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Abstract

We consider the local asymptotic power of Breusch and Pagan’s (1980) test for

the general nonlinear models. The test is motivated by the random effects, but we

consider the fixed effects for the alternative hypothesis, derive the local power, and

show that the test has a power to detect the fixed effects. We also examine how

the estimation noise of the maximum likelihood estimator changes the asymptotic

distribution of the test under the null, and show that such a noise may be ignored in

a large n large T situation, which may have a convenient implication in the possible

application of the test to network models.

Keywords: Lagrange multiplier test, fixed effects, local power, error component model.

1 Introduction

Panel data analysis is most often concerned with the best way to overcome the presence

of individual fixed effects. Although the fixed effects can be differenced away in linear

models, such convenience is often unavailable in nonlinear models, and many papers were

published to overcome the incidental parameters problems that arise as a consequence.
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Such a concern would be a non-issue if the unobserved individual heterogeneity were

not present in the data set to begin with. Without the fixed effects in the data, the

statistical analysis does not have to involve any special technique, and most of the issues

would disappear. Therefore, one may be interested in testing if there is any unobserved

heterogeneity in the data set.

The most well-known test for detecting unobserved heterogeneity is due to Breusch

and Pagan (1980, BP test hereafter). Although the BP test was originally developed to

deal with both individual and time effects, the version of the BP test to detect only the

individual effects seems to have received the most attention. Such a version of the BP test

can be interpreted to be a test of overdispersion (Cox, 1983), and it is related to White’s

(1982) information matrix test, as was pointed out by Chesher (1984). See also Lancaster

(1984) for the asymptotic distribution of the test under the null. From our point of view,

the most convenient feature of the BP test is that it is a Lagrange Multiplier (LM) test,

which requires calculation of the parameter estimates only under the null, i.e., under the

null of no unobserved heterogeneity. This feature makes it pragmatically very attractive

due to the simplification of computation; there is no unobserved heterogeneity under the

null, and hence, the computational problem disappears. See also Engel (1984).

The first contribution of our paper is to address the question of power1 of the BP

test. To our knowledge, Honda (1985) is the only one who analyzed the asymptotic power

of the BP test against random effects and he did so in the linear models. We make a

progress over Honda (1985) in two dimensions. First, we derive the asymptotic power of

the BP test against random effects in general nonlinear models.2 Second, which is more

important, we also consider the power against the alternative of fixed effects. By the

fixed effects, we mean the type of general unobserved variables that may have arbitrary

dependence structure with the observed explanatory variables. Chamberlain (1984) called

such a variable the correlated random effects. The BP test was specifically designed to
1Throughout this paper, the power is defined to be the local power.
2While Honda (1985) considered both individual and time effects, we focus only on individual effects.

The presence of both effects presents an additional technical challenge in nonlinear models, and we leave

it as a topic of future research.
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detect the alternative of random effects, as is clear in the derivation by Breusch and Pagan

(1980) or Chesher (1984). The random effects are by assumption independent of all the

observable explanatory variables, so such an alternative may be argued to be restrictive.3

Our paper fills this gap in the literature and analyzes the local power of the BP test against

the general alternative of fixed effects. Modifying Newey (1985), we obtain the asymptotic

results, based on which we argue that the BP test in general has a power against the fixed

effects.4 We also find that the linear model has a peculiar feature and the power of the BP

test against fixed effects may be lower than against random effects. As a by-product of

our analysis of the linear model, we propose an intuitive LM-like test for detecting further

neglected heterogeneity in the linear model with fixed effects.

We recognize that a specification test of the type analyzed in the paper is often as-

sociated with the pre-test bias in the usual cross sectional analysis, and we expect the

same issue with uniformity in the application to the panel data analysis. This is a generic

problem for which we are unable to offer a solution. Yet at the same time, we see an

interesting twist in the panel context. Nonlinear panel data analysis is often unable to

eliminate the incidental parameters problem and ends up mitigating (reducing) the bias

at best. In other words, if the BP test rejects the null of no unobserved heterogeneity,

and a researcher adopts the usual bias correction for the panel data analysis, we should

confront the fact that the bias is not completely removed anyway. This is in contrast

with the cross sectional case where the estimators of the (typically more general) model

under the alternative is associated with (asymptotically) unbiased estimation. Therefore,

the pre-test problem in panel models may be less severe than in cross sectional models,

from a pragmatic perspective. Another complication is the problem that the bias correc-
3If the more general alternative of fixed effects is to be considered, one may adopt a version of

the conditional moment restrictions test, as discussed in Hahn, Moon, and Snider (2017). Any test of

conditional moment restrictions test is equivalent to a test of infinitely many unconditional moments, and

hence, it may not be as appealing when compared to the simplicity of the BP test, except that the BP

test was motivated to deal with the alternative of random effects.
4To be more precise, we show that the probability of rejection is higher under the alternative than

under the null, i.e., we show that the BP test is locally unbiased.

3



tion technique in the two-way fixed effects models is not as well developed as in one-way

models. To our knowledge, Fernández-Val and Weidner’s (2016) paper is the only work in

the literature that addresses the issue, and their result is predicated on a certain concavity

assumption (Assumption 4.1.v), which limits its applicability. The severity of the pre-test

bias is a topic that we leave as a future research topic.

The BP test was originally proposed to detect unobserved heterogeneities in two-way

error component models, i.e., the panel models with both individual and time effects.

In order to address such a structure, Honda (1985) adopted an asymptotic framework

where both the cross sectional dimension (n) and the time series dimension (T ) grow to

infinity. In contrast, Chesher’s (1984) and Lancaster’s (1984) analyses are predicated on

the IID assumption on observations, which would be sensible only with fixed n or T ;

otherwise, the dimension of observations would have to grow as a function of the sample

size, invalidating the identical distribution assumption. Honda’s (1985) technical analysis,

while limited to the linear models, hints that the feasible version of the BP test based on

the MLE does not need to address the noise of estimation in MLE in two-way models (for

characterization of the asymptotic distribution under the null hypothesis). We analyze his

argument carefully, and derive the mathematical implication that the noise in estimation

of MLE does not affect the asymptotic distribution even for the nonlinear models if n

and T are both large. This means that Lancaster’s (1984) adjustment is unnecessary for

two-way models,5 which may have a convenient implication in the possible application of

the test to network models.

2 Review of the LM Test

In this section, we consider the panel model with possible unobserved individual hetero-

geneity and present the LM test to detect neglected heterogeneity. It is largely a review

of the BP test as well as Chesher (1984), albeit with some mild modification to make it

easier to accommodate both fixed effects and random effects later. Throughout most of the
5We also find that the proof of Honda’s (1985) main result is incorrect. See Footnote 15.
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paper, we adopt the framework of the one-way error component model. Some interesting

complications in two-way error component models are discussed later in Section 6.

Assume that we observe a random sample (Yi, Xi), i = 1, . . . , n. Yi and Xi can be

vectors. In the panel data analysis where each individual is observed over T time periods,

we will have Yi = (Yi1, . . . , YiT ) and Xi = (X ′
i1, . . . , X

′
iT )

′. We will assume that the

conditional density of Yi given Xi is given by the function f (y|x, θ), where θ is a q-

dimensional parameter that characterizes the density. Under the null hypothesis, the first

component θ1 of θ is fixed at θ0,1, but under the alternative hypothesis, it may be a random

variable indexed by i. This is motivated by the linear model of the form

Yit = x′
itβ + αi + vit, i = 1, . . . , n, t = 1, . . . , T,

where αi denotes the unobserved individual heterogeneity. Suppose that xit does not

include any intercept term, xi ≡ (x′
i1, . . . , x

′
iT )

′, and let Xit denote xit as well as the

intercept term. Suppose that vit ∼ N (0, σ2
v) is independent of (X ′

i, αi) and is independent

over i and t. We can then understand θ = (αi, β, σ
2
v)

′. Note that we assume that only the

first component θ1 of θ is allowed to be different across i, i.e., scalar random (or fixed)

effects.6

The heterogeneity of the first component θ1 of θ can be modeled as θ0,1 plus a ran-

dom variable. Under the random effects specification, the heterogeneity is independent

of Xi and therefore, the conditional density of the heterogeneity given Xi = x is equal

to the marginal density. Under the random effects approach, it is also common to as-

sume that the expectation of the heterogeneity is zero. In order to accentuate the local

nature of the alternative, we may choose to write θ1,i = θ0,1 + ηεi, where E [εi] = 0 and

η ≥ 0 is a “small” number and the conditional density of εi given Xi = x is k (·). The

conditional density of Yi given Xi = x and εi = e is then equal to f (y|x, θ0 + ηeι) =

f (y|x, (θ0,1 + ηε, θ0,2, . . . , θ0,q)), where the vector ι is such that the first component is 1
6There is no reason that the LM test should be confined to the scalar effects, as is evident from

Chesher’s (1984) derivation. On the other hand, the scalar effects are a common feature in many panel

data analysis, and were the basis of the LM test as was presented in Breusch and Pagan (1980).
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and the rest are all zeros. It follows that the conditional density of Yi given Xi = x is

h (y|x, θ0, η) ≡
∫

f (y|x, θ0 + ηeι) k (e) de,

and note that h (y|x, θ, 0) = f (y|x, θ).

We consider the second order Taylor series expansion of h (y|x, θ, η) with respect to η

around (θ, η) = (θ0, 0). Under the assumption that we can exchange differentiation and

integration, we obtain

∂h (y|x, θ0, η)
∂η

∣∣∣∣
η=0

=

∫
∂f (y|x, θ0)

∂θ1
ek (e) de =

∂f (y|x, θ0)
∂θ1

∫
ek (e) de

=
∂f (y|x, θ0)

∂θ1
E [εi] = 0,

∂2h (y|x, θ0, η)
∂η2

∣∣∣∣
η=0

=

∫
∂2f (y|x, θ0)

∂θ21
e2k (e) de =

∂2f (y|x, θ0)
∂θ21

∫
e2k (e) de

=
∂2f (y|x, θ0)

∂θ21
E
[
ε2i
]
.

Therefore, we have

h (y|x, θ0, η) = h (y|x, θ0, 0) +
η2

2

∂2f (y|x, θ0)
∂θ21

σ2
ε + o

(
η2
)
,

where σ2
ε = E [ε2i ]. Given the form of the expansion, it would make sense to consider

the parameterization h
(
y|x, θ0,

√
η
)

instead (i.e., f
(
y|x, θ0 +

√
ηeι
)
), which delivers the

expansion7

h (y|x, θ0,
√
η) = h (y|x, θ0, 0) +

η

2

∂2f (y|x, θ0)
∂θ21

σ2
ε + o (η) .

This implies that

∂h
(
y|x, θ0,

√
η
)

∂η

∣∣∣∣∣
η=0

= lim
η→0

h (y|x, θ0, η)− h (y|x, θ0, 0)
η

=
1

2

∂2f (y|x, θ0)
∂θ21

σ2
ε . (1)

It follows that the LM test can be based on the score

∂h
(
y|x, θ0,

√
η
)/

∂η

h (y|x, θ0, 0)

∣∣∣∣∣
η=0

=
1

2

∂2f (y|x, θ0)/ ∂θ21
f (y|x, θ0)

σ2
ε ,

7Chesher (1984) directly worked with h
(
y|x, θ0,

√
η
)

and applied l’Hôpital’s rule. The Taylor expan-

sion adopted here makes it easier to understand the role of the zero mean assumption, i.e., E [εi] = 0.
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or equivalently based on

∂2f (y|x, θ0)/ ∂θ21
f (y|x, θ0)

=
∂2 ln f (y|x, θ0)

∂θ21
+

(
∂ ln f (y|x, θ0)

∂θ1

)2

, (2)

which provides the basis of the information matrix test interpretation.

Note that the derivation above was predicated on the random effects assumption. If we

allow arbitrary conditional density k ( ·|x) of εi given Xi = x, which is appropriate under

the fixed effects specification, we would get

∂h (y|x, θ0, η)
∂η

∣∣∣∣
η=0

=

∫
∂f (y|x, θ0)

∂θ1
ek (e|x) de = ∂f (y|x, θ0)

∂θ1

∫
ek (e|x) de

=
∂f (y|x, θ0)

∂θ1
µ (x) . (3)

where µ (x) ≡ E [εi|Xi = x]. Because one can consider arbitrary specification of µ (x),

the score test that tests against all possible specification of the fixed effects would test

whether the equality

E

[
∂f (Yi|Xi, θ0)/ ∂θ1

f (Yi|Xi, θ0)
µ (Xi)

]
= 0 (4)

holds for all µ (Xi). This prompted Hahn, Moon, and Snider (2017) to conclude that any

test of the conditional moment restriction8

E

[
∂f (Yi|Xi, θ0)/ ∂θ1

f (Yi|Xi, θ0)

∣∣∣∣Xi

]
= 0 (5)

can be a possible test of fixed effects. See Section 5 for other variants of this idea for linear

models.

3 Power of the BP Test Against Random Effects

In the previous section, we summarized the current status of the literature. First, if we

are to use the LM motivation to detect the fixed effects, an appropriate test would be to
8Hahn, Moon, and Snider (2017) recognized that the test of the conditional moment restrictions (5)

would be a test of fixed effects, and they did not develop a separate test. Instead, they recommended

using any test of conditional moment restrictions in the literature, such as Newey (1985), Bierens (1990),

and Donald, Imbens, and Newey (2003).
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test the conditional moment restriction (5). Because it is equivalent to an infinite number

of unconditional moment restrictions (4), a practitioner needs to confront the resultant

statistical complications. Second, the BP test (2) was developed to detect the random

effects. Because it is an LM test, it suffices to estimate the parameters under the null

hypothesis of no neglected heterogeneity, which may be very convenient computationally.

Therefore, one may ask a question whether the BP test can actually detect the fixed effects,

even though the fixed effects were not the initial target. Although some power may be

sacrificed relative to a test of the conditional moment restrictions (5), perhaps such a

cost may be justified from the pragmatic perspective of avoiding a potentially complicated

statistical procedure. We are not aware of any paper in the literature that posed such a

question, which our paper proposes to tackle.

In this section, we begin by examining the (local) power of the BP test against the

random effects. Even though it seems to be such an elementary question, we have not

found a literature that deals with the power of the BP test in general nonlinear models,

an obvious gap in the literature if our library research is correct. Using (2), we can see

that our BP statistic can be written as mn

(
θ̄n
)
, where

mn (θ) ≡ n−1

n∑
i=1

m (Zi, θ) , m (z, θ) ≡ ∂2f (y|x, θ)/ ∂θ21
f (y|x, θ)

, (6)

z denotes the observed data vector, and θ̄n denotes the MLE of θ under the null hypoth-

esis of no unobserved heterogeneity. The local power can be analyzed by deriving the

asymptotic distribution under the appropriate sequence of DGP’s under the alternative of

random effects. Newey’s (1985) analysis is almost tailor-made for our purpose, which we

adopt as the main tool of analysis. Minor differences do exist. For example, the discus-

sion in the previous section suggests that the local power analysis should be conducted by

examining the n1/4 =
√
n1/2-neighborhood, i.e., by examining the local alternative of the

form θ1,i = θ0,1 + n−1/4εi.9 As a result, we will consider the local alternative of random
9Honda (1985) worked with a case that includes both the individual and time effects, and assumed

that n, T → ∞ at the same rate. Because we are working with models without time effects and with fixed

T , it is a little difficult to make a direct comparison.
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effects where (i) θ1,i = θ0,1 + n−1/4εi, (ii) εi is independent of Xi; (iii) E [εi] = 0 and

E [ε2i ] = σ2
ε .

Below is the main result when we consider the alternative of random effects:

Theorem 1 Under Assumptions 1 - 7 detailed in Appendix A, we get

√
nmn

(
θ̄n
) d.−→ N

(
σ2
ε

2

(
κ1 − κ′

2I−1κ2

)
, κ1 − κ′

2I−1κ2

)
,

where

s (z, θ0) ≡
∂f (y|x, θ0)/ ∂θ

f (y|x, θ0)
,

I ≡ E
[
s (Zi, θ0) s (Zi, θ0)

′] = −E

[
∂s (Zi, θ0)

∂θ′

]
,

κ1 ≡ E

[(
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)

)2
]
,

κ2 ≡ E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s (Zi, θ0)

]
.

Proof. In Appendix B.

The above theorem implies that (i) the test statistic would take the form(√
nmn

(
θ̄n
))2

κ̂1 − κ̂′
2Î−1κ̂2

, (7)

where κ̂1, κ̂2, Î are consistent estimators of κ1, κ2, I; and (ii) the asymptotic distribution

under θ1,i = θ0,1+n−1/4εi is non-central χ2
1 distribution with noncentrality parameter equal

to
(

σ2
ε

2

)2
(κ1 − κ′

2I−1κ2). Note that κ1 − κ′
2I−1κ2 can be interpreted to be the variance of

the residual when m (Zi, θ0) is regressed on s (Zi, θ0). Unless such residual variance is equal

to zero, we should expect that the BP test would have a power against the random effects,

i.e., the probability of rejection is higher under the alternative than under the null. Given

that κ1−κ′
2I−1κ2 is equal to the asymptotic variance of

√
nmn

(
θ̄n
)
, we can conclude that

such pathological anomaly as κ1 − κ′
2I−1κ2 = 0 should not be expected in practice.

Remark 1 Under the null, we can take σ2
ε = 0, so the asymptotic null distribution is

N(0, κ1 − κ′
2I−1κ2), which explains the test statistic (7). See also Lancaster (1984).
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Remark 2 Note that κ1 denotes the variance of m (z, θ0) under the null. Therefore, the

component −κ′
2I−1κ2 represents the noise of estimating the MLE θ̄n as part of the test

statistic. It turns out that the linear panel model is a special case where κ2 = 0, and the

test statistic does not need to be adjusted for the noise of estimating the MLE/OLS. See

Section 5.

Remark 3 The κ2 has yet another interpretation. If κ2 = 0, the MLE is asymptotically

unbiased even under the alternative of random effects, as discussed in Remark 6 in Ap-

pendix B. In other words, if the test statistic ∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

is uncorrelated with the score

s (Yi|Xi, θ0), the MLE is not affected under the alternative of random effects. Note that

κ2 is identical to the numerator of the bias formula in panel data analysis as discussed in

Hahn and Newey (2004, p.1315).10 If such a diagnostic test is desired, one can test the

null hypothesis κ2 = 0 by evaluating the test statistic based on

n1/2κ̂2 ≡ n−1/2

n∑
i=1

∂2f
(
Yi|Xi, θ̄n

)
/∂θ21

f
(
Yi|Xi, θ̄n

) s
(
Yi|Xi, θ̄n

)
.

Using standard arguments, it can be shown that the above expression is equal to

n−1/2

n∑
i=1

∂2f (Yi|Xi, θ0) /∂θ
2
1

f (Yi|Xi, θ0)
s (Yi|Xi, θ0) + κ′

4I−1n−1/2

n∑
i=1

s (Yi|Xi, θ0) + op (1) ,

where11

κ4 ≡ E

[
∂

∂θ

(
∂2f (Yi|Xi, θ0) /∂θ

2
1

f (Yi|Xi, θ0)

)
s (Yi|Xi, θ0)

]
+E

[
∂2f (Yi|Xi, θ0) /∂θ

2
1

f (Yi|Xi, θ0)

∂s (Yi|Xi, θ0)

∂θ

]
.

It follows that

n−1/2

n∑
i=1

∂2f
(
Yi|Xi, θ̄n

)
/∂θ21

f
(
Yi|Xi, θ̄n

) s
(
Yi|Xi, θ̄n

)
→ N

(
0, κ3 − κ′

4I−1κ4

)
,

10See the bias formula involving V2it in the second last displayed equation. The V2it there is equivalent

to our test statistic. See also Arellano and Hahn (2007, Section 3.1) for similar expression.
11Note that

κ4 = −E

[
∂2f(Yi|Xi, θ0)/∂θ

2
1

f(Yi|Xi, θ0)
s(Yi|Xi, θ0)s(Yi|Xi, θ0)

′
]

if κ2 = 0, which may provide a basis an alternative form of the asymptotic variance.
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where κ3 ≡ E

[(
∂2f(Yi|Xi,θ0)/∂θ

2
1

f(Yi|Xi,θ0)

)2
s (Yi|Xi, θ0) s (Yi|Xi, θ0)

′
]
, and the test statistic takes

the form nκ̂′
2

(
κ̂3 − κ̂′

4Î−1κ̂4

)−1

κ̂2, where κ̂3 and κ̂4 are straightforward sample analogs of

κ3 and κ4. Obviously the distribution of the test static under the null κ2 = 0 is χ2
q.

A sequential test procedure can therefore be used in practice. First, test whether there

is neglected heterogeneity in the random effects form, i.e., whether E [m(Zi, θ0)] = 0, by

comparing the LM test statistic in equation (7) with χ2
1,1−α, the upper α level critical value

from the χ2
1 distribution. If this test rejects the null, then proceed to test whether κ2 = 0

by comparing nκ̂′
2

(
κ̂3 − κ̂′

4Î−1κ̂4

)−1

κ̂2 with χ2
q,1−α, the upper α level critical value from

the χ2
q distribution. If the null is not rejected, then the neglected heterogeneity does not

significantly affect the inference based on the MLE which does not take it into account.

This sequential procedure has an overall false rejection probability (weakly) smaller than

α.

As an example, let’s consider a panel logit model where

Yit = I{x′
itβ0 + αn,i + vit ≥ 0}, i = 1, . . . , n, t = 1, . . . , T. (8)

where αn,i = α0 under the null and αn,i = α0 + n−1/4εi under the alternative. Let θ =

(αi, β
′)′, and assume that vit are errors such that the log conditional density of Yi given

Xi and θ is characterized by

ln f (Yi|Xi, θ0) =
T∑
t=1

(
Yit ln

exp(X ′
itθ0)

1 + exp(X ′
itθ0)

+ (1− Yit) ln
1

1 + exp(X ′
itθ0)

)
.

Let Λit (θ) ≡ exp (X ′
itθ)/ (1 + exp (X ′

itθ)) and note that ∂Λit/ ∂θ = Λit(1− Λit)Xit. Then

we have

s (Yi|Xi, θ0) =
T∑
t=1

(yit − Λit)Xit,

∂2 ln f (Yi|Xi, θ0)

∂θ∂θ′
= −

T∑
t=1

Λit(1− Λit)XitX
′
it.

and we can see that our test statistic is based on

m(Zi, θ0) ≡
∂2 ln f(Yi|Xi, θ0)

∂θ21
+

(
∂ ln f(Yi|Xi, θ0)

∂θ1

)2
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= −
T∑
t=1

Λit(1− Λit) +

(
T∑
t=1

(yit − Λit)

)2

,

and if we assume that Yit and Yis (t ̸= s) are independent given Xi, then we have

I = E

[
T∑
t=1

Λit(1− Λit)XitX
′
it

]
,

κ1 = E

[
T∑
t=1

Λit(1− Λit)(1− 2Λit)
2 + 2

T∑
t̸=s

Λit(1− Λit)Λis(1− Λis)

]
,

κ2 = E

[
T∑
t=1

Λit(1− Λit)(1− 2Λit)Xit

]
.

4 Power of the BP Test Against Fixed Effects

The discussion in Section 2 indicates that the parameterization h
(
y|x, θ0,

√
η
)

is appropri-

ate for local power analysis when E [εi|Xi] = 0 while the parameterization h (y|x, θ0, η) is

appropriate for local power analysis when E [εi|Xi] ̸= 0. The former parametrization cap-

tures the appropriate second order effects, as is evident in the derivation of (1). Therefore,

a useful synthesis is to consider the local parameterization of the form

f

(
y

∣∣∣∣x,(θ0,1 + µ (x)

n1/2
+

ε∗

n1/4
, θ0,2, . . . , θ0,q

))
, (9)

where E [ε∗|x] = 0.

Below is the main result when we consider the alternative of fixed effects of the form

(9):

Theorem 2 Under Assumptions 1 - 2, 3′ and 4 - 7 detailed in Appendix A, we get

√
nmn

(
θ̄n
) d.−→ N

([
I1,−κ′

2I−1
]
(KF +K∗

R) , κ1 − κ′
2I−1κ2

)
,

where Ik is the k × k identity matrix (k = 1 here),

KF ≡

 E

{
E

[
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)
s1 (Yi|Xi, θ0)

∣∣∣∣Xi

]
µ (Xi)

}
E {E [s (Yi|Xi, θ0) s1 (Yi|Xi, θ0)|Xi]µ (Xi)}

 ,

12



K∗
R ≡ 1

2


E

{
(ε∗i )

2E

[(
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)

)2
∣∣∣∣∣Xi

]}
E

{
(ε∗i )

2E

[
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

∣∣∣∣Xi

]}
 .

Proof. In Appendix C.

Note that the fixed effects can be decomposed into two components, µ (Xi) and ε∗i .

Their distinct roles are best understood by considering a linear panel data model

Yit = x′
itβ0 + αn,i + vit, i = 1, . . . , n, t = 1, . . . , T,

where αn,i = α0 under the null and αn,i = α0+n−1/2µ (xi)+n−1/4ε∗i under the alternative. It

is clear that the correlation between xit and µ (xi) induces the bias in the OLS (i.e., MLE),

while the presence of ε∗i does not affect the unbiasedness property of the OLS. Although

even ε∗i induces the MLE to be biased in general nonlinear models, the distinctive roles

are quite clear in linear models. It turns out that the BP test does not have any power

13



against the presence of µ (xi) in linear models. This is because in linear models, we have12

E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s1 (Yi|Xi, θ0)

∣∣∣∣Xi

]
= 0,

so that the first component of KF is equal to 0, and it can be shown that

κ2 = E

[
s (Yi|Xi, θ0)

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]

= E

( 1

σ2
v

T∑
t=1

Xit (yit −X ′
itθ0)

)− T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit −X ′
itθ0)

)2


= 0,

leading to the implication [
I1,−κ′

2I−1
]
KF = 0. (10)

This seems to indicate that at least for linear models, the BP test has zero power

against fixed effects in the sense that it is unable to detect the presence of µ (Xi). It turns
12We have

ln f (Yi|Xi, θ0) = C − 1

2σ2
v

T∑
t=1

(Yit −X ′
itθ)

2
,

so

s (Yi|Xi, θ0) =
1

σ2
v

T∑
t=1

Xit (Yit −X ′
itθ) , and ∂2 ln f (Yi|Xi, θ0)

∂θ∂θ′
= − 1

σ2
v

T∑
t=1

XitX
′
it.

In particular, we have

∂ ln f (Yi|Xi, θ0)

∂θ1
=

1

σ2
v

T∑
t=1

(Yit −X ′
itθ) and ∂2 ln f (Yi|Xi, θ0)

∂θ21
= − T

σ2
v

.

We therefore see that

∂2f (Yi|Xi, θ0)
/
∂θ21

f (y|x, θ0)
=

∂2 ln f (Yi|Xi, θ0)

∂θ21
+

(
∂ ln f (Yi|Xi, θ0)

∂θ1

)2

= − T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit −X ′
itθ)

)2

.

Therefore, we should have

E

[
s (Yi|Xi, θ0)

∂2f (Yi|Xi, θ0)
/
∂θ21

f (Yi|Xi, θ0)

]

= E

( 1

σ2
v

T∑
t=1

Xit (Yit −X ′
itθ0)

)− T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit −X ′
itθ0)

)2
 .
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out that the issue is a little subtle, and the BP test does have a power to detect µ (Xi)

as long as it is in the n−1/4-neighborhood, not n−1/2. We note that the components of

[I1,−κ′
2I−1]KF measures the first order effect of misspecification on the asymptotic mean

of mn

(
θ̄n
)
. When [I1,−κ′

2I−1]KF is zero, we can make a more refined analysis by going

through the second order derivative, similar in spirit to Chesher’s (1984) derivation. We

provide such an analysis in the next section.

5 In Depth Analysis of the Linear Model

In this section, we present two results. First, we show that the BP test is able to detect the

fixed effects as long as they are in the O
(
n−1/4

)
neighborhood. This does not contradict

our analysis in the previous section because we considered the case where the fixed effects

are in the O
(
n−1/2

)
neighborhood. Second, we present a pragmatic version of the test of

the conditional moment restriction (5) for the purpose of detecting the model considered

by Bonhomme and Manresa (2015). The test can be argued to be a variant of the generic

test of over-identification considered by Chamberlain (1984, Section 4.2), but geared for

the particular variant of the panel model in Bonhomme and Manresa (2015).

We first present a more detailed analysis tailored to exploit the particulars of the linear

model

Yit = X ′
itθ +

µ (Xi) + ε∗i
n1/4

+ vit, t = 1, . . . , T (11)

with vit ∼ N (0, σ2
v). Note that the fixed effects, especially µ (Xi), are in the O

(
n−1/4

)
neighborhood. Also note that

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)
= − T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit −X ′
itθ)

)2

,

so the counterpart of m is equal to

1

n

n∑
i=1

(∑T
t=1 v̂it

)2
− T σ̂2

v

(σ̂2
v)

2 =
1

n

v̂′[In ⊗ (eT e
′
T − IT )]v̂

(σ̂2
v)

2 (12)

where the v̂it denotes the OLS residual, eT is a T × 1 vector of ones, and σ̂2
v ≡ (nT )−1
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∑n
i=1

∑T
t=1 v̂

2
it. We will assume that T−1E

[∑T
t=1XitX

′
it

]
is positive definite with finite

eigenvalues. We also assume that E [ε∗i vit] = 0 and E [ε∗iµ (Xi)] = 0.

In order to analyze the power of the BP test under the alternative (11), it suffices

to analyze the asymptotic mean of the numerator n−1/2v̂′[In ⊗ (eT e
′
T − IT )]v̂ of (12). In

Lemma 1, we show how Honda’s (1985) Lemma 1 should be changed under the alternative

of fixed effects:

Lemma 1 Under (11), we have

v̂′[In ⊗ (eT e
′
T − IT )]v̂

n1/2
=

1

n1/2

n∑
i=1

T∑
l ̸=m

vilvim + T (T − 1)E
[
ξ2i
]

− 2Tλ′Q−1λ+
(
Q−1λ

)′
S
(
Q−1λ

)
+Op

(
n−1/4

)
,

where Q ≡ T−1E
[∑T

t=1XitX
′
it

]
, X̄i ≡ T−1

∑T
t=1 Xit, λ ≡ E

[
X̄iµ (Xi)

]
, ξi ≡ µ (Xi) + ε∗i

and S ≡ E
[∑T

l ̸=m XilX
′
im

]
.

Proof. In Appendix D.

In Lemma 1, we can clearly see that the presence of µ (Xi) affects the asymptotic bias

through λ and E [ξ2i ]. This is in contrast to the argument in the previous section, where

the BP test was unable to detect µ (Xi) in the linear model. The difference is that the

previous section considered the parameterization where µ (Xi) was too close to zero in the

O
(
n−1/2

)
neighborhood, while we show in the current section that µ (Xi) can be detected

by the BP test if µ (Xi) is not too close to zero. There already exists a well-known test

(Hausman and Taylor, 1981) for the linear model, which can be shown to have a power

against the local misspecification in the O
(
n−1/2

)
neighborhood. The test by Hausman

and Taylor (1981) does not have a counterpart in the nonlinear panel models, probably

because the fixed effects estimator is not asymptotically unbiased for fixed T for nonlinear

models (even after bias reduction). The BP test was shown to be able to detect fixed

effects in nonlinear models, so it makes sense to examine whether the BP test has such

a property for linear models. Our analysis in the current section leads to the practical

conclusion that the BP test may be best suited for nonlinear models.
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In Section 2, a version of the test of conditional moment restrictions (5) was mentioned

as a way of detecting neglected heterogeneity. We can easily see how this idea can be

generalized to test the specification of Bonhomme and Manresa (2015), who considered

estimating models of the form Yit = x′
itβ + αgit + vit, where gi denotes the group that the

ith observation belongs to. This can be understood to be a generalization of the vanilla

model Yit = x′
itβ + αi + vit (possibly with the time effects as well) against the alternative

that there is some neglected heterogeneity in αi possibly “correlated” with xi (µ (x) ̸= 0),

even under the presence of the individual fixed effects. Because in the linear model the BP

test does not have a good power when the neglected heterogeneity may be correlated with

xi, we may consider adopting a version of the conditional moment test. For this purpose,

it is useful to see that the LM test can be conducted through the moments13

E [∆xit (∆Yit −∆x′
itβW )] = 0, t = 2, . . . , T, (13)

where ∆ denotes the first differencing operator, while βW solves the moments

E

[
T∑
t=1

x̃it

(
Ỹit − x̃′

itβW

)]
= 0, (14)

where x̃it = xit − x̄i, and Ỹit = Yit − Ȳi. If the test rejects, then we should suspect that

there is neglected heterogeneity not captured by the usual individual fixed effects, and as

such, there is a reason to consider the specification of Bonhomme and Manresa (2015). We

applied the test to Bonhomme and Manresa’s (2015) balanced panel, i.e., the data used

by Acemoglu et al. (2008), where n = 90, T = 7 and dim(x) = 2. We first run the OLS

of ∆Yit on an intercept (to capture time dummies) and ∆xit for t = 2, ..., 7 and tabulate

the results in Table 1. The estimates of the slope coefficients appear to be unstable over

time, suggesting the presence of some neglected heterogeneity that lead to violation of

(13).14 For testing, we included the time dummy in the basic model, and adjusted for

the estimation of the within estimator (14) when characterizing the asymptotic variance
13We do not consider t = 1 because of redundancy. If there is a prior suspicion that the fixed effects

may have changed towards the end of the sample, one can test the subset of the moments in (13).
14Note the difference between the pooled first difference estimator and the two-way fixed effects esti-

mator, presented in the last two columns of Table 1. (The two-way fixed effects estimator correspond to
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of the empirical moment of (13) evaluated at the within estimator, allowing for possible

heteroskedasticity. The p-value for all periods pooled is 0.0079, and the p-values for each

period separately (t = 2, ..., 7) are: 0.0037, 0.1030, 0.0193, 0.1316, 0.0211, 0.0027. These

results imply that the usual fixed effects specification is not flexible enough to explain the

data, which may give credence to Bonhomme and Manresa’s (2015) specification.

On the other hand, when Bonhomme and Manresa’s (2015) specification is adopted

(the number of groups G = 4), the LM test can be conducted through the moments

E

[
G∑

g=1

xit(Yit − αg,t − x′
itβBM)I{gi = g}

]
= 0, t = 1, . . . , T, (15)

where βBM solves the moments

E

[
G∑
t=1

(Yit − αg,t − x′
itβBM)I{gi = g}

]
= 0, t = 1, . . . , T,

E

[
G∑

g=1

T∑
t=1

xit(Yit − αg,t − x′
itβBM)I{gi = g}

]
= 0. (16)

The p-value for all periods pooled is 0.9990, and the p-values for each period separately

(t = 1, . . . , 7) are: 0.8507, 0.9905, 0.9748, 0.9421, 0.4979, 0.9993, 0.7634. These results are

compatible with the claim that Bonhomme and Manresa’s (2015) specification with four

groups capture the time-varying heterogeneity in the data.

6 Discussion: Two-Way Error Component Model

Honda (1985) analyzed the asymptotic properties of the BP test for the linear model,

and his analysis indicates that the feasible test statistic evaluated at the MLE does not

need to reflect the noise of estimating the MLE. On the other hand, Lancaster (1984)

showed that it is in general necessary to adjust for such noise in general nonlinear models.

In Section 3, we explained that this seeming contradiction can be understood by noticing

Table S10, Column 4 in Bonhomme and Manresa (2015).) Note that both estimators are consistent if the

two-way fixed effects specification is correct. Therefore, this difference can be taken as another evidence

of incorrect specification.
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Table 1: OLS of ∆Yit on ∆xit (Standard Errors in Parentheses)

All Periods Two-way

t 2 3 4 5 6 7 Pooled FE

β1 -0.3152 -0.2353 -0.4912 -0.0993 0.0124 -0.2543 -0.2623 0.2835

(0.0798) (0.1384) (0.1465) (0.0679) (0.1712) (0.0743) (0.0495) (0.0573)

β2 0.1432 0.0576 0.1154 -0.0964 -0.4165 0.0393 -0.0300 -0.0313

(0.1267) (0.1880) (0.0916) (0.1121) (0.1623) (0.1129) (0.0498) (0.0490)

that Lancaster’s (1984) adjustment is unnecessary for linear models. See Remark 2. In this

section, we go one step further to show that Lancaster’s (1984) adjustment is unnecessary

for general two-way error component models. Lancaster (1984) implicitly adopted a “large

n, fixed T” asymptotics, which is natural for one-way models. In contrast, the two-way

models make it necessary to adopt a “large n, large T” asymptotic framework. Given

that the natural asymptotic frameworks are different, there is no logical contradiction.15

Variants of the two way error component model are adopted in the recent literature on

networks, where the presence of unobserved individual effects is a challenge. See Graham

(2017, 2020). It is therefore of interest to test whether these unobserved effects are present

in the data or not. Our result in this section has a convenient pragmatic implication that

the BP test can be used without the need to reflect the noise of estimating the MLE on
15 Honda’s (1985) Lemma 2 consists of several steps. He first establishes (correctly) that two

normalized sums (
∑N

i=1 pi

/√
N and

∑T
t=1 wt

/√
T ) are asymptotically normal. He then establishes

that E
[(∑N

i=1 pi

/√
N
)(∑T

t=1 wt

/√
T
)]

= 0, based on which he concludes that
∑N

i=1 pi

/√
N and∑T

t=1 wt

/√
T are asymptotically independent. The last step is incorrect because the lack of correlation

between two random normal variables does not guarantee independence, unless they are jointly normal

to begin with. Therefore, the proof of his main result is invalid. It is not clear to us whether or how it is

possible to fix his Lemma 2; the pi and wt are dependent on each other (if not correlated), which makes

the asymptotic analysis non-trivial to us.
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the asymptotic distribution.16

The two way error component model of interest includes as a special case the linear

model with individual and time effects Yit = x′
itβ + αi + γt + vit, i = 1, . . . , n, t =

1, . . . , T . As in Honda (1985), we will assume that n, T → ∞, which necessitates that

we are a little more specific about the specification of the likelihood. We will assume

that conditional on all the xs, αs, and γs, the joint likelihood of the Y s is given by∏n
i=1

∏T
t=1 f (Yit|xit, αi, γt, β). This implies that the LM test would be based on

1√
nT

n∑
i=1

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
nT

n∑
i=1

(
T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

, (17)

and
1

n
√
T

T∑
t=1

n∑
i=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1

n
√
T

T∑
t=1

(
n∑

i=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

. (18)

See Appendix E for justification of the normalization by
√
nT and n

√
T .

In practice, we would have to confront the fact that θ0 is estimated and examine how

the noise of estimating θ0 by the MLE θ̄n affects the distribution of the test statistic under

the null. We will argue that for the two way model with n, T → ∞ asymptotics, the noise

does not affect the asymptotic distribution. For this purpose, it suffices to examine the

distribution of (17) evaluated at the MLE

1√
nT

n∑
i=1

T∑
t=1

∂2 ln f
(
Yit|Xit, θ̄n

)
∂θ21

+
1√
nT

n∑
i=1

(
T∑
t=1

∂ ln f
(
Yit|Xit, θ̄n

)
∂θ1

)2

, (19)

where we recognize that the MLE has the influence function proportional to 1√
nT

∑n
i=1∑T

t=1
∂ ln f(Yit|Xit,θ0)

∂θ
. Most importantly for our purpose, we should have

√
nT
(
θ̄n − θ0

)
=

Op (1). It can be shown that under mild regularity conditions, (19) has the same distribu-

tion as (17) under the null.17 By similar argument, we can conclude that (18) has the same
16Unlike the classical two-way error component model, where two types of errors (individual and time

effects) are included, the network model has only one type of error but it is included similar to the two-way

error component model. For example, Yij = 1
(
g (Xi, Xj)

′
β0 + Ui + Uj − Vij ≥ 0

)
, where Us correspond

to the random effects and Vij has standard logistic distribution. This implies that the counterparts of

(17) and (18) are identical, and we do not need to establish their joint asymptotic distribution.
17See Appendix E.
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asymptotic distribution as its feasible counterpart, where the two θ0 in (18) are replaced

by θ̄n.18

7 Summary

We revisited the BP test and derived several interesting results. We showed that the

test has a power against fixed effects, even though it was developed to detect random

effects. Because of the simplicity of the BP test as well as the complexity of nonlinear

panel data analysis, this has a convenient implication for analysis of nonlinear panel mod-

els with fixed effects. We also analyzed the nature of the distortion to the asymptotic

distribution induced by the noise of estimating the MLE, and found that the noise need

not be accounted for one-way linear models or general two-way models. Given the simi-

larity between the two-way models and some network models, this result has a convenient

pragmatic implication for analysis of networks.

18Our conclusion only requires that (17) and (18) are both unaffected by the noise of the estimation

of θ0. Hence, the joint asymptotic distribution of the random vector consisting of (17) and (18), if it is

correctly established, is unaffected by such a noise. Of course the problem in Honda’s (1985) Lemma 2

needs to be fixed, which we are unable to do yet.
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Appendices

A Regularity Conditions

Assumption 1 The observed data Zi (i = 1, . . . , n) are independently and identically

distributed. Zi belongs to a measure space Z and consists of two subvectors Xi and Yi

such that Zi = (Y ′
i , X

′
i)

′, and the conditional probability density function of Yi given Xi is

h(y|x, θ0, η), where θ0 is a q-dimensional parameter and η is a scalar parameter.

Assumption 2 For all θ in Θ and almost all z in Z, h(y|x, θ, 0) = f(y|x, θ).

Let γ ≡ (θ′, η)′ and γ ∈ Γ. Let θj (j = 1, . . . , q) denote the jth element of θ.

Assumption 3 Let εi be a random variable that is independent of Xi and has a probability

density function k(·) such that
∫
ek(e)de = 0 and

∫
e2k(e)de = σ2

ε . Define h(y|x, γ) ≡

f(y|x, (θ1 + ηε, θ2, . . . , θq)
′).

Assumption 3′ Let ε∗i be a random variable with a conditional probability density function

k(·) such that
∫
ek(e|x)de = 0 for all x in the support X of X and supx∈X

∫
e2k(e|x)de < ∞.

Let µ(x) denote a function of x and define h(y|x, γ) ≡ f(y|x, (θ1+η2µ(x)+ηε∗, θ2, . . . , θq)
′).

Remark 4 Although h(y|x, γ) in Assumptions 3 and 3′ is conceptually different from that

in Assumptions 1 and 2, the former, when integrating out ε (or ε∗), satisfy the conditions

in Assumptions 1 and 2. For this reason, we will slightly abuse the notation and use

h(y|x, γ) to denote both.

For a matrix A = [aij], let |A| = maxi,j |aij|.

Assumption 4 For almost all z in Z, ln f(y|x, θ) is twice continuously differentiable

with respect to θ1, and f(y|x, θ), ln f(y|x, θ), ∂ ln f(y|x, θ)/∂θ1 and ∂2 ln f(y|x, θ)/∂θ21
are all measurable functions of z for each θ in Θ, where Θ is a compact subsets of Rq.

For almost all z in Z, ln f(y|x, θ), ∂ ln f(y|x, θ)/∂θ1 and ∂2 ln f(y|x, θ)/∂θ21 are all con-

tinuously differentiable with respect to θ. ∂ ln f(y|x, θ)/∂θ, ∂ (∂ ln f(y|x, θ)/∂θ1) /∂θ and
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∂ (∂2 ln f(y|x, θ)/∂θ21) /∂θ are all measurable functions of z for each θ in Θ. fX(x) is a

measurable function of z for each θ in Θ. θ0 is an element of the interior of Θ.

Let fX(x) denote the marginal probability density function of Xi.

Assumption 5 There exist measurable functions a(z) and b(z) such that |f(y|x, θ)fX(x)| ≤

a(z) and |∂f(y|x, θ)/∂θ|, |∂2f(y|x, θ)/∂θ21|, |∂2 ln f(y|x, θ)/∂θ21|2, |∂ ln f(y|x, θ)/∂θ1|4, |∂3

ln f(y|x, θ)/∂θ21∂θ′|, |∂ ln f(y|x, θ)/∂θ| and |∂2 ln f(y|x, θ)/∂θj∂θk| (j, k = 1, . . . , q) are

each less than b(z). Further, it is the case that
∫
a(z)dz < +∞ and

∫
b(z)a(z)dz < +∞,

and that the set {z : h(y|x, θ) > 0} is independent of θ.

Assumption 6 If θ ̸= θ0, then A ≡ {z : f(y|x, θ) ̸= f(y|x, θ0)} satisfies
∫
A
f(y|x, θ0)dy >

0.

We write g = (m′, s′)′, where m(z, θ) is defined in equation (6) and s (y|x, θ) ≡

∂ ln f (y|x, θ)/ ∂θ denotes the score. Define

V ≡
∫

g (z, θ0) g (z, θ0)
′ f (y|x, θ0) fX (x) dz.

Assumption 7 The matrix V is nonsingular.

Now we define some general notation. Suppose that g(z, θ) is a scalar function, h(z, γ)

is a density of Z with parameter γ, and Zi (i = 1, . . . , n) is a sequence of observations from

h(z, γ), where an extra subscript γ on Zi is suppressed for notational convenience. Define

gn(θ) ≡ n−1
∑n

i=1 g(Zi, θ), and when the expectation exists, ϕ(θ, γ) ≡
∫
g(z, θ)h(z, γ)dz.

This notation does not refer to the specific functions defined elsewhere in this paper, and

it will be used only in the following lemma, which is a restatement of Lemma A.1 in Newey

(1985)19 and is helpful for the proof of our theorems.

Lemma A.1 Suppose that, Θ is compact; for each θ in Θ, g(z, θ) is a measurable function

of z; and for almost all z in Z, g(z, θ) is a continuous function of θ. Suppose that, Γ is

compact; for each γ in Γ, h(z, γ) is a measurable probability density on Z; for almost all z
19We slightly modify the notation in Newey (1985) to suit our paper.
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in Z, h(z, γ) is a continuous function of γ. Suppose that there exists measurable functions

a(z) and b(z) such that h(z, γ) ≤ a(z) and |g(z, θ)| ≤ b(z) with∫
b(z)a(z)dz < +∞,

∫
a(z)dz < +∞.

Then ϕ(θ, γ) exists and is continuous on Θ× Γ. Suppose, in addition, that Z1, . . . , Zn are

independent observations with density h(z, γn) where limn→∞ γn = γ0. Then for all ε > 0,

lim
n→∞

sup
Θ

|gn(θ)− ϕ(θ, γ0)| = 0. (20)

Proof. See Appendix of Newey (1985).

B Proof of Theorem 1

For ease of reading, we will follow Newey’s (1985, Proof of Lemma 2.1) as closely as

possible.

Step 1 Let

ϕη (θ) ≡
∫

g (z, θ)h (y|x, θ0,
√
η) fX (x) dz, (21)

V̄η ≡
∫

g (z, θ0) g (z, θ0)
′ h (y|x, θ0,

√
η) fX (x) dz − ϕη(θ0)ϕη(θ0)

′. (22)

By Assumptions 4 and 5, the elements of g(z, θ) and the density h(y|x, θ,√η)fX(x) satisfy

the hypotheses of Lemma A.1, implying that ϕη(θ) exists and is continuous on Γ. Then

by Assumption 3, we have

lim
η→0

ϕη(θ0) = ϕ0(θ0). (23)

Due to Assumptions 3 - 5, the dominated convergence theorem (e.g., Bartle, 1966, Corol-

lary 5.9) allows one to differentiate the integrand function in the identity
∫
f(y|x, θ)fX(x)

dz = 1, which yields the following identities for θ in the interior of Θ:

E [s(Yi|Xi, θ)] =

∫
∂f(y|x, θ)

∂θ
fX(x)dz =

∫
s(y|x, θ)f(y|x, θ)fX(x)dz = 0,
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and

E [m(Zi, θ)] =

∫
∂2f(y|x, θ)/∂θ21

f(y|x, θ)
f(y|x, θ)fX(x)dz = 0.

In light of Assumption 2, these identities evaluating at θ0 immediately imply that

ϕ0(θ0) = E [g(Zi, θ0)] =

∫
g (z, θ0) f (y|x, θ0) fX (x) dz = 0. (24)

By Assumption 5, functions [m(z, θ)]2 and s(y|x, θ)s(y|x, θ)′ satisfy the hypotheses of

Lemma A.1, and so does s(y|x, θ)m(z, θ) by the Cauchy-Schwarz inequality. Applying

Lemma A.1 to V̄η and we get

lim
η→0

V̄η = V, (25)

and note that

V = E0

[
g (Zi, θ0) g (Zi, θ0)

′]
=


E

[(
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)

)2
]

E

[
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)
s (Yi|Xi, θ0)

′
]

E

[
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

]
E
[
s (Yi|Xi, θ0) s (Yi|Xi, θ0)

′]


=

 κ1 κ′
2

κ2 I

 .

Step 2 In this step, we will first establish a central limit theorem (CLT) for n−1/2∑n
i=1(g(Zi, θ0) − ϕηn(θ0)) under arbitrary sequence of DGP’s with ηn → 0 as n → ∞.

Define a function Wη(z) ≡ λ′ [g(z, θ0)− ϕη(θ0)], and let Wη,i ≡ Wη(Zi) for i = 1, . . . , n,

where λ is a (q + 1)-dimensional non-zero vector. By the definitions of ϕη(θ) and V̄η in

equations (21) and (22), we know that Wη,i has mean zero and variance λ′V̄ηλ, which

is positive for small η by Assumption 7 and equation (25). For any δ > 0, define the

set Aδ,η ≡
{
z : |λ′ [g(z, θ0)− ϕη(θ0)] | > δ

(
nλ′V̄ηλ

)1/2}.20 Note that Zi (i = 1, . . . , n) are

identically distributed, so for any ϵ > 0, we have

(
nλ′V̄ηλ

)−1
n∑

i=1

∫
|Wη,i|≥δ(nλ′V̄ηλ)

1/2
|Wη,i|2h(Yi|Xi, θ0,

√
η)fX(Xi)dZi

20Let Aδ,η = ∅ if λ′V̄ηλ < 0.
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=
(
λ′V̄ηλ

)−1
∫
Aδ,η

|Wη(z)|2h(y|x, θ0,
√
η)fX(x)dz

≤
(
λ′V̄ηλ

)−1
2(q + 1)|λ|2

(
|ϕη(θ0)|2

∫
Aδ,η

a(z)dz +

∫
Aδ,η

b(z)a(z)dz

)
, (26)

where the last inequality holds by Assumption 5 and the simple inequality that (a+ b)2 ≤

2(a2+b2) for any a, b ∈ R. By equations (23) and (24), limη→0 ϕη(θ0) = 0. By equation (25),

we have limη→0 λ
′V̄ηλ = λ′V λ > 0, so Aδ,η converges to an empty set as n → ∞, implying

that limn→∞
∫
Aδ,η

a(z)dz = 0 and limn→∞
∫
Aδ,η

b(z)a(z)dz = 0. Therefore, equation (26)

implies that the Lindberg condition is satisfied, and by the Lindberg-Feller CLT (e.g., p.

128 of Rao, 1971), we have
(
nλ′V̄ηλ

)−1/2∑n
i=1Wη,i

d.−→ N(0, 1), implying in turn that

n−1/2
∑n

i=1Wη,i
d.−→ N(0, λ′V λ). This, together with the Cramér-Wold device, implies

that for arbitrary sequence of DGP’s with ηn → 0 as n → ∞,

n−1/2

n∑
i=1

(g (Zi, θ0)− ϕηn (θ0))
d.−→ N(0, V ).

Then, we apply this CLT to a particular sequence ηn = n−1/2 and get

n−1/2

n∑
i=1

(g (Zi, θ0)− ϕn−1/2 (θ0))
d.−→ N(0, V ). (27)

Step 3 Due to Assumptions 3 - 5 and the dominated convergence theorem, we calculate

the derivative of
∫
g (z, θ0)h (y|x, θ0, η) fX (x) k (e) dedz with respect to η as follows

KR ≡ ∂

∂η

(∫
g (z, θ0) fX (x)

∫
f (y|x, θ0 +

√
ηeι) k (e) dedz

)∣∣∣∣
η=0

(28)

=

∫ ∫
g (z, θ0) fX (x)

∂f(y|x,θ0+
√
ηeι)

∂θ1
ek (e) dedz

2
√
η

∣∣∣∣∣∣
η=0

= lim
η→0

√
η

2

∫ ∫
g (z, θ0) fX (x)

∂f(y|x,θ0+
√
ηeι)

∂θ1
ek (e) dedz

η
.

Using the L’Hopital’s rule, we write

KR = lim
η→0

 1
4
√
η

∫ ∫
g (z, θ0) fX (x)

∂f(y|x,θ0+
√
ηeι)

∂θ1
ek (e) dedz

+
√
η

2
1

2
√
η

∫ ∫
g (z, θ0) fX (x)

∂2f(y|x,θ0+
√
ηeι)

∂θ21
e2k (e) dedz


1
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=
KR

2
+

1

4
lim
η→0

∫ ∫
g (z, θ0) fX (x)

∂2f
(
y|x, θ0 +

√
ηeι
)

∂θ21
e2k (e) dedz,

from which we obtain

KR =
1

2

∫ ∫
g (z, θ0) fX (x)

∂2f (y|x, θ0)
∂θ21

e2k (e) dedz

=
σ2
ε

2

∫
g (z, θ0) fX (x)

∂2f (y|x, θ0)
∂θ21

dz

=
σ2
ε

2

∫
g (z, θ0)

∂2f (y|x, θ0)/ ∂θ21
f (y|x, θ0)

f (y|x, θ0) fX (x) dz

=
σ2
ε

2
E

[
g (Zi, θ0)

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]
,

where we recall σ2
ε =

∫
e2k (e2) de. Recalling that g = (m′, s′)′ helps us simplify as follows

KR =
σ2
ε

2


E

[(
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)

)2
]

E

[
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

]
 =

σ2
ε

2

 κ1

κ2

 .

Recall the definition of ϕη(θ) in equation (21) and apply the mean-value theorem to equa-

tion (28) with ηn = n−1/2, we get

KR = lim
n→∞

n1/2

(∫
g (z, θ0) fX(x)

∫
f
(
y|x, θ0 +

√
n−1/2eι

)
k (e) dedz −

∫
g (z, θ0) f (z| θ0) dz

)
= lim

n→∞
n1/2

(∫
g (z, θ0)h

(
y|x, θ0,

√
n−1/2

)
fX(x)dz −

∫
g (z, θ0) f (z| θ0) fX(x)dz

)
= lim

n→∞
n1/2 (ϕn−1/2 (θ0)− ϕ0 (θ0)) .

Combined with the CLT in equation (27), we see that this implies that
√
ngn (θ0)

d.−→

N (KR, V ).

Remark 5 We can in principle address heteroscedasticity as long as E [ε|x] = 0 is satis-

fied. This of course implies that KR should be redefined as

1

2


E

{
ε2iE

[(
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)

)2
∣∣∣∣∣Xi

]}
E

{
ε2iE

[
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

∣∣∣∣Xi

]}


with corresponding changes in the next section.
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Step 4 We now show that n1/2
(
θ̄n − θ0

)
= − (DH)−1Dn1/2gn (θ0) + op (1), where D ≡

[0, Iq] and H ≡ E [∂g (Zi, θ0)/ ∂θ
′]. By the mean value theorem, we get n1/2gn

(
θ̄n
)
=

n1/2gn (θ0) +
[
∂gn

(
θ̇n

)/
∂θ′
]
n1/2

(
θ̄n − θ0

)
for some θ̇n in the line segment connecting θ̄n

and θ0. By Assumptions 4 and 5, we know that h(y|x, γ)fX(x) and the constituent elements

of ∂gn(θ̇n)/∂θ
′ satisfy the hypotheses of Lemma A.1, implying that ∂gn(θ̇n)

/
∂θ′

p.−→

E [∂g (Zi, θ0)/ ∂θ
′]. This, combined with the standard

√
n-consistency of the MLE θ̄n,

implies that n1/2gn
(
θ̄n
)
= n1/2gn (θ0)+Hn1/2

(
θ̄n − θ0

)
+op (1). Because the MLE satisfies

0 = Dgn
(
θ̄n
)

by definition, it follows that 0 = Dn1/2gn (θ0) +DHn1/2
(
θ̄n − θ0

)
+ op (1),

from which we obtain n1/2
(
θ̄n − θ0

)
= − (DH)−1Dn1/2gn (θ0) + op (1).

We note that

H =

 E
[
∂m(Zi,θ0)

∂θ′

]
E
[
∂s(Yi|Xi,θ0)

∂θ′

]
 =

 E
[
∂m(Zi,θ0)

∂θ′

]
−I

 .

We now simplify

E

[
∂m (Zi, θ0)

∂θ

]
= E

[
∂

∂θ

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]
a bit. For this purpose, we start with the observation that

0 =

∫
∂2f (y|x, θ)/ ∂θ21

f (y|x, θ)
f (y|x, θ) dy

for all θ. Assumptions 3 - 5 and the dominated convergence theorem allow differentiating

both sides with respect to θ and getting

0 =

∫
∂

∂θ

∂2f (y|x, θ)/ ∂θ21
f (y|x, θ)

f (y|x, θ) dy+
∫

∂2f (y|x, θ)/ ∂θ21
f (y|x, θ)

∂f (y|x, θ)/ ∂θ
f (y|x, θ)

f (y|x, θ) dy,

or

0 = E

[
∂

∂θ

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]
+ E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s (Yi|Xi, θ0)

]
.

We therefore conclude that

E

[
∂m (Zi, θ0)

∂θ

]
= −E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s (Yi|Xi, θ0)

]
= −κ2,

and hence

H =

 −κ′
2

−I

 .
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Remark 6 Note that − (DH)−1 = I−1. Combined with n1/2gn (θ0)
d.−→ N (KR, V ),

which implies that Dn1/2gn (θ0)
d.−→ N

(
σ2
ε

2
κ2, I

)
, we can see that n1/2

(
θ̄n − θ0

) d.−→

N
(

σ2
ε

2
I−1κ2, I−1

)
. Therefore, if κ2 = 0, the MLE is asymptotically unbiased even un-

der the alternative of random effects.

Step 5 We now establish the distribution of mn

(
θ̄n
)
. For this purpose, we note that

√
nmn

(
θ̄n
)
= L

√
ngn

(
θ̄n
)

for L ≡ [I1, 0]. We also saw in the previous step that n1/2gn
(
θ̄n
)
=

n1/2gn (θ0)+Hn1/2
(
θ̄n − θ0

)
+op (1), and n1/2

(
θ̄n − θ0

)
= − (DH)−1Dn1/2gn (θ0)+op (1).

Therefore, we see that
√
nmn

(
θ̄n
)
= L

√
ngn

(
θ̄n
)

= L
√
ngn (θ0)− LH (DH)−1D

√
ngn (θ0) + op (1)

= L
(
Iq+1 −H (DH)−1D

)√
ngn (θ0) + op (1)

= [I1, 0]
√
ngn (θ0)− [I1, 0]H (−I)−1√nsn (θ0) + op (1)

=
√
nmn (θ0)− κ′

2I−1
√
nsn (θ0) + op (1)

=
[
I1,−κ′

2I−1
]√

ngn (θ0) + op (1)

while
√
ngn (θ0)

d.−→ N (KR, V ). Because [I1,−κ′
2I−1]V [I1,−κ′

2I−1]
′
= κ1 − κ′

2I−1κ2, it

follows that
√
nmn

(
θ̄n
)
= L

√
ngn

(
θ̄n
) d.−→ N

([
I,−κ′

2I−1
]
KR, κ1 − κ′

2I−1κ2

)
(29)

d.
= N

(
σ2
ε

2

(
κ1 − κ′

2I−1κ2

)
, κ1 − κ′

2I−1κ2

)
in general.

C Proof of Theorem 2

The proof is essentially identical to the proof of Theorem 1, except that we need to calculate

the counterpart of KR in Step 3. We begin by considering the special case where the

neglected heterogeneity takes the form

f

(
y

∣∣∣∣x,(θ0,1 + µ (x)

n1/2
, θ0,2, . . . , θ0,q

))
,
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where µ (x) denotes a function of x. Note that there is no other random variable. We

now would like to calculate the counterpart of KR. Due to Assumptions 3′, 4, 5 and the

dominated convergence theorem, we have

KF ≡ ∂

∂η

(∫
g (z, θ0) fX (x) f (y|x, θ0 + ηµ (x) ι) dz

)∣∣∣∣
η=0

=

∫
g (z, θ0) fX (x)

∂f (y|x, θ0)
∂θ1

µ (x) dz

=

∫
g (z, θ0) s1 (y|x, θ0) f (y|x, θ0) fX (x)µ (x) dz

= E [g (Zi, θ0) s1 (Yi|Xi, θ0)µ (Xi)] ,

where s1(y|x, θ0) is the first coordinate of the score function. By applying the mean-value

theorem with ηn = n−1/2, we get KF = limn→∞ n1/2 (ϕn−1/2 (θ0)− ϕ (θ0)). Note that KF

can be written as

KF ≡ E

 ∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

s1 (Yi|Xi, θ0)µ (Xi)

s (Yi|Xi, θ0) s1 (Yi|Xi, θ0)µ (Xi)


=

 E

{
E

[
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)
s1 (Yi|Xi, θ0)

∣∣∣∣Xi

]
µ (Xi)

}
E {E [s (Yi|Xi, θ0) s1 (Yi|Xi, θ0)|Xi]µ (Xi)}

 .

The rest of Newey’s (1985) analysis still applies. We therefore have (in his symbols)
√
TLTgT

(
θ̄T
)
= LP

√
TgT (θ0) + op (1) (2.6) and that

√
TgT (θ0)

d.−→ N (Kδ, V ) (2.7).

Here, L = [I1, 0] and D = [0, Iq]. Because, DH = −I, Dg (z, θ0) = s (z, θ0), we still have

(in our notation)

L
√
ngn

(
θ̄n
)
= LP

√
ng (θ0) + op (1)

= L
(
Iq+1 −H (DH)−1D

)√
ngn (θ0) + op (1)

= [I1, 0]
√
ngn (θ0)− [I1, 0]H (−I)−1√nsn (θ0) + op (1)

=
√
nmn (θ0)− κ′

2I−1
√
nsn (θ0) + op (1)

=
[
I1,−κ′

2I−1
]√

ngn (θ0) + op (1) ,

while
√
ngn (θ0)

d.−→ N (KF , V ) .
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Because we still have

[
I1,−κ′

2I−1
]
V
[
I1,−κ′

2I−1
]′
= κ1 − κ′

2I−1κ2,

it follows that

√
nmn

(
θ̄n
)
= L

√
ngn

(
θ̄n
) d−→ N

([
I1,−κ′

2I−1
]
KF , κ1 − κ′

2I−1κ2

)
. (30)

We now consider the fixed effects (9). After all, the whole calculation was based on

the derivative of the form f
(
y|x,

(
θ0,1 + ηµ (x) +

√
ηε, θ0,2, . . . , θ0,q

))
and note that the

derivative should be the sum of the derivatives of f (y|x, (θ0,1 + ηµ (x) , θ0,2, . . . , θ0,q)) and

f(y|x, (θ0,1 +
√
ηε, θ0,2, . . . , θ0,q)). The asymptotic bias is then equal to the sum of two

asymptotic biases in (29) and (30):

√
nmn

(
θ̄n
)
= L

√
ngn

(
θ̄n
) d.−→ N

([
I1,−κ′

2I−1
]
(KF +K∗

R) , κ1 − κ′
2I−1κ2

)
,

where

K∗
R ≡ 1

2


E

{
(ε∗i )

2E

[(
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)

)2
∣∣∣∣∣Xi

]}
E

{
(ε∗i )

2E

[
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

∣∣∣∣Xi

]}


is a heteroskedasticity-robust version of KR based on ε∗i . (See Remark 5.)

D Proof of Lemma 1

First, we can see that the OLS β̂ is not
√
n-consistent under the misspecification. In fact,

we have

θ̂ =

(
n∑

i=1

T∑
t=1

XitX
′
it

)−1( n∑
i=1

T∑
t=1

Xit

(
µ (Xi)

n1/4
+

ε∗i
n1/4

+X ′
itθ + vit

))

=

(
1

nT

n∑
i=1

T∑
t=1

XitX
′
it

)−1(
1

n

n∑
i=1

X̄iµ (Xi)

)
/n1/4

+

(
1

nT

n∑
i=1

T∑
t=1

XitX
′
it

)−1(
1

n

n∑
i=1

X̄iε
∗
i

)
/n1/4
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+ θ +

(
1

n

n∑
i=1

T∑
t=1

XitX
′
it

)−1(
1

n

n∑
i=1

T∑
t=1

Xitvit

)
.

We see that

1

n

n∑
i=1

X̄iµ (Xi) = λ+Op

(
n−1/2

)
,

1

n

n∑
i=1

X̄iε
∗
i = Op

(
n−1/2

)
,

1

n

n∑
i=1

T∑
t=1

Xitvit = Op

(
n−1/2

)
,

so

n1/4
(
θ̂ − θ

)
= Q−1λ+Op

(
n−1/2

)
+Op

(
n−1/4

)
= Q−1λ+Op

(
n−1/4

)
.

Now we consider

v̂′[In ⊗ (eT e
′
T − IT )]v̂ =

n∑
i=1

T∑
l ̸=m

v̂ilv̂im.

Since the OLS residual v̂il = ξi/n
1/4 + vil −X ′

il

(
θ̂ − θ

)
, we have

1

n1/2

n∑
i=1

T∑
l ̸=m

v̂ilv̂im =
1

n1/2

n∑
i=1

T∑
l ̸=m

(
ξi
n1/4

+ vil

)(
ξi
n1/4

+ vim

)

− 1

n1/2

n∑
i=1

T∑
l ̸=m

(
ξi
n1/4

+ vil

)
X ′

im

(
θ̂ − θ

)
− 1

n1/2

n∑
i=1

T∑
l ̸=m

(
ξi
n1/4

+ vim

)
X ′

il

(
θ̂ − θ

)
+

1

n1/2

n∑
i=1

T∑
l≠m

(
θ̂ − θ

)′
XilX

′
im

(
θ̂ − θ

)
. (31)

Note that the first term can be rewritten

1

n1/2

n∑
i=1

T∑
l ̸=m

(
ξi
n1/4

+ vil

)(
ξi
n1/4

+ vim

)

=
1

n1/2

n∑
i=1

T∑
l ̸=m

vilvim +
T (T − 1)

n

n∑
i=1

ξ2i +
2(T − 1)

n3/4

n∑
i=1

ξi

T∑
l=1

vil

=
1

n1/2

n∑
i=1

T∑
l ̸=m

vilvim + T (T − 1)
(
E
[
ξ2i
]
+Op

(
n−1/2

))
+Op(n

−1/4)
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=
1

n1/2

n∑
i=1

T∑
l ̸=m

vilvim + T (T − 1)E
[
ξ2i
]
+Op(n

−1/4),

where we used the CLT for the second equality.

Now we show that the second term in equation (31) is Op(n
1/4).

1

n1/2

n∑
i=1

T∑
l ̸=m

(
ξi
n1/4

+ vil

)
X ′

im

(
θ̂ − θ

)
=

1

n1/2

n∑
i=1

T∑
l ̸=m

vilX
′
im

(
θ̂ − θ

)
+

1

n3/4

n∑
i=1

T∑
l ̸=m

ξiX
′
im

(
θ̂ − θ

)
=
(
θ̂ − θ

)′(
n−1/2

n∑
i=1

T∑
l ̸=m

vilXim

)
+ n1/4

(
θ̂ − θ

)(
n−1

n∑
i=1

ξi

T∑
m=1

Xim

)
.

Because E
[∑T

l ̸=m vilXim

]
= 0, we can apply the CLT and conclude that n−1/2

∑n
i=1

∑T
l ̸=m

vilXim = Op(1). Combined with the result that n1/4
(
θ̂ − θ

)
= Q−1λ + Op

(
n−1/4

)
, we

conclude that the first term on the far RHS is Op

(
n−1/4

)
. Noting that

n−1

n∑
i=1

ξi

T∑
m=1

Xim = E

[
ξi

T∑
m=1

Xim

]
+Op

(
n−1/2

)
= E

[
(µ (Xi) + ε∗i )

(
TX̄i

)]
+Op

(
n−1/2

)
= TE

[
X̄iµ (Xi)

]
+Op

(
n−1/2

)
= Tλ+Op

(
n−1/2

)
,

we conclude that the second term on the far RHS is

n1/4
(
θ̂ − θ

)′(
n−1

n∑
i=1

ξi

T∑
m=1

Xim

)
= Tλ′Q−1λ+Op

(
n−1/4

)
.

Therefore, we should have the second term in equation (31) equal to −Tλ′Q−1λ+Op

(
n−1/4

)
.

By the same argument, the third term is equation (31) is also −Tλ′Q−1λ+Op

(
n−1/4

)
as

the indices l and m are symmetric in this respect.

Finally, the fourth term in equation (31) can be written as

1

n1/2

n∑
i=1

T∑
l ̸=m

(
θ̂ − θ

)′
XilX

′
im

(
θ̂ − θ

)
= n1/4

(
θ̂ − θ

)′(
n−1

n∑
i=1

T∑
l ̸=m

XilX
′
im

)
n1/4

(
θ̂ − θ

)
=
(
Q−1λ

)′
S
(
Q−1λ

)
+Op

(
n−1/4

)
.
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E Technical Details of Section 6

This section makes the following additional assumption.

Assumption 8 (i) supi,t E

[
∂2f(Yit|Xit,θ0)/∂θ21

f(Yit|Xit,θ0)

]
< ∞; (ii) supi,t E

[(
∂ ln f(Yit|Xit,θ0)

∂θ1

)2]
<

∞; (iii) there exists some M (y, x) such that
∥∥∥∂4 ln f(Yit|Xit,θ)

∂θ21∂θ∂θ
′

∥∥∥ ≤ M (Yit, Xit),
∥∥∥∂3 ln f(Yit|Xit,θ)

∂θ1∂θ∂θ′

∥∥∥ ≤

M (Yit, Xit),
∥∥∥∂2 ln f(Yit|Xit,θ)

∂θ1∂θ

∥∥∥2 ≤ M (Yit, Xit),
∣∣∣∂ ln f(Yit|Xit,θ)

∂θ1

∣∣∣2 ≤ M (Yit, Xit), and supi,t E[M(Yit,

Xit)] < ∞.

We first show that (17) is Op (1) as n, T → ∞. The same argument shows that (18) is

also Op (1). First, we rewrite(17) as

1√
nT

n∑
i=1

T∑
t=1

∂2f (Yit|Xit, θ0)/ ∂θ
2
1

f (Yit|Xit, θ0)
+

1√
nT

n∑
i=1

∑
t̸=t′

∂ ln f (Yit|Xit, θ0)

∂θ1

∂ ln f (Yit′ |Xit′ , θ0)

∂θ1
.

(32)

Note that the first term in (32) is a zero mean random variable, and conditional on the

Xs, it is a sum of random variables independent over i and t. Therefore, the first term in

(32) is Op

(
1√
T

)
.

As for the second term in (32), we see that
∑

t̸=t′
∂ ln f(Yit|Xit,θ0)

∂θ1

∂ ln f(Yit′ |Xit′ ,θ0)
∂θ1

has mean

equal to zero and its variance is equal to

4
∑
t̸=t′

E

[(
∂ ln f (Yit|Xit, θ0)

∂θ1

)2
]
E

[(
∂ ln f (Yit′ |Xit′ , θ0)

∂θ1

)2
]
,

and therefore, the second term in (32) has mean equal to zero and variance equal to

4

nT 2

n∑
i=1

∑
t̸=t′

E

[(
∂ ln f (Yit|Xit, θ0)

∂θ1

)2
]
E

[(
∂ ln f (Yit′|Xit′ , θ0)

∂θ1

)2
]
= Op (1) .

In order to establish that the noise of estimating θ0 does not affect the distribution of

the test statistic under the null, we first apply the second order mean value theorem to

(19), and obtain

1√
nT

n∑
i=1

T∑
t=1

∂2 ln f
(
Yit|Xit, θ̄n

)
∂θ21

+
1√
nT

n∑
i=1

(
T∑
t=1

∂ ln f
(
Yit|Xit, θ̄n

)
∂θ1

)2
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=
1√
nT

n∑
i=1

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
nT

n∑
i=1

(
T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

+

 1
nT

√
T

∑n
i=1

∑T
t=1

∂3 ln f(Yit|Xit,θ0)

∂θ21∂θ
′

+ 2
nT

√
T

∑n
i=1

(∑T
t=1

∂ ln f(Yit|Xit,θ0)
∂θ1

)(∑T
t=1

∂2 ln f(Yit|Xit,θ0)
∂θ1∂θ′

)
√

nT
(
θ̄n − θ0

)

+
(√

nT
(
θ̄n − θ0

))′


1
2n

√
nT 2

∑n
i=1

∑T
t=1

∂4 ln f(Yit|Xit,θ̃)
∂θ21∂θ∂θ

′

+ 1
n
√
nT 2

∑n
i=1

(∑T
t=1

∂2 ln f(Yit|Xit,θ̃)
∂θ1∂θ

)(∑T
t=1

∂2 ln f(Yit|Xit,θ̃)
∂θ1∂θ′

)
+ 1

n
√
nT 2

∑n
i=1

(∑T
t=1

∂ ln f(Yit|Xit,θ̃)
∂θ1

)(∑T
t=1

∂3 ln f(Yit|Xit,θ̃)
∂θ1∂θ∂θ′

)

(√

nT
(
θ̄n − θ0

))

for some θ̃ between θ0 and θ̄n.

Note that the last term above can be bounded above by 1
2n

√
nT 2

(∑n
i=1

∑T
t=1M (Yit, Xit)

)
+ 2

n
√
nT 2

∑n
i=1

(∑T
t=1M (Yit, Xit)

)(∑T
t=1M (Yit, Xit)

)
∥∥∥√nT

(
θ̄n − θ0

)∥∥∥2
=

(
Op

(
nT

n
√
nT 2

)
+Op

(
nT 2

n
√
nT 2

))
Op (1) = op (1) ,

so we obtain

1√
nT

n∑
i=1

T∑
t=1

∂2 ln f
(
Yit|Xit, θ̄n

)
∂θ21

+
1√
nT

n∑
i=1

(
T∑
t=1

∂ ln f
(
Yit|Xit, θ̄n

)
∂θ1

)2

=
1√
nT

n∑
i=1

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
nT

n∑
i=1

(
T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

+

 1
nT

√
T

∑n
i=1

∑T
t=1

∂3 ln f(Yit|Xit,θ0)

∂θ21∂θ
′

+ 2
nT

√
T

∑n
i=1

(∑T
t=1

∂ ln f(Yit|Xit,θ0)
∂θ1

)(∑T
t=1

∂2 ln f(Yit|Xit,θ0)
∂θ1∂θ′

)
√

nT
(
θ̄n − θ0

)
+ op (1) .

(33)

We now show that the third term in (33) is op (1). First, we have∣∣∣∣∣ 1

nT
√
T

n∑
i=1

(
T∑
t=1

∂3 ln f (Yit|Xit, θ0)

∂θ21∂θ
′

)∣∣∣∣∣ ≤ 1√
T

(
1

nT

n∑
i=1

T∑
t=1

M (Yit, Xit)

)
= op (1) .

Second, we have

2

n

n∑
i=1

(
1√
T

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)(
1

T

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

)
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=
2

n

n∑
i=1

(
1√
T

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)(
1

T

T∑
t=1

E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])

+
2

n

n∑
i=1

(
1√
T

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)(
1

T

T∑
t=1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

]))
,

which we further write as

2

n
√
T

n∑
i=1

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

(
1

T

T∑
t=1

E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])

+
2

nT
√
T

n∑
i=1

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])
+

2

nT
√
T

n∑
i=1

∑
t̸=t′

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′

])
.

(34)

The first term has mean zero and variance equal to

4

n2T

n∑
i=1

T∑
t=1

E

[(
∂ ln f (Yit|Xit, θ0)

∂θ1

)2
](

1

T

T∑
t=1

E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])2

≤ 4

n2T

n∑
i=1

T∑
t=1

E [M (Yit, Xit)]

(
1

T

T∑
t=1

E [M (Yit, Xit)]

)2

= O

(
1

n

)
,

so it should be op (1). As for the second term of (34), we have

E

∣∣∣∣∣ 2

nT
√
T

n∑
i=1

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])∣∣∣∣∣
≤ 2√

T
sup
i,t

E

[∣∣∣∣∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])∣∣∣∣]

≤ 2√
T
sup
i,t

√√√√E

[∣∣∣∣∂ ln f (Yit|Xit, θ0)

∂θ1

∣∣∣∣2
]√√√√E

[∣∣∣∣(∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])∣∣∣∣2
]

= O

(
1√
T

)
,

so it should be op (1). As for the third term of (34), we note that conditional on Xs, it can

be viewed as a sum of
∑

t ̸=t′
∂ ln f(Yit|Xit,θ0)

∂θ1

(
∂2 ln f(Yit′ |Xit′ ,θ0)

∂θ1∂θ′
− E

[
∂2 ln f(Yit′ |Xit′ ,θ0)

∂θ1∂θ′

])
, which

are independent over i. Therefore, it has mean zero and variance equal to

4

n2T 3

n∑
i=1

Var

(∑
t̸=t

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′

]))
.
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By a similar reasoning, we can see that for t ̸= t′,
∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′

])
has mean equal to zero and the variance uniformly bounded over i and t. Therefore, we

can conclude that the variance of∑
t̸=t′

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′

])
is of order T 3.

This implies that the third term of (34) has mean zero and variance of order

2

n2T 3

n∑
i=1

Var

(∑
t̸=t

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′

]))
= O

(
1

n

)
,

so it should be op (1).
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