-New Deaths

(e) AZ-New Cases (f) AZ-New Deaths (g) AR-New Cases (h) AR-New Deaths

(i) CA-New Cases (j) CA-New Deaths (k) CO-New Cases (l) CO-New Deaths

(m) CT-New Cases (n) CT-New Deaths (o) DE-New Cases (p) DE-New Deaths

(q) DC-New Cases (r) DC-New Deaths (s) FL-New Cases (t) FL-New Deaths
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(a) GA-New Cases (b) GA-New Deaths (c) HI-New Cases (d) HI-New Deaths

(e) ID-New Cases (f) ID-New Deaths (g) IL-New Cases (h) IL-New Deaths

(i) IN-New Cases (j) IN-New Deaths (k) KS-New Cases (l) KS-New Deaths

(m) KY-New Cases (n) KY-New Deaths (o) LA-New Cases (p) LA-New Deaths

(q) IA-New Cases (r) IA-New Deaths (s) ME-New Cases (t) ME-New Deaths
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(a) MD-New Cases (b) MD-New Deaths (c) MA-New Cases (d) MA-New Deaths

(e) MI-New Cases (f) MI-New Deaths (g) MN-New Cases (h) MN-New Deaths

(i) MS-New Cases (j) MS-New Deaths (k) MO-New Cases (l) MO-New Deaths

(m) MT-New Cases (n) MT-New Deaths (o) NE-New Cases (p) NE-New Deaths

(q) NV-New Cases (r) NV-New Deaths (s) NH-New Cases (t) NH-New Deaths
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(a) NJ-New Cases (b) NJ-New Deaths (c) NM-New Cases (d) NM-New Deaths

(e) NY-New Cases (f) NY-New Deaths (g) NC-New Cases (h) NC-New Deaths

(i) ND-New Cases (j) ND-New Deaths (k) OH-New Cases (l) OH-New Deaths

(m) OK-New Cases (n) OK-New Deaths (o) OR-New Cases (p) OR-New Deaths

(q) PA-New Cases (r) PA-New Deaths (s) PR-New Cases (t) PR-New Deaths

(u) RI-New Cases (v) RI-New Deaths (w) SC-New Cases (x) SC-New Deaths

36



(a) SD-New Cases (b) SD-New Deaths (c) TN-New Cases (d) TN-New Deaths

(e) TX-New Cases (f) TX-New Deaths (g) UT-New Cases (h) UT-New Deaths

(i) VA-New Cases (j) VA-New Deaths (k) WA-New Cases (l) WA-New Deaths

(m) WV-New Cases (n) WV-New Deaths (o) WI-New Cases (p) WI-New Deaths

(q) VT-New Cases (r) WY-New Cases

Figure 9: Modal Predicted Curves for COVID-19 Data (with 102 Subfigures)
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Table 5: Mean Prediction Results

Predictions of Mean Regression 08/24/2020-12/31/2020 Predictions of Mean Regression 08/24/2020-12/31/2020

State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31 State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31

Region Total New Cases Total New Deaths Region Total New Cases Total New Deaths

AL 48870/50820/57789/68443 511/474/497/549 AK 1194/1050/1128/1272 7/5/5/5

AZ 15024/20065/27064/37230 2441/2988/3922/5301 AR 24261/25938/30280/36676 174/162/171/189

CA 766530/1373100/2227000/3624300 8095/11227/15900/23092 CO 14752/13408/13540/14506 302/273/273/290

CT 4072/3177/2977/2993 412/372/361/374 DE 1669/851/513/327 91/82/81/86

DC 3222/3074/3132/3809 98/94/93/99 FL 292230/345800/428590/546660 3558/3764/4345/5219

GA 107570/116780/137450/167750 1105/1092/1160/1298 HI 927/446/456/495 2/1/1/0

ID 7119/6703/7395/8535 46/39/40/43 IL 92107/106490/120150/140530 1696/2069/2227/2511

IN 29051/29013/30678/34128 733/715/737/804 KS 7363/6300/6076/6188 96/84/84/90

KY 17889/19020/22091/26655 213/195/201/219 LA 29173/27480/29072/32398 856/758/761/812

IA 30160/33773/39667/48306 275/258/271/300 ME 1017/891/881/926 24/20/20/20

MD 43610/44329/48377/55328 881/944/992/1098 MA 15324/16555/16320/16952 1611/1937/2060/2301

MI 21141/17795/17438/18211 627/537/512/522 MN 36291/39496/46507/56771 455/480/507/564

MS 25951/26253/29474/34424 652/632/678/764 MO 27022/25925/28757/22249 380/352/364/398

MT 1724/1983/2578/3449 24/23/25/28 NE 17731/21128/25909/32780 94/88/92/102

NV 27695/29232/34130/41366 229/210/218/238 NH 2164/2159/2284/2546 100/93/96/104

NJ 21756/20664/20015/20690 2290/2401/2484/2717 NM 10935/11152/12340/14282 235/226/237/262

NY 15157/8463/6178/5053 1285/1513/1436/1425 NC 108280/127690/159380/204510 957/975/1089/1272

ND 3057/2947/3206/3659 27/24/24/25 OH 40331/38591/40959/45758 1144/1117/1187/1328

OK 19182/20454/23635/28380 120/108/108/115 OR 11209/11941/13942/16907 93/84/86/94

PA 36024/32024/31966/33884 1294/1405/1478/1640 PR 9894/10666/12575/15378 44/38/38/39

RI 2968/2572/2653/2895 194/178/181/195 SC 58550/66348/80307/100330 855/910/1058/1281

SD 4299/4348/4811/5569 37/34/35/39 TN 61660/66311/77172/93257 434/422/459/522

TX 576360/843030/1235800/1825800 5348/6585/8826/12118 UT 27866/30558/35982/43925 129/128/142/164

VA 44744/43204/46378/52139 655/649/691/774 WA 21885/19643/20076/21652 221/164/141/131

WV 3148/3167/3577/4223 24/21/21/22 WI 32805/34060/38521/45430 237/213/217/233

VT 156/128/119/119 - WY 1247/1254/1402/1642 -

Note: The results represent the total number of mean predicted new cases and new deaths between 08/24 and 09/30, between

10/01 and 10/31, between 11/01 and 11/30, and between 12/01 and 12/31, separately.
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(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 10: Visualization of the Total Number of Mean Predicted New Cases and New Deaths
across the US
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(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 11: Visualization of the Total Number of Mean Predicted New cases and New Deaths
across the US after Removing CA, TX, and FL
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Table 6: Median Prediction Results

Predictions of Median Regression 08/24/2020-12/31/2020 Predictions of Median Regression 08/24/2020-12/31/2020

State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31 State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31

Region Total New Cases Total New Deaths Region Total New Cases Total New Deaths

AL 43268/36844/36099/37303 749/679/688/731 AK 475/223/132/83 1/0/0/0

AZ 96349/104610/119830/142240 3541/5354/8463/13644 AR 25176/23421/24351/26575 92/81/82/86

CA 14308/525/560/712 6510/12405/23738/45784 CO 5869/2371/1245/722 463/465/510/589

CT 191/0/0/0 772/815/922/1090 DE 2094/1140/738/509 78/87/105/132

DC 1026/467/259/154 114/143/187/253 FL 171590/100470/69169/51631 2852/2293/2036/1878

GA 65768/48212/40964/37139 1343/1255/1255/1312 HI 280/36/1/0 0/0/0/0

ID 3656/1733/1063/717 6/0/0/0 IL 30027/16429/11529/8701 2423/4198/7188/12498

IN 25731/22931/22638/23685 832/830/892/1004 KS 5696/4340/3774/3484 60/36/25/17

KY 17300/16992/18468/20974 297/315/365/443 LA 8605/3188/1535/826 281/125/65/32

IA 29469/32280/37435/44906 326/425/587/833 ME 537/262/137/65 0/0/0/0

MD 23548/15083/11461/9302 1202/1678/2420/3590 MA 4304/1379/567/249 2393/3960/6374/10460

MI 8786/3015/1431/764 28/0/0/0 MN 33305/42029/56323/77542 509/782/1225/1954

MS 26843/30351/37510/48298 762/756/825/942 MO 8769/3497/1906/1152 610/600/650/739

MT 294/70/16/0 1/0/0/0 NE 18871/39136/80801/166650 95/131/185/265

NV 14496/8446/6044/4696 177/136/122/115 NH 320/60/0/0 157/190/234/298

NJ 3563/955/360/143 2951/3435/4158/5222 NM 9164/8242/8142/8429 269/345/463/640

NY 9993/2968/1304/655 35/0/0/0 NC 109250/131800/168280/220850 1224/1898/3053/5003

ND 2267/1673/1478/1396 27/29/34/41 OH 33541/27396/26027/26434 1944/2155/2550/3138

OK 8657/5115/3685/2881 74/44/28/17 OR 7796/5594/4716/4246 127/121/131/149

PA 16090/7599/4916/3497 1371/2155/3367/5361 PR 4351/2828/2188/1823 14/6/1/0

RI 203/0/0/0 115/189/309/505 SC 49197/48444/52641/59809 314/281/285/306

SD 1378/724/448/291 0/0/0/0 TN 39326/30302/26894/25423 665/758/946/1230

TX 734130/1615100/3953800/11162000 5684/9608/17281/31416 UT 19514/17215/16870/17393 236/281/362/485

VA 28189/19544/15676/13191 864/1290/1960/3046 WA 17706/11465/8894/7425 149/67/31/9

WV 1379/800/573/447 0/0/0/0 WI 22313/17704/16013/15417 317/286/287/304

VT 20/0/0/0 - WY 766/516/413/356 -

Note: The results represent the total number of median predicted new cases and new deaths between 08/24 and 09/30, between

10/01 and 10/31, between 11/01 and 11/30, and between 12/01 and 12/31, separately.
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(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 12: Visualization of the Total Number of Median Predicted New Cases and New Deaths
across the US
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(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 13: Visualization of the Total Number of Median Predicted New cases and New Deaths
across the US after Removing CA, TX, and FL
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Table 7: Performance of Robust Nonlinear Regression

State/ New Cases-Robust New Deaths-Robust State/ New Cases-Robust New Deaths-Robust

Region MSE MAPE R2 MSE MAPE R2 Region MSE MAPE R2 MSE MAPE R2

AL 0.2007 5.4940 0.9161 0.7066 35.3855 0.1122 AK 0.3885 12.7831 0.7275 0.1595 97.3091 0.1463

AZ 2.5575 22.5294 0.9460 2.5937 26.9784 0.6549 AR 2.2192 3.7485 0.7661 0.5898 26.5847 0.4290

CA 0.0906 2.8343 0.9777 0.8732 16.4897 0.8931 CO 0.3207 8.7383 0.8942 1.8599 82.806 0.5567

CT 4.8553 26.5439 0.5000 4.9880 260.7927 0.8783 DE 0.2780 5.5840 0.6285 1.0676 148.8698 0.4284

DC 0.6002 17.3181 0.9171 0.7145 54.4436 0.6071 FL 0.1135 3.4220 0.9260 0.4740 11.2328 0.8565

GA 0.1183 3.6592 0.8044 2.4378 34.6543 0.5156 HI 3.3976 31.5063 0.7168 0.6253 101.0654 0.1578

ID 0.2622 7.7879 0.8689 1.4770 59.1572 0.1742 IL 0.8745 11.5423 0.9596 1.6400 40.5490 0.8292

IN 0.3373 7.7480 0.8994 1.5867 40.6630 0.7309 KS 1.3625 18.5649 0.5903 0.6607 44.1437 0.2176

KY 0.3196 8.0646 0.6920 0.7973 34.2550 0.2377 LA 6.5711 11.3220 0.1565 2.1475 28.6599 0.5012

IA 0.3185 7.0682 0.9028 0.9446 35.3794 0.3372 ME 0.5315 32.0621 0.3515 0.1434 82.6993 0.1461

MD 0.0739 3.4723 0.8834 0.8983 37.1860 0.8073 MA 0.6194 12.2318 0.9179 0.8348 30.0713 0.8133

MI 0.6607 11.6073 0.8139 3.2961 74.8745 0.8800 MN 0.0831 3.6945 0.8830 1.9138 59.7755 0.6962

MS 0.2668 6.7109 0.5675 0.6071 24.9590 0.4331 MO 0.3487 7.9736 0.8765 0.5841 23.2154 0.3250

MT 1.2728 22.7149 0.8096 0.7873 99.9689 0.3158 NE 0.2141 7.0617 0.9322 0.9591 70.7803 0.1873

NV 0.0582 3.1247 0.8741 1.5149 37.9698 0.1333 NH 0.6283 22.143 0.8065 0.4255 107.9180 0.2807

NJ 1.5676 21.6682 0.9248 0.9672 37.9099 0.7485 NM 0.2635 8.6004 0.9100 0.2207 23.2218 0.4272

NY 0.5781 11.0520 0.9675 0.8059 26.2690 0.9534 NC 0.2796 6.4587 0.9072 0.6852 29.3216 0.3412

ND 0.4570 11.6518 0.6758 0.5641 71.2429 0.0470 OH 0.0538 2.8937 0.9547 0.8634 45.9123 0.4345

OK 0.2534 6.5370 0.8761 1.6995 51.0717 0.1887 OR 0.0430 2.8567 0.8400 0.7043 45.5382 0.0751

PA 0.1930 5.7194 0.8966 2.6139 49.9138 0.6553 PR 0.8039 12.2884 0.6582 2.8252 76.9209 0.1113

RI 7.0776 55.1564 0.8410 1.9236 171.2987 0.5591 SC 0.3297 7.1750 0.9707 0.5805 17.6734 0.5032

SD 0.9844 18.4277 0.7414 0.2325 34.3005 0.0426 TN 0.0811 3.2367 0.8982 0.6446 21.3525 0.3131

TX 0.3289 5.4990 0.9555 0.9205 16.1135 0.6834 UT 0.2908 7.8331 0.9353 0.4397 33.3464 0.2023

VA 0.2202 5.7012 0.7957 1.9174 50.2956 0.5348 WA 0.0928 3.6163 0.8321 1.1136 30.4684 0.3710

WV 0.3458 10.4524 0.6618 1.5842 89.7621 0.2224 WI 0.0753 3.4719 0.9029 0.9968 40.6244 0.2209

VT 0.7406 35.9913 0.3202 - - - WY 0.7861 10.6908 0.5088 - - -

Note: When the dataset has zero values, we instead use log(Yt + 1) transformation for the whole data. When calculating

MAPE, we eliminate all log(1)=0 values. For VT and WY, the existing death data are not sufficient for predicting (most values

are zero). Thus, we do not have the predicted new deaths results for these two states.
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Table 8: Robust Nonlinear Prediction Results

Predictions of Median Regression 08/24/2020-12/31/2020 Predictions of Median Regression 08/24/2020-12/31/2020

State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31 State/ 09/30 10/31 11/30 12/31 09/30 10/31 11/30 12/31

Region Total New Cases Total New Deaths Region Total New Cases Total New Deaths

AL 52931/55706/63849/76134 552/510/532/586 AK 1536/1437/1569/1795 0/0/0/0

AZ 15206/20274/27283/37434 1865/1949/2241/2682 AR 26990/28443/32930/39603 183/171/180/201

CA 306260/308790/306840/304910 6897/7681/9077/11127 CO 14451/13052/13165/14089 419/395/402/434

CT 3255/1603/1335/1218 454/482/479/504 DE 2118/1233/865/652 69/64/63/66

DC 818/300/127/49 0/0/0/0 FL 189400/186470/205470/237050 4150/4407/5062/6051

GA 95096/98265/110910/130400 1249/1250/1338/1506 HI 1003/455/458/490 0/0/0/0

ID 10573/10666/12514/15211 33/27/27/28 IL 25964/12102/7621/5195 84/0/0/0

IN 18089/13205/11413/10561 73/0/0/0 KS 6870/5620/5205/5104 54/34/25/19

KY 16815/16205/17302/19313 80/27/3/0 LA 23041/18606/17290/17112 429/240/162/117

IA 11305/6250/3692/2184 74/4/0/0 ME 497/216/96/32 0/0/0/0

MD 17625/10218/7245/5476 49/0/0/0 MA 5306/1726/822/428 97/0/0/0

MI 10870/6402/4764/3865 15/0/0/0 MN 20185/13920/10458/7955 7/0/0/0

MS 20143/18454/19001/20586 756/737/796/901 MO 23143/20811/22070/24579 148/58/18/0

MT 1204/972/1039/1167 1/0/0/0 NE 5283/1703/502/102 95/90/95/105

NV 24047/23057/25641/29808 183/149/139/138 NH 285/52/0/0 91/81/81/85

NJ 3366/989/404/179 130/0/0/0 NM 8883/7962/7913/8276 71/9/0/0

NY 9184/3145/1621/942 160/0/0/0 NC 88199/94810/109980/132090 574/450/408/393

ND 3088/2880/3055/3407 9/0/0/0 OH 35499/31629/31941/34096 431/175/72/21

OK 17795/18535/21066/24923 66/43/31/24 OR 10236/10619/12164/14505 93/83/84/90

PA 15969/8497/6114/4801 87/0/0/0 PR 9143/9436/10764/12782 24/16/12/9

RI 328/0/0/0 75/56/54/55 SC 54864/60776/72346/89090 836/858/968/1139

SD 1464/827/555/397 38/36/37/41 TN 56251/58664/66665/78847 411/383/401/444

TX 608440/932910/1419800/2176000 2981/2836/3102/3555 UT 21981/21948/23970/27318 106/97/101/110

VA 24413/15732/11791/9318 627/627/657/726 WA 19508/16521/16055/16500 159/79/43/21

WV 2516/2298/2430/2706 5/0/0/0 WI 28588/28124/30467/34550 72/29/10/0

VT 66/34/20/11 - WY 1171/1157/1275/1475 -

Note: The results represent the total number of median predicted new cases and new deaths between 08/24 and 09/30, between

10/01 and 10/31, between 11/01 and 11/30, and between 12/01 and 12/31, separately.
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(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 14: Visualization of the Total Number of Robust Predicted New Cases and New Deaths
across the US

46



(a) Predicted New Cases 08/24-09/30 (b) Predicted New Deaths 08/24-09/30

(c) Predicted New Cases 10/01-10/31 (d) Predicted New Deaths 10/01-10/31

(e) Predicted New Cases 11/01-11/30 (f) Predicted New Deaths 11/01-11/30

(g) Predicted New Cases 12/01-12/31 (h) Predicted New Deaths 12/01-12/31

Figure 15: Visualization of the Total Number of Robust Predicted New cases and New Deaths
across the US after Removing CA, TX, and FL
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Online Appendix C: Outline Proofs

To show the asymptotic negligence of dependence with a large sample size for the nonlinear

modal regression proposed in this paper, we establish the following lemma, where K(j)(·) rep-

resents the jth derivative of K(·).

Lemma 1. Under suitable conditions, with nh3 →∞ held, we have

− 1

nh

n∑
t=1

K(1)
(εt
h

)
=
h2

2
q(3)(0 | X)(1 + o(1)).

Proof. Define Zn,t = − 1
h
K(1)

(
εt
h

)
, we obtain

E (Zn,1 | X) =

∫
ε

h3
K
( ε
h

)
q(ε | X)dε =

1

h

∫
tK (t) q(th | X)dt =

h2

2
q(3)(0 | X)(1 + o(1)).

Therefore, we have

E

{
− 1
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n∑
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K(1)
(εt
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)}
=
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2
q(3)(0 | X)(1 + o(1)).

Note that
n∑
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(
n∑
t=1

Zn,t

)
+Op


√√√√Var

(
n∑
t=1

Zn,t

) ,

and the stationary of {εt}nt=1 gives
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(
n∑
t=1

Zn,t

)
= nEZ2

n,1 + 2
n∑
j=2

(n− j + 1) Cov (Zn,t, Zn,j) .

Conditioning on X, we can have

E
(
Z2
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)
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1
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∫
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h4
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1
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∫
t2K2 (t) q(th | X)dt

=
1
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∫
q(0 | X)t2K2 (t) dt(1 + o(1)).

To obtain an upper bound for the second term on the right-hand side of Var (
∑n

t=1 Zn,t),

without loss of the generality, let dn be a sequence of positive integers satisfying dn → ∞ and

dnh→ 0 as n→∞, we can split it into two terms

n∑
j=2

|Cov (Zn,1, Zn,j)| =
dn∑
j=2

|Cov (Zn,1, Zn,j)|+
n∑

j=dn+1

|Cov (Zn,1, Zn,j)|.
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Conditioning on Xt and Xj, we can have the following result, where

|E (Zn,tZn,j | Xt, Xj)| ≤ E|(Zn,tZn,j | Xt, Xj)| = E

∣∣∣∣∣E
[

1
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K
( ε
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in which C1 is a constant number. Therefore, we have

dn∑
j=2

|Cov (Zn,t, Zn,j)| ≤ C1
1

h2

dn∑
j=2

1 = o
(
nh−3

)
.

By applying Davydov’s inequality, we have

|Cov (Zn,1, Zn,j)| ≤ C2[ρ(j − 1)]δ/(2+δ)
(
E|Zn,1|2+δ

)2/(2+δ)

and obtain

E
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[

1

h
K(1)

(εt
h

)
| Xt
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2+δ

≤ C3h
(2+δ)2,

where C2 and C3 are constants. By choosing dn such that dγnh
−7 = O(1), we have

n∑
j=dn+1

|Cov (Zn,1, Zn,j)| ≤ C3
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j=dn+1

C2[ρ(j − 1)]δ/(2+δ)
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h(2+δ)2

)2/(2+δ)
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4
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[ρ(k)]δ/(2+δ)

≤ C4d
−γ
n h4
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where C4 is a constant. Then, we obtain

Var

(
n∑
t=1

Zn,t

)
= O

(
nh−3

)
.

With the assumption that nh3 →∞, we obtain the result of Lemma 1.

Outline the Proof of Theorem 2.1 Based on the result from Lemma 1, we can observe that

under suitable conditions, the covariance of two different error terms can be dominated by the

expectation of the squared error, which is the underlying result to prove the consistency and
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asymptotic normality of modal estimator. Let r(j)(·) represent the jth derivative r(·). Define

δn = h2 +
√

(nh3)−1, then it is sufficient to show that for any given η, there exists a large

number constant c such that
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}
≥ 1− η,

where ‖·‖ represents the Euclidean distance. It implies that with probability tending to 1, there

is a local maximum in the ball {β0 + δnµ : ‖µ‖ ≤ c}. Using the Taylor expansion, it follows that
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where ε∗t is between εt and εt−r(1)(Xt, β0)δnµ. Based on the result Tn = E (Tn)+Op(
√

Var (Tn)),

we could consider each part of above Taylor expansion following Yao and Li (2014) and Ullah

et al. (2021), where we have
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δ2
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2
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I2 = Op(δ
2
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2h2) +Op((δnc)
4h−5),

I3 = Op(δ
3
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Based on these, we can choose c bigger enough such that I2 dominates both I1 and I3

with probability 1 − η under certain conditions. Because the second term is negative, thus

P
{

sup‖µ‖=cQn (β0 + δnµ) < Qn (β0)
}
≥ 1− η holds.

�

Outline the Proof of Theorem 2.2 Following the same steps as proving Theorem 2.1, recall

that
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By taking Taylor expansion, we could obtain
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at β = β0, where ε̃∗t is between εt and εt − r(1)(Xt, β)(β̂ − β0). From the Proof of Theorem 2.1,

we can see that the third part of the above equation is dominated by the second part. We then

mainly focus on the first two parts of the above equation. By some direct calculations, we can

obtain
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Combining the results obtained from Lemma 1, we could obtain
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directly, where we can show nE|ξ1|3 → 0 and ξt = − 1√
nh
K(1)

(
εt
h

)
dT r(1)(Xt, β). �

51


	Introduction
	Nonlinear Modal Regression
	Nonlinear Modal Estimator
	Asymptotic Property
	Optimal Bandwidth
	Monte Carlo Experiments

	Nonlinear Modal Regression for COVID-19 Data
	Model Framework
	Modal Prediction Results

	Concluding Remarks

