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Abstract

We consider a multiplicative decomposition of the financial returns to improve the density
forecasts of financial returns. The multiplicative decomposition is based on the identity that
financial return is the product of its absolute value and its sign. Advantages of modeling the two
components are discussed. To reduce the effect of the estimation error due to the multiplicative
decomposition in estimation of the density forecast model, we impose a moment constraint that
the conditional mean forecast is set to match with the sample mean. Imposing such a moment
constraint operates a shrinkage and tilts the density forecast of the decomposition model to
produce the improved maximum entropy density forecast. An empirical application to forecast-
ing density of the daily stock returns demonstrates the benefits of using the decomposition and
imposing the moment constraint to obtain the improved density forecast. We evaluate the den-
sity forecast by comparing the logarithmic score, the quantile score, and the continuous ranked
probability score. We contribute to the literature on the density forecast and the decomposition
models by showing that the density forecast of the decomposition model can be improved by
imposing a sensible constraint in the maximum entropy framework.
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1 Introduction

In this paper the density forecast model is based on a multiplicative decomposition of a financial

return series into a product of the absolute return and the sign of the return. The joint density

forecast is constructed from the margins of the two components and their copula function. A

copula function incorporates the possible dependence between the absolute return and the sign

of the return. It is well documented empirically that each of the two components are easier to

predict than the return (as discussed below in this section). That does not necessarily imply we

can predict the financial returns in the conditional mean using the decomposition. Our interest

is not forecasting the mean returns, but forecasting the conditional density of financial returns

using the decomposition and imposing a simple moment constraint (for shrinkage via constrained

maximization of an entropy). The improved density forecast is useful for financial risk management

as it can produce a better risk forecast in the conditional high moments (variance, skewness)

and conditional quantiles in terms of Value-at-Risk (VaR). While the decomposition allows us to

model the two components in much richer specifications, the two predicted components can amplify

the estimation errors as it makes the conditional moment forecasts be subjected to multiplicative

estimation errors which are of higher order of magnitude. In other words, while disaggregation

by decomposition provides richer information (signal), the multiplication amplifies the magnitude

order of the estimation errors (noise). Controlling the latter would improve the density forecast

from the decomposition model.

To do that, we consider imposing some sensible moment constraints. A trick is to find the

maximum entropy density that satisfies such moment constraints particularly in the conditional

mean. Noting that a simple historical mean (HM) forecast will give less estimation error than the

more complex model, we use the maximum entropy principle for the out-of-sample density forecast

subject to the HM moment constraint that is to match the mean forecasts from the decomposition

model with the HM. When the mean forecast from the decomposition model deviates from the HM

model, imposing the conditional mean constraint tilts the density forecast of the decomposition

model and produce a more stable maximum entropy density forecast. The tilted density forecast

would improve over the original (without tilting) density forecast of the decomposition model if the
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correct constraint is imposed. The underlying reason for the benefit of imposing the constraint is

the “shrinkage”principle, that we show how it works in the density forecast.

Traditionally econometric modeling has been focused on the conditional moments of variables

of interest, particularly mean and variance. Many recent research has shifted from the conditional

moments to the conditional density. The common density forecast models for financial returns

assume a particular distribution such as Gaussian, Student t, Log-Normal, Generalized Pareto

distributions or some variants to capture fat-tails or skewness. In particular, Granger and Ding

(1995a, 1995b, 1996) and Rydén, Teräsvirta and Ȧsbrink (1998) provide several stylized facts about

the financial returns. Let rt be the return on a financial asset at time t, |rt| denote the absolute

value, and sign(rt) = 1 (rt > 0) − 1 (rt < 0) . The following three distributional properties (DP)

have been stylized in these papers.

DP1: |rt| and sign(rt) are independent.

DP2: |rt| has the same mean and standard deviation.

DP3: The marginal distribution for |rt| is exponential.

The multiplicative decomposition, rt+1 = |rt+1| × sign(rt+1), treats the two components |rt+1|

and sign(rt+1) separately for their marginal densities and then links them by a copula to obtain

the joint density of |rt+1| and sign(rt+1). A goal is to obtain the one-day ahead return density

forecast ft (rt+1) conditional on the information at time t, which can be obtained from the joint

density ft (|rt+1|, sign(rt+1)). While the conditional mean of the return rt+1 may be a martingale

difference, the conditional means of the margins for |rt| and sign(rt) are not martingale difference.

That is, the conditional means of |rt+1| and sign(rt+1) can be dynamically modelled unlike that

of the returns rt. Ding, Granger, and Engle (1993) show that |rt+1| is easily predictable, while

Korkie, Sivakumar, and Turtle (2002) and Christoffersen and Diebold (2006) show that sign(rt+1)

is predictable as well. Let It be the information set at time t. If the indicator series 1 (rt+1 < 0)

displays conditional mean serial dependence, namely, if E [1 (rt+1 < 0) |It] is a nonconstant function

of It, then the signs can be predicted. Further, let µt+1 = E (rt+1|It) be the conditional mean and

σ2t+1 = E
[
(rt+1 − µt+1)2 |It

]
be the conditional variance. Then Christoffersen and Diebold (2006)
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note that

E [1(rt+1 < 0)|It] = Pr(rt+1 < 0|It) = Pr

(
rt+1 − µt+1

σt+1
<
−µt+1
σt+1

|It
)

= Ft

(
−µt+1
σt+1

)
, (1)

which shows the sign is predictable if σt+1 is predictable and µt+1 is not zero. Using a series expan-

sion of the conditional distribution Ft(·), such as the Gram-Charlier expansion or the Edgeworth

expansion, it can be seen that 1 (rt+1 < 0) can be predictable if the conditional higher moments

(skewness and kurtosis) are predictable. Because the absolute return and the sign of the stock

return are predictable, the margin density forecast models of |rt| and sign(rt) can be specified such

that these serial dependence properties associated with the predictability are incorporated. It can

eventually yield a more precise density forecast model for rt+1.

Some studies referenced earlier support DP1 that the sign and absolute value of the return

are independent. However, it seems that the evidence of financial returns exhibiting negative

conditional skewness indicates that the sign and the absolute return are not independent. We find

DP1 is clearly rejected by Hong and Li (2005) test. If the dependence is weak, shrinkage toward

the independence can benefit the density forecasts. We consider different copula function for the

dependence of the sign of return and absolute value of the return, including the independent copula,

and compare different density forecast models by a test in line with Diebold and Mariano (1995),

Amisano and Giacomini (2007), Bao, Lee, and Saltoğlu (2007), Gneiting and Ranjan (2011), and

Granziera, Hubrich, and Moon (2014).

The decomposition model may not generate satisfactory moment predictions even for forecast-

ing the first moment (mean). The mean of density forecast from the decomposition model may be

unreasonably far from zero which contradicts the fact that stock returns are close to zero in mean

especially in high frequency. Second, in our empirical applications we find that when applying the

decomposition model to the daily stock returns, the predicted conditional mean fluctuates rather

excessively, often deviating unreasonably too far from the historical mean (HM) predictions. The

plot of HMs of the daily stock returns over rolling windows (shifting one day forward with dropping

the oldest day in the estimation window) exhibits quite smooth and stable values around a constant

near zero. We think this would make a classic environment to apply the shrinkage principal by

imposing a moment constraint. Since our criterion functions will include the logarithmic scoring
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rule in evaluating the density forecast, the improvement can be achieved by solving the constrained

maximum entropy problem. Jaynes (1968) provides the solution for a discrete density. A general

solution for any distribution can be seen in Csiszár (1975). Robertson, Tallman, and Whiteman

(2005) and Giacomini and Ragusa (2014) provide excellent applications of the constrained maxi-

mum entropy problem to macroeconomic models. Encouraged from these studies we consider the

shrinkage of imposing a smooth moment constraint when the decomposition model produces un-

stable mean forecasts. Indeed, we find that imposing a sensible moment (mean) constraint the

decomposition model improves the density forecast of the financial returns {rt+1}.

The contribution of our paper is to show how to stabilize the decomposition model for the

density forecast by imposing a moment condition in the maximum entropy framework. Anatolyev

and Gospodinov (2010) develop the copula model for the decomposition model to model the de-

pendence between |rt| and sign(rt), and examine the decomposition model for the mean forecasts

of stock returns in terms of mean squared forecast errors or mean absolute forecast errors. We

examine the decomposition model for the density forecast in terms of scoring rules (logarithmic

score, quantile scores, and continuous ranked probability score). We show that the density forecast

of the decomposition model can be improved in terms of these scoring rules by imposing a simple

moment constraint by maximum entropy.

The rest of the paper is structured as follows. Section 2 introduces the normal density forecast

model. Section 3 considers the decomposition density forecast model which is obtained from the

margins of the absolute return and the sign of the return together with their copula function. In

Section 4, we consider the maximum entropy decomposition density forecast with the mean moment

constraint imposed. In Section 5 the scoring rules are discussed to evaluate the density forecast

models and to compare their predictive abilities. Section 6 includes empirical results where the

decomposition density forecast model and the maximum entropy density forecast with imposing a

moment constraint are compared. Section 7 offers concluding remarks.
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2 Normal Density Forecast Model

A simple density forecast of rt+1 at time t is the normal density forecast model

ft+1(r) =
1√

2πσ2t+1

exp

{
−(r − µt+1)2

2σ2t+1

}
, r ∈ (−∞ +∞) , (2)

where µt+1 := E (rt+1|It) and σ2t+1 := E
[
(rt+1 − µt+1)2 |It

]
= γ0 + γ1 (rt − µt)2 + γ2σ

2
t . For the

conditional mean specification, it is common to assume that µt+1 is equal to the historical mean

(HM). According to the weak form of effi cient market hypothesis, the best forecast of the conditional

mean is HM. Consider a linear predictive regression for the conditional mean

rt+1 = α+ x′tβ + εt+1. (3)

If β = 0, then µt+1 = α, which is estimated by HM at time t, µ̂t+1 = r̄t = 1
R

∑t
s=t−R+1 rs, using

the rolling estimation window of R observations. In general we can use a set of covariates to

forecast the conditional mean, where µt+1 = α + x′tβ as in Welch and Goyal (2008). Welch and

Goyal (2008) find that none of their 17 predictors can make a better mean forecast than HM. Their

results demonstrate that it is very diffi cult to outperform the historical mean specification. See

also Campbell and Thompson (2008). We confirmed that the conditional mean forecast using a

covariate performs worse than the HM in the density forecast. Therefore in this paper we do not

consider using covariates for the density forecast and set β = 0. The conditional variance forecast

σ̂2t+1 = γ̂0,t + γ̂1,t (rt − r̄t)2 + γ̂2,tσ̂
2
t is the predicted according to the GARCH(1,1) model using the

estimated parameter values at time t. This normal density forecast model with µ̂t+1 = r̄t (HM)

will be referred to as Model 1 (or M1 in short).

3 Decomposition Density Forecast Model

Since the pioneering work by Granger and Ding (1995a, 1995b), the decomposition model for

financial returns has been studied in many papers, such as Korkie, Sivakumar, and Turtle (2002),

Rydberg and Shephard (2003) and Anatolyev and Gospodinov (2010), among others. The financial

return rt+1 can be decomposed as the product of its sign and absolute value:

rt+1 = |rt+1| × sign(rt+1) =: Ut+1Vt+1, (4)
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where Ut+1 = |rt+1| and Vt+1 = sign(rt+1). To get the density forecast of rt+1, several assumptions

about the joint and marginal distribution of Ut+1 and Vt+1 are needed.

Many papers have already cited that the stock returns exhibit negative skewness, which is an

evidence of dependence between the absolute return and the sign of the return. We test for the

independence between the sign and absolute value of the return with applying Hong and Li (2005).

For our empirical applications, the independence is clearly rejected, which indicates the need to

incorporate the dependence between them. The test procedure and results are available but not

reported for space. One way to incorporate dependence between Ut+1 and Vt+1 is to include copula

in the joint density function fUVt+1(u, v), as

fUVt+1(u, v) = fUt+1(u)× fVt+1(v)× c
(
FUt+1(u), F Vt+1(v)

)
, (5)

where FUt+1(u) = Pr (U ≤ u|It) and F Vt+1(v) = Pr (V ≤ v|It) . The third term c
(
FUt+1(u), F Vt+1(v)

)
is

the copula density function such that c(w1, w2) = ∂2C(w1,w2)
∂w1∂w2

, where w1 = FUt+1(u) and w2 = F Vt+1(v),

and C(·, ·) is defined such that FUVt+1 (u, v) = C(FUt+1(u), F Vt+1(v)) is the joint cumulative distribution

function (CDF). Moreover, the conditional copula (distribution) function can be rewritten as:

C(w1, w2) = FUVt+1
(
(FUt+1)

−1(w1), (F
V
t+1)

−1(w2)
)

where u = (FUt+1)
−1(w1) and v = (F Vt+1)

−1(w2) denote the inverse functions of the marginal CDFs

of Ut+1 and Vt+1.

The marginal density of the absolute return Ut+1 takes the positive support (like duration), and

we take a model similar to the autoregressive duration (ACD) model of Engle and Russell (1998),

that is,

Ut+1 = ψt+1et+1, (6)

where ψt+1 = E (Ut+1|It) is the conditional mean of the absolute return and {et+1} is an i.i.d.

positive random variable with E (et+1|It) = 1. To model the density of et+1, Engle and Russell

(1998) consider exponential and Weibull distributions, Grammig and Maurer (2000) consider the

Burr distribution, and Lunde (1999) proposes a generalized gamma distribution. Both the Burr and

gamma distributions nest the exponential distribution. Based on the stylized facts DP2 and DP3

of the absolute returns, we consider only the exponential distribution. Further, unlike duration,
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the absolute return has a density function with strictly decreasing in u. We observe from the data

that absolute return has a strictly decreasing density, yet if we use more complicated distributions,

they cannot guarantee this property. In our empirical experiments, we also find that the Weibull

distribution gives a much worse result.

The conditional mean ψt+1 is modeled using an ACD-like model:

ψt+1 = δ0 + δ1Ut + δ2ψt, (7)

While other (nonlinear) specifications such as a logarithmic model of Bauwens and Giot (2000) and

a threshold model of Zhang, Russell and Tsay (2001) are possible, the above simple linear model

is suffi cient and a higher order specification is not necessary to make the density forecast more

accurate. The (conditional) marginal density forecast of Ut+1|It is then an exponential distribution

with the mean equal to the conditional mean forecast ψt+1 from the above ACD-like linear model.

That is,

fUt+1(u) =
1

ψt+1
exp

(
− 1

ψt+1
u

)
, u > 0. (8)

Once we get ψ̂t+1, the density forecast of the absolute return will be fUt+1(u) = 1
ψ̂t+1

exp
(
− 1
ψ̂t+1

u
)
.

Next, the marginal density of the sign of the return Vt+1 = 1 (rt+1 ≥ 0) − 1 (rt+1 < 0) can be

modeled using a Bernoulli-type density since the event is binary. Let vt+1 = 1 when the sign of the

actual stock return at t + 1 is positive and otherwise vt+1 = −1. Then the sign forecast density

function can be written as:

fVt+1(v) =

{
pt+1 if v = 1
1− pt+1 if v = −1

(9)

= p
v+1
2

t+1 (1− pt+1)
1−v
2 ,

where pt+1 := Pr (Vt+1 = 1|It) . To predict pt+1, the simplest way is to use the historical percentage

of positive returns, that is, p̂t+1 = 1
R

∑t
s=t−R+1 1 (rs > 0). This is a special case of the generalized

linear model (GLM), in which pt+1 = G (a+ x′tb), where G(·) is a link function and b = 0. More

complicated models can be used to estimate pt+1. For instance, G(·) can be the standard normal

CDF or the logistic function for probit or logit models. However, these more complicated models

may not work better in out-of-sample forecast due to the parameter estimation uncertainty. So

in this paper, we only consider the historical percentage estimator of pt+1. Once we get p̂t+1, the

density forecast of the sign of the return will be fVt+1(v) = p̂
v+1
2

t+1 (1− p̂t+1)
1−v
2 .
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Due to the Bernoulli-type distribution (discrete with the bounded support) of the sign of the

return Vt+1, not all copula functions can be used for our decomposition model. We follow Anatolyev

and Gospodinov (2010) and consider the following representation of the joint density function

fUVt+1(u, v) = fUt+1(u)ρ
v+1
2

t+1 (1− ρt+1)
1−v
2 , (10)

where

ρt+1 = ρt+1(F
U
t+1(u)) = 1− ∂C(FUt+1(u), 1− pt+1)/∂w1. (11)

This can be proved following Anatolyev and Gospodinov (2010) with minor changes. Since the sign

variable V takes only two discrete values of 1 and −1 while the absolute returns U is continuous,

the joint density of U and V can be obtained from

fUVt+1(u, v) =
∂FUVt+1 (u, v)

∂u
−
∂FUVt+1 (u, v − 2)

∂u
(12)

=
∂C(FUt+1(u), F Vt+1(v))

∂u
−
∂C(FUt+1(u), F Vt+1(v − 2))

∂u

= fUt+1(u)

[
∂C(FUt+1(u), F Vt+1(v))

∂w1
−
∂C(FUt+1(u), F Vt+1(v − 2))

∂w1

]
.

Since C(w1, 1) ≡ w1 and C(w1, 0) ≡ 0, we have ∂C(w1,1)∂w1
= 1 and ∂C(w1,0)

∂w1
= 0. Therefore, if v = −1,

then F Vt+1(v) = 1− pt+1, F Vt+1(v − 2) = 0, and

fUVt+1(u, v) = fUt+1(u)

[
∂C(FUt+1(u), 1− pt+1)

∂w1
− 0

]
= fUt+1(u)(1− ρt+1). (13)

If v = 1, then F Vt+1(v) = 1, F Vt+1(v − 2) = 1− pt+1, and

fUVt+1(u, v) = fUt+1(u)

[
1−

∂C(FUt+1(u), 1− pt+1)
∂w1

]
= fUt+1(u)ρt+1. (14)

Putting these together yields the expression in (10).

We consider the Independent copula, Frank copula, Clayton copula and Farlie-Gumbel-Morgenstern

copula. Their conditional copula function, conditional copula density function and the ρ-function

in Eq (11) are given as follows.

(1) Independent copula

CIndep(w1, w2) = w1w2,

cIndep(w1, w2) = 1,

ρIndept+1 (w1, pt+1, θ) = pt+1.
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(2) Frank copula

CFrank(w1, w2, θ) = −1

θ
log

(
1 +

(e−θw1 − 1)(e−θw2 − 1)

(e−θ − 1)

)
, θ ∈ (−∞,+∞)\{0},

cFrank(w1, w2, θ) =
θ(1− e−θ)e−θ(w1+w2)

[(1− e−θ)− (1− e−θw1)(1− e−θw2)]2 ,

ρFrankt+1 (w1, pt+1, θ) =

(
1− 1− e−θ(1−pt+1)

1− eθpt+1 eθ(1−w1)
)−1

.

(3) Clayton copula

CClayton(w1, w2, θ) =
(
w−θ1 + w−θ2 − 1

)−1/θ
, θ ∈ [−1,+∞)\{0},

cClayton(w1, w2, θ) =
(1 + θ)(w−θ1 + w−θ2 − 1)−

1
θ
−2

(w1w2)θ+1
,

ρClaytont+1 (w1, pt+1, θ) = 1−
(

1 +
(1− pt+1)−θ − 1

w−θ1

)−1/θ−1
.

(4) Farlie-Gumbel-Morgenstern copula (FGM)

CFGM(w1, w2, θ) = w1w2 (1 + θ(1− w1)(1− w2)) , θ ∈ [−1, 1],

cFGM(w1, w2, θ) = 1 + θ − 2θw1 − 2θw2 + 4θw1w2,

ρFGMt+1 (w1, pt+1, θ) = 1− (1− pt+1)(1 + θpt+1(1− 2w1)).

Notice that Frank copula and FGM copula are symmetric copula, while Clayton copula is

asymmetric copula capturing the lower tail dependence. For Frank and FGM copula, θ < 0 implies

negative dependence and θ > 0 implies positive dependence. For Clayton copula and Frank copula,

θ → 0 leads to independence between w1 and w2 and in this case ρt+1 → pt+1. For FGM copula,

θ = 0 and ρt+1 = pt+1 implies independence.

While all the parameters including the parameter in the copula function as well as the para-

meters of the marginal densities can be estimated all at once, we do it in two steps, estimating the

marginal densities first and then the copula density. Noting that the copula parameter θ goes into

ρt+1(F
U
t+1(u)), rewrite it as ρt+1(FUt+1(u), θ). The maximum likelihood estimator (MLE) is given

by:

θ̂ = arg max
θ

n∑
t=1

log

(
fUt+1(u)

[
ρt+1(F

U
t+1(u), θ)

] v+1
2

[
1− ρt+1(FUt+1(u), θ)

] 1−v
2

)
(15)

= arg max
θ

n∑
t=1

log fUt+1(u) +
v + 1

2
log ρt+1(F

U
t+1(u), θ) +

1− v
2

log
[
1− ρt+1(FUt+1(u), θ)

]
.
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Since the marginal density fUt+1(u) does not depend on the copula parameter θ, we can maximize the

likelihood function in two steps. First we obtain the marginal density of Ut+1 and its distribution

F̂Ut+1(u), and then in the second step we get the MLE of θ by

θ̂ = arg max
θ

n∑
t=1

v + 1

2
log(ρt+1(F̂

U
t+1(u), θ)) +

1− v
2

log
[
1− ρt+1(F̂Ut+1(u), θ)

]
. (16)

Shih and Louis (1995) show that this two-step estimation is consistent although it may not be

effi cient. Also see Song, Fan, and Kalbfleisch (2005) and Chen, Fan and Tsyrennikov (2006).

The joint density forecast fUVt+1(u, v) of Ut+1 and Vt+1 will be called the decomposition model.

The decomposition model using a different copula function is referred to as Model 2 (or M2 in

short). In particular, Model 2 with Independent copula is referred to as Model 2-I, Model 2 with

Frank copula as Model 2-F, Model 2 with Clayton copula as Model 2-C, and Model 2 with Farlie-

Gumbel-Morgenstern copula as Model 2-FGM.

4 Maximum Entropy Decomposition Density Forecast Model

Previous studies, such as Anatolyev and Gospodinov (2010), did not consider the possible prob-

lem that the decomposition model may not generate satisfactory moment predictions even for the

first moment (mean). The possible problem with the joint density forecast model using the de-

composition is that the mean prediction E (Ut+1Vt+1|It) from the joint density forecast function

fUVt+1 (u, v) of the decomposition model (Model 2) may not be equal to E (rt+1|It) from Model 1,

even if rt+1 ≡ Ut+1Vt+1 is an identity. In fact, the mean of density forecast from the decomposition

model may be unreasonably far from zero which contradicts the fact that stock returns are close to

zero in mean especially in high frequency. Ignoring this problem could amplify the estimation errors

as it makes the conditional moment forecasts be subjected to multiplicative estimation errors which

are of higher order of magnitude. The mean prediction E (Ut+1Vt+1|It) can deviate from the mean

forecast of Model 1 for which HM is used for E (rt+1|It). In other words, the estimated decom-

position model may not satisfy the mean moment condition E (Ut+1Vt+1 − rt+1|It) = 0. To solve

this problem, imposing the conditional mean constraint tilts the density forecast of the decompo-

sition model and improves over the original (without tilting) density forecast of the decomposition

model. Imposing such a moment constraint operates a shrinkage and tilts the density forecast of
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the decomposition model to produce the improved maximum entropy density forecast. With this

in mind, we want to impose the (conditional) moment constraint that

E (Ut+1Vt+1|It) = µt+1. (17)

We consider the HM for µt+1.

Since we will use the “logarithmic score” to evaluate and compare different density forecast

models, we impose the moment constraint by solving the following constrained maximization prob-

lem of the cross-entropy of the new density forecast hUVt+1 (u, v) with respect to the original density

forecast fUVt+1 (u, v):

max
hUVt+1(u,v)

=−
∫ ∫ (

log
hUVt+1(u, v)

fUVt+1(u, v)

)
hUVt+1(u, v)dudv (18)

subject to
∫ ∫

mt(u, v)hUVt+1(u, v)dudv = 0, (19)

and
∫ ∫

hUVt+1(u, v)dudv = 1, (20)

where fUVt+1(u, v) is the density forecast from the decomposition model and hUVt+1(u, v) is a new

maximum entropy (ME) density forecast satisfying the moment constraint of (19). The moment

constraint in (17) is rewritten as (19) with

mt(u, v) = uv − µt+1. (21)

Note that the expectation in (17) is evaluated using the new density forecast hUVt+1(u, v). Note that

the moment constraint function mt(u, v) is denoted with the subscript t as it is measurable with

respect to the information It at time t (as µt+1 is It-measurable). The moment condition (19) with

(21) will make the new joint density forecast hUVt+1(u, v) have the same mean forecast µt+1 as Model

1.

The maximization of (18) subject to the moment constraint (19) is well established in the

literature. Jaynes (1957) was the pioneer to consider this problem. Jaynes (1957, 1968) provides a

solution for discrete density, while a general solution for any type of density can be found in Csiszár

(1975). Also see Maasoumi (1993), Zellner (1994), Golan, Judge, and Miller (1996), Ullah (1996),

Bera and Bilias (2002), among others.

The solution to the above maximization problem, if exists, is given by

hUVt+1(u, v) = fUVt+1(u, v) exp [η∗t + λ∗tmt(u, v)] , (22)
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where

λ∗t = arg min
λt

It(λt), (23)

η∗t = − log It(λ
∗
t ), (24)

It(λt) =

∫ ∫
exp [λtmt(u, v)] fUVt+1(u, v)dudv. (25)

That is, to get the solution hUVt+1(u, v), we construct a new density forecast by exponentially

tilting through λ∗t and normalizing it through η∗t . This derivation can also be found in recent

econometric applications of the maximum entropy, as in Kitamura and Stutzer (1997), Imbens,

Spady and Johnson (1998), Bera and Bilias (2002), Kitamura, Tripathi and Ahn (2004), Robertson,

Tallman and Whiteman (2005), Park and Bera (2006), Bera and Park (2008), Stengos and Wu

(2010), and in particular, Giacomini and Ragusa (2014).

Note that the objective function of (18) is the (negative) conditional Kullbeck-Leibler (1951)

information criterion (KLIC) divergence measure between the new conditional density and the orig-

inal conditional density. If the (conditional) moment constraint is true, the difference of expected

(conditional) logarithmic scores between hUVt+1 (u, v) and fUVt+1 (u, v) is nonnegative. To be specific,

if the conditional moment constraint is true,

KLIC(hUVt+1, f
UV
t+1) =

∫ ∫ (
log

hUVt+1(u, v)

fUVt+1(u, v)

)
hUVt+1(u, v)dudv (26)

=

∫ ∫
log exp [ηt + λtmt(u, v)]hUVt+1(u, v)dudv

= ηt

∫ ∫
hUVt+1(u, v)dudv + λt

∫ ∫
mt(u, v)hUVt+1(u, v)dudv

= ηt.

Note that ηt = KLIC(hUVt+1, f
UV
t+1) measures the gain from hUVt+1 (Model 3) over f

UV
t+1 (Model 2) in

terms of the logarithmic score (33). The gain is non-negative since ηt ≥ 0 as shown in (34). Since

ηt = KLIC(hUVt+1, f
UV
t+1) ≥ 0, we have η∗t = − log It(λ

∗
t ) ≥ 0 and therefore 0 < It(λ

∗
t ) ≤ 1.

To find λ∗t , we need first to find the function It(λt), which is the integral of the joint density

function of Ut+1 and Vt+1 times an exponential function of the moment constraint. We will use the

numerical integration in the empirical section, since the analytical solution to It(λt) does not have

an explicit expression under the historical mean constraint as well as for some copula functions. To

12



implement the numerical integral, we note from (25)

It (λt) = Et exp [λtmt (u, v)] , (27)

where the expectation is taken over the joint density forecast fUVt+1(u, v). Thus we generate S random

draws {ust , vst }Ss=1 from fUVt+1(u, v) and calculate It(λt) = 1
S

∑S
s=1 exp [λtm(ust , v

s
t )]. Then λ

∗
t can be

solved by minimizing It(λt), and then η∗t is obtained by η
∗
t = − log It(λ

∗
t ). A possible problem with

using the numerical integration is that, as we discuss below, I(λt) is flat for a wide range of λt, so

that the numerical integration may not well behave and the algorithm may stop before reaching

λ∗t . Therefore the nonnegativity of η
∗
t may not be guaranteed.

To generate the random draws of {ust , vst }Ss=1 from fUVt+1(u, v) under independent copula, we just

need to generate Ut+1 and Vt+1 separately according to their marginal density functions since the

joint density fUVt+1(u, v) is just equal to the product of the two marginal density functions under

independence. For the random draws under dependence, an easy way to generate {ust , vst }Ss=1 from

fUVt+1(u, v) is to first generate Ut+1 based on its exponential marginal density function fUt+1(u) =

1
ψt+1

exp
(
− 1
ψt+1

u
)
, and then generate Vt+1 based on the conditional density of fV |U (v|u), and since

Vt+1 is binary, the conditional density should be Bernoulli-type. From (10), the conditional density

of Vt+1 conditioning on Ut+1 is given by:

f
V |U
t+1 (v|u) =

fUVt+1(u, v)

fUt+1(u)
= ρ

1+v
2

t+1 (1− ρt+1)
1−v
2 , v ∈ {−1, 1} . (28)

The decomposition model (Model 2) with the HM moment constraint µ̂t+1 = r̄t imposed will be

called Model 3 (or M3 in short). For each copula function, we will denote the model using the name

of copula, e.g., Model 3-I (or M3-I) with Independent copula. The labels for other copula functions

are made similarly. Model 2 is the original decomposition density forecast model fUVt+1(u, v), while

Model 3 is the tilted maximum entropy density forecast model hUVt+1(u, v). We will compare Model

2 and Model 3 to examine if imposing the HM moment constraint can improve the density forecast

of the decomposition model.

Remark 1. If the relative entropy between hUV (Model 3) and fUV (Model 2) is big, that

means the moment constraint is not satisfied by the decomposition model density fUV . This can

arise from misspecifications in the marginal models for the components (U, V ) or their copula.
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We consider the ACD-like model for fU in Eq (7) with the exponential density in Eq (8), and

the marginal model for V is fV in Eq (9) with Pr (Vt+1 = 1|It) = Pr (Vt+1 = 1). Hence, it is

possible that the mean E(rt+1|It) from Model 1 and the mean E(Ut+1Vt+1|It) from Model 2 may

not be the same even though rt+1 ≡ Ut+1Vt+1 is an identity. The moment condition is simply

E(rt+1 − Ut+1Vt+1|It) = 0. Most empirical finance literature on the return prediction shows that

HM is a hard-to-beat benchmark for the mean forecast, e.g., Welch and Goyal (2008), Campbell

and Thompson (2008). Hence, we believe E(rt+1|It) = HM is a good model for the mean and thus

we impose the constraint that E(Ut+1Vt+1|It) = HM. The benefit of the moment condition is when

the mean of fUV does not satisfy it. In such case, f UV is tilted to satisfy the moment condition.

The resulting ME density hUV can generate not only the more stable mean forecast (HM) but also

the better density forecast in the logarithmic score (since KLIC is non-negative).

Remark 2. If the HM mean constraint is believed to be true and it is not satisfied by the mean

of the density forecast from the decomposition model, the marginal models and copula in the

decomposition model may not be fully correctly specified. Solutions may be to modify the ACD-

like model in Eq (7) to include the leverage effect or the exogenous predictors, to modify Eq (8)

for the marginal density forecast of U using the more flexible density instead of the exponential

density, to modify Eq (9) and the link function in Pr(Vt+1 = 1|It) = G (a+ x′tb) as mentioned

earlier, to use nonparametric marginal densities of U, V, or to use a nonparametric copula function

in Eq (5). However, in this paper, our interest is to see how imposing a simple moment condition

can improve the density forecast of the decomposition model.

Remark 3. If we apply more moment constraints, the maximum entropy density can improve

the density of the decomposition model even more. We have not considered different moment

constraints other than the mean constraint. What we have done is to match the first moment. If

we go for matching higher order moment conditions such as variance, skewness, kurtosis, and etc,

it would improve the density forecast even more. If we go for imposing conditions that are implied

from economic theory, as considered by Giacomini and Ragusa (2014), it could also improve the

density forecasts.

To better understand when the constraint can improve the density forecast, let us consider a

simple case when the maximization problem can be solved analytically. Solving it analytically will
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give the most accurate results of λ∗t and η
∗
t and ensure that η

∗
t is nonnegative. To illustrate, consider

a simple case under DP1 with µ̂t+1 = 0. In this case, the analytical expression of It(λt) is obtained

as follows:

It(λt) =

∫ ∫
exp[λtm(u, v)]fUVt+1(u, v)dudv

=

∫ ∫
v=−1

fUVt+1(u, v) exp[λtmt(u, v)]dvdu+

∫ ∫
v=1

fUVt+1(u, v) exp[λtmt(u, v)]dvdu

=

∫
f(u,−1) exp[λtm(u,−1)]du+

∫
f(u, 1) exp[λtm(u, 1)]du

=

∫ ∞
0

1

ψt+1
exp(− 1

ψt+1
u)(1− pt+1) exp(−λtu)du+

∫ ∞
0

1

ψt+1
exp(− 1

ψt+1
u)pt+1 exp(λtu)du

=

1
ψt+1

(1− pt+1)
1

ψt+1
+ λt

+

1
ψt+1

pt+1
1

ψt+1
− λt

(29)

A plot of It (λt) with 1
ψt+1

= 8 and pt = 0.55 is given in Figure 1(a). A plot of It (λt) with

1
ψt+1

= 8 and pt = 0.65 is given in Figure 1(c). We can see that for a wide range of λt, It (λt)

is near flat. It (λt) appears to change little over the flat area especially when pt is nearer to 0.50.

Therefore when using numerical integration It(λt) = 1
S

∑S
s=1 exp [λtmt (ust , v

s
t )] to find the optimal

value, it can easily stop somewhere in the flat area where It (λt) may be above 1 (and thus η∗ may

be less than 0).

To find λ∗t = arg minλt It(λt), one can use the analytical solution for λ
∗
t from solving the first

order condition
dIt (λt)

dλt
= − 1− pt+1

( 1
ψt+1

+ λt)2
+

pt+1

( 1
ψt+1
− λt)2

= 0. (30)

Solving for λt and choosing the solution whose absolute value is less than 1
ψt+1

, we get:

λ∗t =

1
ψt+1

(
−1 + 2

√
pt+1(1− pt+1)

)
2pt+1 − 1

, (31)

if pt 6= 1
2 . Note that It (0) = 1 and in fact It (λt) < 1 for some λt. To look more closely at the

bottom of Figure 1(a) and Figure 1(c), these figures are magnified into Figure 1(b) and Figure 1(d)

for a narrower domain of −2 < λt < 2 that includes the optimal value λ∗t . It can be seen that

It (λ∗t ) < 1 at the optimal value of λt.

Plug λ∗t back into It (λt), we can find the minimized value of the integral

It (λ∗t ) =
(1− pt+1)(2pt+1 − 1)

2pt+1 − 2 + 2
√
pt+1(1− pt+1)

+
pt+1(2pt+1 − 1)

2pt+1 − 2
√
pt+1(1− pt+1)

. (32)
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It is interesting to see that It (λ∗t ) does not depend on ψt+1 but depends only on pt+1.
1 Figure

1(e) is the plot It (λ∗t ) as a function of pt+1 ∈ (0, 1) \ {0.5} . Note that the optimal value of It (λ∗t )

is smaller than 1 for all values of pt+1 on (0, 1) \ {0.5}, which means that η∗t is greater than 0

for all pt+1 (except for 0.50). While λ∗t in (31) is not defined for pt+1 = 0.5, the limiting value

limpt+1→0.5 It (λ∗t ) = 1 as shown in Figure 1(e), in which case η∗t = − log It(λ
∗
t )→ 0 indicating that

the moment constraint would not improve the density forecast when pt+1 → 0.5. It is important to

note that, the further pt+1 deviates from 0.5, the more room we can have for improvement from

imposing the moment constraint. This is because η∗t can be substantially less than 1 when pt+1

deviates from 0.5. See Figure 1(e). As tabulated in Figure 1(f), the gain η∗t in the new ME density

hUV increases as pt+1 deviates from 0.5.

5 Evaluation of Density Forecast Models

To evaluate different density forecast models (Model 1, Model 2, Model 3), a proper scoring rule

can be compared. A scoring rule S(f, y) of the density forecast f is a real value evaluated at the

realized value y of a random variable Y . A score rule is positive-oriented (negative-oriented) if it is

to be maximized (minimized). A larger expected positive-oriented (negative-oriented) scoring rule

means that the associated density forecast is better (worse). For a proper positive-oriented scoring

rule S(f, y), the expected score of the true density is always greater than the expected score of any

other density. A positive-oriented scoring rule is proper if EfS(f, Y ) ≥ EfS(g, Y ) for all densities

f and g, where EfS(f, Y ) =
∫
S(f, y)f (y)dy is the expected score value of S(f, y) under the

density function f , and EfS(g, Y ) =
∫
S(g, y)f (y)dy is the expected score value of S(g, y) under

the density function f . If the equality holds only if f = g, then the score function is strictly proper.

If the true conditional density of Y is f, then the density forecast f is ideal. A negative-oriented

scoring rule is proper if EfS(f, Y ) ≤ EfS(g, Y ). See Gneiting and Raftery (2007) and Gneiting

and Ranjan (2011). In this section, we consider three proper scoring rules: logarithmic score (LS),

quantile score (QS), and continuous ranked probability score (CRPS). LS is positive-oriented, while

QS and CRPS are negative-oriented.

1This is due to the particular moment condition mt(u, v) = uv−µt+1 and µt+1 = 0 (21) in deriving this. It is not
true in general with a different moment condition. For example, if the moment condition with µt+1 6= 0, It (λ∗t ) will
depend on ψt+1 and pt+1.
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5.1 Logarithmic Score

The logarithmic score (LS) is defined as

LS(f, y) ≡ log f(y). (33)

The difference of the expected logarithmic scores is the KLIC divergence measure. For example,

when comparing the performance of hUV (Model 3) and fUV (Model 2), the difference of the

expected log scores of h and f is

KLIC(h, f) = Eh [LS(h, Y )− LS(f, Y )] = Eh [log h (Y )− log f (Y )] , (34)

where Y = (U, V ) . KLIC(h, f) ≥ 0 due to the Jensen’s inequality applied to the logarithmic

function which is concave. See Rao (1965), White (1994), and Ullah (1996). To estimate the

logarithmic score, we use the sample of the total number of observations T, divided into R in-

sample observations and P out-of-sample observations (T = R+P ). For in-sample (IS) estimation,

the expected logarithmic score E [LS(f, Y )] , for f being the density from Model 1, Model 2, or

Model 3, is estimated by

LSIS =
1

R

R∑
t=1

LSt, (35)

where LSt = LS (ft, yt) is the logarithmic score of the density estimated at time t, and evaluated

at the realized value yt at time t (where yt = rt for Model 1 and yt = (ut, vt) for Models 2, 3). For

out-of-sample (OOS) forecasting, the expected logarithmic score is estimated by the out-of-sample

average of predicted logarithmic scores

LSOOS =
1

P

T−1∑
t=R

LSt+1, (36)

where LSt+1 = LS (ft+1, yt+1) is the predicted logarithmic score of the one-period ahead density

forecast ft+1 made at time t and evaluated at the realized value yt+1 at time t + 1. The out-of-

sample forecast evaluation period is for t = R, . . . , T −1, with the total P observations in the OOS.

The density forecast with a higher value of LS is the better density forecast.

To apply the logarithmic score to the decomposition model, let y = (u, v) and

LS(ft+1, yt+1) = LS
(
fUVt+1 , (ut+1, vt+1)

)
= log fUVt+1 (ut+1, vt+1) . (37)
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The joint density forecast can be improved by improving any of the two marginal density forecasts

and a copula density forecast, i.e., any of the three terms in the right hand side of

LS
(
fUVt+1 , (ut+1, vt+1)

)
= log fUt+1 (ut+1) +

1 + vt+1
2

log ρt+1 +
1− vt+1

2
log(1− ρt+1). (38)

We compare density forecasts by the average out-of-sample logarithmic scores in (36) where LSt

is the logarithmic score LS
(
fUVt+1 , (ut+1, vt+1)

)
of the joint density forecast made at time t, and

evaluated at the realized absolute return ut+1 and the realized sign vt+1 at time t+ 1.

It should be noted that the logarithmic score of this joint density of U and V can be compared

with that of the normal density forecast model (Model 1) as well. Since rt+1 ≡ Ut+1Vt+1, the

normal density forecast model conditional on the information set It in (2) can be seen as

ft+1(r) =
∑

v∈{−1,1}
fUVt+1 (u, v) = fUVt+1 (−r,−1) + fUVt+1 (r, 1) (39)

because the Jacobian of the transformation from (r = uv,w = v) to (u = r/w, v = w) is 1. Further,

since the logarithmic score is evaluated at one realized value rt+1 = ut+1vt+1 at each time t, the

average out-of-sample logarithmic score value of the density forecast of Model 1 is expressed as that

of the joint density forecast fUVt+1 (ut+1, vt+1)

1

P

T−1∑
t=R

log ft+1 (rt+1) =
1

P

T−1∑
t=R

log fUVt+1 (ut+1, vt+1) . (40)

So we can actually compare Model 1 and Model 2 via the scoring rule of the joint density of U and

V . In Section 6 for empirical applications, the results using the logarithmic scores LSIS , LSOOS

are presented in Table 1.

5.2 Value-at-Risk Forecasts and Quantile Score

An important application of the density forecast models is to make risk forecasts. Since a “better”

density forecast is in terms of the expected logarithmic score which is estimated by the average

out-of-sample logarithmic score evaluated at {(ut+1, vt+1)} , the evaluation of the density forecast

models is to compare the overall performance over the entire support u ∈ R+ and v ∈ {−1, 1} .

A better density forecast over the entire support may not necessarily be a better density forecast

for a certain subset of the support. It would be interesting to compare the density forecast models

over the tail part of the support. As reported later, we find the density forecasts from Model 2
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generates higher average logarithmic score than Model 1, while the mean forecasts from Model 2

are not necessarily better than those from Model 1. That means the improvement should come

from the support away from the mean, possibly from tails.

Therefore we examine if the decomposition model’s density and the maximum entropy density

can also generate superior density forecast in tails. We focus on Value-at-Risk (VaR), the quantiles

of the density forecasts. To be specific, we will invert the conditional distribution functions of the

density forecasts to obtain the conditional quantile forecasts, namely, VaRt+1 (α) = F−1t+1 (α) , for

a given tail probability α ∈ (0, 1) . While we could do more by computing other tail/risk measures

such as the risk spectrum (the weighted average of return quantiles with weights reflecting different

risk aversion), the expected short fall, the loss given default, or unexpected loss, we will focus on

the forecasts of VaRt+1 (α) with α = 0.01.

The normal density forecast (M1) is determined by its mean forecast µ̂t+1 and standard deviation

forecast σ̂t+1 from GARCH(1,1), the VaR forecast is given by µ̂t+1 + σ̂t+1Φ
−1(α) where Φ (·) is

the CDF of the standard normal distribution. For the decomposition models M2 and M3, it is

diffi cult to derive the VaR analytically as there is no explicit solution, so we use numerical methods

to obtain VaR forecasts from the density forecast. Once the joint density forecast fUVt+1(u, v) in

M2 or the joint density forecast under the moment constraint hUVt+1(u, v) in M3 are computed, we

can again generate S random draws of {ust , vst }Ss=1 from fUVt+1(u, v) or hUVt+1(u, v), and calculate the

return by rst = ustv
s
t and find the α-percentile by taking the [αS] lowest return from the random

draws as the forecasted VaR(α) for a given α.

To generate the random draws of {ust , vst }Ss=1 from fUVt+1(u, v), we can just follow the same

procedure in the last section. However, to generate the random draws of {ust , vst }Ss=1 from hUVt+1(u, v)

is less straightforward. Still we follow similar steps, that we first generate Ut+1 based on its marginal

density hUt+1(u), and then generate Vt+1 based on the conditional density of hV |U (v|u), and since

Vt+1 is binary, the conditional density should also be Bernoulli-type. Substitute (10) and (21) to

(22), the joint density of Ut+1 and Vt+1 under moment constraint can be written as:

hUVt+1(u, v) = fUt+1(u)ρ
1+v
2

t+1 (1− ρt+1)
1−v
2 exp [η∗t + λ∗t (uv − µt+1)] .

Since the sign part is binary where Vt+1 can only take value of 1 or −1, the marginal distribution

19



of Ut+1 can then be written as:

hUt+1(u) = hUVt+1(u,−1) + hUVt+1(u, 1)

= fUt+1(u)(1− ρt+1) exp(η∗t − λ∗t µ̂t+1 − λ∗tu) + fUt+1(u)ρt+1 exp(η∗t − λ∗t µ̂t+1 + λ∗tu)

= exp(η∗t − λ∗t µ̂t+1)fUt+1(u)[(1− ρt+1) exp(−λ∗tu) + ρt+1 exp(λ∗tu)],

then the conditional density of Vt+1 given realizations of Ut+1 is given by:

h
V |U
t+1 (v|u) =

hUVt+1(u, v)

hUt+1(u)

=
ρ
1+v
2

t+1 (1− ρt+1)
1−v
2 exp(λ∗tuv)

(1− ρt+1) exp(−λ∗tu) + ρt+1 exp(λ∗tu)

However, it is not always easy to generate u’s from the hUt+1(u) function since it is not a common

density function especially when the ρt+1 function is complicated for some copulas. To solve this

problem, we consider two possible methods. The straight method to generate u from hUt+1(u) is to

use the probability integral transformation (PIT). Since we assume that u follows an exponential

distribution with mean equal to ψt+1, we have fUt+1(u) = 1
ψt+1

exp
(
− 1
ψt+1

u
)
. Substituting this

expression into the marginal distribution hUt+1(u), we get

hUt+1(u) = exp(η∗t − λ∗t µ̂t+1)
1

ψt+1
exp

(
− 1

ψt+1
u

)
[(1− ρt+1) exp(−λ∗tu) + ρt+1 exp(λ∗tu)] ,

and the CDF

HU
t+1(u) =

∫
hUt+1(u)du

= exp(η∗t − λ∗tµt+1)
1

ψt+1

1− ρt+1
1

ψt+1
+ λ∗t

[
1− exp

(
−
(

1

ψt+1
+ λ∗t

)
u

)]
+ exp(η∗t − λ∗tµt+1)

1

ψt+1

ρt+1
1

ψt+1
− λ∗t

[
1− exp

(
−
(

1

ψt+1
− λ∗t

)
u

)]
.

Once we get this analytical expression of the CDF of Ut+1, we can first generate random numbers

from uniform distribution, and solve for u from the inverse of its CDF function evaluated at the

realizations of the uniform distribution. However, HU
t+1(u) is a highly nonlinear function in u, and

the only way to solve the inverse function of the CDF is through numerical methods, which could

be very ineffi cient and inaccurate and thus affect the random draws of u, so we do not consider

using PIT in the empirical application.
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An alternative method is the Metropolis-Hastings algorithm to generate u’s from hUt+1(u). The

sketch of this algorithm is as follows. Let Y ∼ fY (y) (target density) and X ∼ fX(x) (candidate-

generating density), and fY and fX have common support. If it is easy to generate X from fX(x),

then the following algorithm can generate Y from fY (y):

1. Generate X0 ∼ fX(x). Set Z0 = X0.

2. For i = 1, 2, . . . generate Ui ∼ Uniform(0, 1) and Xi ∼ fX (x) . Calculate

αi = min

{
fY (Xi)

fX(Xi)
· fX(Zi−1)

fY (Zi−1)
, 1

}
.

Zi =

{
Xi if Ui ≤ αi
Zi−1 if Ui > αi

.

Then, as i→∞, Zi will converge to Y in distribution.

See Casella and Berger (2002) and Chib and Greenberg (1995) for an introduction to the

Metropolis-Hastings algorithm. In terms of our notation to generate u ∼ hUt+1(u), hUt+1 is the target

density and fUt+1 is the candidate-generating density. Since it is easy to generate u ∼ fUt+1(u), we

will set u ∼ fUt+1(u) as the X variable above, and u ∼ hUt+1(u) to be the Y variable above, and then

u ∼ hUt+1(u) can be generated applying the Metropolis-Hastings algorithm. Using these u’s we can

get the VaR forecast according to the numerical method discussed above.

To compare the VaR forecasts from different density forecast models, we define the quantile

score (QS) from the “check function”of Koenker and Bassett (1978). The QS of a quantile F−1 (α)

for a given probability level α ∈ (0 1) is defined as

QS(f, y;α) ≡
[
α− 1

(
y ≤ F−1 (α)

)] (
y − F−1 (α)

)
. (41)

The QS is a negative-oriented scoring rule, i.e., a lower QS means that the associated density

forecast is better for the VaR forecasts. Saerens (2000), Bertail, Haefke, Politis and White (2004),

Komunjer (2005), Bao, Lee and Saltoğlu (2006), and Gneiting (2011) show that the QS or the check

loss function can be regarded as a (negative) quasi-likelihood, therefore QS can provide a measure

of the lack-of-fit of a quantile model.

Once we obtained a VaR, F−1 (α) , by the numerical method discussed above, we plug it to

the above expression to compute QS. For in-sample (IS) estimation, the expected quantile score
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E [QS(f, Y ;α)] , for f being the density from Model 1, Model 2, or Model 3, is estimated by

QSIS (α) =
1

R

R∑
t=1

QSt (α) , (42)

where QSt (α) = QS (ft, yt;α) is the quantile score of the density estimated at time t and evaluated

at the realized value yt at time t (where yt = rt for Model 1 and yt = (ut, vt) for Models 2,

3). For out-of-sample (OOS) forecast, the predictive QS is estimated by computing the average

out-of-sample check loss

QSOOS (α) =
1

P

T−1∑
t=R

QSt+1 (α) , (43)

where QSt+1 (α) = QS (ft+1, yt+1;α) is the quantile score of the one-period ahead density forecast

ft+1 made at time t and evaluated at the realized value yt+1 at time t+ 1. For example, for Model

2, QSt (α) = QS
(
fUVt+1 , (ut+1, vt+1) ;α

)
with the density forecast fUVt+1 , (ut+1, vt+1) made at time t

and evaluated at the realized absolute return ut+1 and the realized sign vt+1 at time t + 1. In

Section 6 for empirical applications, the results using the quantile scores QSIS (α) , QSOOS (α) are

presented in Table 2.

Besides the quantile score, the VaR’s from different density models can be evaluated by the

coverage probability. See Corradi, Fosten, and Gutknecht (2020). Given the quantile F−1 (α), the

in-sample and out-of-sample coverage probabilities are estimated by

α̂IS =
1

R

R∑
t=1

[
1(yt < F−1t (α))

]
, (44)

α̂OOS =
1

P

T−1∑
t=R

[
1(yt+1 < F−1t+1 (α))

]
.

A density model is more desirable if these empirical coverage probabilities of its quantiles are closer

to the true coverage probabilities. In Section 6 for empirical applications, the results for α̂IS , α̂OOS

are presented in Table 3.

5.3 Continuous Ranked Probability Score

The continuous ranked predictive score (CRPS; Matheson and Winkler 1976; Gneiting and Raftery

2007; Gneiting and Ranjan 2011) is a negative-oriented scoring rule to evaluate density forecast

f . Let the probability score, PS (f, z) =
[∫ z
−∞ f(y)dy − 1 (y ≤ z)

]2
, be the quadratic distance

between a binary event 1 (y ≤ z) and its expectation E [1 (y ≤ z)] = Pr (y ≤ z) =
∫ z
−∞ f(y)dy =
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F (z) which is the corresponding CDF of the density f (y) . CRPS is defined as the integration of

PS (f, z) over z ∈ R :

CRPS (f, y) ≡
∫ ∞
−∞

[∫ z

−∞
f(y)dy − 1 (y ≤ z)

]2
dz. (45)

Gneiting and Ranjan (2011) note that CRPS is equivalently expressed in terms of the quantile score

in (41):

CRPS (f, y) = 2

∫ 1

0
QS (f, y;α) dα, (46)

so that CRPS reflects the quantile scores for all values of α from 0 to 1. Thus we first compute

QS (ft, yt;α) using VaR(α) from
∫ V aR(α)
−∞ f(y)dy = α and approximate CRPS by

CRPS (ft, yt) ≈
2

J − 1

J−1∑
j=1

QS (ft, yt;αj) , (47)

as in Gneiting and Ranjan (2011), with αj = j
J and J = 100. For in-sample (IS) estimation, the

expected CRPS, E [CRPS (f, Y )] , for f being the density from Model 1, Model 2, or Model 3, is

estimated by

CRPSIS =
1

R

R∑
t=1

CRPSt, (48)

where CRPSt ≡ CRPS (ft, yt) is the CRPS of the density estimated at time t and evaluated at

the realized value yt at time t. For out-of-sample (OOS) forecast, the expected CRPS is estimated

by computing the average out-of-sample CRPS

CRPSOOS =
1

P

T−1∑
t=R

CRPSt+1, (49)

where CRPSt+1 ≡ CRPS (ft+1, yt+1) is the CRPS of the one-period ahead density forecast ft+1

made at time t and evaluated at the realized value yt+1 at time t + 1. With letting y = (u, v),

we compare density forecasts by the average out-of-sample CRPS in (49) where CRPSt+1 =

CRPS
(
fUVt+1 , (ut+1, vt+1)

)
for Model 2 and CRPSt+1 = CRPS

(
hUVt+1, (ut+1, vt+1)

)
for Model 3,

evaluated at the realized absolute return ut+1 and the realized sign vt+1 at time t + 1. In Section

6 for empirical applications, the results for CRPSIS , CRPSOOS are presented in Table 4.

5.4 Test of Comparing Predictive Ability

To compare density forecast models, we test for the null hypothesis that two density forecasts

f, g are equal in a scoring rule, H0 : E [S (f, Y )] − E [S (g, Y )] = 0. The scoring rule S(f, y)
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is LS (f, y) , QS (f, y) , or CRPS (f, y) . The alternative hypothesis that g is better than f is

H1 : E [S (f, Y )] − E [S (g, Y )] < 0 for a positive-oriented scoring rule such as LS, and H1 :

E [S (f, Y )]− E [S (g, Y )] > 0 for a negative-oriented scoring rule such as QS and CRPS.

The test statistic for comparing the in-sample (IS) estimated densities ft and gt is tIS =

√
R
(
S̄fR − S̄

g
R

)
/σ̂R, where S̄

f
R = 1

R

∑R
t=1 S(ft, yt), S̄

g
R = 1

R

∑R
t=1 S(gt, yt), and σ̂2R =

1
R

∑R
t=1 [S(ft, yt)− S(gt, yt)]

2 . The test statistic for comparing the out-of-sample (OOS) density

forecasts is tOOS =
√
P
(
S̄fP − S̄

g
P

)
/σ̂P , where S̄

f
P = 1

P

∑T−1
t=R S(ft+1, yt+1), S̄

g
P = 1

P

∑T−1
t=R S(gt+1, yt+1),

and σ̂2P = 1
P

∑T−1
t=R [S(ft+1, yt+1)− S(gt+1, yt+1)]

2 . The test statistics are asymptotically standard

normal under H0. In Section 6 for empirical applications, we report the t-statistics and their as-

ymptotic p-values.

6 Empirical Applications

6.1 Data

In our empirical studies, we use the daily S&P500 index. Denote by Pt the S&P500 index at day

t. We consider the density forecast of stock return. The one-day return from day t to day t + 1

is defined as rt+1 ≡ Pt+1/Pt − 1. We consider two periods of daily data. Data Period 1 is from

1/4/2007 to 2/12/2009 with T = 532 observations. We divide the whole sample into R = 117

in-sample observations and P = 355 pseudo out-of-sample observations. Data Period 2 is from

1/2/2019 to 12/31/2020 with T = 505, R = 168, and P = 337. Both periods contain obvious

downturns, while the lengths of the downturns are different. Data Period 1 includes the 2007-08

Great Recession downturn for about 17 months, from October 2007 to February 2009. Data Period

2 includes the Covid-19 downturn for about 1 month, from February 20, 2020 to March 16, 2020.

The plots of the S&P500 index and daily returns for both data periods are given in Figure 2.

We consider both in-sample estimation and out-of-sample forecasting. The in-sample estima-

tion uses the R in-sample observations to estimate parameters of a model. The out-of-sample

forecasting is using rolling windows of the fixed size R to estimate models. That is, at each time

t ∈ {R, . . . , T − 1} we use the data starting from t − R + 1 and ending at time t to estimate

parameters of a model and then make one-day ahead density forecast for the next day t+ 1.
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6.2 Results

Many papers have already cited that the stock returns exhibit negative skewness, which is an evi-

dence of dependence between the absolute return and the sign of the return. The strong dependence

between Ut+1 and Vt+1 is evidenced in the in-sample and out-of-sample estimated copula function

parameter θ, ρ-function, logarithmic score, quantile score, and empirical coverage probability, and

to lesser degree in CRPS.

Figure 3 plots the out-of-sample estimated copula parameter θ for Frank (blue solid line),

Clayton (red dashed line) and FGM (black dashed line) copula over time. Note that the in-sample

fitted copula parameter θ for Data Period 1 are θ = 0.2929, 0.1548, 0.1371, for Data Period 2 are

θ = 0.5982, 0.0904, 0.2909, for Frank, Clayton, and FGM copula respectively. We can see that from

the figures all the three copula parameters are away from 0, indicating that the absolute return and

the sign of the return are not independent. The figure shows the dependence is time-varying over

the OOS, sometimes switching between positive and negative dependence between the absolute

return and the sign of the return.

Figure 4 plots the estimated in-sample and out-of-sample ρ-functions for Frank (blue solid line),

Clayton (red dashed line), FGM (black dashed line), and Independent (green solid line) copula

functions over time. For Independent copula, ρt+1 = pt+1. The magnitude of the improvement

from Model 2-I to Model 2 with dependent copula depends on how far away ρt+1 deviates from

pt+1.

Figure 5 plots the pattern of It (λt) with λt for the in-sample estimation for the two data periods

using the four copula functions. In Model 3, we compute the optimal λ∗t by minimizing It (λt) with

respect to λt. From the graphs we can see that the optimal λ∗t ≤ 1, which indicates that the optimal

η∗t = − log I (λ∗t ) ≥ 0 and therefore I (λ∗t ) ≤ 1. The pattern of I (λt) for Frank copula and for FGM

copula are similar and lines are overlapped, which can be explained by their overlapped ρ-functions

in Figure 4(a)(b). In Figure 5(a), among the four copulas, the Clayton copula performs the best as

it is associated the lowest λ∗t . This can be confirmed from Table 1 that among the four in-sample

logarithmic scores for Data Period 1, logarithmic score for M3-C, 3.3582, is the highest among M3

density forecasts.

Table 1 shows the in-sample and out-of-sample average values of the logarithmic scores for
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different density forecast models. We compare density forecasts from Models 1, 2, 3 to see whether

the decomposition model improves from the normal distribution model and especially whether

imposing moment constraint can improve the decomposition model. The t-statistics and p-values

are shown. We observe the following empirical findings.

1. Comparing the logarithmic scores for Model 1 and Model 2, we observe that the decom-

position model improves substantially upon the normal distribution model. The t-statistics

reported in the rows of M2 are to compare the logarithmic score of M1 with that of each

of M2’s. The negative t-statistics in most cases indicate M2’s are better than M1. For ex-

ample, for Data Period 1, the in-sample logarithmic score jumps from 3.2513 for Model 1

to 3.3431, 3.3440, 3.3481, 3.3440 for Model 2 using Independent, Frank, Clayton, and FGM

copula functions, respectively, with the p-values ranging 0.102 ∼ 0.114.

2. Model 3 improves upon Model 2 when the HM constraint imposed, for all the in-sample

results and most cases of the out-of-sample results. For example, for Data Period 1, the

average out-of-sample logarithmic score goes up from 2.6567, 2.6498, 2.6566 for Model 2 to

2.6583, 2.6558, 2.6579 for Model 3 using Frank, Clayton, and FGM copula functions, respec-

tively. This also holds for the independent copula with the logarithmic score 2.5528 for Model

2-I and the logarithmic score 2.6485 for Model 3-I. The estimated logarithmic scores of Model

3 are higher than those of corresponding Model 2, i.e., imposing the HM moment constraint

does improve Model 2 and produces the improved density forecast Model 3, for all copula

functions.

3. A t-statistic is negative for improvement in the logarithmic score. For example, for Data

Period 1, the in-sample test result in the row of M2-I is −1.205, which is negative, meaning

that M2-I has better predictive ability than M1. The in-sample test results in the row of

M2-F, −1.217, indicating that M2-F has better predictive ability than M1. The in-sample

test result in the row of M3-F, −1.320, showing that M3-F has better predictive ability than

M2-F. In many cases, the statistics are statistically significant. For example, for Data Period

1, the out-of-sample statistic is −1.876 in the row of M3-C with p-value 0.030, indicating that

the improvement in the performance of M3-C upon M2-C is statistically significant.

26



Next, let us turn to evaluating the density forecasts for their tail risk forecasts. Table 2 reports

the in-sample quantile scores and the average out-of-sample predictive quantile scores, as well as the

test results. In order to see more decimal numbers, we have multiplied 100 to the quantile scores.

The results show that the decomposition model density forecasts using different copula functions

(Model 2) produce better VaR forecasts than the normal density forecast model (Model 1), and the

maximum entropy density forecasts with the HM moment constraint imposed on the decomposition

model (Model 3) produce even better VaR forecasts for α = 0.01 quantile. We observe the following

empirical findings.

1. Comparing the quantile scores, we see that Model 2 improves upon Model 1 in many cases

but the results are mixed in some cases. A t-statistic is positive for the improvement in the

quantile score. In many cases Model 2 is better than Model 1 in the in-sample estimation but

the results are mixed for the OOS forecasting. The performance of Model 2 is not stable for

the out-of-sample VaR forecasts.

2. However, it is clear that Model 3 improves Model 2 for Frank, Clayton, and FGM copula

functions, in both in-sample estimation of VaR and out-of-sample VaR forecasts. This shows

that imposing the moment condition by the maximum entropy stabilizes the performance of

Model 2.

Table 3 reports the in-sample and the average out-of-sample empirical coverage probabilities of

VaR(0.01). In order to show more decimal numbers, we have multiplied 100 in Table 3. Model

2 gives more accurate empirical coverage probabilities (closer to α = 0.01) than Model 1, and

Model 3 gives even more accurate empirical coverage probabilities and better than Model 2. In

general, VaR forecasts from the decomposition model with the HM moment constraint (Model 3)

are most accurate in the empirical coverage probabilities (α̂) as they are closest to the true coverage

probability α.

Finally, Table 4 reports the in-sample CRPS scores and the average out-of-sample predictive

CRPS scores of density models as well as the test results. In order to show more decimal numbers,

we have multiplied 100 to the CRPS values. We use J = 100 in (47) to approximate the integral

in (46).
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1. Comparing the CRPS results, we find that M3 has smaller CRPS than M2, and M2 has

smaller CRPS than M1, for the in-sample results for Data 1 and for the OOS results for Data

2. Note that the smaller the CRPS is, the better the density model is. However, for the other

cases, the results are mixed.

2. A t-statistic is positive for improvement in CRPS. For the in-sample results for Data 1, Model

3 has better predictive ability than Model 2 with positive t-statistics and significant p-values

ranging 0.035 ∼ 0.108. M2 has better predictive ability than M1 with significant p-values

around 0.020 ∼ 0.029. Other cases show mixed results with insignificant p-values.

7 Conclusions

We consider the multiplicative decomposition of the financial returns into the sign and modulus.

Anatolyev and Gospodinov (2010) study the decomposition model for the return predictability in

the conditional mean. We show the decomposition model produces better density forecasts of stock

returns than the models without using the decomposition. However, the decomposition model

involves rich specifications of the component densities, it may be subject to misspecification and

amplified estimation errors from the multiplicative structure, and may not generate stable moment

predictions. Motivated by this, we show how to impose a simple moment constraint by maximum

entropy to improve the density forecast of the decomposition model in terms of the logarithmic

score. We also find the improvement of the maximum entropy density forecasts in terms of the

quantile score and continuous ranked probability score.

Several extensions can be considered. First, if we apply more moment constraints, the max-

imum entropy density can improve the density of the decomposition model even more. We have

not considered different moment constraints other than the mean constraint to match the first

moment. If we go for matching higher order moments such as variance, skewness, kurtosis, and

etc., it would improve the density forecast even more. If we go for imposing conditions that are

implied from economic theory, as considered by Giacomini and Ragusa (2014), it can also improve

the density forecasts further. Second, as considered by Ferreira and Santa-Clara (2011) an additive

decomposition of stock returns may be considered for the convolution of the component densities

for the density forecast of the whole stock returns. Third, instead of the moment equality con-
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straint considered in this paper, some inequality constraints may be considered as in Campbell and

Thompson (2008), Moon and Schorfheide (2009), and Lee, Tu, and Ullah (2014, 2015).
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Bao, Y., Lee, T.H., and Saltoǧlu, B. (2007). “Comparing Density Forecast Models”. Journal of

Forecasting 26(3): 203-225.

Bauwens, L. and Giot, P. (2000). “The Logarithmic ACD model: An Application to the Bid-Ask

Quote Process of Three NYSE Stocks”. Annales d’Économie et de Statistique 60: 117-149.

Bera, A.K. and Bilias, Y. (2002). “The MM, ME, ML, EL, EF and GMM approaches to estimation:

a synthesis”. Journal of Econometrics 107: 51-86.

Bera, A.K. and Park, S.Y. (2008), “Optimal Portfolio Diversification Using the Maximum Entropy

Principle”. Econometric Reviews 27(4-6): 484-512.

Campbell, J.Y. and Thompson, S. (2008), “Predicting the equity premium out of sample: Can

anything beat the historical average?”Review of Financial Studies 21(4): 1511-1531.

Chen, X., Fan, Y. and Tsyrennikov, V. (2006). “Effi cient Estimation of Semiparametric Multi-

variate Copula Models”. Journal of American Statistical Association 101: 1228-1240.

Christoffersen, P.F. and Diebold, F.X. (2006). “Financial Asset Returns, Market Timing, and

Volatility Dynamics”. Management Science 52: 1273-1287.

Corradi, V., Fosten, J., and Gutknecht, D. (2020). “Conditional Quantile Coverage: an Applica-

tion to Growth-at-Risk”. SSRN: https://ssrn.com/abstract=3670575.

Csiszár, I. (1975). “I-Divergence Geometry of Probability Distributions and Minimization Prob-

lems”. The Annals of Probability 3(1): 146-158.

Ding, Z., Granger, C.W.J., Engle, R.F. (1993). “A Long Memory Property of Stock Market

Returns and a New Model”. Journal of Empirical Finance 1: 83-106.

Engle, R.F. and Russell, J.R. (1998). “Autoregressive Conditional Duration: A New Model for

Irregularly Spaced Transaction Data”. Econometrica 66(5): 1127-1162.

Ferreira, M.A. and Santa-Clara, P. (2011). “Forecasting stock market returns: The sum of the

parts is more than the whole”. Journal of Financial Economics 100: 514—537.

30



Giacomini, R. and Ragusa, G. (2014). “Theory-coherent Forecasting”. Journal of Econometrics

182(1): 145-155.

Golan, A., Judge, G., and Miller, D. (1996). Maximum Entropy Econometrics Robust Estimation

with Limited Data. Wiley, New York.

Gneiting, T. (2011). “Making and Evaluating Point Forecasts”. Journal of the American Statis-

tical Association 106(494): 746-762.

Gneiting, T. and Raftery, A.E. (2007). “Strictly Proper Scoring Rules, Prediction, and Estima-

tion”. Journal of the American Statistical Association 102(477): 359-378.

Gneiting, T. and Ranjan, R. (2011). “Comparing Density Forecasts Using Threshold- and Quantile-

Weighted Scoring Rules”. Journal of Business and Economic Statistics 29(3): 411-422.

Grammig, J. and Maurer, K.-O. (2000). “Non-monotonic Hazard Functions and the Autoregressive

Conditional Duration Model”. Econometrics Journal 3: 16-38.

Granger, C.W.J. and Ding, Z. (1995a). “Some Properties of Absolute Return. An Alternative

Measure of Risk”. Annales d’economie et de statistique 40: 67-91.

Granger, C.W.J. and Ding, Z. (1995b). “Stylized Facts on the Temporal and Distributional

Properties of Daily Data from Speculative Markets”. Department of Economics, Univeristy

of California, San Diego, unpublished paper.

Granziera, E., Hubrich, K., and Moon, H.R. (2014). “A Predictability Test for a Small Number

of Nested Models”. Journal of Econometrics 182(1): 174-185.

Hong, Y., and Li, H. (2005). “Nonparametric Specification Testing for Continuous-Time Models

with Applications to Term Structure of Interest Rates”. Review of Financial Studies 18:

37-84.

Imbens, G.W., Spady, R.H., Johnson, P. (1998). “Information Theoretic Approaches to Inference

in Moment Condition Models”. Econometrica 66: 333-357.

Jaynes, E. T. (1957). “Information Theory and Statistical Mechanics”. Physical Review 106:

620-630.

Jaynes, E. T. (1968). “Prior Probabilities”. IEEE Transactions on Systems Science and Cyber-

netics 4: 227-241.

J.P. Morgan. (1995). “Riskmetrics Technical Manual”. 3 ed.

Kitamura, Y. and Stutzer, M. (1997). An information-theoretic alternative to generalized method

of moments estimation”. Econometrica 65(4): 861-874.

31



Kitamura, Y., Tripathi, G., Ahn, H. (2004). “Empirical likelihood-based inference in conditional

moment restriction models”. Econometrica 72(6): 1667-1714.

Koenker, R. and G. Bassett (1978). “Regression Quantiles”. Econometrica 46: 33-50.

Korkie, B., Sivakumar, R., and Turtle, H. (2002). “The Dual Contributions of Information In-

struments in Return Models: Magnitude and Direction Predictability”. Journal of Empirical

Finance 9: 511-523.

Kullback, S. and Leibler, R. A. (1951). “On Information and Suffi ciency”. Annals of Mathematical

Statistics 22: 79-86.

Lee, T.H., Tu, Y. and Ullah, A. (2014). “Nonparametric and Semiparametric Regressions Subject

to Monotonicity Constraints: Estimation and Forecasting”. Journal of Econometrics 182(1):

196-210.

Lee, T.H., Tu, Y. and Ullah, A. (2015). “Forecasting Equity Premium: Global Historical Av-

erage versus Local Historical Average and Constraints”, Journal of Business and Economic

Statistics 33(3): 393-402.

Lunde, A. (1999). “A Generalized Gamma Autoregressive Conditional Duration Model”. Aarhus

University, Unpublished Working Paper.

Maasoumi, E. (1993). “A Compendium to Information Theory in Economics and Econometrics”.

Econometric Reviews 12: 137-181.

Matheson, J.E., and Winkler, R.L. (1976), “Scoring Rules for Continuous Probability Distribu-

tions”. Management Science 22: 1087-1096.

Moon, H.R. and Schorfheide, F. (2009). “Estimation with overidentifying inequality moment

conditions”. Journal of Econometrics 153: 136-154.

Park, S.Y. and Bera, A.K. (2006). “Maximum Entropy Autoregressive Conditional Heteroskedas-

ticity Model”. Journal of Econometrics 150: 219-230.

Rao, C.R. (1965). Linear Statistical Inference and Its Applications. John Wiley and Sons, Inc.,

New York.

Robertson, J.C., Tallman, E.W. and Whiteman, C.H. (2005). “Forecasting Using Relative En-

tropy”. Journal of Money, Credit, and Banking 37(3): 383-401.

Rydberg, T.H. and Shephard, N. (2003). “Dynamics of Trade-by-Trade Price Movements: De-

composition and Models”. Journal of Financial Econometrics 1: 2-25.

32
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Figure 1. Plots of I (λt) and I (λ∗t )

(a) I (λt) with 1
ψt+1

= 8 and pt+1 = 0.55 (b) I (λt) with 1
ψt+1

= 8 and pt+1 = 0.55
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(e) Optimal I (λ∗t ) as a function of pt+1 (f) Optimal I (λ∗t ) and η
∗
t for some values of pt+1
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Notes: Panels (a,b,c,d) are plots of of I(λt) against λt for fixed values of 1
ψt+1

and pt+1. Panels

(a,b) are plots of I(λt) against λt for fixed values of 1
ψt+1

= 8 and pt+1 = 0.55. Panel (b) magnifies

Panel (a) for −2 < λt < 2. Panels (c,d) are plots of I(λt) against λt for fixed values of 1
ψt+1

= 8

and pt+1 = 0.65. Panel (d) magnifies Panel (c) for −2 < λt < 2. Panel (e) is a plot of the optimal

I(λ∗) against pt+1.
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Figure 2. S&P500 Index and Stock Return

(a) S&P500 for Data Period 1 (b) S&P500 for Data Period 2
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(c) Stock Return for Data Period 1 (d) Stock Return for Data Period 2
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Notes: Figure 2 plots the S&P500 index and stock return rt+1, for both data periods. Data

Period 1 is from 1/4/2007 to 2/12/2009 with 532 observations. Data Period 2 is from 1/2/2019

to 12/31/2020 with 505 observations. Both periods contain obvious downturns, while the lengths

of the downturns are different. Data Period 1 includes the 2007-08 Great Recession for about 17

months, from October 2007 to February 2009. Data Period 2 includes the Covid-19 downturn for

about 1 month, from February 20, 2020 to March 16, 2020.
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Figure 3. Out-of-Sample Estimated Copula Parameter θ

(a) Copula Parameter for Data Period 1 (b) Copula Parameter for Data Period 2
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Notes: Figure 3 plots the out-of-sample estimated copula parameter θ for Frank (blue solid line),

Clayton (red dashed line) and FGM (black dashed line) copula over time. Note that the in-sample

fitted copula parameter θ for Data Period 1 are θ = 0.2929, 0.1548, 0.1371, for Data Period 2 are

θ = 0.5982, 0.0904, 0.2909, for Frank, Clayton, and FGM copula, respectively. All three copula

parameter estimates θ̂ are changing over time and mostly away from 0, indicating that the absolute

return and the sign of the return are not independent.
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Figure 4. In-Sample and Out-of-Sample Estimated ρ-function

(a) In-Sample ρ-function for Data Period 1 (b) In-Sample ρ-function for Data Period 2
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(c) Out-of-Sample ρ-function for Data Period 1 (d) Out-of-Sample ρ-function for Data Period 2
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Notes: Figure 4 plots the estimated in-sample and out-of-sample ρ-function for Frank (blue solid

line), Clayton (red dashed line), FGM (black dashed line), and Independent (green solid line) copula

functions over time. For Independent copula, ρt+1 = pt+1. The magnitude of the improvement from

Model 2-I to Model 2 with dependent copula depends on how far away ρt+1 deviates from pt+1.
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Figure 5. In-Sample Pattern of It (λt) with λt

(a) Pattern of It (λt) with λt for Data Period 1 (b) Pattern of It (λt) with λt for Data Period 2
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Notes: Figure 5 plots the pattern of It (λt) with λt for the in-sample period for Frank (blue solid

line), Clayton (red dashed line), FGM (black dashed line), and Independent (green solid line)

copula. In Model 3, we compute the optimal λ∗t by minimizing It (λt) with respect to λt. It shows

that the optimal λ∗t ≤ 1, which indicates that the optimal η∗t = − log I (λ∗t ) ≥ 0 and I (λ∗t ) ≤ 1.

For Model 3 with the independent copula, I (λ∗t ) = 1 for Data Period 1, and I (λ∗t ) = 0.9997 for

Data Period 2. The in-sample pattern of I (λt) for Frank copula and for FGM copula are similar

(lines are overlapped). This can be explained by the overlapped ρ-function of Frank and FGM

copula in Figure 4(a)(b). The overlapped ρ-function indicates the overlapped joint density, and

then indicates the overlapped It (λt).
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Table 1. In-Sample (IS) and Out-of-Sample (OOS) Logarithmic Scores (LS) for

Density Forecasts

Data 1 IS Data 1 OOS Data 2 IS Data 2 OOS

LSIS
t-stat
(p-val)

LSOOS
t-stat
(p-val)

LSIS
t-stat
(p-val)

LSOOS
t-stat
(p-val)

M1 3.2513 2.5695 3.3468 3.0241

M2-I 3.3431
−1.205
(0.114)

2.5528
0.284

(0.612)
3.3983

−1.467
(0.071)

3.0380
−0.186
(0.426)

M2-F 3.3440
−1.217
(0.102)

2.6567
−1.485
(0.069)

3.4017
−1.623
(0.052)

3.1634
−1.865
(0.031)

M2-C 3.3481
−1.270
(0.102)

2.6498
−1.366
(0.086)

3.4000
−1.545
(0.061)

3.1637
−1.869
(0.031)

M2-FGM 3.3440
−1.216
(0.112)

2.6566
−1.482
(0.069)

3.4016
−1.621
(0.053)

3.1633
−1.863
(0.031)

M3-I 3.3500
−1.449
(0.073)

2.6485
−1.319
(0.094)

3.3987
−0.174
(0.431)

3.1595
−2.187
(0.014)

M3-F 3.3525
−1.320
(0.093)

2.6583
−0.697
(0.243)

3.4079
−0.744
(0.229)

3.1621
0.510

(0.695)

M3-C 3.3582
−1.216
(0.112)

2.6558
−1.876
(0.030)

3.4020
−0.429
(0.334)

3.1628
0.330

(0.629)

M3-FGM 3.3526
−1.362
(0.087)

2.6579
−0.602
(0.273)

3.4075
−0.723
(0.235)

3.1620
0.508

(0.694)

Notes: (a) Model 1 (M1) is the normal density forecast model with the conditional mean µ̂t+1 = r̄t

(HM) and the conditional variance σ̂2t+1 = γ0,t+γ1,tε
2
t +γ2,tσ

2
t (GARCH). See Section 2. (b) Model

2 (M2) is the decomposition model using different copula functions. Model 2 with Independent,

Frank, Clayton, FGM copula are labeled as M2-I, M2-F, M2-C, M2-FGM. See Section 3. (c) Model

3 (M3) is the decomposition model with the HM moment constraint µ̂t+1 = r̄t imposed. For each

copula function, we will denote the model using the name of copula such as M3-I, M3-F, M3-C,

and M3-FGM. See Section 4. (d) The t-statistics reported in the rows of M2 are computed to

compare M1 v. M2. Since LS is to be maximized, t-stat will be negative if LS(M1) < LS(M2)

when M2 improves over M1. Similarly, the t-statistics reported in the rows of M3 are to compare

M2 v. M3 for each copula function. The comparison is for the same copula for M2 v. M3. The

asymptotic p-values are computed from the standard normal distribution for the one-sided test,

e.g., H0 : E(LS(M2)− LS(M3)) = 0 against H1 : E(LS(M2)− LS(M3)) < 0.
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Table 2. In-Sample (IS) and Out-of-Sample (OOS) Quantile Scores (QS) for

VaR(0.01) Forecasts

Data 1 IS Data 1 OOS Data 2 IS Data 2 OOS

QSIS
t-stat
(p-val)

QSOOS
t-stat
(p-val)

QSIS
t-stat
(p-val)

QSOOS
t-stat
(p-val)

M1 0.0397 0.0726 0.0413 0.0597

M2-I 0.0360
1.056

(0.145)
0.0772

−0.254
(0.600)

0.0336
1.227

(0.110)
0.0598

0.101
(0.460)

M2-F 0.0389
0.346

(0.145)
0.0798

−0.697
(0.757)

0.0390
1.287

(0.110)
0.0576

0.398
(0.345)

M2-C 0.0401
−0.251
(0.599)

0.0786
−0.501
(0.691)

0.0362
1.250

(0.106)
0.0575

0.408
(0.342)

M2-FGM 0.0389
0.342

(0.366)
0.0798

−0.701
(0.758)

0.0390
1.287

(0.099)
0.0580

0.336
(0.369)

M3-I 0.0401
−1.810
(0.965)

0.0780
−0.541
(0.706)

0.0364
−1.720
(0.957)

0.0572
1.271

(0.102)

M3-F 0.0304
1.435

(0.076)
0.0747

0.879
(0.190)

0.0315
1.099

(0.136)
0.0569

0.105
(0.458)

M3-C 0.0308
1.440

(0.075)
0.0759

0.641
(0.261)

0.0313
1.195

(0.116)
0.0575

0.001
(0.500)

M3-FGM 0.0303
1.441

(0.075)
0.0747

0.875
(0.191)

0.0321
1.063

(0.144)
0.0569

0.161
(0.436)

Notes: (a) Reported are the QS values multiplied by 100. (b) The t-statistics reported in the

rows of M2 are to compare M1 v. M2. Since QS is to be minimized, t-stat will be positive if M2

improves in VaR over M1. Similarly, the t-statistics reported in the rows of M3 are to compare

M2 v. M3 for each copula function. The comparison for M2 v. M3 is for the same copula. The

asymptotic p-values of the one-sided test are reported for, e.g., H0 : E(QS(M2) − QS(M3)) = 0

against H1 : E(QS(M2)−QS(M3)) > 0.

40



Table 3. In-Sample (IS) and Out-of-Sample (OOS) Coverage Probability for

VaR(0.01) Forecasts

Data 1 IS Data 1 OOS Data 1 IS Data 2 OOS
α̂IS α̂OOS α̂IS α̂OOS

M1 2.8249 3.6620 2.9762 2.6706

M2-I 2.8249 1.4085 2.3810 1.4837
M2-F 2.8249 1.4085 2.3810 1.4837
M2-C 2.8249 1.4085 2.3810 1.4837
M2-FGM 2.8249 1.4085 2.3810 1.4837

M3-I 2.8249 1.4085 2.3810 1.4837
M3-F 1.1299 1.1268 1.7857 0.8902
M3-C 1.1299 1.1268 1.7857 0.8902
M3-FGM 1.1299 1.1268 1.7857 0.8902

Notes: Reported are the values of α̂ multiplied 100 so that all the numbers are in percentage. The

true α = 1%. Most of the empirical coverage probabilities of Model 2 are closer to 1% than those

of Model 1, and most of the empirical coverage probabilities of Model 3 are closer to 1% than those

of Model 2.

41



Table 4. In-Sample (IS) and Out-of-Sample (OOS) CRPS for Density Forecasts

Data 1 IS Data 1 OOS Data 2 IS Data 2 OOS

CRPS
t-stat
(p-val)

CRPS
t-stat
(p-val)

CRPS
t-stat
(p-val)

CRPS
t-stat
(p-val)

M1 0.5103 1.1576 0.4592 0.8077

M2-I 0.5011
2.057

(0.020)
1.1787

−2.187
(0.986)

0.4567
0.858

(0.196)
0.8158

−0.800
(0.788)

M2-F 0.5011
1.975

(0.024)
1.1757

−2.426
(0.992)

0.4581
0.262

(0.397)
0.8152

−0.886
(0.812)

M2-C 0.5007
1.902

(0.029)
1.1754

−2.281
(0.989)

0.4570
0.643

(0.260)
0.8153

−0.824
(0.795)

M2-FGM 0.5011
1.975

(0.024)
1.1754

−2.433
(0.993)

0.4580
0.293

(0.385)
0.8152

−0.882
(0.811)

M3-I 0.4988
1.248

(0.106)
1.1719

1.597
(0.055)

0.4569
−0.103
(0.541)

0.8141
0.313

(0.377)

M3-F 0.4970
1.746

(0.040)
1.1852

−0.991
(0.839)

0.4590
−0.187
(0.574)

0.8133
0.334

(0.369)

M3-C 0.4975
1.240

(0.108)
1.1758

−0.062
(0.525)

0.4577
−0.213
(0.584)

0.8149
0.069

(0.472)

M3-FGM 0.4968
1.812

(0.035)
1.1850

−0.965
(0.833)

0.4589
−0.191
(0.576)

0.8133
0.333

(0.370)

Notes: (a) Reported are the continuous ranked probability scores multiplied by 100. (b) The t-

statistic reported in an M2 row is to compare M1 v. M2 in that row. Since CRPS is to be minimized,

t-stat will be positive if M2 improves over M1. Similarly, the t statistic in a row of M3 is to compare

M2 v. M3 for each copula function. The comparison is for the same copula for M2 v. M3. The values

below the t-statistics are p-values of the one-sided test, e.g., H0 : E(CRPS(M2)−CRPS(M3)) = 0

against H1 : E(CRPS(M2)− CRPS(M3)) > 0.
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