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Abstract

This paper studies semiparametric two-step estimators with a control variable estimated in a

first-step parametric or nonparametric model. We provide the explicit influence function of the

two-step estimator under an index restriction which is imposed directly on the unknown control

variable. The index restriction is different from the commonly used identification conditions in

the literature, which are imposed on all exogenous variables. An extra term shows up in

the influence function of the semiparametric two-step estimator under the new identification

condition. We illustrate our influence function formula in a mean regression example, a quantile

regression example, and a sample selection example where the control variable approach is

applied for identification and consistent estimation of structural parameters.
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Keywords: Control Variable Approach; Generated Regressors; Influence Function; Semipara-

metric Two-step Estimation

1 Introduction

An attractive identification strategy if one or more regressors are endogenous in an econometric

model is to use a moment restriction that conditions on (and averages over) control variables. These

control variables typically need to be estimated in a first stage as the residuals in a parametric

or nonparametric relation between the endogenous regressors and instruments. In a second step

a conditional expectation of the dependent variable of the model on the endogenous regressors
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and the control variables can be estimated nonparametrically as in Imbens and Newey (2009),

and this conditional expectation can be averaged over the control variables to obtain the Average

Structural Function (ASF). In applied work, however, parametric or semiparametric specifications

along the line of Rivers and Vuong (1988) or Blundell and Powell (2004) are likely to be adopted,

and it is of interest to understand how statistical (asymptotic) inference about the estimated

finite-dimensional parameters should be implemented. Li and Wooldridge (2002), Lee (2007), and

Newey (2009) are some of the well-known papers that established the asymptotic distribution

of such two-step estimators for some specific models. These papers all consider a second step

specification which takes the form of a partially linear regression model, where the estimated

control variable enters as an argument of a nonparametric function.

The purpose of our paper is to develop a unified framework to understand inferential issues

arising from such two-step estimation. We are interested in estimating a finite dimensional vector

of parameters β∗ ∈ Rdβ , which is identified together with an unknown function λ∗ (·) as the unique

solution of a minimization problem.1 That is,

(β∗, λ∗) ≡ arg min
β,λ

E [ψ(Z, β, λ(v(π∗)))] , (1)

where Z is a vector of all observable variables, v(π) ≡ v(Z, π) is the control variable that is known

up to π∗ and π∗ is a finite-dimensional parameter or a vector of unknown functions identified

outside the model in a first-stage.2 The v(·) is determined by the procedure used to generate the

control variable that enters as an argument of the nonparametric part λ∗(·). The criterion function

ψ(z, β, λ) is known.

We make two technical contributions. First, we consider criterion functions ψ(z, β, λ) that are

general enough to nest many specific models, such as the nonlinear regression and the quantile

regression models, as special cases, providing a unified framework to understand the inferential

problems. We follow Newey’s (1994) path-derivative calculations to characterize the influence

function that takes account of the estimation noise of the control variable, and therefore, our result

is invariant to the specific method of nonparametric estimation in the second step. Second, we

consider moment conditions which are different from those imposed in the previous literature. The

previous literature assumed that the “error” in the second step is (mean or quantile) independent of

the endogenous regressor given a set of instruments, whereas we impose conditional independence

given just the control variable. For example, let’s consider a model Y = Xβ∗ + λ∗(v) + ε, where

1The unique identification of λ∗ together with β∗ is important since it enables us to characterize this nuisance

parameter through the optimality condition, and then concentrate it out to derive the influence function of β∗.

Similar assumption is imposed on the model listed in (3.11) of Newey (1994) which is a special case of (1) if the

control variable v is observed.
2The generic function ψ(z, β, λ(v(π∗))) may depend on different components of z in different ways. Some com-

ponents of z may enter ψ(z, β, λ) directly, while the rest may enter through the control variable v(π∗). See the

examples in Section 2 for specific illustrations.
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X = W>π∗+ v. A common assumption in the literature is E [ε|X,W ] = 0, which is different from

E [ε|X, v] = 0. We adopt variants of the latter assumption when deriving the influence function,

and show that this type of assumptions does make a difference in the asymptotic distribution.

Although the condition E [ε|X,W ] = 0 is commonly used in the early literature, recent applications

of the control variable approach directly impose the conditional independence restriction given

the control variable to achieve identification (see, e.g., Auerbach (2021) and Johnsson and Moon

(2021)). Therefore, our results can be applied to derive the asymptotic distribution of the two-step

estimators in these recent works.

The new moment condition, such as E [ε|X, v] = 0 in the partially linear example above,

is observed when we derive the influence function from the minimization problem (1) without

specifying the control variable v(π∗). Different economic motivations led to such a condition in

Auerbach (2021) and Johnsson and Moon (2021), and we will treat it as a purely mathematical

assumption in the current paper.3 Therefore, we do not advocate that the new moment condition

is in general weaker and/or better than the commonly used moment conditions in the control

variable literature. Instead, what this paper tries to emphasize is that one should be aware of the

different form of the asymptotic variance under the new moment condition.

This paper contributes to the line of research on semiparametric two-step estimation and in-

ference with control variables. We next briefly discuss the mostly related works in the literature.

First, Blundell and Powell (2004) apply the control variable method to address the endogeneity of

regressors in the discrete choice models. Their identification condition leads to a matching based

estimation procedure, which is different from (1). Escanciano, Jacho-Chávez, and Lewbel (2016)

study a class of semiparametric model similar to Blundell and Powell (2004) but without excluded

instruments. The finite dimensional parameter in Escanciano, Jacho-Chávez, and Lewbel (2016) is

identified together with a nuisance function as the minimizer of a criterion which is fundamentally

different from (1). Therefore, the influence function derived in this paper applies to a class of mod-

els which are different from Blundell and Powell (2004) and Escanciano, Jacho-Chávez, and Lewbel

(2016). The other strand of research related to the control variable approach is on the inference

of a finite dimensional parameter identified by some moment conditions which depend on some

nuisance function. The nuisance parameter is separately identified, for example as the conditional

expectation of a known dependent variable given some observed regressors and unobserved control

variables (see, e.g., Hahn and Ridder (2013), Mammen, Rothe, and Schienle (2016) and Hahn and

3One possible intuition is based on the omitted variable argument. For example in the partially linear model

above, one may view v as an omitted variable which causes the endogeneity of X and affects the response variable Y

through a functional form λ∗(v). When v is observed, one can estimate the parameter of interest β∗ by the partially

linear regression Y = Xβ∗ + λ∗(v) + ε, where E [ε|X, v] = 0 is one of the usual identification conditions in the

literature. On the other hand, the control variable is often invoked when v is unobservable but it is obtained as the

projection residual of X on W under the assumption E [ε|X,W ] = 0. Note that the condition E [ε|X, v] = 0 is

implied by E [ε|X,W ] = 0.
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Ridder (2019)). Since the nuisance function and the finite dimensional parameter are jointly iden-

tified as the minimizer of the problem in (1), the models studied in these papers are also different

from ours. Third, the parameter of interest in this paper is a root-n estimable finite dimensional

parameter, which is different from the functional value of unknown functions studied in Newey,

Powell, and Vella (1999), Das, Newey, and Vella (2003) and Mammen, Rothe, and Schienle (2012).

Fourth, Hahn, Liao, and Ridder (2018) study general semiparametric two-step sieve estimation

which nests (1). This paper and Hahn, Liao, and Ridder (2018) complement each other in the

sense that: (i) Hahn, Liao, and Ridder (2018) provide a specific estimator of (β∗, λ∗) defined in (1)

based on the sieve method and establish its root-n normality, but they do not provide the influence

function of the sieve estimator because their asymptotic normality result is established using the

sieve variance which is an approximation of the asymptotic variance; (ii) the influence function

derived in this paper applies to the sieve estimator as well as other semi/nonparametric (such as

kernel) estimators, and hence it is useful for finding the asymptotic variance and calculating the

standard error for a general class of semiparametric methods. Finally as we shall discuss in the

next section, the general model (1) nests and generalizes Li and Wooldridge (2002), Lee (2007),

and Newey (2009) in specific examples.

The rest of the paper is organized as follows. Section 2 gives several examples where the control

variable approach can be applied to identify and estimate the parameters of interest. Section 3

derives the influence function of the semiparametric two-step estimator when π∗ is estimated in

a parametric first step. Section 4 extends the result in Section 3 and provides the influence

function of the semiparametric two-step estimator when π∗ is estimated by a nonparametric first-

step estimation. Section 5 applies the influence function formula established in Sections 3 and 4

to the examples discussed in Section 2. Section 6 concludes. The appendix offers proofs.

Notation. We use aj to denote the jth component of a vector a. For any multivariate function

f (·) : Rdx 7−→ R, we use ∂f (x) /∂x to denote the dx × 1 vector (∂f (x) /∂x1, . . . , ∂f (x) /∂xdx)>,

∂f (x) /∂x> to denote the transpose of ∂f (x) /∂x and ∂2f (x) /∂x∂x> to denote the dx × dx

matrix whose ith row and jth column component is ∂2f (x) /∂xi∂xj for any i, j = 1, . . . , dx. For

any multivariate vector-valued function f (·) : Rdx 7−→ Rdf , we use ∂f (x) /∂x> to denote the

df × dx matrix whose ith row and jth column component is ∂fi (x) /∂xj for any i = 1, . . . , df and

any j = 1, . . . , dx. We use A ≡ B to denote that A is defined as B.

2 Examples

In this section, we provide several examples where the control variable approach is applied to

identify and to estimate the parameters of interest. The main theory established in the next two

sections can be used to derive the influence functions of the semiparametric two-step estimators

in these examples.
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Example 1 (Mean Regression). Consider the following nonlinear regression model

Y = m(X,W0, β∗) + u, (2)

X = ϕ(W,π∗) + v, E [v|W ] = 0, (3)

where Y is the dependent variable, X is an endogenous regressor and W0 is a vector of exogenous

regressors, u and v are the unobservable residuals, m(x,w0, β) and ϕ(w, π) are smooth functions

and known up to β and π respectively, W ≡ (W>0 ,W
>
1 )> and W1 is a vector of excluded variables.

To achieve identification of β∗, we assume that v is the control variable such that

E [u|X,W0, v] = E [u| v] . (4)

The above condition is imposed on the control variable v = X − ϕ(W,π∗) which is an “index”

function of X and W . Let λ∗(v) ≡ E [u| v] and ε ≡ u− λ∗(v). Then we can write (2) as

Y = m(X,W0, β∗) + λ∗(v) + ε. (5)

By the definition of λ∗(v) and the restriction in (4)

E [ε|X,W0, v] = 0, (6)

which implies that the finite dimensional parameter β∗ is identified together with the unknown

function λ∗(v) as the minimizer of the following problem

min
β,λ

E
[
2−1 |Y −m(X,W0, β)− λ(v)|2

]
. (7)

To construct feasible estimators of unknown parameters β∗ and λ∗ based on (7), we assume

that there exists a first-step estimator π̂ of π∗ such that v is estimated by v̂ ≡ X − ϕ(W, π̂). For

example, the first step could be a non-linear regression of the reduced form (3), if π is a finite

dimensional parameter. In this case, π̂ is the non-linear regression estimator, and v̂ is the fitted

residual. The first step could also be a nonparametric regression of the reduced form

X = π∗(W ) + v, where E [v|W ] = 0. (8)

In this case, we have v(X,W, π) ≡ X − π(W ), π̂ is the nonparametric regression estimator of X

on W , and v̂ is the fitted residual from the nonparametric estimation. Given a random sample{
(Yi, Xi,W

>
i )>

}n
i=1

and the estimate v̂i from the first step, β∗ and λ∗(v) can be estimated by

many popular semi/nonparametric methods. For example, one may approximate λ∗(·) by kn

approximating functions Pkn(·) ≡ (p1(·), . . . , pkn(·))> and estimate β∗ along with λ∗ through the

semiparametric series regression

(β̂
>
, γ̂>)> ≡ arg min

β∈Rdβ ,γ∈Rkn

n∑
i=1

2−1
∣∣∣Yi −m(Xi,W0,i, β)− Pkn(v̂i)

>γ
∣∣∣2 . (9)
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The main results established in the paper can be applied to derive the influence function of β̂ based

on the series method, as well as other nonparametric (e.g., kernel) methods.

This example nests the model studied in Li and Wooldridge (2002), where the control variable vi

is parametrically specified. Moreover, the identification condition (4) is different from the condition

E [u|X,W ] = E [u| v] , (10)

which implies that

E [ε|X,W ] = 0. (11)

Li and Wooldridge (2002) derive the root-n asymptotic normality of the two-step estimator under

(11). As we shall see in Section 5, the influence function and the asymptotic variance of the two-step

estimator β̂ are different under the different identification condition in (4). �

Example 2 (Quantile Regression). Suppose that we are interested in estimating the quantile

structural effect of a set of explanatory variables on a dependent variable Y through the following

model

Y = Xβ1,α,∗ +W>0 β2,α,∗ + u, (12)

X = ϕ(W,πα̃,∗) + v, Qα̃v|W (w) = 0, (13)

where X is a continuously distributed endogenous variable, W0 is a vector of exogenous variables,

u and v are the unobservable error terms, βα,∗ ≡ (β1,α,∗, β
>
2,α,∗)

> are the unknown parameters for

some α ∈ (0, 1), ϕ(w, π) is known up to π, πα̃,∗ is an unknown parameter for some α̃ ∈ (0, 1),

W ≡ (W>0 ,W
>
1 )> and W1 is a vector of excluded variables, Qα̃v|W (·) denotes the conditional α̃-

quantile function of v given W . Due to the endogeneity of X, the quantile regression of Y on X

and W0 may inconsistently estimate βα,∗.

To address the endogeneity issue, we assume that v is the control variable such that

Qαu|X,W0,v
(x,w0, v) = Qαu|v(v), (14)

where Qαu|X,W0,v
(·) and Qαu|v(·) denote the conditional α-quantile functions of u given (X,W>0 , v)>

and of u given v, respectively. Let λα,∗(v) ≡ Qαu|v(v) and ε ≡ u− λα,∗(v). Then we can write (12)

as

Y = Xβ1,α,∗ +W>0 β2,α,∗ + λα,∗(v) + ε. (15)

By the definition of λα,∗(v) and the restriction in (14),

Qαε|X,W0,v
(x,w0, v) = Qαu|X,W0,v

(x,w0, v)− λα,∗(v) = 0, (16)

where Qαε|X,W0,v
(x,w0, v) denotes the conditional α-quantile function of ε given (X,W>0 , v)>. In

view of (15) and (16), the finite dimensional parameter βα,∗ is identified together with the unknown
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function λα,∗(v) as the minimizer of the following problem

min
β1,β2,λ

E
[
ρα(Y −Xβ1 −W>0 β2 − λ(v))

]
, (17)

where ρα(ε) ≡ (α− 1{ε ≤ 0})ε for any ε ∈ R denotes the check function.

Estimation of βα,∗ and λα,∗(v) based on (17) is not feasible since v = X − ϕ(W,πα̃,∗) depends

on the unknown πα̃,∗. We assume that there exists a preliminary estimator π̂ of πα̃,∗. For example,

Lee (2007) considers ϕ(W,πα̃,∗) = W>πα̃,∗ where πα̃,∗ is a finite dimensional parameter. Under

this parametric specification, one can estimate πα̃,∗ through the quantile regression of X on W

and estimate v = X −W>πα̃,∗ using the fitted residual. One may also consider a nonparametric

specification

X = πα̃,∗(W ) + v, where Qα̃v|W (w) = 0 (18)

and estimate the conditional quantile function πα̃,∗(W ) nonparametrically. Given a random sample{
(Yi, Xi,W

>
i )>

}n
i=1

and the estimate v̂i from the first step, βα,∗ and λα,∗(v) can be estimated, for

example, by the semiparametric series quantile regression

(β̂
>
α , γ̂

>
α )> ≡ arg min

β∈Rdβ ,γ∈Rkn

n∑
i=1

ρα(Yi − (Xi,W
>
0,i)β − Pkn(v̂i)

>γ), (19)

where Pkn(·) ≡ (p1(·), . . . , pkn(·))> denotes the vector of kn approximating functions. The main

results established in the next two sections can be applied to derive the influence function of β̂α

based on the above series method as well as other nonparametric (e.g., kernel) method.

It is worth noting that the identification condition (14) is imposed directly on the control

variable v(X,W, πα̃,∗) which is a function of X and W . Therefore, (14) is different from, but

implied by the following condition

Qαu|X,W (x,w) = Qαu|v(v), (20)

where Qαu|X,W (x,w) denotes the conditional α-quantile function of u given (X,W>)>, which is

commonly maintained in the literature (see, e.g., Lee (2007)). As we shall see in the next section,

the influence function of the estimator of βα,∗ under (14) is different from that under (20). �

Example 3 (Sample Selection Model). Consider the sample selection model

Y ∗ = m(X,β∗) + u,

v(X,W, π∗) ≡ E [d|X,W ] , (21)

where d ∈ {0, 1} is the indicator of selection, Y ∗ is the dependent variable which is observed only

when d = 1, X is a vector of regressors, u is the unobservable residual term, W is a vector of

explanatory variables and v(X,W, π) denotes the conditional selection probability function known
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up to π. The function m(x, β) is known up to β and β∗ denotes the unknown parameter of interest.

To achieve identification, we assume that

E[u|X, v, d = 1] = E[u|v, d = 1], (22)

where v ≡ v(X,W, π∗). A basic implication of model (21) and condition (22) is that

E[Y ∗|X, v, d = 1] = m(X,β∗) + λ∗(v), where λ∗(v) = E[u|v, d = 1]. (23)

In (23), λ∗(v) stands for the sample selection bias which takes different forms under different

modeling assumptions. For example, Heckman (1976) assumes that the error terms in the outcome

equation and the selection equation are jointly normally distributed. In this case, λ∗(v) is the

inverse of Mill’s ratio. Newey (2009) relaxes the parametric assumption on the joint distribution

of the error terms and models λ∗(v) nonparametrically.

Let ε ≡ u− λ∗(v). Then the structural equation in (21) can be written as

Y ∗ = m(X,β∗) + λ∗(v) + ε (24)

where E[ε|X, v, d = 1] = 0 by (22), which implies that the finite dimensional parameter β∗ is

identified together with the unknown function λ∗ as the minimizer of the following problem

min
β,λ

E
[
2−1d |Y −m(X,β)− λ(v)|2

]
(25)

where Y ≡ dY ∗.
To construct feasible estimators of β∗ and λ∗(v) based on (25), we assume that there exists a

first-step estimator π̂ of π∗ such that v is estimated by v̂ ≡ v(X,W, π̂). Given a random sample

{(Yi, di, X>i ,W>i )>}ni=1 and the estimate v̂i from the first step, β∗ and λ∗(v) can be estimated, for

example by the semiparametric series regression

(β̂
>
, γ̂>)> ≡ arg min

β∈Rdβ ,γ∈Rkn

n∑
i=1

2−1di

∣∣∣Yi −m(Xi, β)− Pkn(v̂i)
>γ
∣∣∣2 (26)

where Pkn(·) ≡ (p1(·), . . . , pkn(·))> denotes the vector of kn approximating functions. The main

results established in the paper can be applied to derive the influence function of β̂ based on the

above series method, or other nonparametric (e.g., kernel) methods.

In the literature, the function m(x, β∗) is usually assumed to be linear, i.e., m(x, β∗) ≡ x>β∗

(see, e.g., Heckman (1976) and Newey (2009)), and π∗ is a finite dimensional parameter which is

estimated by parametric methods such as Probit (see, e.g., Heckman (1976)) or semiparametric

methods (see, e.g., Powell, Stock, and Stoker (1989), Ichimura (1993), and Cavanagh and Sherman

(1998)). The theory established in this paper allows for parametric, semiparametric and nonpara-

metric first-step estimation of π∗, and it can be applied to derive the influence function of β̂ under

the index restriction (22) which is implied by the condition

E[u|X,W, d = 1] = E[u|v, d = 1], (27)
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employed in the literature such as Newey (2009).4 �

3 Two-step Estimation with a Parametric First Step

In this section, we derive the influence function of the semiparametric two-step estimator β̂ when

π∗ is parametrically specified. Since the focus is on β∗, we profile out the nonparametric component

λ by solving

h (v (π) ;β, π) ≡ arg min
λ

E [ψ(Z, β, λ(v(π)))] (28)

for any β and any π. The properties of h (v (π) ;β, π) are characterized by the optimality condition

of the above minimization problem, which together with the optimality condition of β∗ enables

us to derive the influence function. The following assumption is needed to obtain the optimality

conditions.

Assumption 1. (i) For any β, any π and any square integrable functions λ (·) and λ1 (·) of v (π),

there exist functions ψλ(·), ψβ(·), ψβ,λ(·), ψβ,β(·), ψλ,β(·) and ψλ,λ(·) of z, β and λ such that

∂E [ψ(Z, β, λ (v (π)) + τλ1 (v (π)))]

∂τ

∣∣∣∣
τ=0

= E [ψλ(Z, β, λ (v (π)))λ1 (v (π))] ,

∂E [ψ(Z, β, λ(v(π)))]

∂β
= E [ψβ(Z, β, λ(v(π)))] ,

∂E [ψβ (Z, β, λ (v (π)) + τλ1 (v (π)))]

∂τ

∣∣∣∣
τ=0

= E [ψβ,λ (Z, β, λ (v (π)))λ1 (v (π))] ,

∂E [ψβ (Z, β, λ (v (π)))]

∂β>
= E [ψβ,β (Z, β, λ (v (π)))] ,

∂E [ψλ (Z, β, λ (v (π)))]

∂β
= E [ψλ,β (Z, β, λ (v (π)))] , and

∂E [ψλ (Z, β, λ (v (π)) + τλ1 (v (π)))]

∂τ

∣∣∣∣
τ=0

= E [ψλ,λ (Z, β, λ (v (π)))λ1 (v (π))] ;

(ii) Var (ψβ (Z, β∗, λ∗(v))) and Var (ψλ (Z, β∗, λ∗(v))) are non-singular.

The functions in condition (i) are defined using expectation to make our influence function

formula applicable to models with non-smooth criterion function ψ(·), such as the check function

in the quantile regression. When ψ(z, β, λ) is smooth in β and λ and one can take differentiation

under expectation, these functions can be obtained directly from the derivatives of ψ(z, β, λ).5

Condition (ii) ensures that the scores of the unknown parameters are not degenerate.

4A similar condition is employed in Ahn and Powell (1993) (see, their condition (2.3)). The model studied here

does not strictly nest that in Ahn and Powell (1993), since they also allow X to be endogenous. On the other hand,

the influence function derived in this paper applies to Ahn and Powell (1993) when X is exogenous.
5One can take differentiation under expectation under some regularity conditions such that the dominated con-

vergence theorem can be applied. See Section C in the Appendix for illustration in specific examples.

9



From the optimality of h (v (π) ;β, π), we have

E [ψλ (Z, β, h (v (π) ;β, π))λ (v (π))] = 0 (29)

for any function λ (v (π)) of v (π) and any β. The profiled version of the minimization problem (1)

becomes

min
β

E [ψ(Z, β, h (v (π∗) ;β, π∗))] . (30)

Therefore, β∗ satisfies the following first-order condition

E [J(Z, β∗, π∗)] = 0, (31)

where

J(Z, β, π) ≡ ψβ (Z, β, h (v (π) ;β, π)) + ψλ (Z, β, h (v (π) ;β, π))
∂h (v (π) ;β, π)

∂β
, (32)

and the derivative ∂h (v (π) ;β, π) /∂β exists by Assumption 1 and Assumption 2 below.6

The influence function of β̂ is calculated using the arguments in Newey (1994), which shows

that the function J(Z, β, π) is the key for the calculation, because: (i) J(Z, β∗, π∗) is the score of

β̂ when π∗ is known; (ii) the impact of estimating π∗ on the score function of β̂ is the derivative

∂E [J(Z, β∗, π∗)] /∂π
> times the influence function of π̂; (iii) the Hessian matrix of β̂ is given by

∂E [J(Z, β∗, π∗)] /∂β
>.7

For ease of notation, we suppress the dependence of the derivatives of ψ(z, β, λ) on the pa-

rameters when they are evaluated at the true parameter values. Therefore v ≡ v(π∗), ψβ (Z) ≡
ψβ (Z, β∗, λ∗(v)), ψλ (Z) ≡ ψλ (Z, β∗, λ∗(v)) and the other notations are understood similarly. De-

fine

g∗(v) ≡
E [ψβ,λ(Z)| v]

E [ψλ,λ(Z)| v]
and Ψβ,β ≡ −E

[
ψβ,β(Z)− ψλ,λ (Z) g∗(v)g∗(v)>

]
. (33)

The following assumption is also needed.

Assumption 2. (i) Differentiation under expectation of ψλ(·) and ψβ(·) is allowed; (ii) the

influence function of π̂ is ϕπ(z); (iii) Ψβ,β is non-singular; (iv) ψλ,β (Z) = ψβ,λ (Z) almost surely;

(v) h (v (π) ;β, π) is continuously differentiable in β and π and v (π) is continuously differentiable

in π for any β and π.

Assumption 2 imposes some mild regularity conditions. Differentiation under expectation al-

lows one to switch the order of expectation and differentiation, which is explicitly assumed in

Newey (1994). Condition (i) is needed since our derivation of the influence function closely follows

6See (90) in the Appendix for the expression of ∂h (v (π) ;β, π) /∂β.
7A more formal discussion on the relevance of J(Z, β, π) can be found at the beginning of Section A in the

Appendix.

10



the arguments in Newey (1994). Condition (ii) is on the influence function of π̂, which can be

derived from the specific first-stage estimation problem. Condition (iii) is a local identification

condition on β∗, and Condition (iv) holds when E [ψ(Z, β, λ)] is twice continuously differentiable.

Condition (v) imposes smoothness conditions on the function h and the control variable v.

The influence function of β̂ with a parametric first-step estimation is provided in the following

theorem.

Theorem 1 (Main Result). Suppose that Assumptions 1 and 2 hold. Then the influence function

of β̂ is

Ψ−1β,β (ϕβ(Z) + Ψβ,πϕπ(Z)) , (34)

where

ϕβ(Z) ≡ ψβ (Z)− g∗(v)ψλ (Z) , (35)

Ψβ,π ≡ E
[
(δβ(Z)− δg(Z))

∂v (π∗)

∂π>

]
, (36)

δβ(Z) ≡ [ψλ,β (Z)− g∗(v)ψλ,λ (Z)]
∂λ∗ (v)

∂v
, (37)

δg(Z) ≡ ψλ (Z)
∂g∗ (v)

∂v
. (38)

Remark 1 (Asymptotic Variance of β̂). By Theorem 1, the asymptotic variance of β̂ takes the

sandwich form

AsyVar(β̂) = Ψ−1β,βΩ∗Ψ
−1
β,β ,

where

Ω∗ ≡ lim
n→∞

Var

(
n−1/2

n∑
i=1

(ϕβ (Zi) + Ψβ,πϕπ (Zi))

)
denotes the asymptotic variance of the score function of β̂.

Remark 2 (Index Restriction). The adjustment in the score function of β̂ can be simplified under

an extra assumption

E
[
ψλ (Z)

∣∣∣∣v (π∗) ,
∂v (π∗)

∂π>

]
= 0, (39)

because in this case,

Ψβ,π = E
[
δβ(Z)

∂v (π∗)

∂π>

]
.

Condition (39) is further implied by

E [ψλ (Z) |X,W ] = 0 (40)

11



since v (π∗) ≡ v(X,W, π∗) is a function of X and W . As we shall discuss in Section 5, condition

(40) becomes the commonly used identification condition when the control variable approach is

applied to specific models in the literature. On the other hand, in view of (29) the influence

function of β̂ derived here only uses

E [ψλ (Z) |v (π∗) ] = 0 (41)

and (31), which is different from (40). Although condition (40) is popular in the early literature,

recent applications of the control variable approach such as Auerbach (2021) and Johnsson and

Moon (2021) use variants of (41), which are imposed on the control variables directly. Under the

weaker condition (41), Theorem 1 shows that the extra term

E
[
δg(Z)

∂v (π∗)

∂π>

]
in the influence function of β̂ may not be negligible, when assumption (39) does not hold.

4 Two-step Estimation with a Nonparametric First Step

In this section, we extend the influence function formula of β̂ obtained in the previous section to the

case where π∗ is nonparametrically specified in the first step. Suppose that there are L functions

π∗,l(wl) (l = 1, . . . , L) estimated separately in the first step. We first present the identification

condition of π∗,l.

Assumption 3. For each l = 1, . . . , L, π∗,l is identified by the following conditional moment

condition

E [µl(Zl, π∗,l)|Wl] = 0,

where µl(zl, πl) is a first step residual function, Zl is a sub-vector of Z and Wl is a sub-vector (of

exogenous variables) of Zl.

To derive the influence function of β̂ in this case, we follow Newey (1994) and consider any

one-dimensional path of densities of Z indexed by τ ∈ R such that the path hits the true density

at τ = 0. Let π∗,l,τ denote the counterpart of π∗,l under the path τ , i.e., π∗,l,τ satisfies

Eτ [µl(Zl, π∗,l,τ )πl(Wl)] = 0 (42)

for any square integrable function πl(·), where Eτ [·] denotes the conditional expectation taken

under the path density indexed by τ .

Assumption 4. (i) Suppose that there exists a function µl,π(zl, πl) such that

∂E [µl(Zl, π∗,l,τ )πl(Wl)]

∂τ

∣∣∣∣
τ=0

= E
[
µl,π(Zl, π∗,l)πl(Wl)

∂π∗,l,τ (Wl)

∂τ

]∣∣∣∣
τ=0

12



for any square integrable function πl(·) and l = 1, . . . , L; (ii) v(z, π) is differentiable in π ≡
(π1, . . . , πL)> and it depends on π only through its value π(w); (iii) |E [µl,π(Zl, π∗,l)|Wl]| > 0

almost surely for l = 1, . . . , L.

Assumption 4 is mainly used to derive the effect of the first step nonparametric estimator on

the influence function of β̂. Condition (ii) imposes smoothness on the control variable in terms

of π. Condition (iii) is intuitively a local identification condition of the unknown parameters

π∗,l (l = 1, . . . , L).

Theorem 2 (Nonparametric First Step). Suppose that Assumptions 1, 2(i, iii, iv, v), 3 and 4

hold. Then the influence function of β̂ is

Ψ−1β,β

(
ϕβ(Z) + δπ(W )>ϕπ(Z)

)
,

where δπ(W ) ≡ (δ1,π(Wl), . . . , δL,π(WL))>,

δl,π(Wl) ≡ E
[

[δβ(Z)− δg(Z)]
∂v(π∗)

∂πl

∣∣∣∣Wl

]
, and (43)

ϕπ(Z) ≡ −
(

µ1(Z1, π∗,1)

E [µ1,π(Z1, π∗,1)|W1]
, · · · ,

µL(ZL, π∗,L)

E [µL,π(ZL, π∗,L)|WL]

)>
, (44)

Ψβ,β, ϕβ(·), δβ(·) and δg(·) are defined in (33), (35), (37) and (38), respectively.

5 Applications

In this section, we provide the influence functions of the two-step estimators discussed in the first

two examples of Section 2.8 In view of Theorem 1 and Theorem 2, it is sufficient to calculate the

quantities ϕβ(Z), ϕπ(Z), δπ(W ), Ψβ,π and Ψβ,β in these examples.

Example 1 (Mean Regression Continued). For ease of notation, we let Z0 ≡ (X,W>0 )>. In

this example, we have

ψ (Z, β, λ(v(π))) = 2−1 (Y −m(Z0, β)− λ(v(π)))2 . (45)

Using the above expression, it is easy to calculate that9

ψλ (Z, β, λ (v (π))) = −(Y −m(Z0, β)− λ (v (π))), (46)

ψβ (Z, β, λ (v (π))) = − (Y −m(Z0, β)− λ (v (π)))mβ(Z0, β), (47)

ψλ,β (Z, β, λ (v (π))) = mβ(Z0, β) = ψβ,λ (Z, β, λ (v (π))) , (48)

ψβ,β (Z, β, λ (v (π))) = mβ(Z0, β)mβ(Z0, β)> − (Y −m(Z0, β)− λ (v (π)))mβ,β(Z0, β), (49)

ψλ,λ (Z, β, λ (v (π))) = 1, (50)

8Similar calculations apply to the third example in Section 2. The details can be found in Appendix D.
9See Section C in the Appendix for low-level sufficient conditions to justify Assumption 1.

13



for any function λ (v (π)) of v (π), where

mβ(Z0, β) ≡ ∂m(Z0, β)

∂β
and mβ,β(Z0, β) ≡ ∂2m(Z0, β)

∂β∂β>
. (51)

By (46), the first-order condition of the profiled nonparametric function h (v (π) ;β, π) can be

written as

E [(Y −m(Z0, β)− h (v (π) ;β, π))λ (v (π))] = 0

for any function λ (v (π)) of v (π) and any β, which immediately implies that in this example

h (v (π) ;β, π) = E [Y −m(Z0, β)| v (π)] , (52)

and therefore

h (v (π∗) ;β∗, π∗) = E [u| v] = λ∗(v). (53)

Let mβ(Z0) ≡ mβ(Z0, β∗). Using the expressions in (46)-(50) and (53), we get

ϕβ(Z) = −ε(mβ(Z0)− E [mβ(Z0)|v]), (54)

δβ(Z) = (mβ(Z0)− E [mβ(Z0)| v])
∂E [u|v]

∂v
, (55)

δg(Z) = −ε
∂E [mβ(Z0)| v]

∂v
and (56)

Ψβ,π = E
[(

(mβ(Z0)− E [mβ(Z0)| v])
∂E [u|v]

∂v
+ ε

∂E [mβ(Z0)| v]

∂v

)
∂v (π∗)

∂π>

]
(57)

when π∗ is a finite-dimensional parameter vector. From (6), (46)-(50), the Hessian matrix takes

the following form

Ψβ,β = −E
[
mβ(Z0)mβ(Z0)

> − E [mβ(Z0)| v]E [mβ(Z0)| v]>
]
. (58)

From the components in (54), (57) and (58), the influence function of β̂, when the influence function

of the estimator π̂ of π∗ is ϕπ(Z), can be readily computed using Theorem 1.

When the control variable v (π∗) is nonparametrically specified as the residual in the reduced

form, i.e.,

v (π∗) = X − π∗(W ),

where π∗(W ) ≡ E [X|W ], the general residual function is µ(Z, π∗) = X − π∗(W ). In this case, it

is easy to calculate that

ϕπ(Z) = X − π∗(W ) (59)

and

δπ(W ) = −E [δβ(Z)− δg(Z)|W ] , (60)

14



where δβ(Z) and δg(Z) are defined in (55) and (56) respectively. Using the components in (54),

(58), (59) and (60), Theorem 2 implies that the influence function of the two-step estimator β̂ is

Ψ−1β,β (ϕβ(Z) + δπ(W )(X − π∗(W ))) .

If condition (10) holds, we obtain

Ψβ,π = E
[
(mβ(Z0)− E [mβ(Z0)| v])

∂E [u|v]

∂v

∂v (π∗)

∂π>

]
(61)

in the case with a parametric first step, and

δπ(W ) = −E
[

(mβ(Z0)− E [mβ(Z0)| v])
∂E [u|v]

∂v

∣∣∣∣W] (62)

in the case with a nonparametric first step. Therefore, the influence function of β̂ is slightly

simplified in both cases. Li and Wooldridge (2002) impose (10) and assume that m(Z0, β) = W>0 β

and v (π∗) = X −W>π∗ to derive the main results. Under these extra conditions,

ϕβ(Z) = −ε (W0 − E [W0| v]) , (63)

Ψβ,π = −E
[
(W0 − E [W0| v])

∂E [u|v]

∂v
W>

]
, (64)

Ψβ,β = −E
[
W0W

>
0 − E [W0| v]E [W0| v]>

]
. (65)

The influence function of the two-step estimator β̂ can be calculated using Theorem 1, the items

in (63)-(65) and the influence function ϕπ(Z) from the first-step estimation of π∗. In this case, the

influence function implies the same asymptotic variance-covariance matrix of the trimming-based

estimator proposed in Li and Wooldridge (2002) as indicated in their Conjecture 2.1. �

Example 2 (Quantile Regression Continued). For ease of notation, we suppress the depen-

dence of β and λ on α, and of π on α̃. Let Z0 ≡ (X,W>0 )> and β ≡ (β1, β
>
2 )>. In this example,

we have

ψ (Z, β, λ(v(π))) = ρα(Y − Z>0 β − λ(v)). (66)

Using the above expression, it is easy to calculate that10

∂E
[
ρα(Y − Z>0 β − λ (v (π))− τλ1 (v (π)))

]
∂τ

∣∣∣∣∣
τ=0

= E
[(

1
{
Y ≤ Z>0 β + λ (v (π))

}
− α

)
λ1 (v (π))

]
(67)

for any functions λ (v (π)) and λ1 (v (π)) of v (π), which implies that

ψλ (Z, β, λ (v (π))) = 1
{
Y ≤ Z>0 β + λ (v (π))

}
− α. (68)

10See Section C in the Appendix for low-level sufficient conditions to justify Assumption 1.

15



Applying the above expression to the first-order condition (29), we see that h (v (π) ;β, π) is the

conditional α-quantile function of Y − Z>0 β given v (π), and therefore11

h (v (π∗) ;β∗, π∗) = Qαu|v (v) = λ∗(v). (69)

Let fε(·|Z0, v (π)) denote the conditional density function of ε given (Z>0 , v (π))>. By (66), it is

easy to calculate that

ψβ (Z, β, λ (v (π))) =
(

1
{
Y ≤ Z>0 β + λ (v (π))

}
− α

)
Z0, (70)

ψλ,β (Z, β, λ (v (π))) = fε

(
Z>0 (β − β∗) + λ (v (π))− λ∗(v)

∣∣∣Z0, v (π)
)
Z0, (71)

ψβ,β (Z, β, λ (v (π))) = fε

(
Z>0 (β − β∗) + λ (v (π))− λ∗(v)

∣∣∣Z0, v (π)
)
Z0Z

>
0 , (72)

ψλ,λ (Z, β, λ (v (π))) = fε

(
Z>0 (β − β∗) + λ (v (π))− λ∗(v)

∣∣∣Z0, v (π)
)
, (73)

and ψβ,λ (Z, β, λ (v (π))) = ψλ,β (Z, β, λ (v (π))) for any function λ (v (π)) of v (π).

Using (68)-(73), we get

ϕβ(Z) = (1 {ε ≤ 0} − α) (Z0 − g∗(v)) , (74)

δβ(Z) = fε (0|Z0, v) (Z0 − g∗(v))
∂Qαu|v (v)

∂v
, (75)

δg(Z) = (1 {ε ≤ 0} − α)
∂g∗ (v)

∂v
, and (76)

Ψβ,π = E

[(
fε (0|Z0, v) (Z0 − g∗(v))

∂Qαu|v (v)

∂v
− (1 {ε ≤ 0} − α)

∂g∗ (v)

∂v

)
∂v (π∗)

∂π>

]
(77)

when π∗ is a finite-dimensional parameter vector, where

g∗ (v) =
E [fε (0|Z0, v)Z0| v]

E [fε (0|Z0, v)| v]
.

From (69)-(73), the Hessian matrix takes the following form

Ψβ,β = −E
[
fε (0|Z0, v)

(
Z0Z

>
0 − g∗(v)g∗(v)>

)]
. (78)

Using the components in (74), (77) and (78), the influence function of β̂, when the influence

function of the estimator π̂ of π∗ is ϕπ(Z), can be readily computed using Theorem 1.

When the control variable v (π∗) is nonparametrically specified as the residual from the reduced

form, i.e.,

v (π∗) = X − π∗(W ),

where π∗(w) = Qα̃X|W (w) denotes the conditional α̃-quantile function of X given W for some

α̃ ∈ (0, 1), the first-stage residual function becomes

µ(Z, π∗) = 1 {X ≤ π∗(W )} − α̃.
11To make the notation consistent to Thereom 1, we suppress the dependence of β∗ and λ∗(v) on α.
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Therefore in this case,

ϕπ(Z) = −1 {X ≤ π∗(W )} − α̃
fX|W (π∗(W ))

, (79)

where fX|W (·) denotes the conditional density of X given W , and

δπ(W ) = −E [δβ(Z)− δg(Z)|W ] , (80)

where δβ(Z) and δg(Z) are defined in (75) and (76) respectively. Using the components in (74),

(78), (79) and (80), Theorem 2 implies that the influence function of the two-step estimator in this

case is

Ψ−1β,β

(
ϕβ(Z)− δπ(W )

1 {Xi ≤ π∗(W )} − α̃
fX|W (π∗(W ))

)
. (81)

If condition (20) holds, we get

Ψβ,π = E

[
fε (0|Z0, v) (Z0 − g∗(v))

∂Qαu|v (v)

∂v
W>

]
(82)

in the case with the parametric first step v(π∗) = X −W>π∗, and

δπ(W ) = −E

[
fε (0|Z0, v) (Z0 − g∗(v))

∂Qαu|v (v)

∂v

∣∣∣∣∣W
]

(83)

in the case with a nonparametric first step. Therefore the influence function of β̂ is slightly

simplified in both cases. Moreover, under (13) and (20), the asymptotic variance of β̂ implied

by its influence function (which can be calculated using (74), (78) and (82)) is similar to the one

stated in Theorem 3.1 in Lee (2007). �

6 Conclusion

In this paper, we derive the influence function of semiparametric two-step estimators where an

unknown function/control variable is estimated in a first-step estimation which can be parametric,

semiparametric or fully nonparametric. The influence function is derived under an index restriction

that is imposed directly on the control variable and hence is different from the commonly adopted

identification condition in the literature, which is imposed on all exogenous variables. As a result,

the influence function formula derived in this paper contains an additional term which may not

be negligible. The general influence function formula is illustrated in a mean regression example,

a quantile regression example and a sample selection example where the control variable approach

is taken for identification and consistent estimation of structural parameters with endogenous

explanatory variables.
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In the three examples discussed in the paper, the index restriction used for deriving the in-

fluence function turns out to be implied by the commonly adopted conditional moment condition

given all exogenous variables, which indicates that the latter conditional moment condition may

provide over-identification restriction to the unknown parameters. Therefore, the commonly used

estimation procedure based on (1) may be inefficient since it is invariant under the index restriction

and the conditional moment condition. To the best of our knowledge, semiparametric efficiency

and efficient estimation haven’t been explored in the control variable literature. Some fruitful

results may be obtained through generalizing the existing methodology on the semiparametric ef-

ficiency bound calculation (see, e.g., Newey (1990) and Chamberlain (1992), and also see Severini

and Tripathi (2013) for a recent survey), to allow for generated control variables in the conditional

moment condition. The semiparametric efficiency, as well as the influence function of the efficient

estimator, is left for future investigations.
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Appendix

A Proof of Theorem 1

The theorem is proved using the arguments in Sections 2 and 3 of Newey (1994). Specifically under

Assumptions 1(i) and 2(i), (3.10) in Newey (1994) shows that the influence function of β̂ can be

derived from (31), and it takes the following form

−
(
∂E [J(Z, β∗, π∗)]

∂β>

)−1
(J(Z, β∗, π∗) + η(Z)) , (84)

where η(Z) satisfies E [η(Z)] = 0 and

∂E [J(Z, β∗, π∗,τ )]

∂τ
= E

[
η(Z)

∂ ln(fz,τ (Z))

∂τ

]
, (85)

where fz,τ (·) denotes any one-dimensional path of density of Z indexed by τ ∈ R such that the

path hits the true density at τ = 0, and π∗,τ is the counterpart of π∗ under the path density fz,τ (·).
Let ϕπ(Z) denote the influence function of the first-step estimator, that is E [ϕπ(Z)] = 0 and

∂π∗,τ
∂τ

= E
[
ϕπ(Z)

∂ ln(fz,τ (Z))

∂τ

]
. (86)

From (85) and (86), we get

η(Z) =
∂E [J(Z, β∗, π∗)]

∂π>
ϕπ(Z),

and hence the influence function of β̂ is

−
(
∂E [J(Z, β∗, π∗)]

∂β>

)−1(
J(Z, β∗, π∗) +

∂E [J(Z, β∗, π∗)]

∂π>
ϕπ(Z)

)
(87)

by Newey (1994). It remains to find the explicit forms of J(Z, β∗, π∗), ∂E [J(Z, β∗, π∗)] /∂π
> and

∂E [J(Z, β∗, π∗)] /∂β
>, which are calculated below in (94), (100) and (101) respectively.

The rest of the proof proceeds in three steps. Step 1 and Step 2 contain auxiliary results which

are used in Step 3. The main result of the theorem is proved in Step 3.

Step 1. In this step, we show that

E [ψλ (Z, β∗, λ∗ (v))| v] = 0. (88)

First note that h (v (π) ;β, π) satisfies the first-order condition

E [ψλ (Z, β, h (v (π) ;β, π))λ (v (π))] = 0 (89)

for any function λ (v (π)) of v(π). Evaluating (89) at (β∗, π∗) and using h (v (π∗) ;β∗, π∗) = λ∗ (v),

we obtain

E [ψλ(Z, β∗, λ∗(v))λ(v)] = 0
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for any function λ (v) of v, which immediately implies (88).

Step 2. In this step, we show that for any π,

∂h (v (π) ;β∗, π)

∂β
= −

E [ψλ,β (Z, β∗, h (v (π) ;β∗, π))| v (π)]

E [ψλ,λ (Z, β∗, h (v (π) ;β∗, π))| v (π)]
. (90)

Under Assumptions 1(i) and 2(i, v), we can differentiate (89) with respect to β and apply the chain

rule to obtain

0 = E
[(
ψλ,β(Z, β, h (v (π) ;β, π)) + ψλ,λ(Z, β, h (v (π) ;β, π))

∂h (v (π) ;β, π)

∂β

)
λ (v (π))

]
(91)

for any function λ (v (π)) of v (π), which implies that

0 = E
[
ψλ,β (Z, β∗, h (v (π) ;β∗, π)) + ψλ,λ (Z, β∗, h (v (π) ;β∗, π))

∂h (v (π) ;β∗, π)

∂β

∣∣∣∣ v (π)

]
, (92)

from which and the observation that ∂h (v (π) ;β∗, π) /∂β is a function of v (π), we get

0 = E [ψλ,β (Z, β∗, h (v (π) ;β∗, π))| v (π)]

+ E [ψλ,λ (Z, β∗, h (v (π) ;β∗, π))| v (π)]
∂h (v (π) ;β∗, π)

∂β
. (93)

The claim in (90) follows from (93).

Step 3. We prove the claim of the theorem in this step. First, by the definition of J(Z, β∗, π∗)

in (32) and the definition of g∗(v) in (33), and the expression in (90), we get

J(Z, β∗, π∗) = ψβ (Z, β∗, λ∗ (v)) + ψλ (Z, β∗, λ∗ (v))
∂h (v (π∗) ;β∗, π∗)

∂β

= ψβ (Z, β∗, λ∗ (v))− g∗(v)ψλ (Z, β∗, λ∗ (v)) = ϕβ(Z). (94)

Next from (31), we observe that

∂E [J(Z, β∗, π∗)]

∂π>
= E

[
ψβ,λ (Z, β∗, λ∗ (v))

d

dπ>
h (v (π∗) ;β∗, π∗)

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v)) g∗(v)

d

dπ>
h (v (π∗) ;β∗, π∗)

]
− E

[
ψλ (Z, β∗, λ∗ (v))

d

dπ>
g(v (π∗) ;π∗)

]
, (95)

where g(v (π) ;π) ≡ −∂h (v (π) ;β∗, π) /∂β. We recall that π enters h (v (π) ;β, π) in two places, first

as an argument of v (π) and second as a way of changing the entire functional form of h (v (π) ;β, π).

We will use the following notation to distinguish the two roles played by π:

d

dπ>
h (v (π1) ;β∗, π2) ≡

∂h (v (π1) ;β∗, π2)

∂π>1
+
∂h (v (π1) ;β∗, π2)

∂π>2
.
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So we have
d

dπ>
h (v (π∗) ;β∗, π∗) ≡

∂h (v (π∗) ;β∗, π∗)

∂π>1
+
∂h (v (π∗) ;β∗, π∗)

∂π>2
. (96)

Moreover, because h (v (π∗) ;β∗, π∗) = λ∗ (v), we can see that

∂h (v (π∗) ;β∗, π∗)

∂π>1
=
∂λ∗ (v(π∗))

∂v

∂v (π∗)

∂π>
. (97)

We also note that ∂h (v (π∗) ;β∗, π∗) /∂π
>
2 is a function of v (π∗) = v, which together with (90),

(92) and the definition of g∗(v) implies that

E
[
ψβ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂π>2

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂β

∂h (v (π∗) ;β∗, π∗)

∂π>2

]
= E

[
E [ψλ,β (Z, β∗, λ∗ (v))− g∗(v)ψλ,λ (Z, β∗, λ∗ (v))| v]

∂h (v (π∗) ;β∗, π∗)

∂π>2

]
= 0, (98)

where we also used Assumption 2(iv), i.e., ψβ,λ (Z, β∗, λ∗ (v)) = ψλ,β (Z, β∗, λ∗ (v)) almost surely.

Therefore, using (95), (96), (97) and (98), we get

∂E [J(Z, β∗, π∗)]

∂π>
= E

[
[ψλ,β (Z, β∗, λ∗(v))− g∗(v)ψλ,λ (Z, β∗, λ∗(v))]

∂λ∗ (v(π∗))

∂v

∂v (π∗)

∂π>

]
− E

[
ψλ (Z, β∗, λ∗(v))

d

dπ>
g(v (π∗) ;π∗)

]
. (99)

Note that
d

dπ>
g(v (π) ;π) =

∂g(v (π1) ;π2)

∂π>1
+
∂g(v (π1) ;π2)

∂π>2
.

So we have
d

dπ>
g(v (π∗) ;π∗) =

∂g(v (π∗) ;π∗)

∂π>1
+
∂g(v (π∗) ;π∗)

∂π>2
,

where ∂g(v (π∗) ;π∗)/∂π
>
2 is a function of v (π∗) = v. Therefore, by (88),

E
[
ψλ (Z, β∗, λ∗ (v))

d

dπ>
g(v (π∗) ;π∗)

]
= E

[
ψλ (Z, β∗, λ∗ (v))

∂g(v (π∗) ;π∗)

∂π>1

]
= E

[
ψλ (Z, β∗, λ∗ (v))

∂g (v (π∗) ;π∗)

∂v

∂v (π∗)

∂π>

]
,

which together with (99), the definition of g∗(v), and ∂g (v (π∗) , π∗) /∂v = ∂g∗(v)/∂v implies that

∂E [J(Z, β∗, π∗)]

∂π>
= E

[
[ψλ,β (Z, β∗, λ∗ (v))− g∗(v)ψλ,λ (Z, β∗, λ∗ (v))]

∂λ∗ (v(π∗))

∂v

∂v (π∗)

∂π>

]
− E

[
ψλ (Z, β∗, λ∗ (v))

∂g∗ (v)

∂v

∂v (π∗)

∂π>

]
= Ψβ,π. (100)
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Finally, we calculate ∂E [J(Z, β∗, π∗)] /∂β
>. Specifically,

∂E [J(Z, β∗, π∗)]

∂β>
= E

[
ψβ,β (Z, β∗, λ∗ (v)) + ψβ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂β>

]
+ E

[
∂h (v (π∗) ;β∗, π∗)

∂β
ψλ,β (Z, β∗, λ∗ (v))>

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂β

∂h (v (π∗) ;β∗, π∗)

∂β>

]
+ E

[
ψλ (Z, β∗, λ∗ (v))

∂2h (v (π∗) ;β∗, π∗)

∂β∂β>

]
,

which together with (88), (90) and the definition of g∗(v) implies that

∂E [J(Z, β∗, π∗)]

∂β>
= E

[
ψβ,β (Z, β∗, λ∗ (v))− ψβ,λ (Z, β∗, λ∗ (v)) g∗(v)>

]
− E

[
g∗(v)ψλ,β (Z, β∗, λ∗ (v))>

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v)) g∗(v)g∗(v)>

]
= E

[
ψβ,β (Z, β∗, λ∗ (v))− ψλ,λ (Z, β∗, λ∗ (v)) g∗(v)g∗(v)>

]
= −Ψβ,β . (101)

Plugging the forms of J(Z, β∗, π∗), ∂E [J(Z, β∗, π∗)] /∂π
> and ∂E [J(Z, β∗, π∗)] /∂β

> (which are

obtained in (94), (100) and (101) respectively) in (87), and applying Assumptions 2(ii, iii), we

obtain the influence function stated in the theorem.

B Proof of Theorem 2

Taking derivative with respect to τ in (42) and applying the chain rule and Assumption 4(i), we

get
∂Eτ [µl(Zl, π∗,l)πl(Wl)]

∂τ
+ E

[
E [µl,π(Zl, π∗,l)|Wl]πl(Wl)

∂π∗,l,τ (Wl)

∂τ

]
= 0 (102)

for any function πl(wl), where derivatives with respect to τ are evaluated at τ = 0 unless otherwise

indicated. The finite dimensional parameter β∗ still satisfies the first-order condition in (31). Using

similar calculation as in (95), (98), (99) and (100) in the proof of Theorem 1, we obtain

∂E [J(Z, β∗, π∗,τ )]

∂τ
=
∂E [D(Z, π∗,τ )]

∂τ
, (103)

where π∗,τ ≡ (π∗,1,τ , . . . , π∗,L,τ )> and

D(Z, πτ ) ≡
[
(ψλ,β (Z)− g∗ (v)ψλ,λ (Z))

∂λ∗(v)

∂v
− ψλ (Z)

∂g∗(v)

∂v

] L∑
l=1

∂v(π∗)

∂πl
πl,τ (Wl),

which is linear in πτ . Note that by (37), (38) and (43), D(Z, πτ ) thus defined satisfies

E [Dτ (Z, π)] = E
[
δπ(W )>πτ (W )

]
(104)
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for any πτ (W ) by the law of iterated expectation. Combining (103) and (104), we deduce that

∂E [J(Z, β∗, π∗,τ )]

∂τ
=
∂E [D(Z, π∗,τ )]

∂τ
= E

[
δπ(W )>

∂π∗,τ (W )

∂τ

]
=

L∑
l=1

E
[
δl,π(Wl)

∂π∗,l,τ (Wl)

∂τ

]

=

L∑
l=1

∂

∂τ
Eτ
[
−

µl(Zl, π∗,l)

E [µl,π(Zl, π∗,l)|Wl]
δl,π(Wl)

]
=

∂

∂τ
Eτ
[
δπ(W )>ϕπ(Z)

]
, (105)

where the third equality follows from (102) by replacing πl(Wl) with δl,π(Wl)/E [µl,π(Zl, π∗,l)|Wl]

for l = 1, . . . , L. Therefore, (3.9) in Newey (1994) follows from (105) and Theorem 2 is directly

implied by Theorem 2.1 of Newey (1994).

C Low-level Conditions of Assumption 1 in Examples 1 and 2

Example 1 (Mean Regression Revisited). To verify Assumption 1(i) in this example, we

assume that λ(v(π)) and E [Y |Z0 = z0] are uniformly bounded, m(z0, β) and its first and second

order derivatives in β are also uniformly bounded.

From the definition of ψ(·), we can write

E [ψ(Z, β, λ (v (π)))] = 2−1(E[Y 2] + E[(m(Z0, β) + λ(v(π)))2])− E [Y (m(Z0, β) + λ(v(π)))] .

Since λ(v(π)), E [Y |Z0 = z0] and the first order derivative of m(z0, β) in β are uniformly bounded,

we can use the dominated convergence theorem to find ψλ(·) and ψβ(·) directly from the derivatives

of ψ (Z, β, λ(v(π))). That is,

ψλ (Z, β, λ (v (π))) = −(Y −m(Z0, β)− λ (v (π))),

ψβ (Z, β, λ (v (π))) = − (Y −m(Z0, β)− λ (v (π)))mβ(Z0, β).

The same arguments obtain ψλ,β(·) and ψλ,λ(·) from the derivatives of ψλ (·):

ψλ,β (Z, β, λ (v (π))) = mβ(Z0, β),

ψλ,λ (Z, β, λ (v (π))) = 1.

Since ψβ (·) is linear in λ (v (π)), we immediately have

ψλ,β (Z, β, λ (v (π))) = mβ(Z0, β) = ψλ,β (Z, β, λ (v (π))) .

Moreover since the second derivative of m(z0, β) in β is also uniformly bounded, we can again use

the dominated convergence theorem to find ψβ,β(·) from the derivatives of ψβ (·):

ψβ,β (Z, β, λ (v (π))) = mβ(Z0, β)mβ(Z0, β)> − (Y −m(Z0, β)− λ (v (π)))mβ,β(Z0, β).
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Since ψλ (Z, β∗, λ∗ (v)) = −ε and ψβ (Z, β∗, λ∗ (v)) = −mβ(Z0, β∗)ε in this example, Assump-

tion 1(ii) holds if E[ε2] > 0 and E[ε2mβ(Z0, β∗)mβ(Z0, β∗)
>] is positive definite. �

Example 2 (Quantile Regression Revisited). To verify Assumption 1(i) in this example,

we assume that β is in some bounded subset of Rdβ , Z0 has compact support, λ(v(π)) is uni-

formly bounded, the conditional probability density function of Y given Z0 and v(π), denoted as

fY (y|Z0, v(π)) and its first order derivative in y are uniformly bounded.

From the definition of ψ(·) in this example, we can write

E
[
ρα(Y − Z>0 β − λ(v (π)))

]
= E

[
(α− 1{Y ≤ Z>0 β + λ(v (π))})(Y − Z>0 β − λ(v (π)))

]
= αE [Y ]− E

[
Y 1{Y ≤ Z>0 β + λ(v (π))}

]
− E

[
(α− FY (Z>0 β + λ(v (π))|Z0, v (π)))(Z>0 β + λ(v (π)))

]
,

where FY (·|Z0, v (π)) denotes the conditional cumulative distribution of Y given Z0 and v (π).

Under the maintained low-level conditions, we can use the dominated convergence theorem to get

∂E
[
Y 1{Y ≤ Z>0 β + λ (v (π)) + τλ1 (v (π))}

]
∂τ

∣∣∣∣∣
τ=0

= E
[
fY (Z>0 β + λ (v (π)) |Z0, v (π))(Z>0 β + λ (v (π)))λ1 (v (π))

]
and

∂E
[
(α− FY (Z>0 β + λ (v (π)) + τλ1 (v (π)) |Z0, v (π)))(Z>0 β + λ (v (π)) + τλ1 (v (π)))

]
∂τ

∣∣∣∣∣
τ=0

= E
[
(α− FY (Z>0 β + λ (v (π)) |Z0, v (π)))λ1 (v (π))

]
− E

[
fY (Z>0 β + λ (v (π)) |Z0, v (π))(Z>0 β + λ (v (π)))λ1 (v (π))

]
.

Therefore

∂E
[
ρα(Y − Z>0 β − λ(v (π))− τλ1 (v (π)))

]
∂τ

∣∣∣∣∣
τ=0

= E
[
(FY (Z>0 β + λ (v (π)) |Z0, v (π))− α)λ1 (v (π))

]
= E

[
(1{Y ≤ Z>0 β + λ (v (π))} − α)λ1 (v (π))

]
,

which shows (67). Similarly

∂E
[
ρα(Y − Z>0 β − λ(v (π)))

]
∂β

= E
[
(FY (Z>0 β + λ (v (π)) |Z0, v (π))− α)Z0

]
= E

[
(1{Y ≤ Z>0 β + λ (v (π))} − α)Z0

]
,
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which justifies (70). Using

E [ψλ (Z, β, λ (v (π)))] = E
[
FY (Z>0 β + λ (v (π)) |Z0, v (π))− α

]
and

E [ψβ (Z, β, λ (v (π)))] = E
[
(FY (Z>0 β + λ (v (π)) |Z0, v (π))− α)Z0

]
,

and invoking the dominated convergence theorem under the maintained low level conditions, one

can directly find the expressions of ψλ,β(·), ψβ,β(·) and ψλ,λ(·) in (71), (72) and (73), respectively.

Since ψλ (Z, β∗, λ∗ (v)) = 1 {ε ≤ 0} − α and ψβ (Z, β∗, λ∗ (v)) = (1 {ε ≤ 0} − α)Z0 in this ex-

ample, Assumption 1(ii) holds if E[(1 {ε ≤ 0} − α)2] > 0 and E[(1 {ε ≤ 0} − α)2Z0Z
>
0 ] is positive

definite. �

D Sample Selection Model Continued

This section provides the details on calculating the influence function of the two-step estimator in

the sample selection model discussed in Section 2. In this example, we have

ψ (Z, β, λ(v(π))) = 2−1d (Y −m(X,β)− λ(v(π)))2 . (106)

It is easy to calculate that

ψλ (Z, β, λ(v(π))) = −d (Y −m(X,β)− λ(v(π))) , (107)

ψβ (Z, β, λ(v(π))) = −d (Y −m(X,β)− λ(v(π)))mβ(X,β), (108)

ψβ,β (Z, β, λ(v(π))) = dmβ(X,β)mβ(X,β)> − d (Y −m(X,β)− λ(v(π)))mβ,β(X,β), (109)

ψλ,β (Z, β, λ(v(π))) = dmβ(X,β) = ψβ,λ (Z, β, λ(v(π))) , and (110)

ψλ,λ (Z, β, λ(v(π))) = d, (111)

for any function λ(v(π)) of v(π), where

mβ(X,β) ≡ ∂m(X,β)

∂β
and mβ,β(X,β) ≡ ∂2m(X,β)

∂β∂β>
.

By (107), the first-order condition of the profiled nonparametric function h(v(π);β, π) can be

written as

E [d (Y −m(X,β)− h(v(π);β, π))λ(v(π))] = 0,

which implies that in this example

h(v(π);β, π) =
E [d (Y −m(X,β))| v(π)]

E [d| v(π)]
= E [Y −m(X,β)| v(π), d = 1] ,
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where the second equality is by

E [d (Y −m(X,β))| v(π)] = E [dE [Y −m(X,β)| v(π), d]| v(π)]

= E [Y −m(X,β)| v(π), d = 1]E [d| v(π)] .

Recall that v ≡ v(π∗), therefore

h(v(π∗);β∗, π∗) = E [u| v, d = 1] = λ∗(v)

by the definition of λ∗(v).

Let mβ(X) ≡ mβ(X,β∗). By (33), (110) and (111), we get

g∗(v) =
E [dmβ(X)|v]

E [d|v]
= E [mβ(X)|v, d = 1] , (112)

where the second equality is by

E [dmβ(X)|v] = E [dE [mβ(X)|v, d] |v] = E[mβ(X)|v, d = 1]E [d|v] .

By (33), (35) - (38), and (106)-(112), we have

ϕβ(Z) = −dε (mβ(X)− E [mβ(X)|v, d = 1]) , (113)

δβ(Z) = d [mβ(X)− E [mβ(X)|v, d = 1]]
∂E [u| v, d = 1]

∂v
, (114)

δg(Z) = −dε
∂E [mβ(X)|v, d = 1]

∂v
, (115)

Ψβ,π = E
[
(δβ(Z)− δg(Z))

∂v (π∗)

∂π>

]
, and (116)

Ψβ,β = −E
[
d
(
mβ(X)mβ(X)> − E [mβ(X)|v, d = 1]E [mβ(X)|v, d = 1]>

)]
(117)

when π∗ is parametrically specified. Using the components in (113), (116) and (117), the influence

function of β̂ in this example can be readily computed using Theorem 1.

When π∗ is nonparametrically specified, π∗(X,W ) = E [d|X,W ]. In this case v(X,W, π∗) =

π∗(X,W ) and the general residual function in the first step is

µ(Z, π∗) = d− π∗(X,W ).

Therefore in this case

ϕπ(Z) = d− π∗(X,W ) (118)

and

δπ(W ) ≡ E [δβ(Z)− δg(Z)|X,W ] , (119)
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where δβ(Z) and δg(Z) are defined in (114) and (115) respectively. Using the components in (113),

(117), (118) and (119), Theorem 2 implies that the influence function of the two-step estimator in

this case is

Ψ−1β,β (ϕβ(Z) + δπ(W )(d− π∗(X,W ))) .

When the identification condition (27) holds,

E[ε|X,W, d = 1] = E[u|X,W, d = 1]− λ∗(v) = E[u|v, d = 1]− λ∗(v) = 0,

which immediately implies that

E
[
dε
∂E [mβ(X,β∗)|v, d = 1]

∂v

∂v (π∗)

∂π>

]
= 0 (120)

in the parametric case since ∂v (π∗) /∂π
> is a function of (X>,W>)>, and

E
[
dε
∂E [mβ(X)|v, d = 1]

∂v

∣∣∣∣X,W] = 0

in the nonparametric case. Therefore the influence function of β̂ is slightly simplified in both cases.

Moreover, in the parametric case, if one further assumes that m(x, β∗) = x>β∗ and the influence

function from the first-step estimation is ϕπ(Z), the influence function computed using Theorem

1, and the items in (113), (116), (117) and (120) becomes identical to that in Newey (2009). �
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