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Abstract

Most research on panel data focuses on mean or quantile regression while there is not
much research about regression methods based on the mode. In this paper, we propose a
new model named fized effects modal regression for panel data in which we model how the
conditional mode of the response variable depends on the covariates, and employ a kernel-
based objective function to simplify the computation. The proposed modal regression
can complement the mean and quantile regressions, and provide better central tendency
measure and prediction performance when the data is skewed. We present a linear dummy
modal regression (LDMR) method and a pseudo-demodeing two-step (PDTS) method to
estimate the proposed modal regression. The computations can be easily implemented
using a modified modal-expectation-maximization (MEM) algorithm. We investigate the
asymptotic properties of the modal estimators under some mild regularity conditions when
the number of individuals, N, and the number of time periods, T, go to infinity. The
optimal bandwidths with order (NT)~'/7 are obtained by minimizing the asymptotic
weighted mean squared errors. Monte Carlo simulations and two real data analyses of a
public capital productivity study and a carbon dioxide (C'O2) emissions study are presented

to demonstrate the finite sample performance of the newly proposed modal regression.
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1 Introduction

Mean, median, and mode are three of most commonly and popularly used location measures, and
focus on different population characteristics. Each quantity has its own merit and complements
each other. Built on the ideas of mean and median, mean regression and median regression
are extensively investigated and popularly used to model the relationship between a response
variable Y and covariates X. However, the research about the regression model built on the idea
of mode is rather limited, and has not gotten enough attention that it deserves partly due to its
computational difficulty. Compared to mean, mode is a better and more stable numerical char-
acteristic of a dataset when data has outliers or the error distribution is skewed (Chen, 2018).
Tarter and Lock (1993) argued that we should not stick to a single function for summarizing the
relationship among variables and should also pay attention to the conditional local modes, es-
pecially when data has high skewness. Due to the special characteristics of mode, many authors
have made efforts to identify modes of population distributions for low-dimensional data based
on the nonparametric kernel density estimation; see, for example, Silverman (1981), Muller and
Sawitzki (1991), Friedman and Fisher (1999), Chen et al. (2016), as well as documentations of
the R package “np” for nonparametric mode estimation. In the regression framework,' Sager
and Thisted (1982) pointed out that a modal regression estimator can be derived from a non-
parametric density estimate to analyze the relationship among variables. However, such modal
regression method derived from multivariate kernel density estimation is difficult to apply when
the dimension of the covariates is large. In the econometrics literature, the path-breaking papers
of Lee (1989, 1993) started the idea of linear modal regression. However, Lee (1989, 1993) used
an objective function with bounded support and assumed the tuning parameter h to be fixed.
Therefore, they required the error to be symmetric to get a consistent modal line. Yao et al.
(2012) proposed a kernel-based objective function to find the nonparametric modal estimator
but also required the error to be symmetric. Note however when the error is symmetric, the
modal regression line is the same as the mean regression line. Kemp and Santos Silva (2012)
and Yao and Li (2014) found out that the above limitations can be solved if we let the tuning
parameter h go to zero. They also proposed a more general kernel-based objective function and
established the general consistency of the linear modal regression estimate even when the error

density is skewed. Such findings greatly simplify the computations of modal regression.

More specifically, let f(Y | X) be the conditional density function of Y given X. The

traditional regression model usually uses the mean or the quantile of f(Y | X) to model the

'Modal regression can complement mean and quantile regressions and provide some other useful information
regarding the features of conditional distributions that the existing regression models might miss, especially for
the skewed dataset. For example, assume Y and X satisfy Y = X7 3,, +0(X)¢, where ¢ has a density with mean
0 and mode 1, 3, is a vector of coefficients, o(X) = m(X) — X7 3,,, in which m(X) is a nonlinear function, and
XT denotes the transpose of X. Then E(Y | X) = X7 f,,, while Mode(Y | X) = m(X). The mean regression
is linear, but the modal regression could be nonlinear. Similarly, it is also possible that the mean regression is
nonlinear, but the modal regression is linear.



relationship between Y and X. For example, the commonly used linear regression model assumes
that the mean of f(Y | X) is a linear function of X. The linear modal regression (Kemp and
Santos Silva, 2012; Yao and Li, 2014) instead assumes that the mode of f(Y | X), denoted
by Mode(Y | X), is a linear function of covariates X: Mode(Y | X) = XT3. The regression
coefficient 8, which reveals the change in the mode of the response variable Y corresponding

to a unit change in the covariates X, can be estimated effectively by maximizing the following

Qn( Nh2¢< X%),

where ¢(.) denotes a smooth kernel, and h is a bandwidth. Such idea of imposing a certain

kernel-based objective function

model assumption directly on the conditional mode, Mode(Y | X), along with the kernel-based
objective function greatly simplifies the computation of the modal regression, and avoids the
nonparametric multivariate kernel density estimation of f(X,Y) that is needed for the fully
nonparametric multivariate modal estimation. Due to such reasons, we have experienced much
development of modal regression recently. Especially, with the distinguished characteristics
of modal regression (such as robustness and better prediction performance (shorter prediction
interval)), the idea of linear modal regression was subsequently extended by many researchers
such as Yao and Xiang (2016), Zhou and Huang (2016), Chen et al. (2016), Krief (2017), Chen
(2018), Li and Huang (2019), Ota et al. (2019), Kemp et al. (2020), among others.

Panel data models have been well developed and widely used in empirical economics due to
the appealing feature that it allows in modeling time-invariant individual specific effects. Baltagi
(2009) and Baltagi (2013) gave an excellent overview of the panel data analysis technique. There
are a large number of estimation methods that could be used to estimate panel data models,
such as the first difference approach and the profile least-squares method. Su and Ullah (2006)
presented a local linear kernel estimator for a nonparametric panel data model with fixed effects,
where they derived the asymptotic theorems with fixed 7" and large N. Gao and Li (2013)
proposed using the profile least-squares method to concentrate out fixed effects and estimated
the model by a kernel method. Lee et al. (2019) introduced a local linear kernel estimator for the
marginal effect in fixed-effect panel data models. Canay (2011) developed a two-step estimator
for panel data quantile regression models with fixed effects. For other related literature, we
refer the interested readers to Su and Ullah (2011), Lin et al. (2014), among others. While the
above papers collectively cover a large class of panel models, all of them are based on mean or
quantile regression. This motivates us to investigate the fixed effects panel data model from
the modal regression view. To the best of our knowledge, the present paper is the first work to

develop theory and methodology for fized effects modal regression for panel data.

Given a panel dataset {(Yit, Xg) ci=1,--- ,N;t=1,--- ,T}, the linear fixed effects mean

regression assumes E(Yj; | Xy, ;) = XL 3, +a; with X;; € R? and 3, € K!, where q; is treated
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as a fixed parameter and allowed to be correlated with X;;, and K; is a compact set. In this
paper, we propose to model how the conditional mode changes with covariates for the panel

data by the following linear fized effects modal regression

where y; is treated as a fixed parameter in modal regression, 8 € K2, and K is a compact set,
ie.,
Y = X3 B+ p; + vy (1.2)

with Mode(vyy | Xi, i) = 0. For the idiosyncratic error term, we assume that v is inde-
pendently and identically distributed (i.i.d.) over ¢ and ¢, and independent of unobservable
time-invariant individual effect p; (Henderson et al., 2008; Lin et al., 2014). For the sake of sim-
plicity, we focus on the one-way error-component model and balanced panel dataset. However,
the methodology could be easily extended to the case of unbalanced panel data or a two-way
error-component model. It is straightforward to see that different from the linear modal regres-
sion for the cross-sectional data (Kemp and Santos Silva, 2012; Yao and Li, 2014), the estimation
and the corresponding asymptotic properties for the linear fixed effects modal regression depend
on the assumptions for (N, 7). It is noticed that we only need NT' — oo to establish the asymp-
totic theorems for the proposed LDMR estimators. However, we require T' grow much faster
than N to simplify the deviation of the asymptotic results for the proposed PDTS estimators
(see Section 3). Given these, we mainly focus on the case in which both N and T go to infinity
in this paper, and also discuss other various cases under different conditions of N and 7" (finite

or going to infinity) in the remarks.

We first propose a LDMR method to estimate (1.1) by using dummy variables for fixed
effects {u;},. The estimates of all parameters can be obtained by extending the modal-
expectation-maximization (MEM) algorithm (Li et al., 2007; Yao, 2013) to maximize a kernel-
based objective function. Consistency and asymptotic normality of the estimators are inves-
tigated under some mild conditions with both N and T going to infinity. We also give the
asymptomatically optimal bandwidth and show how to obtain it in practice. Meanwhile, for
large N case, which is a typical situation for panel data from an annually conducted panel
survey, one problem of the LDMR method is that there might exist multiple local maxima and
there is no way to ensure the found solution is the global optimum. To this end, we propose a
PDTS method under certain conditions to concentrate out fixed effects through mean regres-
sion, and derive the asymptotic bias and variance as well as the asymptotic normality of the
resulting estimators. The advantage of this PDTS method is that it not only incorporates the
mode structure of the data, but also inherits the estimation superiorities of fixed effects mean
regression. A similar approach has been adopted in a quantile regression for panel data; see

Canay (2011). It is noticed that we are required to impose a more restrictive condition on N and



T, notably that at the optimal bandwidth convergence rate, N*/T — 0 for some a > 4/3 with
(N,T) — oo, to prove asymptotic normality for the PDTS estimators. Bandwidth selection is
also investigated for the PDTS method. Monte Carlo experiments and two empirical analyses
are conducted to demonstrate the finite sample performance of the proposed modal regression.
It is important to emphasize that the convergence rate (\/W) of fized effects modal regression
in this paper is slower than that (v/NTh) of the nonparametric univariate fixed effects mean
regression, which is the cost we need to pay in order to estimate the conditional mode (Parzen,
1962). However, for finite sample performance of skewed data, fized effects modal regression
might still provide estimates with smaller standard errors and better prediction performance

than fixed effects mean regression with least squares estimates based on our simulation results.

The rest of this paper is organized as follows. In Section 2, we propose a LDMR estimation
method, where the consistency and asymptotic properties of the estimators are investigated.
Also, the optimal bandwidth is reported. In Section 3, we introduce a PDTS method to remove
the individual effects, establish the asymptotic normality for estimators, and provide an optimal
bandwidth. Section 4 has numerical results, where Monte Carlo simulations and two real data
analyses are presented to illustrate the finite sample performance of the proposed model. We
conclude this paper in Section 5. The tables which summarize the simulation and empirical

results are deferred to the Appendix A. All technical proofs are given in the Appendix B.

2 Linear Dummy Modal Regression Method

In this section, we investigate fized effects modal regression focusing on large N and large T
case, and formally establish sufficient conditions for consistency and asymptotic normality of
the estimators. We also discuss other various cases under different conditions of N and T (finite

or going to infinity) in the remarks.

2.1 LDMR Modal Estimators

When the individual intercept p; is treated as a fixed parameter, the resulting model, known as
the fixed effects regression, could be viewed as a special case of the classical linear model. We

can then rewrite (1.1) with a little bit abuse of notation as
MOde(Kt‘thau):Xgﬂ_‘_ZZ:zﬂﬂ izla"'7N7 tzla"'vT? (21)

where Z,,; = (Zlez), e ,Zl(j\i[))T, = (g1, )", and Z/(fl) denotes a dummy variable that is

0 for all observations with ¢ # j and 1 for i = j, j = 1,--- , N. We extend the method of Yao

and Li (2014) to estimate (2.1) by maximizing the following kernel-based objective function



R Yi— X346 -2},
Qnr (B, 1) = NThq Z Zﬁb ( hﬁo = M) , (2.2)

i=1 t=1

where hg is a bandwidth used in this section. Let § and i be the maximizers of (2.2) and thus
the proposed LDMR estimators. According to Yao et al. (2012), the choice of kernel is not very
important in modal regression. In this paper, we let ¢ be a normal kernel for the simplicity of

computation; see Section 2.2 for more discussions on kernel choice.

Notice that unlike fixed effects mean regression, there is no closed-form expression of the
maximizers of (2.2). We extend so-called MEM algorithm (Li et al., 2007; Yao, 2013) to estimate
the modal coefficients in (2.2). The detailed description is summarized in Algorithm 1, where

E-step and M-step are iterated until the algorithm converges.

Algorithm 1 MEM (Li et al., 2007; Yao, 2013)

E-Step. Calculate the weight 7 (z’,t | B9 ,u(g)) as
m—XEQB(g)—ZEiu(g)
g9 @ i ( R )
T (Zyt | ﬂ 7/’L ) = Y: _X,I;B(Q)_ZZ;,ZH(Q)> '

RN S (B

M-Step. Update the values of 30+ and p9+Y by

N T T T
Y, — XT8— 72T
CARNTCARIE arg max > ) {W (i,t | 6(9),u(9)) log <h10¢ ( ! ’thf ’“M)) } 7

S

where ¢ is the iteration indicator.

Remark 2.1. For normal kernel function, M step has a closed-form expression (X*TW,X*)71X*T
WY, where W, 1s a diagonal matriz assoctated with the weight m and X* is the corresponding
variable matriz defined as X* = (X Z) in which X = (Xy,--- , XN)T, Z = (Z1,- , Zn)T,
Xi= (XN, X)), and Zy = (Z),,--- , Z1 )" It is necessary to point out that as the con-
verged value depends on the starting point and there is no guarantee that the MEM algorithm
will converge to the global mazimizer,® it is prudent to try different starting points and choose

the best optimal value (Yao et al., 2012).

2.2 Asymptotic Properties

In what follows, we derive the asymptotic properties of the LDMR estimators. We consider
the consistency of (ji, B), where we say that [ is weakly consistent if ji; convergences to ;o

uniformly over 1 < ¢ < N in which p; is a fixed true parameter. We then derive the limiting

2Theorem 2.1 in Yao and Li (2014) indicates that Algorithm 1 will monotonically non-decrease the objective
function (2.2), which means MEM algorithm has the ascending property.



distribution of 3. To start with, we list the regularity sufficient conditions that will be used to
establish the asymptotic results of the LDMR estimators.

C1 The random variables (Y, X1) are i.i.d. across the i index. For each i = 1,--- N,
{Xg t=1,--- ,T} are the realization of a strictly stationary a-mixing process with
mixing coefficient «;(j). It holds that a(j) = max; o;(j) for all ¢ = 1,--- | N, where the

coefficient a(j) decays exponentially fast to zero as j — oo.

C2 The unobservable time-invariant individual effect {y;}? , is an i.i.d. sequence of random
variables with Mode(u; | Xit) # 0. v isii.d. across all i and ¢ with Mode(vi; | Xy, ;) = 0.

C3 As (N,T) — oo, (NT) ' SN STT || Xa||* = O,(1), where ||.|| is Euclidean distance. De-
fine X7 = (XF, Z1,), as (N, T) = oo, (NT)™ 32X, S50 (XX £2(0 | X, Z,4)) con-
verges in probability to a negative definite matrix, and (NT)~! Zfil Zzzl(X;X;va(O |
X, Z,;)) and (NT)"' SN ZL(X;;ff’)(o | Xit, Z,,;)) converge in probability.

C4 ¢(.) is bounded, symmetric about zero, and has compact support. Moreover, it has

bounded continuous third derivative and finite second moment.

C5 For the conditional error density, f,(v | .), it follows f,(v | .) < f,(0 | .). In addition,
) (v | .) is bounded and continuous in a neighbor of 0 for ¢ = 0, 1,2, 3, where f,EC>(.) is

the cth derivative of f,(.) and f{" (0] .) = 0.

We give some comments on the above conditions. C1 is standard in the fixed effects panel
literature. It excludes the temporal dependence and sticks to the identical distribution for all ¢
to focus on the applicability of modal regression for fixed effects data. The mixing coefficient
a;(j) is defined as «;(j) = sup, SuP{Aegi;,Begij“’ﬂP(A N B) — P(A)P(B)| in which G =
(-, Xi—1,Xi) and Qti;:fo = 0 (X 4k Xittkt1, -+ ) are the o-fields. The i.i.d. condition in
C2 is the same as the ones used by Henderson et al. (2008) and Lin et al. (2014). It assumes
the independence across the individuals and restricts the temporal dependence. To keep the
exposition as clear as possible, the present paper does not extend the results to the case of
serial dependence in vy (see Remarks 2.2 and 2.3). (3, the standard moments condition,
ensures the existence of the asymptotic mean and variance for modal estimators. C4 imposed
on kernel function is in the line with Kemp and Santos Silva (2012) and Yao and Li (2014) to
economize the proof. Note that the compact support condition can be relaxed if we impose
certain restriction on the tail of the kernel function (Eddy, 1980). In particular, the standard
normal kernel function is allowed. C5 implies certain smoothness of f,(v; | Xit, Z,,;) around 0,
and indicates that the conditional density of v; has a well-defined global mode at 0 (Kemp and
Santos Silva, 2012). All conditions on bandwidth are specified in the theorems stated below.

Remark 2.2. C1 could be alternatively replaced by the condition that { XL t > 1} are i.i.d for

each fixed i and independent across i. However, we expect this structure to have no effect on the

6



asymptotic behavior of the LDMR estimators besides a great deal of notational effort. Notice that
C2 of vy 15 restrictive, as when T is large, time series may have dependence in practice. We could
replace the i.i.d. condition with the cross-sectional independence and the stationary a-mixing
process to allow for serial dependence, i.e., for each i =1,--- | N, {(Yi,vy) :t =1,--- T} are
the realization of a stationary a-mizing process with mizing coefficient a;(j). Then the asymp-
totic consistency and normality results in this paper still hold under some reqularity conditions,
indicating the asymptotic negligence of the dependence, which is consistent with the general

results in kernel literature; see Su et al. (2009).

Remark 2.3. If we allow for serial dependence in vy, we could propose a more efficient es-
timator by incorporating the information provided by the error autocorrelation structure. For
example, one can define the serially correlated errors follow an autoregressive (AR) process
with finite order d, i.e., vy = vig_1 + -+ + Vig—q + € where ey is i.i.d. with Mode(e; |
Xits fiy Vig—1, -+ ,Vit—a) = O for the purpose of identification. We can then extend the method
proposed in Hidalgo (1992) to propose an adaptive estimation procedure for fized effects modal

regression. Future studies could fruitfully explore this issue further.

When the tuning parameter hy goes to zero, for the general skewed error density, we have
the following consistency properties of the LDMR estimators. As the primary focus of this

paper is on the estimation of 5, we only present the asymptotic distribution for B .

Theorem 2.1. Under the regularity conditions C1-C5, as (N,T) — oo, hg — 0, and NTh§ —
00, there exists consistent mazimizers (B, i) of (2.2) such that with probability approaching

one,

(i) 18- Boll = O, (NTHY) ™ +13)

—-1/2

i) 7= poll = Op (NTHE) ™+ 13)

where Py and o are the true parameters of the fized effects modal regression (1.1).

Theorem 2.2. With NTh{ = O(1), under the same conditions in Theorem 2.1, the estimator

B satisfying the consistency result in Theorem 2.1 has the following asymptotic result
3( A h% -1 2 d —17 7-1
\/NTh3 | B — —?J M+ o0p(hg) ) = N (0,0 'LJ ).
If with NThi — 0, we then have
JNTHS (B _ ﬁo) N (0,0 LT,
where vy = [ A1), J = limzoe(1/(NT) X S E (Xa(XE = Z5,070) [P0 | X, Z,1)),
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L= limN,T—mo(l/(NT)) Zi\il ZtT:1 E (Xithfv(O | Xita Zw’)); M = limN,T—mo(l/(NT)) sz\il Zthl
E <Xit 200 Xit,Zw-)), O = limyoe(1/N) SN E (Z”,ifoﬂ. 200 | Xa, Zw-)), and U = limy 1o

/WD) L L E (S (20 XE AP 0] Xin 2,))).

The proofs of Theorems 2.1 and 2.2 are given in the Appendix B. The first term (N Thg)_l/ 2
in the convergence rates characterizes the magnitude of the estimation variance, while the second
term hZ characterizes the magnitude of the estimation bias. Comparing to the nonparametric
univariate fixed effects mean regression, the convergence rate of fized effects modal regression is
much slower, which is the cost we need to pay in order to estimate the conditional mode (Parzen,
1962). Notice that Theorem 2.2 shows that the bias term can be successfully eliminated by
allowing NThT — 0. However, the optimal bandwidth hy in Theorem 2.2 is hy ~ (NT)~Y/7,
which obviously does not satisfy the condition. This means we must undersmooth these types
of estimators to remove the effect of asymptotic bias. The estimators can then converge to a
normal distribution at a rate that close to (NT')?/7. We incorporate this later when we adopt a

plug-in method to choose the optimal bandwidth in practice.

Remark 2.4. Besides undersmoothing, several other strategies (e.g., bootstrap) could be applied
to remove the bias of estimators. For example, we could utilize a simple one-step bias correction
based on the analytic form of the asymptotic bias. Then the one-step bias corrected estimator
is defined as B* = B— h%j_lM/Q, where J and M are the estimates of J and M. Under
the same conditions in Theorem 2.2, B* has the limiting distribution with \/Whg(ﬁ* — bo) L
N(0,veJ YLJ~1). Although it is interesting to compare the different bias correction methods,

we would restrict our attention to the undersmoothing.

Remark 2.5. If we allow T' — oo with finite N, under the conditions C1-C5 (N, T) — oo in
O3 is replaced with T — o0), as hg — 0, Thy — oo, and Thl = O(1), the consistent LDMR esti-
mator of 8 has the asymptotic result /Th3(— By — %SJ*1M+0p(h(2))) KN N0, 0oN~LT LY.

Remark 2.6. Allowing N — oo with fired T, we could replace C1 with the condition that
the random wvariables (Yi, XL) are i.i.d. over i and t. Together with the conditions C2-C5
(N, T) = oo in C3 is replaced with N — o), as hg — 0, Nhy — oo, and Nh{ = O(1), the
consistent LDMR estimator of B has the asymptotic result \/N_hg(ﬁ—ﬁo — %J*1M+op(hg)) A
N (0, v, T T LT 7).

2.3 Optimal Bandwidth

Theorems 2.1 and 2.2 imply that the bandwidth plays a crucial role in modal regression, which
influences the estimation accuracy and governs the trade-off between bias and variance. Consid-

ering the estimator of (3, it turns out that the corresponding asymptotic weighted mean squared
errors (Asy(WMSE)) is



) T, MTJ YW I MBS wpte (JTULI W
Asy(WMSE):E{<5—6O> W(ﬂ—ﬂ())}z . 04 2 (NThg )

(2.3)

where tr(.) represents trace, and W is a weight matrix. The symbol “ayr ~ byr” indicates
that anr/byr — 1 as NT — oo, i.e., ayr = by + (s.0.), where (s.0.) denotes the term that
having probability order smaller than that of byr. By defining ho = arg min,, Asy(WMSE),
we have the following corollary regarding the asymptotically optimal bandwidth.

Corollary 1. Under the same conditions in Theorem 2.2, the optimal bandwidth hy that mini-
mizes Asy(WMSE) is

=
=

T 7-1117 7-1 -
h:(MJ wJ M) (NT)™

3vgtr(JLLJ~TW)

Remark 2.7. If W = (J'LJ ™Y™Y, which is proportional to the inverse of the asymptotic
variance ofB, thentr(J 'LJ'W) = q. Additionally, it has been observed that the corresponding

modal estimator requires undersmoothing to remove the effect of asymptotic bias (Kemp and

Santos Silva, 2012). We then set hy = (MTJ_1M>_7 (NT)™"" which is the default bandwidth

3vaq

we use in the numerical studies.

The results in Corollary 1 or Remark 2.7 cannot be used directly due to the unknown
function f,(.). To obtain the optimal bandwidth in practice, we propose a plug-in procedure
for practical implementation. We follow Yao and Li (2014) to replace the unknown quantities
in above corollary /remark by the corresponding estimates with the assumption of independence
between v;; and X;;. Notice that similar argument has been put forward in the quantile regres-
sion literature; see Lee (2003). We then use the fixed effects mean regression to get the estimate
of v, denoted by 0;;, and apply the nonparametric kernel density estimation method to obtain
the mode of 0, say 0,,. We approximate f,S"’) (.) by

N T
. 1 by — D
(e) . N~ (¢) | Zit — "m —
JENO | Xty Z) ~ w7 DI ( ; ),0—0,2,3, (2.4)

i=1 t=1

where K (.) is a smooth kernel function satisfying the condition C4 in Section 2.2. Bandwidth

h used in (2.4) is chosen using the method proposed by Botev et al. (2010).

3 Pseudo-Demodeing Two-Step Method

The above proposed LDMR method is very effective in practice when N is not too large.

However, when N goes to infinity, there might exist multiple local maxima and it is not easy to



obtain the global optimal estimates with a large number of parameters needing to be estimated.
To overcome this issue, we propose a PDTS method under certain conditions to concentrate
out fixed effects through mean regression. Notice that throughout this section, the number of

time periods is denoted by T that depends on N. In what follows, we omit the subscript V.

3.1 PDTS Modal Estimators

To motivate the proposed PDTS method and be consistent with the notations in above sections,

we suppose that the fixed effects mean regression of Y;; given X;; follows
}/;t:Xijgﬁm_‘_ai_‘_Eit) izlv"'7N7 tzla"'aT’ (31)

where € is 1.i.d. over i and t with E(e;; | X1, ;) = 0 but Mode(e;; | Xy, ;) # 0, which is often
the case in practice. In addition, we make an assumption that the individual effect from mean
regression, «;, remains a source of individual effect in modal regression; see a similar assumption
in Canay (2011) for a quantile regression model for panel data. Thus, the fixed effects mean

regression is E(Y;; — a; | Xi) = Xif Bm, while the fized effects modal regression considered from
(1.1) or (2.1) will be Yy = XL 8 + p; + v with Mode(vys | Xy, pi;) = 0, such that

Mode(Yiy — ai; | X, i) = Xj B4 pi — o = Xj B+ 71, (3.2)

where 7, = p; — a; could be interpreted as the modal adjustment factor for the individual
effect from mean regression; for example, see a popular related location-scale shift model in
Remark 3.2. These build the underlying mechanism of the PDTS method, where we compute
a v T-consistent estimator &; from (3.1) firstly, and then estimate the following linear modal

regression

Mode(Yy | Xi) = X106 (3.3)

with Vi, = Yy — &y, Xy = (1, X7 and 0 = (1, B7)T. The detailed description of the PDTS

method is as follows.

e Step 1: Compute the v/T-consistent estimator G; by Least Squares Dummy Variable
(LSDV) approach, where

b; =Y — X[ B (3.4)

in which 8, = (XTQpX) ' XTQpY,Y; = (1/T) ), Y, Xi = (1YT) ., Xu, Qp =

Iry — D (DTD)_1 DT D = Iy ® Iy, Iy is the N x N identity matrix, I7 stands for a

T-vector of ones, and ® denotes Kronecker product operation. Stacking the entire data

set by individuals yields X; = (X7, , XL)T, X = (Xy,--- , Xy)T, Yi= Vi, -+, Yir) T,
and Y = (Y], YT,

10



e Step 2: Calculate the PDTS estimator, denoted by 6 = (31, 37)7, through maximizing

the following kernel-based objective function

it — the
Qnr(0 NTh1 ZZ¢ < ) , (3.5)

=1 t=1

where ¢(.) is a standard normal kernel, and h; is a bandwidth. With the available estimate

41, calculate the modal estimate of individual effect p;, where

Intuitively, the PDTS estimators work because }Afit weakly converges to Y;; = Y — ayp as
T — oo in which ;g is the true value of ;. On one hand, in terms of computational simplicity
or stability, the PDTS method may have an advantage. On the other hand, the linear form
of fixed effects mean regression might be subject to misspecification. This issue needs to be
researched further (e.g., applying nonparametric fixed effects mean regression), but beyond the
scope of this paper. It is noticed that if 74 = 0, p; would be the same as «;. In this case, the
modal estimator of u; could be calculated as ji; = Y; — X[T B in the second step, which is like
mean estimator but using modal estimator of 5. The maximizer of (3.5) can be computed easily

by applying the modified MEM algorithm, which is shown in Algorithm 2.

Algorithm 2 MEM (Li et al., 2007; Yao, 2013)
E-Step. Calculate the weight 7 (i, | 09)) as

Y; ,XZ_T(;(Q)
o (M)
X e(g)
Zz 121& 1 < h1 )

(i, | 9(9))

M-Step. Update the value of 89+ by

N T ~ s
glo+1) — = argmax ZZ {ﬂ' (i,t | 9(9)) log <h1¢ (Yit thH)) } )
1 1

=1 t=1

where g is the iteration indicator.

Remark 3.1. For fixed effects modal regression, we do not have a general projection matriz used
in fized effects mean regression (Baltagi, 2009, 2013). We instead propose to use the estimate
of ai; obtained from mean regression to concentrate out fized effects. In addition, unlike fixed
effects mean regression, we could not apply the first-difference or mean difference estimation
method on fixed effects modal regression, due to the fact that the mode of error term may be

changed after we implement difference transformation.®

3For example, if we consider Y;; = XL 3 + u; + vi with Mode(vi; | Xit, pti) = 0, applying the first-difference

11



Remark 3.2. PDTS method has a main advantage compared to LDMR method in that the
number of parameters to be estimated is greatly reduced, and thus can be used more effectively in
practice with large N. However, the PDTS method does not intend to replace the LDMR method,
but provide an alternative for researchers to simply estimate fixed effects modal regression under
some practical scenarios. For example, one of the popular related models is the location-scale
shift model, i.e., Yiy = XL B, + a; + €y, where ey = (y1 + XL B )it With assumptions that
Mode(& | X, o) = 1 and E(&y | Xy, ) = 0, we have E(ey | Xy, ;) = 0, Mode(ey |
X, i) = X B + 11, E(Yy | Xi, ) = X B + i, and Mode(Yy | X, p;) = X3 8 + p,
where B = B + By and p; = oy + v1. We could then apply the PDTS method to eliminate
a;. Notice that the key identifying assumption is that fized effects modal regression shares the

common indiwvidual effect o; with fized effects mean regression.

3.2 Asymptotic Properties

Similar to Theorems 2.1 and 2.2, we could obtain the asymptotic results regarding 6 with the
restriction that at the optimal bandwidth convergence rate, N*/T — 0 for some a > 4/3 with
(N,T) — oo. This is a sufficient condition to ensure the remainder term stemming from the
first step estimator is negligible when we show the consistency and asymptotic normality of the

PDTS estimators, which are presented as follows.

Theorem 3.1. Under the regularity conditions C1-C5, as (N, T) — oo, hy — 0, NTh? — oo,
and VTh? — oo, there exists a consistent mazimizer 0 of (3.5) such that with probability

approaching one,

10— 0ol = O ((NTHY) ™ + 1) .

where Oy = (710, B2 )T is the true parameter of the fized effects modal regression (3.3).

Theorem 3.2. With NTh] = O(1), under the same conditions in Theorem 5.1, the estimator

0 satisfying the consistency result in Theorem 5.1 has the following asymptotic result
39 hi s 2 d 7-17 7-1
NTh (0= = 773 +0,(h) ) 5 N (o,v2J LJ ) .
In addition, with a further condition that NTh] — 0, we have
JNTR (é _ 90) LAY (0, wi*ii*) ,

where J = limN,Tﬁm(l/(NT)) Zz]\il Zthl E <Xit)~(gfv(2)(0 | Xn)) , L= limN,Tﬁw(l/(NT)) Zz]\il Zthl
E (Xitf(g’ £,00 | X@), and M = limy 701/ (NT) SN ST E (Xit 20| Xit)).

transformation on equation yields Y;; — Y1 = (X1 — XX )8 + vyt — vi4—1 in which we cannot guarantee
Mode(vit — vit—1 | Xit) = 0. The same problem arises if we apply the mean difference transformation.
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We outline the proofs of Theorems 3.1 and 3.2 in the Appendix B. Theorem 3.2 indicates
that the asymptotic distribution of the estimator is the same as it would be if «; were known
with certainty. With NTh? — 0, the proposed estimator can achieve the convergence rate of
O,(+/NTh3). Note that the optimal rate of hy is (NT)~/7, which obviously does not satisfy
the condition NTh! — 0. This means we can apply the undersmoothing method to remove
the asymptotic bias in the second step; see Remark 2.4. The restriction v/T' h? — oo implies
N*/T — 0 for some a > 4/3 with the optimal bandwidth. It indicates that T' grows much
faster than N, which is used to simplify the derivation of the asymptotic results; see the similar
condition used in Lamarche (2010) and Galvao (2011). The intuition behind this restriction is
that T" must go to infinity fast enough to guarantee the consistent estimates for the fixed effects
in the first step, and then for the parameters in the second step with the optimal bandwidth. It
is notice that the restriction N*/T — 0 for some a > 4/3 rules out the case for which N and T’
pass to infinity at the same rate, i.e., N/T — ¢ € (0,00), as in some empirical applications. We
leave the asymptotic properties under such case for the future research. Large T is not common
in the economic panel dataset, thus the Monte Carlo simulations presented in Section 4 assess
the finite sample performance of the estimators and show evidence that the bias is small for
moderate 7T'.

Remark 3.3. If we allow T' — oo with finite N, under the conditions C1-C5 (N, T) — oo in
C3 is replaced with T — 00), as hy — 0, Th — oo, and Th] = O(1), 6y could be consistently
estimated with 6 such that /Th3(6 — 6y — h—jj_ll\;[) 4 N(0,0,N~1JTLJY). For this case,
ﬁh% — 00 15 obviously satisfied with the optimal bandwidth.

Notice that
\fts — o] < 191 — 1ol + |G — ol (3.7)

which indicates that the bias of fi; has two terms. The first term |9 — 10| is the standard term
in modal regression, and the second term |&; — ao| captures the fact that «; is being estimated
by &;. The boundedness of these two terms is sufficient for the boundedness of |fi; — p;0]. With
the condition /7' h? — oo, one can show that the leading bias term for the estimator ji; streams
from |31 — 10|, while the error term stemming from the fixed effect transformation can be

ignored. We then characterize the asymptotic behavior of the estimator ji.

Theorem 3.3. Under the same conditions in Theorem 3.1, we have

-1/2

I = uoll = 0, (VTR ™% 1 03)

Remark 3.4. For large T with finite N case, under the same conditions in Remark 5.5, we can
also prove that ||ji — pol| = Ojl,((Thi’)_l/2 + h?).
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3.3 Optimal Bandwidth

Exploiting the structure of the asymptotic distribution of the PDTS estimator, we can now

obtain the asymptotically optimal bandwidth by minimizing the Asy(WMSE) for 6, where

N~ o~~~ T-17 7-111
MTJfIWJfthéll—i_Ug tr (J LJ W)

(3.8)
4 NTH?

~ T . A~
Asy(WMSE) =E { (0-60) W (0-0) } ~
in which W is a diagonal weight matrix. Similar to the results in subsection 2.3, by defining
hy = argming, Asy(W MSE), we have the following corollary.

Corollary 2. Under the same conditions in Theorem 5.2, the optimal bandwidth hy that mini-
mizes Asy(WMSE) is

) MT YWz -7 L
hl = J~ M{JN = (]\[T’)i7 .
3vgtr(JLLJ~TW)

Remark 3.5. If W = (J'LJ~Y)"', which is proportional to the inverse of the asymptotic

1
variance of 0, then hy = (%) T (NT)_%. This result holds for the case of either (N,T) —
oo orT" — oo. To obtain the optimal bandwidth suggested by data, similar to the LDMR
method, we propose a simple plug-in method by replacing the unknown quantities with estimates
and work with the undersmoothing assumption on the bandwidth by following Kemp and Santos

Silva (2012) to set hy ~ (NT)=%143; see Remark 2.7. The final default bandwidth used in the

1
numerical studies for the PDTS method is hy = (%) ' (NT)_0'143. Notice that in practice

the above bandwidth selection procedure can be iterated; see Yao and Li (2014).

4 Numerical Examples

In this section, we first carry out simulation studies to illustrate how fized effects modal regression
works for finite sample, and then apply the proposed model and methods to analyze a public
capital productivity dataset and a carbon dioxide (C'Oj) emissions dataset. Throughout this

section, we suppress the words “fixed effects” for regressions whenever no confusion is caused.

4.1 Monte Carlo Experiments

Two Monte Carlo experiments with different skewed error terms are conducted to illustrate the
finite sample performance of the fized effects modal regression. In what follows, we use DGP

to represent the data generating process. We consider using both the LDMR method and the
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PDTS method to estimate modal regression for these two experiments with M = 200 replicates,
and compare the results with fixed effects mean regression estimated by the LSDV method. We
examine the finite sample performance of estimators in terms of bias, standard error, and mean

squared error (M SE), where
N A
MSE(B) =+ > 18Y = 8]
j=1

in which 3¢ is the estimate in the jth replication. We also present the shape of the empirical
density of the standardized modal estimate to check the asymptotic normality property, and

report the coverage probabilities to evaluate the prediction performance of the proposed model.
DGP 1: We generate the following fized effects modal regression with skewed error term
Yie = 2X5 + pi + 0 (Xi)var, (4.1)

where the individual effect p; is drawn from U[0,1]. X;; and v; are independent with v; ~
0.5N(—1,2.5%) + 0.5N(1,0.5%) (Yao and Li, 2014). Note that X; and p; are correlated with
X = 0.5u; + Zy, where Z;; ~ U[—1,1]. All data are generated i.i.d. across individuals and
over time. We consider three cases, where in case 1 we define o(X;;) = X, in case 2 we let
o(Xi) = 0.2+ X, and case 3 is with o(X;;) = 0.2. As E(v;) = 0 and Mode(vy;) = 1, we have

the following equations

Case 1 Mean Regression:  E(Yj; | X, pi) = 2Xie + i,
ase 1 :
Modal Regression:  Mode(Yy | X, pti) = 3Xa + p.

Case 2 Mean Regression:  E(Yi | X, pts) = 2X5 + s,
ase 2 :
Modal Regression: Mode(Yy | Xit, pi) = 3Xi + i + 0.2

Case 3 Mean Regression: E(Yi | X, pts) = 2X5 + s,
ase 3 :
Modal Regression: Mode(Yy | Xit, pi) = 2X5 + i + 0.2

These indicate that modal regression and mean regression are different when we have
the skewed data. We consider the simulation of combinations of N = 5,10,20,50,100 and
T = 20,40,60,100, 200. The results are summarized in Tables 1-3 containing the estimates,
the standard errors (in parentheses), and the M SFEs, where the bold number represents the
smallest value of MSE for each combination of N and 7. It can be seen from from Tables
1-3 that both of the two proposed methods could estimate the modal regression well with the
finite samples. For cases 1-2, the LDMR estimator is slightly biased for small 7', but there are
substantial improvements with an increase in 7'. The results for the PDTS estimator also show

small biases for cases 1-2, which become smaller as T" increases. For case 3, when the error term
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is independent of the covariate, the proposed methods in this paper work well even with small
T, and the PDTS method outperforms the LDMR method.

In addition, from Tables 1-3, it can be seen that the number of individuals N turns out not
to have much effect on the performance of the modal estimates in terms of the bias when we
keep T fixed. As expected, modal regression has smaller standard errors of regression coefficients
than those of mean regression due to the robustness characteristic of modal regression with the
skewed errors. Moreover, the simulation results indicate that no estimation technique is superior
for all combinations of N and 7. However, for moderate T" with the heteroskedasticity errors,
the LDMR estimator slightly outperforms the PDTS estimator, which suggests that the LDMR

estimator would rank high as the preferred choice for applied econometricians.

To consider the asymptotic normality property of the modal estimator, we compare the
shape of the empirical density of the standardized modal estimate to that of the standard normal
density. Due to space limitations, we only report results for N = 5 or 50 in Figure 1. The results
for the other sample size schemes are similar. In accordance with our theoretical findings, the

performance of the asymptotic normality approximation increases when 7' increases.

T-200
05} |——no1 . s

4 2 2 4 6 £ 4 2 o 2 4 6
DGP 1-Case 1-LDMR: N=50 DGP 1-Case 1-PDTS: N=5 DGP 1-Case 1-PDTS: N=50

(a) DGP 1-Case 1

0
=200 ,
05t |—non K

4 [ © 2 [ 2 4
DGP 1-Case 2-LDMR: N=50 DGP 1-Case 2-PDTS: N=5

(b) DGP 1-Case 2

2 o 2
DGP 1-Case 2-LDMR: N=5

05t [—non

© “ 4 6 © 4 4 [ £ 4 o 2 4 [ &

2 2 2 [ 2 2 4 K
DGP 1-Case 3-LDMR: N=5 DGP 1-Case 3-LDMR: N=50 DGP 1-Case 3-PDTS: N=5 DGP 1-Case 3-PDTS: N=50

(c) DGP 1-Case 3

Figure 1: Empirical density of the standardized estimate: for each case, the first two columns
are for the LDMR method, while the last two columns are for the PDTS method.
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Figure 2: Boxplots of average of coverage probabilities: for each case, the plots represent the
results for the interval lengths of 0.10, 0.20, and 0.50, respectively. For each plot, L means
LDMR method, P is for PDTS method, M indicates mean regression, and the numbers 2, 4, 6,
10, 20 represent the values of T' = 20, 40, 60, 100, 200, respectively.

It is noticed that most econometric forecasting has focused on models for the conditional
mean or quantile. The proposed model in this paper offers an opportunity to expand the scope
of forecasting applications based on modal regression. To assess the prediction performance of
modal regression, we follow Yao and Li (2014) to report the coverage probabilities of prediction
intervals of three different lengths (0.10, 0.20, 0.50, ¢ = \/Var(v;;) ~ 2). We follow the same
DGP process as above three cases but implement the out-of-sample prediction for the additional
N'T data points with 200 repetitions. Specifically, we use T" period data for each individual to
estimate the model, and then use the resulting model to predict the value of the response variable
for the additional T' period points for each individual. Representative results of the coverage
probabilities of the proposed model and mean regression model are reported in Figure 2, where
each plot shows the coverage probabilities across different values of T' for a given combination
of o and case. For space consideration, we only list the results for N = 5. All plots indicate

that modal regression provides higher coverage probabilities compared to mean regression due
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to the skewness of the error distribution. With the increase of the interval length, the modal

regression and mean regression will provide closer coverage probabilities as expected.

DGP 2: In order to illustrate how LDMR method and PDTS method perform and compare to
mean regression under different levels of skewness of density, we consider the following model
setting with

Yie = Xip + pi + 0(Xit)vig, (4.2)

where p; ~ U|0, 1], 0(Xit) = Xy, and vy ~ 0.5Ga(ky,0) + 0.5Ga(ke,0) in which Ga represents
the gamma distribution, k; € N5, j = 1, 2, is the shape parameter that can adjust the skewness
of vy (coefficient of skewness= 4/4/k), and 0 € N.g is the scale parameter. To create the
correlation between the regressor and the individual effect, we let X;; = 0.5u; + Z;;, where
Zy ~ U[—1,1]. We employ two different schemes to generate the distributions of v;, where
ki =1or 7, and ks = 2. In both schemes, we set § = 0.5. These two different error distributions
cover some interesting cases, where the first one is the more skewed distribution while the second
one represents the less skewed distribution. Note that E(v;;) = 0.5(k; + k2)0 and Mode(vy) =
0.5(k1 + ko — 1)0," we then have

Mean Regression:  E(Yi, | X, ps) = 175X + ps,
More Skewed : )

Modal Regression: Mode (Y | Xit, pi) = 1.5X5 + pi.
Mean Regression: E(Yy, | Xy, pi) = 3.25Xy + 14,

Less Skewed : _
Modal Regression: Mode(Yy | X, pi) = 3Xa + p.

The simulation of combinations of N = 5,10, 20,50,100 and T = 20,40, 60, 100, 200 is
conducted. The results of more skewed and less skewed settings are shown in Tables 4-5,
respectively, containing the estimates, the standard errors (in parentheses), and the MSEs,
where the bold number represents the smallest value of M SE for each simulation combination.
It can be seen that the performances of all the modal estimates are satisfactory even for small T
Note that modal estimators have relatively large biases when 7" is small and improve significantly
as T increases. However, similar to DGP 1, the bias of the modal estimators is not affected
as N increases when T remains fixed. When the dataset is generated from the more skewed
setting, modal regression could have smaller standard errors of coefficients than those of mean
regression in this experiment and is a good complement to the mean regression, which are
similar to the findings in DGP 1. Although the LDMR method performs slightly better than
the PDTS method, there is no substantial difference between these two. This may be due to
the underlying data generating process or the characteristics of the distribution. It is worth

noticing that when the dataset is from the less skewed setting, modal regression provides similar

If X ~ Ga(a,0) and Y ~ Ga(B,0) are independently distributed with the same scale parameter, then
X +Y follows Ga(a + f3,6) with variance (o + 3)02.
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regression estimates to mean regression but with less accuracy.

We report the shape of the empirical density of parameter estimate and the coverage prob-
abilities in the same way as DGP 1. Figure 3 indicates that the whole distribution of the
standardized modal estimate converges to the standard normal distribution as 7" increases. Fig-
ure 4 shows that the modal estimator has better coverage probabilities than the mean regression

estimator, which is entirely expected because of the skewed distribution of error terms.

- - -T-100]
=200

DGP 2-More Skewed-LDMR: N=5 DGP 2-More Skewed-LDMR: N=50 DGP 2-More Skewed-PDTS: N=5. DGP 2-More Skewed-PDTS: N=50

(a) DGP 2-More Skewed

4 6 - 6

2 o 2 4 2 o 2
DGP 2-Less Skewed-LDMR: N=50 DGP 2-Less Skewed-PDTS: N=5 DGP 2-Less Skewed-PDTS: N=50

(b) DGP 2-Less Skewed

2 3 2
DGP 2Less Skewed-LDMR: N=5

Figure 3: Empirical density of the standardized estimate: for each case, the first two columns
are for the LDMR method, while the last two columns are for the PDTS method.

N + N ) + N N +
04 06 + E +
. . osfT i
035 4 b Ty T [ + 0T s T
; T Loyt
T + * + [ [ _ I [ T o 7
T - T +
ST I I RS ENEE I Lomhhd 1Ty
[ A T S A \ i P # HB L
025k 1 L - T’ N 04 BEEI L L LT 06 T T Lo
1 i [ ! T
0 EE "'lkEﬁ}}\\l P A—\H\:T\\\\T :lil,\ljl* 45
T i 1 1 T =] I L c
Tl R iz osfld by + Jros og& osfy L Vol S +
bt hpgnEl P P ! | P4
| Il ! 1 T | 1 1 |
[ [t Col o2f! 1 1 N o4 P
01t ! [ I | o+ 1 + + [
L | [ 1 1 [ 1
1 Lt [ L . 1
005 L 04 + 03 3
L2 L4 L6 L1020 P2 P4 P5 P10P20 M2 Mé Mo MIOM20 L2 L4 L6 L10L20 P2 P4 PG P10 P20 M2 Mé Mo MIOM20 L2 L4 L6 L1020 P2 P4 P6 P10P20 M2 Mé Mo MIOM20
DGP 2-More Skewed: 0.1 (N=5) DGP 2-More Skewed: 0.2 (N=5) DGP 2-More Skewed: 0.5 (N=5)
(a) DGP 2-More Skewed
07
M oapt + 4 + + N
+ 4 | + 05t
oas| 4, T - *
A + e R S osf ) T+ [ *
T % o+ [ O B B Vo T [ _
o2fy o T T os g LE Y A R O T e R A }
[ [ (I | T o_ + | [ [ +
[ 1 [ £+ ! [ HE osf ! | Ly T
L Pl TFIg 025 alE R M S g
045 [N F T I3 # LT 045 Hou a1 1
[ T 1 ¥
[ 1 T I A | U A B
3{ . Sl ESEEL U T ORI TS
01 ! T I ! =0 I I ! T I 035 1 ! ! 1 L
[ Ly i 1 I [ 14 T [ i | ]
! 1 [ . | 1 1 Tl | P | T 14+
[N | [ I I 1 [ I 1 1 1 1 1
P Pt I I A - oy P RN
oosf 1 | L [ [ bl [ [ " 025 | + 1 |
Ll | [ orf 1 1 i ! I |
1 1 | 1oL n . 1
1 L 1 + 02 It
005
L2 L4 L6 L1020 P2 P4 P5 P10P20 M2 M4 Mo MIOM20 L2 L4 L6 L1020 P2 P4 PG P10 P20 M2 Mé Mo MIOM20 L2 L4 L6 L1020 P2 P4 PG P10 P20 M2 Mé Mo MIOM20
DGP 2-Less Skewed: 0.17 (N=5) DGP 2-Less Skewed: 0.2¢ (N=5) DGP 2-Less Skewed: 0.50 (N=5)

(b) DGP 2-Less Skewed

Figure 4: Boxplots of average of coverage probabilities: for each case, the plots represent the
results for interval lengths of 0.10, 0.20, and 0.50 (more skewed: o =~ 0.4330; less skewed:
o = 0.7500), respectively. The notations in each plot are the same as those of Figure 2.

19



4.2 Real Data Examples
4.2.1 Public Capital Productivity Study

In order to illustrate the applicability of fixed effects modal regression, we follow Baltagi and
Pinnoi (1995) to consider a dataset containing the record of the U.S. 48 contiguous states over
the period 1970-1986 to revisit the relationship between public capital and private sector output
(Munnell, 1990; Baltagi and Pinnoi, 1995; Su et al., 2013; Henderson and Ullah, 2014). The
main question related to this dataset is “Is public-sector capital productive? What is the role of
public-sector in affecting private economic performance 7”7 (Su et al., 2013). Munnell (1990) and
Su et al. (2013) found that the public capital plays a positive and significant role in affecting the
private-sector output, while some other researchers argued that the public capital has significant
and negative effects on private productivity (Evans and Karras, 1994). Baltagi and Pinnoi (1995)
claimed that public capital does not have significant effect on private productivity. However,
all of these research is based on mean regression. Next, we use the following fized effects modal

regression to investigate this public capital dataset
log(Yit) = pi + Bilog(KGit) + Balog(K PRit) + Bslog(Lit) + BaUN E My + vy, (4.3)

where ¢ = 1,--- ,48 indicates the state and t = 1,--- ;17 indicates the year. To simplify the
notation, henceforth, we drop the subscripts from the names of the covariates. Y denotes the
GDP, KG represents the public capital, K PR is the private capital stock, L is the employment,
UNEM represents the unemployment rate used to control for business cycle effects, u is the

individual effect, and v is the disturbance term.

We estimate (4.3) via the linear fixed effects mean regression firstly. The regression co-
efficients with respect to KG, KPR, L, and UNEM are -0.0261 (0.0281), 0.2920** (0.0243),
0.7682** (0.0291), and —0.0053*** (0.0010), respectively, which are consistent with the results
in Baltagi and Pinnoi (1995). Note that the values in parentheses are standard errors, and as-
terisks indicate significance levels.” Then we use the proposed methods in this paper to estimate
(4.3). Following Su et al. (2013), in order to obtain the standard errors of modal estimates, we
use a bootstrap method to resample data 200 times across individuals while keeping the time
series structure for each individual unchanged, and then calculate the bootstrap standard errors
for the modal estimates; see Figure 5. The slope coefficients for the LDMR method with respect
to KG, KPR, L, and UNEM are -0.0276 (0.0234), 0.2421*** (0.0198), 0.8245*** (0.0246), and
—0.0035"* (0.0008), respectively, and the corresponding estimates of the PDTS method are
-0.0096 (0.0136), 0.2882*** (0.0162), 0.7575"** (0.0153), and —0.0039*** (0.0014), respectively.

Table 6 in the Appendix A summarizes all the results.

5% p < 0.1; ¥ p < 0.05; ¥*: p < 0.01.
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For this public capital productivity dataset, both the modal estimate and mean estimate
indicate that there exists a negative relationship between public capital and GDP, but the effect
is not statistically significant. In other words, the public capital has no spillover effect on average
or on mode across states, which is consistent with most results obtained from parametric mean
regression. For this example, it is clear that the estimated results of the modal regression are
not much different from these obtained by mean regression, which could be partially explained
by the almost symmetric distribution of log(Y') (Figure 5).
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Figure 5: Bootstrap density of coefficients and estimated density of log(Y)

4.2.2 (O, Emissions Study

In this subsection, we apply the proposed methods in this paper to a U.S. fossil fuel C'Os
emissions dataset from Fragkias et al. (2013), which investigated the relationship between the
scaling of C'O, emissions and U.S. urban areas. We focus the study on 60 urban areas from
the U.S. over the period 1999-2008, which is a subsample from Fragkias et al. (2013). The
sample data comprises annual measures of C'Oy emissions and three inputs (population, urban
population density (density), and per capita personal income (pcpi)). As is conventional in the
modern urban economies literature, we follow Fragkias et al. (2013) to use the following model

specification to examine the relationship between population size of cites and C'O, emissions

log(COqit) = pijr + Pilog(Population) + Bolog(Density;) + Bslog(PCPILy) + vy,  (4.4)
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where ¢ = 1,---,60 denotes U.S. urban area ¢, t = 1,--- , 10 denotes the tth year period, p;/

represents the individual effect or time effect, and v;; is the disturbance term.

Firstly, we control the individual effect p;. The results of estimating (4.4) through the linear
fixed effects mean regression are 2.7498*** (1.0391), —1.7751* (0.9932), and -0.0744 (0.0678),
respectively. The coefficient of log(Population) is statistically significant, which indicates that
a 1% increase in population size is associated with an increase in CO, emissions of 274.98%
on average. However, a 1% increase in the population density is associated with an average of
177.51% reduction in CO, emissions. It is noted that the coefficient of log(PCPI) from mean
regression is not statistically significant.
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Figure 6: Bootstrap density of coefficients and estimated density of log(CO,)

We then turn to the estimates from fized effects modal regression. Due to the small size
of T in this case, we only apply the LDMR method when we control the individual effects,
where the estimates are 1.7350™* (0.5022), -0.7581 (0.4779), and 0.0609** (0.0316), respec-
tively. The values in parentheses are the bootstrap estimates of the standard errors (Figure
6). Interestingly, compared to mean regression, the coefficient estimates for log(Population)
and log(Density) based on modal regression are decreased by 36.90% and 57.29%, respectively.
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Note that the coefficient of log(Density) is not statistically significant on mode, which may be
due to the “overshadowed effects of the size of the metropolitan area” (Fragkias et al., 2013). In
sharp contrast to what was found with mean regression, the coefficient of log( PC' PI) becomes
significantly positive according to the modal regression. It indicates a 1% increase in the per
capital personal income is associated with a 6.09% increase in C'O, emissions based on the mode
value. The underlying mechanism is the associated positive relationship among PC PI, higher

production, and pollution.

We control the time effect p; to estimate (4.4) as well. The results for the linear fixed
effects mean regression are 1.0489*** (0.0281), —0.2512*** (0.0330), and 0.8526** (0.1902), re-
spectively. The results for the LDMR method are 0.9235*** (0.0262), —0.0675** (0.0281), and
0.5750** (0.1788), respectively, while the results for the PDTS method are 0.9012*** (0.0292),
—0.0827** (0.0322), and 0.7592*** (0.1396), respectively. All coefficients are statistically sig-
nificant. The signs of all estimates form these three methods are consistent with each other,
while the magnitudes of the effects at mean and mode differ considerably, especially for the
variable log(Density). Compared to mean regression, the estimates of log(Density) on mode
are decreased by 73.13% (LDMR) and 67.08% (PDTS), respectively. Tables 7-8 in the Appendix
A summarize all the results. Overall, these results indicate that fixed effects modal regression
can provide complement information to fixed effects mean regression on how the “most likely

values” of the dependent variable are affected by the regressors.

5 Concluding Remarks

Mode has not received much attention for a long time. With more available datasets and
powerful computation tools, it is important for (applied) econometricians to be aware of the
application of modal regression, which focuses on modeling how the conditional mode of the
response variable depends on the covariates since mean regression cannot reveal the whole
characteristics of the dataset, especially for the skewed data. To this end, we introduce a new
model named fized effects modal regression for the panel data, in which the new model uses the
conditional mode instead of mean to model the relationship among variables. Two estimation
methods are proposed, where we call linear dummy modal regression (LDMR) method and
pseudo-demodeing two-step (PDTS) method. We discuss the asymptotic properties of the
modal estimators under different settings of N and 7. Monte Carlo simulation results and
two applications indicate that the proposed two estimation methods work well, and the newly

proposed modal regression can be a good complement to mean and quantile regressions.

Similar to many kernel-based methods, how to choose the bandwidth in modal regression
requires further investigation; for example, the cross-validation method may be considered.

We could also follow Kemp and Santos Silva (2012) to use a sequence of bandwidths to see
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different zoom levels of the modal regression estimation. In this paper, we assume that the
conditional density of v;; has a well-defined global mode at 0. However, when the population is
not homogeneous, our method could also be applied to the multimode setting. For this setting,
our method will find multiple modal solutions if starting from multiple initial values. Each
modal solution corresponds to one local modal estimator. This issue can be further studied
along the lines of the mode clustering (Chen et al., 2016), which could be a very interesting
topic for future study.
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A Appendix-Tables

Table 1: Monte Carlo Results: DGP 1-Case 1

N=5 N=10 N=20 N=50 N=100
Method T 3 MSER) 3 ASED) 3 MSE(B) 3 MSE(B) 3 MSE(B)
Y RV NPV NN (- ST Ny
T T SENTTNN QU QNN
Brioge =3 60 ((2):%%) 0.0201 (g:?gég) 0.0259 (gﬁ’gg% 0.0315 (gﬁg‘;’g) 0.0219 (gﬁ’g?% 0.0399
100 ((2)??(7]?) 0.0139 ((2)?322) 0.0138 ((2)?;1(7]3) 0.0148 ((2)?)833) 0.0120 ((2)?82411) 0.0128
200 (ggégg) 0.0085 (gg%;) 0.0075 (ggégg) 0.0083 (ggééfg) 0.0082 (ggg?% 0.0076
20 (gzgggg) 0.1990 ((Q)gggij) 0.1735 (gzgggg) 0.1601 (gjg‘%g) 0.0987 (SEZZ;) 0.0749
ors 0 A oom SR soms AW oo 20 g 208 oo
Boge =3 60 ((2):??,?3) 0.0232 (gﬁggf) 0.0271 (?)Z?égg) 0.0348 (3:“@%) 0.0226 (f):?iég) 0.0262
100 (S?i’;g) 0.0150 ((2)?32?1) 0.0151 ((2)?3;81) 0.0158 ((2)?)3(23?) 0.0126 ((2)?31?) 0.0137
200 ((2)833,17) 0.0092 (38?;;) 0.0082 (ggégg) 0.0089 (gg?g[l)) 0.0086 ((2)3332) 0.0081
o BB omm N0 e RN oam ZER ome A1 o
oy 0 GRS ome AU aum BMR o LB ona O o
ez A oo ZB oo 0% omn UM oow AU oo
100 (égggg) 0.0529 ((2););3;) 0.0496 ((2)2821);) 0.0405 ((Q)gigg) 0.0476 ((2)21161401) 0.0466
200 ((2)(1)%82) 0.0292 (ggggg) 0.0224 ((1)?2251;) 0.0251 (3?;??) 0.0190 ((2)(1)4111812) 0.0220
Table 2: Monte Carlo Results: DGP 1-Case 2
N=5 N=10 N=20 N=50 N=100
Method T B MSE(B) B MSE(B) B MSE(B) B MSE(B) B MSE(B)
20 ((Z)Iiégg) 0.2410 (31125) 0.2641 (gﬁiggg) 0.2327 (3122?;%) 0.1397 (gﬁggﬁ) 0.0731
B T I GENTUTRN QNN NN -
s @ EBT o BES e EME ooy B oo 29I oo
100 (gj’ggg) 0.0170 (g:?ﬁg) 0.0164 (?):‘1’;*‘2‘% 0.0181 (32?823) 0.0141 (gj’f‘llg) 0.0144
200 (gzgggg) 0.0096 ((2):8332) 0.0082 (gzggg% 0.0095 (gjg‘gg) 0.0094 (gzg%) 0.0082
20 (ggégg) 0.1620 (gzggg) 0.2330 ((2)481;?12) 0.2129 (ggg%) 0.1213 (ggg?g) 0.0822
pprs 40 (g??gg) 0.0410 (3;?32?) 0.0427 (gﬁgfg?cl)) 0.0445 (3:?323) 0.0378 ((2):?8;?) 0.0473
Bmoge =3 60 (g:?iég) 0.0263 (g:?i";g) 0.0354 (g:?%% 0.0367 (g:?igg) 0.0258 (g:%gi’) 0.0395
100 (32?321) 0.0184 (g:ﬁgf) 0.0178 (gj’g’(ﬂ) 0.0187 (3%22) 0.0144 (gj’égg) 0.0151
o B3 oo EMT o NN oow A oo BN oo
o 2B oam (BE w2 omes 228 owr 2% o
P T G
ez © A0S oo 9B oo SBR ome AU oo 3T oo
100 (é:gggg) 0.0559 (g:gégg) 0.0520 ((2)1383% 0.0410 (323121‘) 0.0478 (gﬁgiéé) 0.0469
200 (gj‘fggg) 0.0295 (31(1)?2)% 0.0233 (é:‘fgég) 0.0257 (31%28) 0.0191 (?)ﬁ?iéi) 0.0221
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Table 3: Monte Carlo Results: DGP 1-Case 3

N=5 N=10 N=20 N=50 N=100
Method T B MSE(B) B MSE(B) B MSE(B) B MSE(B) MSE(B)
20 (3:8232) 0.0048 (é:ggg}) 0.0031 (gzggég) 0.0012 (3:8233) 0.0004 0.0003
LoMr 40 (32831118) 0.0010 (éggég) 0.0009 (é:g?g% 0.0003 (é:gﬁgg) 0.0001 0.00005
Broge =2 60 (é:gggg) 0.0005 (é:gggg) 0.0004 (é:g?gg) 0.0002 (é:gggf) 0.00007 0.00003
100 (é:g?ig) 0.0003 (éjgﬁgg) 0.0002 (ézg?gg) 0.0001 (é:gggg) 0.00004 0.00002
200 ((2):8(1)52) 0.0002 (é:gggi) 0.00009 ((2):88(6]2) 0.00004 (é:ggig) 0.00002 0.000007
20 (gigggé) 0.0031 (é:gggg) 0.0028 (giggﬁg) 0.0007 (gzg%g) 0.00026 0.0001
PDTS 40 (gzgggg) 0.0009 (g:ggé},’) 0.0007 (é:g?g% 0.0002 (é:gﬁgg) 0.0001 0.00004
Broge =2 60 (ézgggi) 0.0005 ((1):8?32) 0.0004 (ézg?gé) 0.0002 (é:gggg) 0.00006 0.00003
100 (é:g%i) 0.0003 (é:gﬁgg) 0.0002 (ézgggg) 0.0001 (é:gggé) 0.00004 0.00002
200 ((2):8(1)32) 0.0002 (é:gggg) 0.00009 ((2):8823) 0.00004 (é:ggig) 0.00002 0.000007
20 (5:8222) 0.0058 (é:ggg% 0.0029 (g:gggz) 0.0013 (g:ggg%) 0.0005 0.0003
LSDV 40 (328?3?) 0.0026 (g:gg%‘;) 0.0014 (328333) 0.0005 (é:g?% 0.0003 0.0001
Brnean =2 60 (é:gggg) 0.0014 (égg}?) 0.0010 (gzgg?g) 0.0004 é:g?gé) 0.0002 0.00009
100 (é:gggg) 0.0010 (é:gggi) 0.0005 ((2):8(1)23) 0.0003 (é:gggg) 0.0001 0.00005
200 (é:gg?g) 0.0005 ((2):8(1);2) 0.0002 (é:g??é) 0.0001 (é:gg%) 0.00005 0.00002
Table 4: Monte Carlo Results: DGP 2-More Skewed
N=5 N=10 N=20 N=50 N=100
Mothod T B MSE(B) B MSE(R) B MSE(B) B MSE(B) MSE(B)
20 ((1):?3%) 0.0174 ((1]:‘;’22;) 0.0253 ((1):?:2’,%) 0.0194 (é:‘;’igg) 0.0214 0.0281
LDMR 40 ([1):83%) 0.0101 (é:‘;’éig) 0.0111 ((1):83}12) 0.0094 (é:‘;’égg) 0.0104 0.0102
Broge =1.5 60 ((1):8;23) 0.0062 (é:g%g) 0.0059 (éigggi) 0.0073 (é:gég% 0.0071 0.0068
100 (ézgggi) 0.0032 (é:gégg) 0.0039 ((1):8%51;) 0.0035 (é:gggg) 0.0036 0.0030
200 (é:ggég) 0.0023 (é:g%;) 0.0016 (é:gggg) 0.0018 (é:g%g) 0.0016 0.0019
20 ((1):?34112) 0.0192 (é:i’ggi) 0.0259 (é:i’ggg) 0.0197 (é:‘;’ig% 0.0219 0.0285
- 40 (5183%) 0.0102 (éj’gg) 0.0111 (éﬁggig) 0.0097 (ézgggg) 0.0105 0.0104
Broge =1.5 60 (518323) 0.0064 (é:g%g) 0.0059 ((1):8;?1)) 0.0073 (é:gggg) 0.0072 0.0068
100 <é:8§2§> 0.0033 (é:géfj) 0.0040 (éﬁgégi) 0.0036 (é:gggg) 0.0037 0.0031
200 (é:gggé) 0.0023 (é:g%g) 0.0017 (é:gggg) 0.0018 (é:gggg) 0.0016 0.0019
20 ((1):?6132) 0.0280 (éqgfg) 0.0259 ((1):?512411) 0.0242 (éqigi) 0.0222 0.0257
LSDV 40 ((1):1‘118(7)) 0.0120 ((l]zﬁ‘%) 0.0138 (éﬁ’?‘;) 0.0124 (éqggg) 0.0108 0.0131
Brean = 1.75 60 (é:ggg‘f) 0.0096 (é:gggg) 0.0073 (é:gg%) 0.0083 (é:gggé) 0.0090 0.0070
100 (é:g%g) 0.0049 (é:ggi% 0.0053 (é:gggg) 0.0044 (é:ggg% 0.0053 0.0043
200 (é:ggig) 0.0027 (é:gggg) 0.0026 (é:gi‘;g) 0.0023 (é:giég) 0.0022 0-0023
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Table 5: Monte Carlo Results: DGP 2-Less Skewed

N=5 N=10 N=20 N=50 N=100
Method T E MSE(B) B MSE(B) E MSE(B) B MSE(B) B MSE(B)
20 (g;}’ig) 0.5213 (ggégg) 0.5827 (3;324) 0.6451 (32?33) 0.6983 (?)gggl)g) 0.6615
o0 AU o BOBL g BOEE g SO GO0
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b=y 00 ZUIS gy BOEE g ZOMD i, 285 29900 o
o U GO0 ga U g 2 gy SO0 o
w0 U oo P oo SO g 00 gy 2o
0 G oame G oares  CWL oaror  GEB oaam G20 o1sss
o 0 GBI oore AEN ggrag BN g0 SOl gogry B gn;
b 25 @0 GEE oosia B gaggr B0 gany B2 G207 g
0 B gogs  GTB gom 20 goun  FINggppg GBS g
200 (g%ggg) 0.0170 (gfigg) 0.0129 (g%i?;) 0.0137 (gfggg) 0.0119 (g%géi) 0.0115
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Table 6: The Results of Estimates of (4.3)

Method B AL AZ AR CA co cT DE FL GA D IL IN
Lpyp 00276 23351 25050 24022 26105 25288 25796 25480 24500 23781 24868 25081 23923
(0.0234)  (0.1395) (0.1383) (0.1324) (0.1558) (0.1368) (0.1348) (0.1333) (0.1424) (0.1380) (0.1272) (0.1493) (0.1395)

B IA KS KY LA ME MD MA MI MN MS MO MT

0.2421* 24705 24914 25363 26529 23922 25153 24616  2.5361 24433 23834 24386  2.5260

(0.0198)  (0.1412) (0.1422) (0.1415) (0.1527) (0.1249) (0.1406) (0.1382) (0.1464) (0.1427) (0.1387) (0.1388) (0.1372)

Bs NE NV NH NJ NM NY NC ND OH OK OR PA

0.8245** 24631 24966  2.4166  2.5528  2.6185  2.5793  2.3546  2.5202  2.4408  2.5661 24822  2.4038

(0.0246)  (0.1433) (0.1288) (0.1243) (0.1401) (0.1354) (0.1567) (0.1355) (0.1402) (0.1468) (0.1376) (0.1355) (0.1469)

B RI sC SD TN X UT VT VA WA WV WI wY

—0.0035** 24910 22427 24548 23510 25464 24642 24669 24978 25797 24484 24484 28373
(0.0008)  (0.1205) (0.1354) (0.1345) (0.1429) (0.1563) (0.1316) (0.1278) (0.1389) (0.1482) (0.1384) (0.1416) (0.1424)

Method B AL AZ AR CA Co CT DE FL GA D IL IN
pppg 0009 21417 23082 22031 24405 23360 24113 23536 22733 21083 22785 23274 21995
(0.0136)  (0.0777) (0.0782) (0.0779) (0.0780) (0.0782) (0.0775) (0.0771) (0.0776) (0.0775) (0.0782) (0.0779) (0.0779)

B 1A KS KY LA ME MD MA MI MN MS MO MT

0.2882°* 22673 22788 23394 24548 22085 23404 23023 23571  2.2556 21901 22537  2.2883

(0.0162)  (0.0781) (0.0779) (0.0784) (0.0793) (0.0775) (0.0778) (0.0766) (0.0781) (0.0778) (0.0777) (0.0776) (0.0790)

Bs NE NV NH NJ NM NY NC ND OH OK OR PA

07575 22514 22820  2.2642 23830 23945 24161 21777  2.2840  2.2627  2.3560 22910  2.2294

(0.0153)  (0.0790) (0.0784) (0.0765) (0.0776) (0.0791) (0.0779) (0.0773) (0.0795) (0.0779) (0.0782) (0.0780) (0.0776)

B RI sC SD TN TX UT VT VA WA WV Wil wY

—0.0039"*  2.3285 20595  2.2298 21602  2.3338 22688 22763 23206  2.3869  2.2333 22601  2.5887
(0.0014)  (0.0765) (0.0773) (0.0782) (0.0781) (0.0783) (0.0779) (0.0784) (0.0776) (0.0781) (0.0779) (0.0776) (0.0795)

Method B AL AZ AR CA Co CT DE FL GA ID IL IN
Lgpy 00261 22016 23651 22630 25004 23950 24712 24135 23332 22582 23384 23873 2250
(0.0281)  (0.1704) (0.1696) (0.1619) (0.1948) (0.1675) (0.1666) (0.1566) (0.1774) (0.1717) (0.1546) (0.1840) (0.1720)

B 1A KS KY LA ME MD MA MI MN MS MO MT

02920 23272  2.3387  2.3993 25147 22684 24003 23622 24170  2.3155  2.2500 23136  2.3482

(0.0243)  (0.1735) (0.1719) (0.1733) (0.1814) (0.1500) (0.1738) (0.1699) (0.1813) (0.1771) (0.1664) (0.1710) (0.1672)

Bs NE NV NH NJ NM NY NC ND OH OK OR PA

0.7682** 23113 23419 23241 24429 24544 24760 22376  2.3439 23226 24159 23509  2.2893

(0.0291)  (0.1647) (0.1516) (0.1586) (0.1666) (0.1646) (0.1948) (0.1677) (0.1663) (0.1818) (0.1699) (0.1667) (0.1827)

Bs RI sC SD TN TX UT VT VA WA WV W1 WY

—0.0053** 23884 21194 22807  2.2201  2.3937  2.3287 23362  2.3805 24468  2.2932  2.3200  2.6486
(0.0010)  (0.1455) (0.1607) (0.1636) (0.1739) (0.1901) (0.1614) (0.1482) (0.1723) (0.1821) (0.1661) (0.1735) (0.1732)

*

Note: Standard errors are indicated in parentheses. Asterisks indicate significance levels:

** represents p < 0.05; and *** is for p < 0.01.
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Table 7: The Results of Estimates of (4.4)-Individual Effects

Method  f Al A2 A3 Ad A5 AG AT A8 A9 A10 All Al2
LoMR  LTS0TC -41202 487D 52397 29213 2405 43799 43764 57085 42332 48504 51363  -3.9278
(0.5022) (3.5255) (3.8948) (3.7370) (3.9690) (3.2564) (3.3212) (3.4951) (4.3319) (3.7601) (3.8480) (4.0154) (3.0118)

B A13 Al4 Al5 A16 A17 A18 Al9 A20 A21 A22 A23 A24

—0.7581 -3.4188 -4.2687 -6.0870 -4.5415 -3.7072 -3.5747 -4.1014 -4.1076 -2.9500 -4.0344 -2.4967 -3.8992

(0.4779)  (3.2448) (3.1939) (4.5602) (3.5779) (3.7796) (3.2003) (3.3488) (3.3656) (3.7091) (3.1608) (3.1513) (3.1811)

Bs A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36

0.0609" -4.0378 -3.8953 -4.0056 -3.7068 -3.6251 -3.8936 -3.5716 -3.3261 -2.9153 -4.0800 -3.6426 -3.7322

(0.0316) (3.2082) (4.0793) (3.2435) (3.1928) (3.0159) (3.1091) (3.3304) (3.5640) (2.8781) (3.3460) (3.2453) (3.4647)

A37 A38 A39 A40 Adl A42 A43 Ad4 Ad5 A46 A4T A48

43519 -34850 -3.7010 -4.6837 -3.5507 -3.3613 -4.1149 -3.2822 -4.0967 -2.8025 -4.3585 -4.4434

(3.2327) (3.5548) (3.3200) (3.8350) (3.0328) (3.2981) (3.3182) (3.0043) (3.1314) (3.0542) (3.3786) (3.4947)

A49 A50 A51 A52 AB3 A54 AB5 A56 A57 A58 A59 A60

53587 -3.9733 -2.9705 -4.4512 -3.8287 -4.9938 -4.1559 -3.4564 -54429 -3.6176 -5.1952 -4.6698

(4.5654) (3.2391) (2.9636) (3.2796) (3.2591) (4.0666) (3.3955) (3.2507) (4.2171) (3.1648) (4.4958) (4.0293)

Method 8 Al A2 A3 Ad A5 A6 AT A8 A9 A10 All Al2
Lgpy  2TAOT 100238 -1L5268 -115088 -0.6848 -7.6060 7058 -9.8732 -13.3148 -105090 -113895 -1L7778 -8.6687
(1.0391) (7.3863) (8.1827) (7.8573) (8.2768) (6.8674) (7.0152) (7.3969) (9.0202) (7.9174) (8.0607) (8.4581) (6.3740)

B A13 Al4 Al5 A16 A7 A18 A19 A20 A21 A22 A23 A2

17751 -8.7634 -9.3690 -13.9775 -10.5624 -9.9873 -8.7846 -9.5678 -9.5551 -0.1307 -9.1447 -7.5831 -8.8234

(0.0932)  (6.8473) (6.7529) (9.5696) (7.5268) (7.9470) (6.7441) (7.0520) (7.1047) (7.8419) (6.6799) (6.6527) (6.7192)

B3 A25 A26 A27 A28 A29 A30 A3l A32 A33 A34 A35 A36

—0.0744 95344 -10.8465 -9.2734 -8.7470 -8.3432 87277 -8.8790 -9.3724 -7.3697 -9.3284 -8.8923 -9.3172

(0.0678)  (6.9593) (8.5741) (6.8002) (6.7493) (6.3816) (6.5802) (7.0368) (7.4918) (6.0896) (7.0818) (6.8497) (7.3198)

A37 A38 A39 A40 Adl Ad2 A43 Add Ad5 A46 Ad7 A48

93021 -9.3920 -9.1623 -11.0050 -8.2809 -8.6615 -9.5052 -8.1286 -9.1141 -7.8206 -9.8305 -10.1655

(6.7580) (7.4876) (6.9942) (8.0837) (6.4110) (6.9608) (6.9943) (6.3348) (6.6196) (6.4319) (7.1233) (7.3683)

A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 AGO

-13.0517 -9.0266 -7.6305 -9.7121 -8.9909 -11.8796 -9.6412 -8.7200 -12.4873 -8.7951 -12.9881 -11.5617

(9.6120) (6.8520) (6.2523) (6.9229) (6.8520) (8.5558) (7.1673) (6.8733) (8.8743) (6.6646) (9.4447) (8.4730)

Note: Standard errors are indicated in

** represents p < 0.05; and *** is for p < 0.01.

parentheses. Asterisks

Table 8: The Results of Estimates of (4.4)-Time Effects

indicate significance levels: * indicates p < 0.1;

Method  f B2 B3 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008
Loyp 9235 006757 057507 33322 33672 33852 33561 33621 33483 33099 33966 34903 -3.5039
(0.0262)  (0.0281)  (0.1788) (1.6702) (1.7028) (1.6959) (1.6841) (1.7020) (1.6960) (1.7129) (1.7180) (1.7285) (1.7356)
Method  f B2 B3 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008
0.9012*  —0.0827" 0.7502"** 47762 -4.8228 -4.8645 -4.8950 -4.8516 -4.8417 -4.8203 -4.9280 -5.0457 -5.1830
PDTS
(0.0292)  (0.0322)  (0.1396) (1.3324) (1.3339) (1.3331) (1.3348) (1.3346) (1.3341) (1.3346) (1.3338) (1.3349) (1.3346)
Method e Bs Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008
Loy L0489 025120 08526 64132 64508 65015 65320 64886 6.ATST 64573 65650 66827 -6.8250
(0.0281)  (0.0330)  (0.1902) (1.7791) (1.7881) (1.7953) (1.7986) (1.8048) (1.8120) (1.8191) (1.8276) (1.8366) (1.8461)
*

Note: Standard errors are indicated in parentheses. Asterisks indicate significance levels:

** represents p < 0.05; and *** is for p < 0.01.
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B Appendix-Proofs

Proof of Theorem 2.1

Recall that Y = X138 + Ziiu + vi;. We define X}, = (Xg,ZT 70 = (BT,/LT)T, and 0 =
T 4T where 6y is the true parameter value. Let dyr = h2++/(NTh3) ™", then it is sufficient

(B0 » o ot 0

to show that for any given 7, there exists a large number constant a such that

P sup Qnr (6o + dnre) < Qnr (6o) p =1 -, (A1)
llell=a
where || - || represents the Euclidean distance, and 6, is the true parameter value.

Applying the Taylor expansion, it follows

Onr (90 + 5NTC) — Qnr (6)

[ (vie — Ot X, Vit
NThoZZ ¢( ho >_¢(h_o)]

i=1 t=1 +

ZZ _p (Yit M ¢(2 vit\ ((Onre" X _1¢(3) v\ (Onrc" X5 ’
NThO hg ho ho ho 6 ho hg ’

. (A2)

where v}, is between v; and v; — d NTCTX;;. Based on the result Tyr = E(Tnr) +
O,(/Var (Tnr)), we consider each part of above Taylor expansion.
For the first part, which is I} = ﬁho Zfil Zthl (—gb(l) <M> <M>>, we can calculate

ho ho
it directly to achieve

5NT //¢ ( )fv v X* )(CTX*)dvdF(X*)

:Op ((SNTOJ}LO) . (A?))
Meanwhile, we know that

B ot [ 2

=0, (512VTCL (NThg)~ 1) : (A.4)

) fo(v ] X* )(CTX*)2d’UdF(X*)

3‘|§

Combing (A.3) and (A.4) obtains

I = O, (Sxzald) + O, Wa (NTHS) ) — 0, (). (A5)
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Ty * 2
For the second part, which is I, = ﬁho Zf\il Zthl (%gb@) <”—5) <5NT;—OX’5> ) , We can prove

E () = 2h3 / ¢ < ) fuolv | X7) ("X7)° dvdF(X™)
:Op (5NTCL ) y (A6)
which indicates the second part will dominate the first part when we choose a big enough.

* T vy * 3
For the third part, which is I3 = ﬁhozzj\il Zthl (—%gb(?’) (2—5) (%) ), as vy, is

between vy and vy — 0 NTCTX;;, after some direct calculations we can obtain

Iy) 6‘?{ //qa ( )fv v | X7 (TX) doF (X7)

=0, (0%r) (A7)

which indicates the second part dominates the third part with the assumption NThJ — oc.
Based on these, we can choose a bigger enough such that the second term dominates

the other two terms with probability 1 — 7. Because the second term is negative, thus

P {sup”C”:a Qnr (6o + 0r¢) < Qnr (60)} > 1—n holds. Hence with the probability approaching

1, there exists a local maximisers 6 such that
16— Boll = Oy(h3 + \/(NTH) ™). (A8)

4

Proof of Theorem 2.2

thﬁ
i=1 t=1

Because (,@ , 1) maximizes Q7 (5, i), we can take the derivative of Q7 (05, p) respect to 3

Recall that

and p to obtain

IQnT(B, 1) —XEB—Zp\ (X
op L NTho ZZ¢ ( ho & ) (ho) - (89)
(B=B,u=f) i=1 t=1
0QNT(B, 1) - Xnﬁ Zui\
o] e () () e
(B=B,n=f1) i=1 t=1
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By applying Taylor expansion for (A.9) and (A.10), we can achieve
;iZ{ (”(””) +¢<2(”) {=X5(B — By = Z5(0— mo)hg '}
NTh(Q) L L it ho it it 0 M — Mo
#599 (J2) Xl XE6 - G)ta* - 25~ ol }} + 0,5 = ) =0
(A.11)

NWZZ[ 6 (32) Zus+ 6% (52 Zuu-XEG - b = 20,06 - ")

i=1 t=1

#599 (12) Zusl=XEG - fols” = 2805 = palhg" | + oyl = o) =0,

(A.12)

1
2

where v}, is between v;; and Yj, — X7 3 — Z} .
We focus on (A.12) firstly. Considering —m Zfil Zle <¢(1) (2—;) Zu,i>> we get
0

E <_N;h8 XN;ZT:( (”"t) u>) w // e < )fv v| X, 2)Z dvdF(X)

— //¢(T> fo(he | X, 2)Z drdF(X)

Mg (2190 X, 2)). (A13)

Considering ﬁhg ST ( (h—t> (2, XE )), we achieve

E (N;hg iz (gb(2) (Z;) Z, XT)> 1 //gb ( )f,u v| X, 2) (X7 dvdF (X)

o // ¢ (1) (7* = 1)u(tho | X, Z) (ZX") drdF(X)
E(zXTf20|X,2)). (A.14)

T

Cq . _ T )
Considering ﬁho ZZJ\LI Z; <¢(2) (%—’5) (Z;OZ ﬁ)), we can obtain

(NTthZ¢ ( ) (ZuiZ,s) ) hg//cb(?)( ) (v X,2)(227) dvdF (X)

i / / (1) (= 1) f,(the | X, Z) (2Z") drdF(X)
=E (Z2Z"fP(0| X, 2)). (A.15)
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Then it follows that

i = 1o = (® + 0,(1)) " {=U (5 — o) + 0, (1)}, (A.16)

where ® = limy_,.o(1/N) SN | E (ZWZ;F D00 | Xu, ZM)) and U = limy o (L/(NT)) SN,

ZtT:I E (Zu,iX§f52)(0 | Xit> Zu,i))-
Substituting (A.16) into (A.11), we can have

I v i _ I _
NTh%;tZ[—eb“) (5 X0 (52 X =XF (3= oty + 20705 = G}

#50 (2) Xl =XE( = folig? + ZE@7 (5 = Fu)ha | + 0y(5 — ) =0

(A.17)
Define ;
NT NTh2 ;tzl ( ( ’Lt> zt) ’
It = NTh2 Z; ( (Zot) Xl - ngiq’l‘y)hol) ’
we then get
B— B8 = JypMyr(1+0,(1)). (A.18)
With some calculations, we can obtain
1 it
(NTiﬂ;;(bl) (U ) n) =72 //¢(1 ( ) (v] X, Z2)X dvdF(X)
—//<]§(T) Tfo(Tho | X, Z)X drdF(X)
hjE (XfP0]X,2)). (A.19)
E(- iz& (2) (Xu(XE — 27 &)
NTh3 L ho it (At %
1
=73 / / ¢ (h% folv | X,2) (X(XT — Z7®710)) dvd F(X)
—% / / ¢ (7) (72 = 1) fo(the | X, 2) (X(XT = ZT®7'W)) drdF(X)
0
=E (X(XT - Z"o70) fP(0 | X, Z)) . (A.20)

Meanwhile, based on above calculations, we have

36



COV(MNT)

{ >

=1t

NTh4 [[ (

{1+ o)1)}, (A.21)

Mﬂ

(i) f)) <N71’h0 iZ (o (7) ),f)) }{1 +o,(1)}

) fov | X, 2) XX dvdF(X){1+ 0,(1)}

@»—I

N Th3
where vy = [ ¢? (1) 72d7 and L = limy. 1o (1/(NT)) S, S5 B (X XE £,(0 | Xty Z0i)).
To show Theorem 2.2, it is sufficient to show the asymptotic normality for My, =
V/ NTh3 My, where we prove that for any unit vector d € R?,
{d" Cov(Mb)dy V2 {d" M, — dTE(M5,)} 5 N(0, 1). (A.22)

Then we check Lyapunov’s condition. Let & = —1/\/NTh0¢(1) (Z—;) d" X, we need to prove
NTE|& ] — 0. As (dTXit)2 < ||d|]?|| Xs||> and ¢™M(.) is bounded, we have

NTE|& P < O(NT) Y2hy*%) — 0. (A.23)
Thus the asymptotic normality for M3, holds with

NTHS (Myg — h3M/2) 5 N(0,v,L). (A.24)

According to Slutsky’s Theorem, we obtain Theorem 2.2.

Proof of Theorem 3.1

The main proof steps here are similar with those of Proof of Theorem 2.1. We briefly outline
the proof. Recall that

Qnr(71,B) = NTh1 ZZCb( L % XZtﬂ)

i=1 t=1

= oy oy — Qy — Xg@
NTh1 Z Z ) < o ) : (A.25)

i=1 t=1

where X2 = (1 XZ) and 0 = (yv A7)7. Define dyr = h2 + /(NTh3)™', it is suf-

ficient to show that for any given 7, there exists a large number constant a such that
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P {sup|uj—o @nr (00 + Onrc) < Qnr (60)} > 1 — 1, where || - || represents the Euclidean dis-
tance, and 6, is the true parameter value. Applying the Taylor expansion, it follows

Onr (90 + 5NTC) — Qnr (o)

ZZ _¢ Vit + o — & — Oy’ Xy —¢ Vit + 0 — &
NTh1 hy ha

i=1 t=1

Z Z _—¢(1) Vit + o — @y 6NTCTXit
NThl hl hl

i=1 t=1 L

N\ 2

1 Vig + 0 — Snrel X; 1 dnrel X;

(2 it % % NT it N (3) NT it A9
3¢ < 3 >< I ) 6" (m)( I ) | (4.26)

where v}, is between v;; + ; — &; and vy +; — &; — 6 NTCTX“. Following the same steps as the
Proof of Theorem 2.1, with assumption that vTh? — oo (i.e., N°/T — 0 for some a > 4/3),
one can obtain [|0 — 6g|| < dnr-

O

Proof of Theorem 3.2

Recall that XL = (1 XZ), 0 = (vv A0)7, and 6 = [%;  (7)7. If  maximises (3.5), it will
satisfy the following equation

(1) it — & i_(di_ai)_XiTé _Xit _
NTh1 Z qu 2 ( " t o) =0 (A.27)

Then we can achieve

NThl ZZ¢1) (hl) (
) Uzt — &, — XF(6—0)
Frm e () () (=)

Xt a; — a; — XL (0 —0) :
QNThIZZ}b ( >< 1)( " ) —0, (A.28)

where v}, is between v; and vy + a; — &;. It can be shown that the third term on the left-
hand side of (A.28) is dominated by the second term. With assumption that v/Th? — oo (i.c.,

N®/T — 0 for some a > 4/3), we could then follow the same proof steps as those of Proof of
Theorem 2.2 to achieve the results.

O
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