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Abstract

Most research on panel data focuses on mean or quantile regression while there is not

much research about regression methods based on the mode. In this paper, we propose a

new model named fixed effects modal regression for panel data in which we model how the

conditional mode of the response variable depends on the covariates, and employ a kernel-

based objective function to simplify the computation. The proposed modal regression

can complement the mean and quantile regressions, and provide better central tendency

measure and prediction performance when the data is skewed. We present a linear dummy

modal regression (LDMR) method and a pseudo-demodeing two-step (PDTS) method to

estimate the proposed modal regression. The computations can be easily implemented

using a modified modal-expectation-maximization (MEM) algorithm. We investigate the

asymptotic properties of the modal estimators under some mild regularity conditions when

the number of individuals, N , and the number of time periods, T , go to infinity. The

optimal bandwidths with order (NT )−1/7 are obtained by minimizing the asymptotic

weighted mean squared errors. Monte Carlo simulations and two real data analyses of a

public capital productivity study and a carbon dioxide (CO2) emissions study are presented

to demonstrate the finite sample performance of the newly proposed modal regression.
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1 Introduction

Mean, median, and mode are three of most commonly and popularly used location measures, and

focus on different population characteristics. Each quantity has its own merit and complements

each other. Built on the ideas of mean and median, mean regression and median regression

are extensively investigated and popularly used to model the relationship between a response

variable Y and covariates X. However, the research about the regression model built on the idea

of mode is rather limited, and has not gotten enough attention that it deserves partly due to its

computational difficulty. Compared to mean, mode is a better and more stable numerical char-

acteristic of a dataset when data has outliers or the error distribution is skewed (Chen, 2018).

Tarter and Lock (1993) argued that we should not stick to a single function for summarizing the

relationship among variables and should also pay attention to the conditional local modes, es-

pecially when data has high skewness. Due to the special characteristics of mode, many authors

have made efforts to identify modes of population distributions for low-dimensional data based

on the nonparametric kernel density estimation; see, for example, Silverman (1981), Muller and

Sawitzki (1991), Friedman and Fisher (1999), Chen et al. (2016), as well as documentations of

the R package “np” for nonparametric mode estimation. In the regression framework,1 Sager

and Thisted (1982) pointed out that a modal regression estimator can be derived from a non-

parametric density estimate to analyze the relationship among variables. However, such modal

regression method derived from multivariate kernel density estimation is difficult to apply when

the dimension of the covariates is large. In the econometrics literature, the path-breaking papers

of Lee (1989, 1993) started the idea of linear modal regression. However, Lee (1989, 1993) used

an objective function with bounded support and assumed the tuning parameter h to be fixed.

Therefore, they required the error to be symmetric to get a consistent modal line. Yao et al.

(2012) proposed a kernel-based objective function to find the nonparametric modal estimator

but also required the error to be symmetric. Note however when the error is symmetric, the

modal regression line is the same as the mean regression line. Kemp and Santos Silva (2012)

and Yao and Li (2014) found out that the above limitations can be solved if we let the tuning

parameter h go to zero. They also proposed a more general kernel-based objective function and

established the general consistency of the linear modal regression estimate even when the error

density is skewed. Such findings greatly simplify the computations of modal regression.

More specifically, let f(Y | X) be the conditional density function of Y given X. The

traditional regression model usually uses the mean or the quantile of f(Y | X) to model the

1Modal regression can complement mean and quantile regressions and provide some other useful information
regarding the features of conditional distributions that the existing regression models might miss, especially for
the skewed dataset. For example, assume Y and X satisfy Y = XTβm+σ(X)ξ, where ξ has a density with mean
0 and mode 1, βm is a vector of coefficients, σ(X) = m(X)−XTβm in which m(X) is a nonlinear function, and
XT denotes the transpose of X. Then E(Y | X) = XTβm, while Mode(Y | X) = m(X). The mean regression
is linear, but the modal regression could be nonlinear. Similarly, it is also possible that the mean regression is
nonlinear, but the modal regression is linear.
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relationship between Y andX. For example, the commonly used linear regression model assumes

that the mean of f(Y | X) is a linear function of X. The linear modal regression (Kemp and

Santos Silva, 2012; Yao and Li, 2014) instead assumes that the mode of f(Y | X), denoted

by Mode(Y | X), is a linear function of covariates X: Mode(Y | X) = XTβ. The regression

coefficient β, which reveals the change in the mode of the response variable Y corresponding

to a unit change in the covariates X, can be estimated effectively by maximizing the following

kernel-based objective function

QN(β) =
1

Nh

N∑
i=1

φ

(
Yi −XT

i β

h

)
,

where φ(.) denotes a smooth kernel, and h is a bandwidth. Such idea of imposing a certain

model assumption directly on the conditional mode, Mode(Y | X), along with the kernel-based

objective function greatly simplifies the computation of the modal regression, and avoids the

nonparametric multivariate kernel density estimation of f(X, Y ) that is needed for the fully

nonparametric multivariate modal estimation. Due to such reasons, we have experienced much

development of modal regression recently. Especially, with the distinguished characteristics

of modal regression (such as robustness and better prediction performance (shorter prediction

interval)), the idea of linear modal regression was subsequently extended by many researchers

such as Yao and Xiang (2016), Zhou and Huang (2016), Chen et al. (2016), Krief (2017), Chen

(2018), Li and Huang (2019), Ota et al. (2019), Kemp et al. (2020), among others.

Panel data models have been well developed and widely used in empirical economics due to

the appealing feature that it allows in modeling time-invariant individual specific effects. Baltagi

(2009) and Baltagi (2013) gave an excellent overview of the panel data analysis technique. There

are a large number of estimation methods that could be used to estimate panel data models,

such as the first difference approach and the profile least-squares method. Su and Ullah (2006)

presented a local linear kernel estimator for a nonparametric panel data model with fixed effects,

where they derived the asymptotic theorems with fixed T and large N . Gao and Li (2013)

proposed using the profile least-squares method to concentrate out fixed effects and estimated

the model by a kernel method. Lee et al. (2019) introduced a local linear kernel estimator for the

marginal effect in fixed-effect panel data models. Canay (2011) developed a two-step estimator

for panel data quantile regression models with fixed effects. For other related literature, we

refer the interested readers to Su and Ullah (2011), Lin et al. (2014), among others. While the

above papers collectively cover a large class of panel models, all of them are based on mean or

quantile regression. This motivates us to investigate the fixed effects panel data model from

the modal regression view. To the best of our knowledge, the present paper is the first work to

develop theory and methodology for fixed effects modal regression for panel data.

Given a panel dataset
{(
Yit, X

T
it

)
: i = 1, · · · , N ; t = 1, · · · , T

}
, the linear fixed effects mean

regression assumes E(Yit | Xit, αi) = XT
itβm+αi with Xit ∈ Rq and βm ∈ Kq

1, where αi is treated
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as a fixed parameter and allowed to be correlated with Xit, and K1 is a compact set. In this

paper, we propose to model how the conditional mode changes with covariates for the panel

data by the following linear fixed effects modal regression

Mode(Yit | Xit, µi) = XT
itβ + µi, (1.1)

where µi is treated as a fixed parameter in modal regression, β ∈ Kq
2, and K2 is a compact set,

i.e.,

Yit = XT
itβ + µi + vit (1.2)

with Mode(vit | Xit, µi) = 0. For the idiosyncratic error term, we assume that vit is inde-

pendently and identically distributed (i.i.d.) over i and t, and independent of unobservable

time-invariant individual effect µi (Henderson et al., 2008; Lin et al., 2014). For the sake of sim-

plicity, we focus on the one-way error-component model and balanced panel dataset. However,

the methodology could be easily extended to the case of unbalanced panel data or a two-way

error-component model. It is straightforward to see that different from the linear modal regres-

sion for the cross-sectional data (Kemp and Santos Silva, 2012; Yao and Li, 2014), the estimation

and the corresponding asymptotic properties for the linear fixed effects modal regression depend

on the assumptions for (N, T ). It is noticed that we only need NT →∞ to establish the asymp-

totic theorems for the proposed LDMR estimators. However, we require T grow much faster

than N to simplify the deviation of the asymptotic results for the proposed PDTS estimators

(see Section 3). Given these, we mainly focus on the case in which both N and T go to infinity

in this paper, and also discuss other various cases under different conditions of N and T (finite

or going to infinity) in the remarks.

We first propose a LDMR method to estimate (1.1) by using dummy variables for fixed

effects {µi}Ni=1. The estimates of all parameters can be obtained by extending the modal-

expectation-maximization (MEM) algorithm (Li et al., 2007; Yao, 2013) to maximize a kernel-

based objective function. Consistency and asymptotic normality of the estimators are inves-

tigated under some mild conditions with both N and T going to infinity. We also give the

asymptomatically optimal bandwidth and show how to obtain it in practice. Meanwhile, for

large N case, which is a typical situation for panel data from an annually conducted panel

survey, one problem of the LDMR method is that there might exist multiple local maxima and

there is no way to ensure the found solution is the global optimum. To this end, we propose a

PDTS method under certain conditions to concentrate out fixed effects through mean regres-

sion, and derive the asymptotic bias and variance as well as the asymptotic normality of the

resulting estimators. The advantage of this PDTS method is that it not only incorporates the

mode structure of the data, but also inherits the estimation superiorities of fixed effects mean

regression. A similar approach has been adopted in a quantile regression for panel data; see

Canay (2011). It is noticed that we are required to impose a more restrictive condition on N and
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T , notably that at the optimal bandwidth convergence rate, Na/T → 0 for some a > 4/3 with

(N, T ) → ∞, to prove asymptotic normality for the PDTS estimators. Bandwidth selection is

also investigated for the PDTS method. Monte Carlo experiments and two empirical analyses

are conducted to demonstrate the finite sample performance of the proposed modal regression.

It is important to emphasize that the convergence rate (
√
NTh3) of fixed effects modal regression

in this paper is slower than that (
√
NTh) of the nonparametric univariate fixed effects mean

regression, which is the cost we need to pay in order to estimate the conditional mode (Parzen,

1962). However, for finite sample performance of skewed data, fixed effects modal regression

might still provide estimates with smaller standard errors and better prediction performance

than fixed effects mean regression with least squares estimates based on our simulation results.

The rest of this paper is organized as follows. In Section 2, we propose a LDMR estimation

method, where the consistency and asymptotic properties of the estimators are investigated.

Also, the optimal bandwidth is reported. In Section 3, we introduce a PDTS method to remove

the individual effects, establish the asymptotic normality for estimators, and provide an optimal

bandwidth. Section 4 has numerical results, where Monte Carlo simulations and two real data

analyses are presented to illustrate the finite sample performance of the proposed model. We

conclude this paper in Section 5. The tables which summarize the simulation and empirical

results are deferred to the Appendix A. All technical proofs are given in the Appendix B.

2 Linear Dummy Modal Regression Method

In this section, we investigate fixed effects modal regression focusing on large N and large T

case, and formally establish sufficient conditions for consistency and asymptotic normality of

the estimators. We also discuss other various cases under different conditions of N and T (finite

or going to infinity) in the remarks.

2.1 LDMR Modal Estimators

When the individual intercept µi is treated as a fixed parameter, the resulting model, known as

the fixed effects regression, could be viewed as a special case of the classical linear model. We

can then rewrite (1.1) with a little bit abuse of notation as

Mode(Yit | Xit, µ) = XT
itβ + ZT

µ,iµ, i = 1, · · · , N, t = 1, · · · , T, (2.1)

where Zµ,i = (Z
(1)
µ,i , · · · , Z

(N)
µ,i )T , µ = (µ1, · · · , µN)T , and Z

(j)
µ,i denotes a dummy variable that is

0 for all observations with i 6= j and 1 for i = j, j = 1, · · · , N . We extend the method of Yao

and Li (2014) to estimate (2.1) by maximizing the following kernel-based objective function
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QNT (β, µ) =
1

NTh0

N∑
i=1

T∑
t=1

φ

(
Yit −XT

itβ − ZT
µ,iµ

h0

)
, (2.2)

where h0 is a bandwidth used in this section. Let β̂ and µ̂ be the maximizers of (2.2) and thus

the proposed LDMR estimators. According to Yao et al. (2012), the choice of kernel is not very

important in modal regression. In this paper, we let φ be a normal kernel for the simplicity of

computation; see Section 2.2 for more discussions on kernel choice.

Notice that unlike fixed effects mean regression, there is no closed-form expression of the

maximizers of (2.2). We extend so-called MEM algorithm (Li et al., 2007; Yao, 2013) to estimate

the modal coefficients in (2.2). The detailed description is summarized in Algorithm 1, where

E-step and M-step are iterated until the algorithm converges.

Algorithm 1 MEM (Li et al., 2007; Yao, 2013)

E-Step. Calculate the weight π
(
i, t | β(g), µ(g)

)
as

π
(
i, t | β(g), µ(g)

)
=

φ
(
Yit−XT

itβ
(g)−ZTµ,iµ(g)

h0

)
∑N

i=1

∑T
t=1 φ

(
Yit−XT

itβ
(g)−ZTµ,iµ(g)

h0

) .
M-Step. Update the values of β(g+1) and µ(g+1) by

(β(g+1), µ(g+1)) = arg max
β,µ

N∑
i=1

T∑
t=1

{
π
(
i, t | β(g), µ(g)

)
log

(
1

h0
φ

(
Yit −XT

itβ − ZTµ,iµ
h0

))}
,

where g is the iteration indicator.

Remark 2.1. For normal kernel function, M step has a closed-form expression (X∗TWgX
∗)−1X∗T

WgY , where Wg is a diagonal matrix associated with the weight π and X∗ is the corresponding

variable matrix defined as X∗ = (X Z) in which X = (X1, · · · , XN)T , Z = (Z1, · · · , ZN)T ,

Xi = (XT
i1, · · · , XT

iT )T , and Zi = (ZT
µ,i, · · · , ZT

µ,i)
T . It is necessary to point out that as the con-

verged value depends on the starting point and there is no guarantee that the MEM algorithm

will converge to the global maximizer,2 it is prudent to try different starting points and choose

the best optimal value (Yao et al., 2012).

2.2 Asymptotic Properties

In what follows, we derive the asymptotic properties of the LDMR estimators. We consider

the consistency of (µ̂, β̂), where we say that µ̂ is weakly consistent if µ̂i convergences to µi0

uniformly over 1 ≤ i ≤ N in which µi0 is a fixed true parameter. We then derive the limiting

2Theorem 2.1 in Yao and Li (2014) indicates that Algorithm 1 will monotonically non-decrease the objective
function (2.2), which means MEM algorithm has the ascending property.
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distribution of β̂. To start with, we list the regularity sufficient conditions that will be used to

establish the asymptotic results of the LDMR estimators.

C1 The random variables (Yit, X
T
it ) are i.i.d. across the i index. For each i = 1, · · · , N ,{

XT
it : t = 1, · · · , T

}
are the realization of a strictly stationary α-mixing process with

mixing coefficient αi(j). It holds that α(j) = maxi αi(j) for all i = 1, · · · , N , where the

coefficient α(j) decays exponentially fast to zero as j →∞.

C2 The unobservable time-invariant individual effect {µi}ni=1 is an i.i.d. sequence of random

variables withMode(µi |Xit) 6= 0. vit is i.i.d. across all i and t withMode(vit | Xit, µi) = 0.

C3 As (N, T )→∞, (NT )−1
∑N

i=1

∑T
t=1 ‖Xit‖4 = Op(1), where ‖.‖ is Euclidean distance. De-

fine X∗Tit = (XT
it , Z

T
µ,i), as (N, T )→∞, (NT )−1

∑N
i=1

∑T
t=1(X

∗
itX

∗T
it f

(2)
v (0 | Xit, Zµ,i)) con-

verges in probability to a negative definite matrix, and (NT )−1
∑N

i=1

∑T
t=1(X

∗
itX

∗T
it fv(0 |

Xit, Zµ,i)) and (NT )−1
∑N

i=1

∑T
t=1(X

∗
itf

(3)
v (0 | Xit, Zµ,i)) converge in probability.

C4 φ(.) is bounded, symmetric about zero, and has compact support. Moreover, it has

bounded continuous third derivative and finite second moment.

C5 For the conditional error density, fv(v | .), it follows fv(v | .) < fv(0 | .). In addition,

f
(c)
v (v | .) is bounded and continuous in a neighbor of 0 for c = 0, 1, 2, 3, where f

(c)
v (.) is

the cth derivative of fv(.) and f
(1)
v (0 | .) = 0.

We give some comments on the above conditions. C1 is standard in the fixed effects panel

literature. It excludes the temporal dependence and sticks to the identical distribution for all i

to focus on the applicability of modal regression for fixed effects data. The mixing coefficient

αi(j) is defined as αi(j) ≡ supt sup{A∈Gi,t−∞,B∈Gi++∞
t+k }|P (A ∩ B) − P (A)P (B)| in which Gi,t−∞ =

σ (· · · , Xi,t−1, Xit) and Gi,+∞t+k = σ (Xi,t+k, Xi,t+k+1, · · · ) are the σ-fields. The i.i.d. condition in

C2 is the same as the ones used by Henderson et al. (2008) and Lin et al. (2014). It assumes

the independence across the individuals and restricts the temporal dependence. To keep the

exposition as clear as possible, the present paper does not extend the results to the case of

serial dependence in vit (see Remarks 2.2 and 2.3). C3, the standard moments condition,

ensures the existence of the asymptotic mean and variance for modal estimators. C4 imposed

on kernel function is in the line with Kemp and Santos Silva (2012) and Yao and Li (2014) to

economize the proof. Note that the compact support condition can be relaxed if we impose

certain restriction on the tail of the kernel function (Eddy, 1980). In particular, the standard

normal kernel function is allowed. C5 implies certain smoothness of fv(vit | Xit, Zµ,i) around 0,

and indicates that the conditional density of vit has a well-defined global mode at 0 (Kemp and

Santos Silva, 2012). All conditions on bandwidth are specified in the theorems stated below.

Remark 2.2. C1 could be alternatively replaced by the condition that {XT
it , t ≥ 1} are i.i.d for

each fixed i and independent across i. However, we expect this structure to have no effect on the
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asymptotic behavior of the LDMR estimators besides a great deal of notational effort. Notice that

C2 of vit is restrictive, as when T is large, time series may have dependence in practice. We could

replace the i.i.d. condition with the cross-sectional independence and the stationary α-mixing

process to allow for serial dependence, i.e., for each i = 1, · · · , N , {(Yit, vit) : t = 1, · · · , T} are

the realization of a stationary α-mixing process with mixing coefficient αi(j). Then the asymp-

totic consistency and normality results in this paper still hold under some regularity conditions,

indicating the asymptotic negligence of the dependence, which is consistent with the general

results in kernel literature; see Su et al. (2009).

Remark 2.3. If we allow for serial dependence in vit, we could propose a more efficient es-

timator by incorporating the information provided by the error autocorrelation structure. For

example, one can define the serially correlated errors follow an autoregressive (AR) process

with finite order d, i.e., vit = vi,t−1 + · · · + vi,t−d + eit where eit is i.i.d. with Mode(eit |
Xit, µi, vi,t−1, · · · , vi,t−d) = 0 for the purpose of identification. We can then extend the method

proposed in Hidalgo (1992) to propose an adaptive estimation procedure for fixed effects modal

regression. Future studies could fruitfully explore this issue further.

When the tuning parameter h0 goes to zero, for the general skewed error density, we have

the following consistency properties of the LDMR estimators. As the primary focus of this

paper is on the estimation of β, we only present the asymptotic distribution for β̂.

Theorem 2.1. Under the regularity conditions C1-C5, as (N, T )→∞, h0 → 0, and NTh50 →
∞, there exists consistent maximizers (β̂, µ̂) of (2.2) such that with probability approaching

one,

(i) ‖β̂ − β0‖ = Op

((
NTh30

)−1/2
+ h20

)
,

(ii) ‖µ̂− µ0‖ = Op

((
NTh30

)−1/2
+ h20

)
,

where β0 and µ0 are the true parameters of the fixed effects modal regression (1.1).

Theorem 2.2. With NTh70 = O(1), under the same conditions in Theorem 2.1, the estimator

β̂ satisfying the consistency result in Theorem 2.1 has the following asymptotic result√
NTh30

(
β̂ − β0 −

h20
2
J−1M + op(h

2
0)

)
d→ N

(
0, v2J

−1LJ−1
)
.

If with NTh70 → 0, we then have√
NTh30

(
β̂ − β0

)
d→ N

(
0, v2J

−1LJ−1
)
,

where v2 =
∫
t2φ2(t)dt, J = limN,T→∞(1/(NT ))

∑N
i=1

∑T
t=1 E

(
Xit(X

T
it − ZT

µ,iΦ
−1Ψ)f

(2)
v (0 | Xit, Zµ,i)

)
,
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L = limN,T→∞(1/(NT ))
∑N

i=1

∑T
t=1 E

(
XitX

T
itfv(0 | Xit, Zµ,i)

)
, M = limN,T→∞(1/(NT ))

∑N
i=1

∑T
t=1

E
(
Xitf

(3)
v (0 | Xit,Zµ,i)

)
, Φ = limN→∞(1/N)

∑N
i=1 E

(
Zµ,iZ

T
µ,if

(2)
v (0 | Xit, Zµ,i)

)
, and Ψ = limN,T→∞

(1/(NT ))
∑N

i=1

∑T
t=1 E

(∑T
t=1(Zµ,iX

T
itf

(2)
v (0 | Xit, Zµ,i))

)
.

The proofs of Theorems 2.1 and 2.2 are given in the Appendix B. The first term (NTh30)
−1/2

in the convergence rates characterizes the magnitude of the estimation variance, while the second

term h20 characterizes the magnitude of the estimation bias. Comparing to the nonparametric

univariate fixed effects mean regression, the convergence rate of fixed effects modal regression is

much slower, which is the cost we need to pay in order to estimate the conditional mode (Parzen,

1962). Notice that Theorem 2.2 shows that the bias term can be successfully eliminated by

allowing NTh70 → 0. However, the optimal bandwidth h0 in Theorem 2.2 is ĥ0 ∼ (NT )−1/7,

which obviously does not satisfy the condition. This means we must undersmooth these types

of estimators to remove the effect of asymptotic bias. The estimators can then converge to a

normal distribution at a rate that close to (NT )2/7. We incorporate this later when we adopt a

plug-in method to choose the optimal bandwidth in practice.

Remark 2.4. Besides undersmoothing, several other strategies (e.g., bootstrap) could be applied

to remove the bias of estimators. For example, we could utilize a simple one-step bias correction

based on the analytic form of the asymptotic bias. Then the one-step bias corrected estimator

is defined as β̂∗ = β̂ − h20Ĵ
−1M̂/2, where Ĵ and M̂ are the estimates of J and M . Under

the same conditions in Theorem 2.2, β̂∗ has the limiting distribution with
√
NTh30(β̂

∗ − β0)
d→

N (0, v2J
−1LJ−1). Although it is interesting to compare the different bias correction methods,

we would restrict our attention to the undersmoothing.

Remark 2.5. If we allow T →∞ with finite N , under the conditions C1-C5 ((N, T )→∞ in

C3 is replaced with T →∞), as h0 → 0, Th50 →∞, and Th70 = O(1), the consistent LDMR esti-

mator of β has the asymptotic result
√
Th30(β̂−β0−

h20
2
J−1M+op(h

2
0))

d→ N (0, v2N
−1J−1LJ−1).

Remark 2.6. Allowing N → ∞ with fixed T , we could replace C1 with the condition that

the random variables (Yit, X
T
it ) are i.i.d. over i and t. Together with the conditions C2-C5

((N, T ) → ∞ in C3 is replaced with N → ∞), as h0 → 0, Nh50 → ∞, and Nh70 = O(1), the

consistent LDMR estimator of β has the asymptotic result
√
Nh30(β̂−β0−

h20
2
J−1M+op(h

2
0))

d→
N (0, v2T

−1J−1LJ−1).

2.3 Optimal Bandwidth

Theorems 2.1 and 2.2 imply that the bandwidth plays a crucial role in modal regression, which

influences the estimation accuracy and governs the trade-off between bias and variance. Consid-

ering the estimator of β, it turns out that the corresponding asymptotic weighted mean squared

errors (Asy(WMSE)) is
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Asy(WMSE) = E
{(

β̂ − β0
)T

W
(
β̂ − β0

)}
≈ MTJ−1WJ−1Mh40

4
+
v2 tr (J−1LJ−1W )

NTh30
,

(2.3)

where tr(.) represents trace, and W is a weight matrix. The symbol “aNT ≈ bNT” indicates

that aNT/bNT → 1 as NT → ∞, i.e., aNT = bNT + (s.o.), where (s.o.) denotes the term that

having probability order smaller than that of bNT . By defining ĥ0 = arg minh0 Asy(WMSE),

we have the following corollary regarding the asymptotically optimal bandwidth.

Corollary 1. Under the same conditions in Theorem 2.2, the optimal bandwidth h0 that mini-

mizes Asy(WMSE) is

ĥ0 =

(
MTJ−1WJ−1M

3v2tr(J−1LJ−1W )

)− 1
7

(NT )−
1
7 .

Remark 2.7. If W = (J−1LJ−1)−1, which is proportional to the inverse of the asymptotic

variance of β̂, then tr(J−1LJ−1W ) = q. Additionally, it has been observed that the corresponding

modal estimator requires undersmoothing to remove the effect of asymptotic bias (Kemp and

Santos Silva, 2012). We then set ĥ0 =
(
MT J−1M

3v2q

)− 1
7

(NT )−0.143, which is the default bandwidth

we use in the numerical studies.

The results in Corollary 1 or Remark 2.7 cannot be used directly due to the unknown

function fv(.). To obtain the optimal bandwidth in practice, we propose a plug-in procedure

for practical implementation. We follow Yao and Li (2014) to replace the unknown quantities

in above corollary/remark by the corresponding estimates with the assumption of independence

between vit and Xit. Notice that similar argument has been put forward in the quantile regres-

sion literature; see Lee (2003). We then use the fixed effects mean regression to get the estimate

of vit, denoted by v̂it, and apply the nonparametric kernel density estimation method to obtain

the mode of v̂, say v̂m. We approximate f
(c)
v (.) by

f̂ (c)
v (0 | Xit, Zµ,i) ≈

1

NThc+1

N∑
i=1

T∑
t=1

K(c)

(
v̂it − v̂m

h

)
, c = 0, 2, 3, (2.4)

where K(.) is a smooth kernel function satisfying the condition C4 in Section 2.2. Bandwidth

h used in (2.4) is chosen using the method proposed by Botev et al. (2010).

3 Pseudo-Demodeing Two-Step Method

The above proposed LDMR method is very effective in practice when N is not too large.

However, when N goes to infinity, there might exist multiple local maxima and it is not easy to

9



obtain the global optimal estimates with a large number of parameters needing to be estimated.

To overcome this issue, we propose a PDTS method under certain conditions to concentrate

out fixed effects through mean regression. Notice that throughout this section, the number of

time periods is denoted by TN that depends on N . In what follows, we omit the subscript N .

3.1 PDTS Modal Estimators

To motivate the proposed PDTS method and be consistent with the notations in above sections,

we suppose that the fixed effects mean regression of Yit given Xit follows

Yit = XT
itβm + αi + εit, i = 1, · · · , N, t = 1, · · · , T, (3.1)

where εit is i.i.d. over i and t with E(εit | Xit, αi) = 0 but Mode(εit | Xit, αi) 6= 0, which is often

the case in practice. In addition, we make an assumption that the individual effect from mean

regression, αi, remains a source of individual effect in modal regression; see a similar assumption

in Canay (2011) for a quantile regression model for panel data. Thus, the fixed effects mean

regression is E(Yit − αi | Xit) = XT
itβm, while the fixed effects modal regression considered from

(1.1) or (2.1) will be Yit = XT
itβ + µi + vit with Mode(vit | Xit, µi) = 0, such that

Mode(Yit − αi | Xit, µi) = XT
itβ + µi − αi = XT

itβ + γ1, (3.2)

where γ1 = µi − αi could be interpreted as the modal adjustment factor for the individual

effect from mean regression; for example, see a popular related location-scale shift model in

Remark 3.2. These build the underlying mechanism of the PDTS method, where we compute

a
√
T -consistent estimator α̂i from (3.1) firstly, and then estimate the following linear modal

regression

Mode(Ŷit | Xit) = X̃T
itθ (3.3)

with Ŷit = Yit − α̂i, X̃it = (1, XT
it )

T , and θ = (γ1, β
T )T . The detailed description of the PDTS

method is as follows.

• Step 1: Compute the
√
T -consistent estimator α̂i by Least Squares Dummy Variable

(LSDV) approach, where

α̂i = Ȳi − X̄T
i β̂m (3.4)

in which β̂m = (XTQDX)−1XTQDY , Ȳi = (1/T )
∑T

t=1 Yit, X̄i = (1/T )
∑T

t=1Xit, QD =

ITN − D
(
DTD

)−1
DT , D = IN ⊗ lT , IN is the N × N identity matrix, lT stands for a

T -vector of ones, and ⊗ denotes Kronecker product operation. Stacking the entire data

set by individuals yields Xi = (XT
i1, · · · , XT

iT )T , X = (X1, · · · , XN)T , Yi = (Yi1, · · · , YiT )T ,

and Y = (Y T
1 , · · · , Y T

N )T .
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• Step 2: Calculate the PDTS estimator, denoted by θ̂ = (γ̂1, β̂
T )T , through maximizing

the following kernel-based objective function

QNT (θ) =
1

NTh1

N∑
i=1

T∑
t=1

φ

(
Ŷit − X̃T

itθ

h1

)
, (3.5)

where φ(.) is a standard normal kernel, and h1 is a bandwidth. With the available estimate

γ̂1, calculate the modal estimate of individual effect µi, where

µ̂i = γ̂1 + α̂i. (3.6)

Intuitively, the PDTS estimators work because Ŷit weakly converges to Y ∗it = Yit − αi0 as

T →∞ in which αi0 is the true value of αi. On one hand, in terms of computational simplicity

or stability, the PDTS method may have an advantage. On the other hand, the linear form

of fixed effects mean regression might be subject to misspecification. This issue needs to be

researched further (e.g., applying nonparametric fixed effects mean regression), but beyond the

scope of this paper. It is noticed that if γ1 = 0, µi would be the same as αi. In this case, the

modal estimator of µi could be calculated as µ̂i = Ȳi − X̄T
i β̂ in the second step, which is like

mean estimator but using modal estimator of β̂. The maximizer of (3.5) can be computed easily

by applying the modified MEM algorithm, which is shown in Algorithm 2.

Algorithm 2 MEM (Li et al., 2007; Yao, 2013)

E-Step. Calculate the weight π
(
i, t | θ(g)

)
as

π
(
i, t | θ(g)

)
=

φ
(
Ŷit−X̃T

itθ
(g)

h1

)
∑N

i=1

∑T
t=1 φ

(
Ŷit−X̃T

itθ
(g)

h1

) .
M-Step. Update the value of θ(g+1) by

θ(g+1) = arg max
θ

N∑
i=1

T∑
t=1

{
π
(
i, t | θ(g)

)
log

(
1

h1
φ

(
Ŷit − X̃T

itθ

h1

))}
,

where g is the iteration indicator.

Remark 3.1. For fixed effects modal regression, we do not have a general projection matrix used

in fixed effects mean regression (Baltagi, 2009, 2013). We instead propose to use the estimate

of αi obtained from mean regression to concentrate out fixed effects. In addition, unlike fixed

effects mean regression, we could not apply the first-difference or mean difference estimation

method on fixed effects modal regression, due to the fact that the mode of error term may be

changed after we implement difference transformation.3

3For example, if we consider Yit = XT
itβ + µi + vit with Mode(vit | Xit, µi) = 0, applying the first-difference
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Remark 3.2. PDTS method has a main advantage compared to LDMR method in that the

number of parameters to be estimated is greatly reduced, and thus can be used more effectively in

practice with large N . However, the PDTS method does not intend to replace the LDMR method,

but provide an alternative for researchers to simply estimate fixed effects modal regression under

some practical scenarios. For example, one of the popular related models is the location-scale

shift model, i.e., Yit = XT
itβm + αi + εit, where εit = (γ1 + XT

itβm′)ξit. With assumptions that

Mode(ξit | Xit, αi) = 1 and E(ξit | Xit, αi) = 0, we have E(εit | Xit, αi) = 0, Mode(εit |
Xit, µi) = XT

itβm′ + γ1, E(Yit | Xit, αi) = XT
itβm + αi, and Mode(Yit | Xit, µi) = XT

itβ + µi,

where β = βm + βm′ and µi = αi + γ1. We could then apply the PDTS method to eliminate

αi. Notice that the key identifying assumption is that fixed effects modal regression shares the

common individual effect αi with fixed effects mean regression.

3.2 Asymptotic Properties

Similar to Theorems 2.1 and 2.2, we could obtain the asymptotic results regarding θ̂ with the

restriction that at the optimal bandwidth convergence rate, Na/T → 0 for some a > 4/3 with

(N, T ) → ∞. This is a sufficient condition to ensure the remainder term stemming from the

first step estimator is negligible when we show the consistency and asymptotic normality of the

PDTS estimators, which are presented as follows.

Theorem 3.1. Under the regularity conditions C1-C5, as (N, T ) → ∞, h1 → 0, NTh51 → ∞,

and
√
Th21 → ∞, there exists a consistent maximizer θ̂ of (3.5) such that with probability

approaching one,

‖θ̂ − θ0‖ = Op

((
NTh31

)−1/2
+ h21

)
,

where θ0 = (γ10, β
T
0 )T is the true parameter of the fixed effects modal regression (3.3).

Theorem 3.2. With NTh71 = O(1), under the same conditions in Theorem 3.1, the estimator

θ̂ satisfying the consistency result in Theorem 3.1 has the following asymptotic result√
NTh31

(
θ̂ − θ0 −

h21
2
J̃−1M̃ + op(h

2
1)

)
d→ N

(
0, v2J̃

−1L̃J̃−1
)
.

In addition, with a further condition that NTh71 → 0, we have√
NTh31

(
θ̂ − θ0

)
d→ N

(
0, v2J̃

−1L̃J̃−1
)
,

where J̃ = limN,T→∞(1/(NT ))
∑N

i=1

∑T
t=1 E

(
X̃itX̃

T
itf

(2)
v (0 | X̃it)

)
, L̃ = limN,T→∞(1/(NT ))

∑N
i=1

∑T
t=1

E
(
X̃itX̃

T
itfv(0 | X̃it)

)
, and M̃ = limN,T→∞(1/(NT ))

∑N
i=1

∑T
t=1 E

(
X̃itf

(3)
v (0 | X̃it)

)
.

transformation on equation yields Yit − Yit−1 = (XT
it − XT

it−1)β + vit − vit−1 in which we cannot guarantee
Mode(vit − vit−1 | Xit) = 0. The same problem arises if we apply the mean difference transformation.
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We outline the proofs of Theorems 3.1 and 3.2 in the Appendix B. Theorem 3.2 indicates

that the asymptotic distribution of the estimator is the same as it would be if αi were known

with certainty. With NTh71 → 0, the proposed estimator can achieve the convergence rate of

Op(
√
NTh31). Note that the optimal rate of h1 is (NT )−1/7, which obviously does not satisfy

the condition NTh71 → 0. This means we can apply the undersmoothing method to remove

the asymptotic bias in the second step; see Remark 2.4. The restriction
√
Th21 → ∞ implies

Na/T → 0 for some a > 4/3 with the optimal bandwidth. It indicates that T grows much

faster than N , which is used to simplify the derivation of the asymptotic results; see the similar

condition used in Lamarche (2010) and Galvao (2011). The intuition behind this restriction is

that T must go to infinity fast enough to guarantee the consistent estimates for the fixed effects

in the first step, and then for the parameters in the second step with the optimal bandwidth. It

is notice that the restriction Na/T → 0 for some a > 4/3 rules out the case for which N and T

pass to infinity at the same rate, i.e., N/T → c ∈ (0,∞), as in some empirical applications. We

leave the asymptotic properties under such case for the future research. Large T is not common

in the economic panel dataset, thus the Monte Carlo simulations presented in Section 4 assess

the finite sample performance of the estimators and show evidence that the bias is small for

moderate T .

Remark 3.3. If we allow T →∞ with finite N , under the conditions C1-C5 ((N, T )→∞ in

C3 is replaced with T → ∞), as h1 → 0, Th51 → ∞, and Th71 = O(1), θ0 could be consistently

estimated with θ̂ such that
√
Th31(θ̂ − θ0 −

h21
2
J̃−1M̃)

d→ N (0, v2N
−1J̃−1L̃J̃−1). For this case,√

Th21 →∞ is obviously satisfied with the optimal bandwidth.

Notice that

|µ̂i − µi0| ≤ |γ̂1 − γ10|+ |α̂i − αi0|, (3.7)

which indicates that the bias of µ̂i has two terms. The first term |γ̂1− γ10| is the standard term

in modal regression, and the second term |α̂i−αi0| captures the fact that αi is being estimated

by α̂i. The boundedness of these two terms is sufficient for the boundedness of |µ̂i− µi0|. With

the condition
√
Th21 →∞, one can show that the leading bias term for the estimator µ̂i streams

from |γ̂1 − γ10|, while the error term stemming from the fixed effect transformation can be

ignored. We then characterize the asymptotic behavior of the estimator µ̂.

Theorem 3.3. Under the same conditions in Theorem 3.1, we have

‖µ̂− µ0‖ = Op

((
NTh31

)−1/2
+ h21

)
.

Remark 3.4. For large T with finite N case, under the same conditions in Remark 3.3, we can

also prove that ‖µ̂− µ0‖ = Op((Th
3
1)
−1/2

+ h21).
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3.3 Optimal Bandwidth

Exploiting the structure of the asymptotic distribution of the PDTS estimator, we can now

obtain the asymptotically optimal bandwidth by minimizing the Asy(WMSE) for θ̂, where

Asy(WMSE) = E
{(

θ̂ − θ0
)T

W̃
(
θ̂ − θ0

)}
≈ M̃T J̃−1W̃ J̃−1M̃h41

4
+
v2 tr

(
J̃−1L̃J̃−1W̃

)
NTh31

(3.8)

in which W̃ is a diagonal weight matrix. Similar to the results in subsection 2.3, by defining

ĥ1 = argminh1Asy(WMSE), we have the following corollary.

Corollary 2. Under the same conditions in Theorem 3.2, the optimal bandwidth h1 that mini-

mizes Asy(WMSE) is

ĥ1 =

(
M̃T J̃−1W̃ J̃−1M̃

3v2tr(J̃−1L̃J̃−1W̃ )

)− 1
7

(NT )−
1
7 .

Remark 3.5. If W̃ = (J̃−1L̃J̃−1)−1, which is proportional to the inverse of the asymptotic

variance of θ̂, then ĥ1 =
(
M̃J̃−1M̃
3v2(q+1)

)− 1
7

(NT )−
1
7 . This result holds for the case of either (N, T )→

∞ or T → ∞. To obtain the optimal bandwidth suggested by data, similar to the LDMR

method, we propose a simple plug-in method by replacing the unknown quantities with estimates

and work with the undersmoothing assumption on the bandwidth by following Kemp and Santos

Silva (2012) to set ĥ1 ∼ (NT )−0.143; see Remark 2.7. The final default bandwidth used in the

numerical studies for the PDTS method is ĥ1 =
(
M̃J̃−1M̃
3v2(q+1)

)− 1
7

(NT )−0.143. Notice that in practice

the above bandwidth selection procedure can be iterated; see Yao and Li (2014).

4 Numerical Examples

In this section, we first carry out simulation studies to illustrate how fixed effects modal regression

works for finite sample, and then apply the proposed model and methods to analyze a public

capital productivity dataset and a carbon dioxide (CO2) emissions dataset. Throughout this

section, we suppress the words “fixed effects” for regressions whenever no confusion is caused.

4.1 Monte Carlo Experiments

Two Monte Carlo experiments with different skewed error terms are conducted to illustrate the

finite sample performance of the fixed effects modal regression. In what follows, we use DGP

to represent the data generating process. We consider using both the LDMR method and the
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PDTS method to estimate modal regression for these two experiments with M = 200 replicates,

and compare the results with fixed effects mean regression estimated by the LSDV method. We

examine the finite sample performance of estimators in terms of bias, standard error, and mean

squared error (MSE), where

MSE(β̂) =
1

M

M∑
j=1

‖β̂(j) − β‖2

in which β̂(j) is the estimate in the jth replication. We also present the shape of the empirical

density of the standardized modal estimate to check the asymptotic normality property, and

report the coverage probabilities to evaluate the prediction performance of the proposed model.

DGP 1: We generate the following fixed effects modal regression with skewed error term

Yit = 2Xit + µi + σ(Xit)vit, (4.1)

where the individual effect µi is drawn from U [0, 1]. Xit and vit are independent with vit ∼
0.5N(−1, 2.52) + 0.5N(1, 0.52) (Yao and Li, 2014). Note that Xit and µi are correlated with

Xit = 0.5µi + Zit, where Zit ∼ U [−1, 1]. All data are generated i.i.d. across individuals and

over time. We consider three cases, where in case 1 we define σ(Xit) = Xit, in case 2 we let

σ(Xit) = 0.2 +Xit, and case 3 is with σ(Xit) = 0.2. As E(vit) = 0 and Mode(vit) = 1, we have

the following equations

Case 1 :

{
Mean Regression: E(Yit | Xit, µi) = 2Xit + µi,

Modal Regression: Mode(Yit | Xit, µi) = 3Xit + µi.

Case 2 :

{
Mean Regression: E(Yit | Xit, µi) = 2Xit + µi,

Modal Regression: Mode(Yit | Xit, µi) = 3Xit + µi + 0.2.

Case 3 :

{
Mean Regression: E(Yit | Xit, µi) = 2Xit + µi,

Modal Regression: Mode(Yit | Xit, µi) = 2Xit + µi + 0.2.

These indicate that modal regression and mean regression are different when we have

the skewed data. We consider the simulation of combinations of N = 5, 10, 20, 50, 100 and

T = 20, 40, 60, 100, 200. The results are summarized in Tables 1-3 containing the estimates,

the standard errors (in parentheses), and the MSEs, where the bold number represents the

smallest value of MSE for each combination of N and T . It can be seen from from Tables

1-3 that both of the two proposed methods could estimate the modal regression well with the

finite samples. For cases 1-2, the LDMR estimator is slightly biased for small T , but there are

substantial improvements with an increase in T . The results for the PDTS estimator also show

small biases for cases 1-2, which become smaller as T increases. For case 3, when the error term
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is independent of the covariate, the proposed methods in this paper work well even with small

T , and the PDTS method outperforms the LDMR method.

In addition, from Tables 1-3, it can be seen that the number of individuals N turns out not

to have much effect on the performance of the modal estimates in terms of the bias when we

keep T fixed. As expected, modal regression has smaller standard errors of regression coefficients

than those of mean regression due to the robustness characteristic of modal regression with the

skewed errors. Moreover, the simulation results indicate that no estimation technique is superior

for all combinations of N and T . However, for moderate T with the heteroskedasticity errors,

the LDMR estimator slightly outperforms the PDTS estimator, which suggests that the LDMR

estimator would rank high as the preferred choice for applied econometricians.

To consider the asymptotic normality property of the modal estimator, we compare the

shape of the empirical density of the standardized modal estimate to that of the standard normal

density. Due to space limitations, we only report results for N = 5 or 50 in Figure 1. The results

for the other sample size schemes are similar. In accordance with our theoretical findings, the

performance of the asymptotic normality approximation increases when T increases.

(a) DGP 1-Case 1

(b) DGP 1-Case 2

(c) DGP 1-Case 3

Figure 1: Empirical density of the standardized estimate: for each case, the first two columns
are for the LDMR method, while the last two columns are for the PDTS method.
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(a) DGP 1-Case 1

(b) DGP 1-Case 2

(c) DGP 1-Case 3

Figure 2: Boxplots of average of coverage probabilities: for each case, the plots represent the
results for the interval lengths of 0.1σ, 0.2σ, and 0.5σ, respectively. For each plot, L means
LDMR method, P is for PDTS method, M indicates mean regression, and the numbers 2, 4, 6,
10, 20 represent the values of T = 20, 40, 60, 100, 200, respectively.

It is noticed that most econometric forecasting has focused on models for the conditional

mean or quantile. The proposed model in this paper offers an opportunity to expand the scope

of forecasting applications based on modal regression. To assess the prediction performance of

modal regression, we follow Yao and Li (2014) to report the coverage probabilities of prediction

intervals of three different lengths (0.1σ, 0.2σ, 0.5σ, σ =
√

Var(vit) ≈ 2). We follow the same

DGP process as above three cases but implement the out-of-sample prediction for the additional

NT data points with 200 repetitions. Specifically, we use T period data for each individual to

estimate the model, and then use the resulting model to predict the value of the response variable

for the additional T period points for each individual. Representative results of the coverage

probabilities of the proposed model and mean regression model are reported in Figure 2, where

each plot shows the coverage probabilities across different values of T for a given combination

of σ and case. For space consideration, we only list the results for N = 5. All plots indicate

that modal regression provides higher coverage probabilities compared to mean regression due

17



to the skewness of the error distribution. With the increase of the interval length, the modal

regression and mean regression will provide closer coverage probabilities as expected.

DGP 2: In order to illustrate how LDMR method and PDTS method perform and compare to

mean regression under different levels of skewness of density, we consider the following model

setting with

Yit = Xit + µi + σ(Xit)vit, (4.2)

where µi ∼ U [0, 1], σ(Xit) = Xit, and vit ∼ 0.5Ga(k1, θ) + 0.5Ga(k2, θ) in which Ga represents

the gamma distribution, kj ∈ N>0, j = 1, 2, is the shape parameter that can adjust the skewness

of vit (coefficient of skewness=
√

4/k), and θ ∈ N>0 is the scale parameter. To create the

correlation between the regressor and the individual effect, we let Xit = 0.5µi + Zit, where

Zit ∼ U [−1, 1]. We employ two different schemes to generate the distributions of vit, where

k1 = 1 or 7, and k2 = 2. In both schemes, we set θ = 0.5. These two different error distributions

cover some interesting cases, where the first one is the more skewed distribution while the second

one represents the less skewed distribution. Note that E(vit) = 0.5(k1 + k2)θ and Mode(vit) =

0.5(k1 + k2 − 1)θ,4 we then have

More Skewed :

{
Mean Regression: E(Yit | Xit, µi) = 1.75Xit + µi,

Modal Regression: Mode(Yit | Xit, µi) = 1.5Xit + µi.

Less Skewed :

{
Mean Regression: E(Yit | Xit, µi) = 3.25Xit + µi,

Modal Regression: Mode(Yit | Xit, µi) = 3Xit + µi.

The simulation of combinations of N = 5, 10, 20, 50, 100 and T = 20, 40, 60, 100, 200 is

conducted. The results of more skewed and less skewed settings are shown in Tables 4-5,

respectively, containing the estimates, the standard errors (in parentheses), and the MSEs,

where the bold number represents the smallest value of MSE for each simulation combination.

It can be seen that the performances of all the modal estimates are satisfactory even for small T .

Note that modal estimators have relatively large biases when T is small and improve significantly

as T increases. However, similar to DGP 1, the bias of the modal estimators is not affected

as N increases when T remains fixed. When the dataset is generated from the more skewed

setting, modal regression could have smaller standard errors of coefficients than those of mean

regression in this experiment and is a good complement to the mean regression, which are

similar to the findings in DGP 1. Although the LDMR method performs slightly better than

the PDTS method, there is no substantial difference between these two. This may be due to

the underlying data generating process or the characteristics of the distribution. It is worth

noticing that when the dataset is from the less skewed setting, modal regression provides similar

4If X ∼ Ga(α, θ) and Y ∼ Ga(β, θ) are independently distributed with the same scale parameter, then
X + Y follows Ga(α+ β, θ) with variance (α+ β)θ2.
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regression estimates to mean regression but with less accuracy.

We report the shape of the empirical density of parameter estimate and the coverage prob-

abilities in the same way as DGP 1. Figure 3 indicates that the whole distribution of the

standardized modal estimate converges to the standard normal distribution as T increases. Fig-

ure 4 shows that the modal estimator has better coverage probabilities than the mean regression

estimator, which is entirely expected because of the skewed distribution of error terms.

(a) DGP 2-More Skewed

(b) DGP 2-Less Skewed

Figure 3: Empirical density of the standardized estimate: for each case, the first two columns
are for the LDMR method, while the last two columns are for the PDTS method.

(a) DGP 2-More Skewed

(b) DGP 2-Less Skewed

Figure 4: Boxplots of average of coverage probabilities: for each case, the plots represent the
results for interval lengths of 0.1σ, 0.2σ, and 0.5σ (more skewed: σ ≈ 0.4330; less skewed:
σ = 0.7500), respectively. The notations in each plot are the same as those of Figure 2.
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4.2 Real Data Examples

4.2.1 Public Capital Productivity Study

In order to illustrate the applicability of fixed effects modal regression, we follow Baltagi and

Pinnoi (1995) to consider a dataset containing the record of the U.S. 48 contiguous states over

the period 1970-1986 to revisit the relationship between public capital and private sector output

(Munnell, 1990; Baltagi and Pinnoi, 1995; Su et al., 2013; Henderson and Ullah, 2014). The

main question related to this dataset is “Is public-sector capital productive? What is the role of

public-sector in affecting private economic performance ?” (Su et al., 2013). Munnell (1990) and

Su et al. (2013) found that the public capital plays a positive and significant role in affecting the

private-sector output, while some other researchers argued that the public capital has significant

and negative effects on private productivity (Evans and Karras, 1994). Baltagi and Pinnoi (1995)

claimed that public capital does not have significant effect on private productivity. However,

all of these research is based on mean regression. Next, we use the following fixed effects modal

regression to investigate this public capital dataset

log(Yit) = µi + β1log(KGit) + β2log(KPRit) + β3log(Lit) + β4UNEMit + vit, (4.3)

where i = 1, · · · , 48 indicates the state and t = 1, · · · , 17 indicates the year. To simplify the

notation, henceforth, we drop the subscripts from the names of the covariates. Y denotes the

GDP, KG represents the public capital, KPR is the private capital stock, L is the employment,

UNEM represents the unemployment rate used to control for business cycle effects, µ is the

individual effect, and v is the disturbance term.

We estimate (4.3) via the linear fixed effects mean regression firstly. The regression co-

efficients with respect to KG, KPR, L, and UNEM are -0.0261 (0.0281), 0.2920∗∗∗ (0.0243),

0.7682∗∗∗ (0.0291), and −0.0053∗∗∗ (0.0010), respectively, which are consistent with the results

in Baltagi and Pinnoi (1995). Note that the values in parentheses are standard errors, and as-

terisks indicate significance levels.5 Then we use the proposed methods in this paper to estimate

(4.3). Following Su et al. (2013), in order to obtain the standard errors of modal estimates, we

use a bootstrap method to resample data 200 times across individuals while keeping the time

series structure for each individual unchanged, and then calculate the bootstrap standard errors

for the modal estimates; see Figure 5. The slope coefficients for the LDMR method with respect

to KG, KPR, L, and UNEM are -0.0276 (0.0234), 0.2421∗∗∗ (0.0198), 0.8245∗∗∗ (0.0246), and

−0.0035∗∗∗ (0.0008), respectively, and the corresponding estimates of the PDTS method are

-0.0096 (0.0136), 0.2882∗∗∗ (0.0162), 0.7575∗∗∗ (0.0153), and −0.0039∗∗∗ (0.0014), respectively.

Table 6 in the Appendix A summarizes all the results.

5*: p < 0.1; **: p < 0.05; ***: p < 0.01.
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For this public capital productivity dataset, both the modal estimate and mean estimate

indicate that there exists a negative relationship between public capital and GDP, but the effect

is not statistically significant. In other words, the public capital has no spillover effect on average

or on mode across states, which is consistent with most results obtained from parametric mean

regression. For this example, it is clear that the estimated results of the modal regression are

not much different from these obtained by mean regression, which could be partially explained

by the almost symmetric distribution of log(Y ) (Figure 5).

Figure 5: Bootstrap density of coefficients and estimated density of log(Y )

4.2.2 CO2 Emissions Study

In this subsection, we apply the proposed methods in this paper to a U.S. fossil fuel CO2

emissions dataset from Fragkias et al. (2013), which investigated the relationship between the

scaling of CO2 emissions and U.S. urban areas. We focus the study on 60 urban areas from

the U.S. over the period 1999-2008, which is a subsample from Fragkias et al. (2013). The

sample data comprises annual measures of CO2 emissions and three inputs (population, urban

population density (density), and per capita personal income (pcpi)). As is conventional in the

modern urban economies literature, we follow Fragkias et al. (2013) to use the following model

specification to examine the relationship between population size of cites and CO2 emissions

log(CO2,it) = µi/t + β1log(Populationit) + β2log(Densityit) + β3log(PCPIit) + vit, (4.4)
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where i = 1, · · · , 60 denotes U.S. urban area i, t = 1, · · · , 10 denotes the tth year period, µi/t

represents the individual effect or time effect, and vit is the disturbance term.

Firstly, we control the individual effect µi. The results of estimating (4.4) through the linear

fixed effects mean regression are 2.7498∗∗∗ (1.0391), −1.7751∗ (0.9932), and -0.0744 (0.0678),

respectively. The coefficient of log(Population) is statistically significant, which indicates that

a 1% increase in population size is associated with an increase in CO2 emissions of 274.98%

on average. However, a 1% increase in the population density is associated with an average of

177.51% reduction in CO2 emissions. It is noted that the coefficient of log(PCPI) from mean

regression is not statistically significant.

Figure 6: Bootstrap density of coefficients and estimated density of log(CO2)

We then turn to the estimates from fixed effects modal regression. Due to the small size

of T in this case, we only apply the LDMR method when we control the individual effects,

where the estimates are 1.7350∗∗∗ (0.5022), -0.7581 (0.4779), and 0.0609∗∗ (0.0316), respec-

tively. The values in parentheses are the bootstrap estimates of the standard errors (Figure

6). Interestingly, compared to mean regression, the coefficient estimates for log(Population)

and log(Density) based on modal regression are decreased by 36.90% and 57.29%, respectively.
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Note that the coefficient of log(Density) is not statistically significant on mode, which may be

due to the “overshadowed effects of the size of the metropolitan area” (Fragkias et al., 2013). In

sharp contrast to what was found with mean regression, the coefficient of log(PCPI) becomes

significantly positive according to the modal regression. It indicates a 1% increase in the per

capital personal income is associated with a 6.09% increase in CO2 emissions based on the mode

value. The underlying mechanism is the associated positive relationship among PCPI, higher

production, and pollution.

We control the time effect µt to estimate (4.4) as well. The results for the linear fixed

effects mean regression are 1.0489∗∗∗ (0.0281), −0.2512∗∗∗ (0.0330), and 0.8526∗∗∗ (0.1902), re-

spectively. The results for the LDMR method are 0.9235∗∗∗ (0.0262), −0.0675∗∗ (0.0281), and

0.5750∗∗∗ (0.1788), respectively, while the results for the PDTS method are 0.9012∗∗∗ (0.0292),

−0.0827∗∗ (0.0322), and 0.7592∗∗∗ (0.1396), respectively. All coefficients are statistically sig-

nificant. The signs of all estimates form these three methods are consistent with each other,

while the magnitudes of the effects at mean and mode differ considerably, especially for the

variable log(Density). Compared to mean regression, the estimates of log(Density) on mode

are decreased by 73.13% (LDMR) and 67.08% (PDTS), respectively. Tables 7-8 in the Appendix

A summarize all the results. Overall, these results indicate that fixed effects modal regression

can provide complement information to fixed effects mean regression on how the “most likely

values” of the dependent variable are affected by the regressors.

5 Concluding Remarks

Mode has not received much attention for a long time. With more available datasets and

powerful computation tools, it is important for (applied) econometricians to be aware of the

application of modal regression, which focuses on modeling how the conditional mode of the

response variable depends on the covariates since mean regression cannot reveal the whole

characteristics of the dataset, especially for the skewed data. To this end, we introduce a new

model named fixed effects modal regression for the panel data, in which the new model uses the

conditional mode instead of mean to model the relationship among variables. Two estimation

methods are proposed, where we call linear dummy modal regression (LDMR) method and

pseudo-demodeing two-step (PDTS) method. We discuss the asymptotic properties of the

modal estimators under different settings of N and T . Monte Carlo simulation results and

two applications indicate that the proposed two estimation methods work well, and the newly

proposed modal regression can be a good complement to mean and quantile regressions.

Similar to many kernel-based methods, how to choose the bandwidth in modal regression

requires further investigation; for example, the cross-validation method may be considered.

We could also follow Kemp and Santos Silva (2012) to use a sequence of bandwidths to see
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different zoom levels of the modal regression estimation. In this paper, we assume that the

conditional density of vit has a well-defined global mode at 0. However, when the population is

not homogeneous, our method could also be applied to the multimode setting. For this setting,

our method will find multiple modal solutions if starting from multiple initial values. Each

modal solution corresponds to one local modal estimator. This issue can be further studied

along the lines of the mode clustering (Chen et al., 2016), which could be a very interesting

topic for future study.
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A Appendix-Tables

Table 1: Monte Carlo Results: DGP 1-Case 1

N=5 N=10 N=20 N=50 N=100
Method T β MSE(β) β MSE(β) β MSE(β) β MSE(β) β MSE(β)

LDMR

βmode = 3

20
2.8262

0.2135
2.8040

0.2402
2.8677

0.1784
2.8908

0.0930
2.9381

0.0956(0.4292) (0.4503) (0.4021) (0.2855) (0.3038)

40
2.9082

0.0309
2.9331

0.0878
2.8999

0.0817
2.9493

0.0339
2.9325

0.0574(0.1502) (0.2894) (0.2683) (0.1774) (0.2304)

60
2.9495

0.0201
2.9622

0.0259
2.9433

0.0315
2.9455

0.0219
2.9428

0.0399(0.1330) (0.1568) (0.1687) (0.1379) (0.1917)

100
2.9570

0.0139
2.9499

0.0138
2.9479

0.0148
2.9529

0.0120
2.9531

0.0128(0.1101) (0.1066) (0.1100) (0.0992) (0.1034)

200
2.9488

0.0085
2.9527

0.0075
2.9489

0.0083
2.9445

0.0082
2.9497

0.0076(0.0770) (0.0729) (0.0758) (0.0718) (0.0717)

PDTS

βmode = 3

20
2.7954

0.1990
2.7873

0.1735
2.8009

0.1601
2.8442

0.0987
2.8951

0.0749(0.3975) (0.3591) (0.3480) (0.2736) (0.2442)

40
2.9285

0.0522
2.9292

0.0382
2.8935

0.0763
2.9200

0.0357
2.9142

0.0327(0.2176) (0.1827) (0.2555) (0.1715) (0.1595)

60
2.9289

0.0232
2.9388

0.0271
2.9196

0.0348
2.9261

0.0226
2.9312

0.0262(0.1352) (0.1531) (0.1686) (0.1312) (0.1469)

100
2.9510

0.0150
2.9394

0.0151
2.9378

0.0158
2.9422

0.0126
2.9415

0.0137(0.1123) (0.1074) (0.1094) (0.0965) (0.1017)

200
2.9431

0.0092
2.9471

0.0082
2.9433

0.0089
2.9390

0.0086
2.9433

0.0081(0.0777) (0.0738) (0.0753) (0.0701) (0.0703)

LSDV

βmean = 2

20
2.0345

0.2574
1.9677

0.2356
2.0214

0.1958
2.0280

0.1881
2.0271

0.1839(0.5075) (0.4855) (0.4431) (0.4338) (0.4290)

40
2.0619

0.1292
2.0208

0.1451
2.0075

0.1115
1.9897

0.1194
2.0051

0.1296(0.3549) (0.3813) (0.3347) (0.3462) (0.3609)

60
1.9956

0.0806
2.0013

0.0731
2.0032

0.0842
2.0134

0.0663
2.0063

0.0680(0.2846) (0.2710) (0.2908) (0.2577) (0.2613)

100
1.9983

0.0529
2.0157

0.0496
2.0091

0.0405
2.0197

0.0476
2.0144

0.0466(0.2305) (0.2228) (0.2017) (0.2180) (0.2160)

200
2.0108

0.0292
2.0097

0.0224
1.9951

0.0251
2.0143

0.0190
2.0140

0.0220(0.1708) (0.1499) (0.1588) (0.1375) (0.1482)

Table 2: Monte Carlo Results: DGP 1-Case 2

N=5 N=10 N=20 N=50 N=100
Method T β MSE(β) β MSE(β) β MSE(β) β MSE(β) β MSE(β)

LDMR

βmode = 3

20
2.8134

0.2410
2.7818

0.2641
2.8086

0.2327
2.8921

0.1397
2.8983

0.0731(0.4553) (0.4664) (0.4439) (0.3587) (0.2511)

40
2.9111

0.0468
2.8937

0.0711
2.8694

0.0882
2.9008

0.0361
2.8956

0.0336(0.1976) (0.2450) (0.2675) (0.1624) (0.1511)

60
2.9467

0.0350
2.9516

0.0436
2.9466

0.0339
2.9427

0.0261
2.9013

0.0286(0.1797) (0.2037) (0.1768) (0.1514) (0.1378)

100
2.9576

0.0170
2.9494

0.0164
2.9443

0.0181
2.9503

0.0141
2.9540

0.0144(0.1238) (0.1178) (0.1227) (0.1080) (0.1112)

200
2.9488

0.0096
2.9525

0.0082
2.9492

0.0095
2.9435

0.0094
2.9517

0.0082(0.0838) (0.0772) (0.0831) (0.0793) (0.0771)

PDTS

βmode = 3

20
2.8122

0.1620
2.7859

0.2330
2.8160

0.2129
2.8802

0.1213
2.8956

0.0822(0.3569) (0.4337) (0.4242) (0.3279) (0.2676)

40
2.8948

0.0410
2.9306

0.0427
2.9091

0.0445
2.9208

0.0378
2.9079

0.0473(0.1735) (0.1951) (0.1910) (0.1780) (0.1975)

60
2.9315

0.0263
2.9348

0.0354
2.9247

0.0367
2.9255

0.0258
2.9263

0.0395(0.1475) (0.1770) (0.1767) (0.1428) (0.1851)

100
2.9497

0.0184
2.9372

0.0178
2.9347

0.0187
2.9403

0.0144
2.9423

0.0151(0.1264) (0.1181) (0.1204) (0.1043) (0.1089)

200
2.9430

0.0102
2.9475

0.0087
2.9439

0.0099
2.9385

0.0097
2.9453

0.0087(0.0836) (0.0775) (0.0822) (0.0771) (0.0757)

LSDV

βmean = 2

20
2.0343

0.2791
1.9626

0.2452
2.0221

0.2008
2.0284

0.1897
2.0267

0.1845(0.5285) (0.4950) (0.4487) (0.4357) (0.4298)

40
2.0655

0.1359
2.0221

0.1503
2.0099

0.1134
1.9894

0.1203
2.0059

0.1300(0.3636) (0.3880) (0.3374) (0.3476) (0.3614)

60
1.9910

0.0855
2.0028

0.0761
2.0038

0.0862
2.0136

0.0670
2.0075

0.0682(0.2930) (0.2765) (0.2942) (0.2591) (0.2617)

100
1.9937

0.0559
2.0130

0.0520
2.0094

0.0410
2.0174

0.0478
2.0144

0.0469(0.2369) (0.2282) (0.2027) (0.2184) (0.2167)

200
2.0098

0.0295
2.0095

0.0233
1.9943

0.0257
2.0137

0.0191
2.0143

0.0221(0.1720) (0.1527) (0.1606) (0.1380) (0.1484)
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Table 3: Monte Carlo Results: DGP 1-Case 3

N=5 N=10 N=20 N=50 N=100
Method T β MSE(β) β MSE(β) β MSE(β) β MSE(β) β MSE(β)

LDMR

βmode = 2

20
2.0030

0.0048
1.9961

0.0031
2.0016

0.0012
2.0024

0.0004
2.0006

0.0003(0.0696) (0.0561) (0.0352) (0.0199) (0.0182)

40
2.0040

0.0010
2.0015

0.0009
1.9988

0.0003
1.9996

0.0001
2.0002

0.00005(0.0310) (0.0292) (0.0167) (0.0105) (0.0070)

60
1.9980

0.0005
1.9994

0.0004
1.9989

0.0002
1.9998

0.00007
2.0004

0.00003(0.0230) (0.0203) (0.0133) (0.0081) (0.0052)

100
1.9980

0.0003
1.9987

0.0002
1.9992

0.0001
1.9994

0.00004
2.0001

0.00002(0.0177) (0.0139) (0.0100) (0.0062) (0.0042)

200
2.0010

0.0002
1.9996

0.00009
2.0002

0.00004
1.9998

0.00002
2.0000

0.000007(0.0128) (0.0094) (0.0064) (0.0043) (0.0027)

PDTS

βmode = 2

20
2.0004

0.0031
1.9964

0.0028
2.0020

0.0007
2.0017

0.00026
2.0002

0.0001(0.0557) (0.0533) (0.0265) (0.0160) (0.0110)

40
2.0040

0.0009
2.0011

0.0007
1.9991

0.0002
1.9996

0.0001
2.0003

0.00004(0.0298) (0.0263) (0.0157) (0.0100) (0.0066)

60
1.9981

0.0005
1.9996

0.0004
1.9991

0.0002
1.9998

0.00006
2.0005

0.00003(0.0224) (0.0196) (0.0128) (0.0078) (0.0050)

100
1.9979

0.0003
1.9986

0.0002
1.9993

0.0001
1.9994

0.00004
2.0001

0.00002(0.0174) (0.0136) (0.0099) (0.0060) (0.0041)

200
2.0008

0.0002
1.9996

0.00009
2.0002

0.00004
1.9998

0.00002
2.0000

0.000007(0.0126) (0.0092) (0.0063) (0.0042) (0.0027)

LSDV

βmean = 2

20
1.9998

0.0058
1.9948

0.0029
2.0007

0.0013
2.0004

0.0005
1.9996

0.0003(0.0765) (0.0537) (0.0354) (0.0231) (0.0171)

40
2.0036

0.0026
2.0014

0.0014
2.0024

0.0005
1.9996

0.0003
2.0008

0.0001(0.0507) (0.0377) (0.0232) (0.0171) (0.0108)

60
1.9954

0.0014
2.0015

0.0010
2.0006

0.0004
2.0001

0.0002
2.0011

0.00009(0.0378) (0.0311) (0.0210) (0.0133) (0.0092)

100
1.9954

0.0010
1.9973

0.0005
2.0003

0.0003
1.9995

0.0001
2.0000

0.00005(0.0308) (0.0224) (0.0160) (0.0098) (0.0071)

200
1.9990

0.0005
2.0015

0.0002
1.9991

0.0001
1.9994

0.00005
2.0003

0.00002(0.0215) (0.0156) (0.0113) (0.0072) (0.0050)

Table 4: Monte Carlo Results: DGP 2-More Skewed

N=5 N=10 N=20 N=50 N=100
Method T β MSE(β) β MSE(β) β MSE(β) β MSE(β) β MSE(β)

LDMR

βmode = 1.5

20
1.5342

0.0174
1.5637

0.0253
1.5248

0.0194
1.5222

0.0214
1.5460

0.0281(0.1278) (0.1462) (0.1373) (0.1450) (0.1615)

40
1.5247

0.0101
1.5157

0.0111
1.5218

0.0094
1.5195

0.0104
1.5221

0.0102(0.0976) (0.1043) (0.0946) (0.1005) (0.0987)

60
1.5198

0.0062
1.5116

0.0059
1.5081

0.0073
1.5160

0.0071
1.5143

0.0068(0.0764) (0.0760) (0.0854) (0.0831) (0.0812)

100
1.5045

0.0032
1.5139

0.0039
1.5078

0.0035
1.5052

0.0036
1.5088

0.0030(0.0564) (0.0609) (0.0591) (0.0602) (0.0543)

200
1.5019

0.0023
1.5041

0.0016
1.5055

0.0018
1.5042

0.0016
1.5039

0.0019(0.0478) (0.0402) (0.0420) (0.0400) (0.0437)

PDTS

βmode = 1.5

20
1.5440

0.0192
1.5582

0.0259
1.5388

0.0197
1.5362

0.0219
1.5592

0.0285(0.1316) (0.1504) (0.1353) (0.1437) (0.1584)

40
1.5287

0.0102
1.5217

0.0111
1.5285

0.0097
1.5270

0.0105
1.5288

0.0104(0.0970) (0.1032) (0.0945) (0.0993) (0.0980)

60
1.5230

0.0064
1.5152

0.0059
1.5120

0.0073
1.5205

0.0072
1.5183

0.0068(0.0767) (0.0755) (0.0851) (0.0828) (0.0807)

100
1.5058

0.0033
1.5163

0.0040
1.5101

0.0036
1.5078

0.0037
1.5112

0.0031(0.0569) (0.0614) (0.0592) (0.0603) (0.0543)

200
1.5024

0.0023
1.5047

0.0017
1.5063

0.0018
1.5050

0.0016
1.5047

0.0019(0.0480) (0.0405) (0.0420) (0.0400) (0.0436)

LSDV

βmean = 1.75

20
1.7433

0.0280
1.7583

0.0259
1.7484

0.0242
1.7502

0.0222
1.7565

0.0257(0.1677) (0.1612) (0.1561) (0.1494) (0.1604)

40
1.7477

0.0120
1.7491

0.0138
1.7534

0.0124
1.7574

0.0108
1.7529

0.0131(0.1100) (0.1179) (0.1117) (0.1039) (0.1145)

60
1.7544

0.0096
1.7504

0.0073
1.7507

0.0083
1.7584

0.0090
1.7469

0.0070(0.0981) (0.0859) (0.0916) (0.0950) (0.0839)

100
1.7470

0.0049
1.7650

0.0053
1.7555

0.0044
1.7548

0.0053
1.7535

0.0043(0.0700) (0.0717) (0.0659) (0.0727) (0.0657)

200
1.7515

0.0027
1.7530

0.0026
1.7546

0.0023
1.7516

0.0022
1.7494 0.0023

(0.0519) (0.0509) (0.0474) (0.0473) (0.0484)
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Table 5: Monte Carlo Results: DGP 2-Less Skewed

N=5 N=10 N=20 N=50 N=100
Method T β MSE(β) β MSE(β) β MSE(β) β MSE(β) β MSE(β)

LDMR

βmode = 3

20
3.1173

0.5213
3.0130

0.5827
3.1253

0.6451
2.9638

0.6983
2.9013

0.6615(0.7142) (0.7652) (0.7954) (0.8370) (0.8093)

40
3.0968

0.4514
3.0281

0.4532
3.0388

0.4635
3.0421

0.5109
3.0360

0.5004(0.6665) (0.6743) (0.6814) (0.7153) (0.7083)

60
3.0419

0.3573
3.0646

0.3715
3.0224

0.3688
2.9849

0.3964
3.0107

0.4213(0.5977) (0.6076) (0.6084) (0.6310) (0.6506)

100
3.0908

0.3092
3.0481

0.3120
3.0240

0.2738
3.0805

0.3340
3.0786

0.3576(0.5499) (0.5579) (0.5240) (0.5737) (0.5943)

200
3.0804

0.2644
3.0738

0.2477
3.0940

0.2600
3.0265

0.3085
3.0014

0.3443(0.5092) (0.4934) (0.5004) (0.5562) (0.5883)

PDTS

βmode = 3

20
3.1356

0.3020
2.9996

0.2506
3.1179

0.3446
3.0430

0.2818
3.0035

0.2765(0.5339) (0.5018) (0.5765) (0.5304) (0.5271)

40
3.0432

0.1382
3.0530

0.1525
3.0788

0.1808
2.9780

0.2298
3.0024

0.2088(0.3702) (0.3878) (0.4188) (0.4800) (0.4581)

60
2.9918

0.1139
3.0239

0.1137
2.9920

0.1529
2.9883

0.1463
2.9939

0.1200(0.3382) (0.3372) (0.3919) (0.3832) (0.3473)

100
3.0373

0.1028
3.0049

0.1024
2.9447

0.1354
2.9883

0.1230
3.0220

0.1167(0.3192) (0.3208) (0.3647) (0.3514) (0.3418)

200
3.0134

0.0862
3.0212

0.0568
3.0098

0.0735
3.0050

0.0714
2.9698

0.0807(0.2940) (0.2380) (0.2716) (0.2678) (0.2832)

LSDV

βmean = 3.25

20
3.2961

0.1716
3.2147

0.1706
3.3091

0.1707
3.2545

0.1422
3.2200

0.1556(0.4127) (0.4126) (0.4099) (0.3780) (0.3943)

40
3.2527

0.0761
3.2594

0.0740
3.3105

0.0650
3.2761

0.0650
3.2684

0.0595(0.2766) (0.2726) (0.2483) (0.2542) (0.2438)

60
3.2324

0.0514
3.2753

0.0387
3.2605

0.0394
3.2414

0.0505
3.2427

0.0397(0.2266) (0.1957) (0.1987) (0.2252) (0.1997)

100
3.2686

0.0318
3.2535

0.0280
3.2449

0.0291
3.2698

0.0275
3.2818

0.0270(0.1778) (0.1676) (0.1711) (0.1649) (0.1617)

200
3.2632

0.0170
3.2544

0.0129
3.2547

0.0137
3.2574

0.0119
3.2448

0.0115(0.1299) (0.1139) (0.1172) (0.1093) (0.1074)

30



Table 6: The Results of Estimates of (4.3)
Method β1 AL AZ AR CA CO CT DE FL GA ID IL IN

LDMR
−0.0276 2.3351 2.5059 2.4022 2.6105 2.5288 2.5796 2.5480 2.4500 2.3781 2.4868 2.5081 2.3923

(0.0234) (0.1395) (0.1383) (0.1324) (0.1558) (0.1368) (0.1348) (0.1333) (0.1424) (0.1380) (0.1272) (0.1493) (0.1395)

β2 IA KS KY LA ME MD MA MI MN MS MO MT

0.2421∗∗∗ 2.4705 2.4914 2.5363 2.6529 2.3922 2.5153 2.4616 2.5361 2.4433 2.3884 2.4386 2.5260

(0.0198) (0.1412) (0.1422) (0.1415) (0.1527) (0.1249) (0.1406) (0.1382) (0.1464) (0.1427) (0.1387) (0.1388) (0.1372)

β3 NE NV NH NJ NM NY NC ND OH OK OR PA

0.8245∗∗∗ 2.4631 2.4966 2.4166 2.5528 2.6185 2.5793 2.3546 2.5202 2.4408 2.5661 2.4822 2.4038

(0.0246) (0.1433) (0.1288) (0.1243) (0.1401) (0.1354) (0.1567) (0.1355) (0.1402) (0.1468) (0.1376) (0.1355) (0.1469)

β4 RI SC SD TN TX UT VT VA WA WV WI WY

−0.0035∗∗∗ 2.4910 2.2427 2.4548 2.3510 2.5464 2.4642 2.4669 2.4978 2.5797 2.4484 2.4484 2.8373

(0.0008) (0.1205) (0.1354) (0.1345) (0.1429) (0.1563) (0.1316) (0.1278) (0.1389) (0.1482) (0.1384) (0.1416) (0.1424)

Method β1 AL AZ AR CA CO CT DE FL GA ID IL IN

PDTS
−0.0096 2.1417 2.3082 2.2031 2.4405 2.3360 2.4113 2.3536 2.2733 2.1983 2.2785 2.3274 2.1995

(0.0136) (0.0777) (0.0782) (0.0779) (0.0780) (0.0782) (0.0775) (0.0771) (0.0776) (0.0775) (0.0782) (0.0779) (0.0779)

β2 IA KS KY LA ME MD MA MI MN MS MO MT

0.2882∗∗∗ 2.2673 2.2788 2.3394 2.4548 2.2085 2.3404 2.3023 2.3571 2.2556 2.1901 2.2537 2.2883

(0.0162) (0.0781) (0.0779) (0.0784) (0.0793) (0.0775) (0.0778) (0.0766) (0.0781) (0.0778) (0.0777) (0.0776) (0.0790)

β3 NE NV NH NJ NM NY NC ND OH OK OR PA

0.7575∗∗∗ 2.2514 2.2820 2.2642 2.3830 2.3945 2.4161 2.1777 2.2840 2.2627 2.3560 2.2910 2.2294

(0.0153) (0.0790) (0.0784) (0.0765) (0.0776) (0.0791) (0.0779) (0.0773) (0.0795) (0.0779) (0.0782) (0.0780) (0.0776)

β4 RI SC SD TN TX UT VT VA WA WV WI WY

−0.0039∗∗∗ 2.3285 2.0595 2.2298 2.1692 2.3338 2.2688 2.2763 2.3206 2.3869 2.2333 2.2691 2.5887

(0.0014) (0.0765) (0.0773) (0.0782) (0.0781) (0.0783) (0.0779) (0.0784) (0.0776) (0.0781) (0.0779) (0.0776) (0.0795)

Method β1 AL AZ AR CA CO CT DE FL GA ID IL IN

LSDV
-0.0261 2.2016 2.3681 2.2630 2.5004 2.3959 2.4712 2.4135 2.3332 2.2582 2.3384 2.3873 2.2594

(0.0281) (0.1704) (0.1696) (0.1619) (0.1948) (0.1675) (0.1666) (0.1566) (0.1774) (0.1717) (0.1546) (0.1840) (0.1720)

β2 IA KS KY LA ME MD MA MI MN MS MO MT

0.2920∗∗∗ 2.3272 2.3387 2.3993 2.5147 2.2684 2.4003 2.3622 2.4170 2.3155 2.2500 2.3136 2.3482

(0.0243) (0.1735) (0.1719) (0.1733) (0.1814) (0.1500) (0.1738) (0.1699) (0.1813) (0.1771) (0.1664) (0.1710) (0.1672)

β3 NE NV NH NJ NM NY NC ND OH OK OR PA

0.7682∗∗∗ 2.3113 2.3419 2.3241 2.4429 2.4544 2.4760 2.2376 2.3439 2.3226 2.4159 2.3509 2.2893

(0.0291) (0.1647) (0.1516) (0.1586) (0.1666) (0.1646) (0.1948) (0.1677) (0.1663) (0.1818) (0.1699) (0.1667) (0.1827)

β4 RI SC SD TN TX UT VT VA WA WV WI WY

−0.0053∗∗∗ 2.3884 2.1194 2.2897 2.2291 2.3937 2.3287 2.3362 2.3805 2.4468 2.2932 2.3290 2.6486

(0.0010) (0.1455) (0.1607) (0.1636) (0.1739) (0.1901) (0.1614) (0.1482) (0.1723) (0.1821) (0.1661) (0.1735) (0.1732)

Note: Standard errors are indicated in parentheses. Asterisks indicate significance levels: * indicates p < 0.1;

** represents p < 0.05; and *** is for p < 0.01.
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Table 7: The Results of Estimates of (4.4)-Individual Effects
Method β1 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

LDMR
1.7350∗∗∗ -4.1292 -4.8750 -5.2397 -2.9213 -2.4056 -4.3799 -4.3764 -5.7085 -4.2332 -4.8504 -5.1363 -3.9278

(0.5022) (3.5255) (3.8948) (3.7370) (3.9690) (3.2564) (3.3212) (3.4951) (4.3319) (3.7601) (3.8480) (4.0154) (3.0118)

β2 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24

−0.7581 -3.4188 -4.2687 -6.0870 -4.5415 -3.7072 -3.5747 -4.1014 -4.1076 -2.9500 -4.0344 -2.4967 -3.8992

(0.4779) (3.2448) (3.1939) (4.5602) (3.5779) (3.7796) (3.2003) (3.3488) (3.3656) (3.7091) (3.1608) (3.1513) (3.1811)

β3 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36

0.0609∗∗ -4.0378 -3.8953 -4.0056 -3.7068 -3.6251 -3.8936 -3.5716 -3.3261 -2.9153 -4.0800 -3.6426 -3.7322

(0.0316) (3.2982) (4.0793) (3.2435) (3.1928) (3.0159) (3.1091) (3.3304) (3.5640) (2.8781) (3.3460) (3.2453) (3.4647)

A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48

-4.3519 -3.4850 -3.7010 -4.6837 -3.5507 -3.3613 -4.1149 -3.2822 -4.0967 -2.8925 -4.3585 -4.4434

(3.2327) (3.5548) (3.3200) (3.8350) (3.0328) (3.2981) (3.3182) (3.0043) (3.1314) (3.0542) (3.3786) (3.4947)

A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60

-5.3587 -3.9733 -2.9705 -4.4512 -3.8287 -4.9938 -4.1559 -3.4564 -5.4429 -3.6176 -5.1952 -4.6698

(4.5654) (3.2391) (2.9636) (3.2796) (3.2591) (4.0666) (3.3955) (3.2597) (4.2171) (3.1648) (4.4958) (4.0293)

Method β1 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

LSDV
2.7498∗∗∗ -10.0238 -11.5268 -11.5088 -9.6848 -7.6960 -9.7058 -9.8732 -13.3148 -10.5090 -11.3895 -11.7778 -8.6687

(1.0391) (7.3863) (8.1827) (7.8573) (8.2768) (6.8674) (7.0152) (7.3969) (9.0202) (7.9174) (8.0607) (8.4581) (6.3740)

β2 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24

−1.7751∗ -8.7634 -9.3690 -13.9775 -10.5624 -9.9873 -8.7846 -9.5678 -9.5551 -9.1307 -9.1447 -7.5831 -8.8234

(0.9932) (6.8473) (6.7529) (9.5696) (7.5268) (7.9470) (6.7441) (7.0520) (7.1047) (7.8419) (6.6799) (6.6527) (6.7192)

β3 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36

−0.0744 -9.5344 -10.8465 -9.2734 -8.7470 -8.3432 -8.7277 -8.8790 -9.3724 -7.3697 -9.3284 -8.8923 -9.3172

(0.0678) (6.9593) (8.5741) (6.8002) (6.7493) (6.3816) (6.5802) (7.0368) (7.4918) (6.0896) (7.0818) (6.8497) (7.3198)

A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48

-9.3021 -9.3920 -9.1623 -11.0050 -8.2899 -8.6615 -9.5052 -8.1286 -9.1141 -7.8206 -9.8305 -10.1655

(6.7589) (7.4876) (6.9942) (8.0837) (6.4110) (6.9608) (6.9943) (6.3348) (6.6196) (6.4319) (7.1233) (7.3683)

A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60

-13.0517 -9.0266 -7.6305 -9.7121 -8.9909 -11.8796 -9.6412 -8.7209 -12.4873 -8.7951 -12.9881 -11.5617

(9.6120) (6.8529) (6.2523) (6.9229) (6.8520) (8.5558) (7.1673) (6.8733) (8.8743) (6.6646) (9.4447) (8.4730)

Note: Standard errors are indicated in parentheses. Asterisks indicate significance levels: * indicates p < 0.1;

** represents p < 0.05; and *** is for p < 0.01.

Table 8: The Results of Estimates of (4.4)-Time Effects
Method β1 β2 β3 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008

LDMR
0.9235∗∗∗ −0.0675∗∗ 0.5750∗∗∗ -3.3322 -3.3672 -3.3852 -3.3561 -3.3621 -3.3483 -3.3099 -3.3966 -3.4903 -3.5939

(0.0262) (0.0281) (0.1788) (1.6702) (1.7028) (1.6959) (1.6841) (1.7020) (1.6960) (1.7129) (1.7180) (1.7285) (1.7356)

Method β1 β2 β3 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008

PDTS
0.9012∗∗∗ −0.0827∗∗ 0.7592∗∗∗ -4.7762 -4.8228 -4.8645 -4.8950 -4.8516 -4.8417 -4.8203 -4.9280 -5.0457 -5.1880

(0.0292) (0.0322) (0.1396) (1.3324) (1.3339) (1.3331) (1.3348) (1.3346) (1.3341) (1.3346) (1.3338) (1.3349) (1.3346)

Method β1 β2 β3 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008

LSDV
1.0489∗∗∗ −0.2512∗∗∗ 0.8526∗∗∗ -6.4132 -6.4598 -6.5015 -6.5320 -6.4886 -6.4787 -6.4573 -6.5650 -6.6827 -6.8250

(0.0281) (0.0330) (0.1902) (1.7791) (1.7881) (1.7953) (1.7986) (1.8048) (1.8120) (1.8191) (1.8276) (1.8366) (1.8461)

Note: Standard errors are indicated in parentheses. Asterisks indicate significance levels: * indicates p < 0.1;

** represents p < 0.05; and *** is for p < 0.01.
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B Appendix-Proofs

Proof of Theorem 2.1

Recall that Yit = XT
itβ + ZT

µ,iµ + vit. We define X∗it = (XT
it , Z

T
µ,i)

T , θ = (βT , µT )T , and θ0 =

(βT0 , µ
T
0 )T , where θ0 is the true parameter value. Let δNT = h20+

√
(NTh30)

−1
, then it is sufficient

to show that for any given η, there exists a large number constant a such that

P

{
sup
‖c‖=a

QNT (θ0 + δNT c) < QNT (θ0)

}
≥ 1− η, (A.1)

where ‖ · ‖ represents the Euclidean distance, and θ0 is the true parameter value.

Applying the Taylor expansion, it follows

QNT (θ0 + δNT c)−QNT (θ0)

=
1

NTh0

N∑
i=1

T∑
t=1

[
φ

(
vit − δNT cTX∗it

h0

)
− φ

(
vit
h0

)]

=
1

NTh0

N∑
i=1

T∑
t=1

[
−φ(1)

(
vit
h0

)(
δNT c

TX∗it
h0

)
+

1

2
φ(2)

(
vit
h0

)(
δNT c

TX∗it
h0

)2

− 1

6
φ(3)

(
v∗it
h0

)(
δNT c

TX∗it
h0

)3
]
,

(A.2)

where v∗it is between vit and vit − δNT c
TX∗it. Based on the result TNT = E (TNT ) +

Op(
√

Var (TNT )), we consider each part of above Taylor expansion.

For the first part, which is I1 = 1
NTh0

∑N
i=1

∑T
t=1

(
−φ(1)

(
vit
h0

)(
δNT c

TX∗it
h0

))
, we can calculate

it directly to achieve

E (I1) =
−δNT
h20

∫∫
φ(1)

(
v

h0

)
fv(v | X∗)

(
cTX∗

)
dvdF (X∗)

=Op

(
δNTah

2
0

)
. (A.3)

Meanwhile, we know that

E (I1)
2 =

δ2NT
NTh40

∫∫
φ(1)2

(
v

h0

)
fv(v | X∗)

(
cTX∗

)2
dvdF (X∗)

=Op

(
δ2NTa

2(NTh30)
−1) . (A.4)

Combing (A.3) and (A.4) obtains

I1 = Op

(
δNTah

2
0

)
+Op

(√
δ2NTa

2(NTh30)
−1
)

= Op

(
δ2NTa

)
. (A.5)
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For the second part, which is I2 = 1
NTh0

∑N
i=1

∑T
t=1

(
1
2
φ(2)

(
vit
h0

)(
δNT c

TX∗it
h0

)2)
, we can prove

E (I2) =
δ2NT
2h30

∫∫
φ(2)

(
v

h0

)
fv(v | X∗)

(
cTX∗

)2
dvdF (X∗)

=Op

(
δ2NTa

2
)
, (A.6)

which indicates the second part will dominate the first part when we choose a big enough.

For the third part, which is I3 = 1
NTh0

∑N
i=1

∑T
t=1

(
−1

6
φ(3)

(
v∗it
h0

)(
δNT c

TX∗it
h0

)3)
, as v∗it is

between vit and vit − δNT cTX∗it, after some direct calculations we can obtain

E (I3) ≈
−δ3NT
6h40

∫∫
φ(3)

(
v

h0

)
fv(v | X∗)

(
cTX∗

)3
dvF (X∗)

=Op

(
δ3NT

)
, (A.7)

which indicates the second part dominates the third part with the assumption NTh50 →∞.

Based on these, we can choose a bigger enough such that the second term dominates

the other two terms with probability 1 − η. Because the second term is negative, thus

P
{

sup‖c‖=aQNT (θ0 + δT c) < QNT (θ0)
}
≥ 1−η holds. Hence with the probability approaching

1, there exists a local maximisers θ̂ such that

‖θ̂ − θ0‖ = Op(h
2
0 +

√
(NTh30)

−1
). (A.8)

�

Proof of Theorem 2.2

Recall that

QNT (β, µ) =
1

NTh0

N∑
i=1

T∑
t=1

φ

(
Yit −XT

itβ − ZT
µ,iµ

h0

)
.

Because (β̂, µ̂) maximizes QNT (β, µ), we can take the derivative of QNT (β, µ) respect to β

and µ to obtain

∂QNT (β, µ)

∂β

∣∣∣∣∣
(β=β̂,µ=µ̂)

= − 1

NTh0

N∑
i=1

T∑
t=1

φ(1)

(
Yit −XT

it β̂ − ZT
µ,iµ̂

h0

)(
Xit

h0

)
= 0. (A.9)

∂QNT (β, µ)

∂µ

∣∣∣∣∣
(β=β̂,µ=µ̂)

= − 1

NTh0

N∑
i=1

T∑
t=1

φ(1)

(
Yit −XT

it β̂ − ZT
µ,iµ̂

h0

)(
Zµ,i
h0

)
= 0. (A.10)
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By applying Taylor expansion for (A.9) and (A.10), we can achieve

1

NTh20

N∑
i=1

T∑
t=1

[
−φ(1)

(
vit
h0

)
Xit + φ(2)

(
vit
h0

)
Xit{−XT

it (β̂ − β0)h−10 − ZT
µ,i(µ̂− µ0)h

−1
0 }

+
1

2
φ(3)

(
v∗it
h0

)
Xit{−XT

it (β̂ − β0)h−10 − ZT
µ,i(µ̂− µ0)h

−1
0 }2

]
+ op(β̂ − β0) = 0.

(A.11)

1

NTh20

N∑
i=1

T∑
t=1

[
−φ(1)

(
vit
h0

)
Zµ,i + φ(2)

(
vit
h0

)
Zµ,i{−XT

it (β̂ − β0)h−10 − ZT
µ,i(µ̂− µ0)h

−1
0 }

+
1

2
φ(3)

(
v∗it
h0

)
Zµ,i{−XT

it (β̂ − β0)h−10 − ZT
µ,i(µ̂− µ0)h

−1
0 }2

]
+ op(µ̂− µ0) = 0,

(A.12)

where v∗it is between vit and Yit −XT
it β̂ − ZT

µ,iµ̂.

We focus on (A.12) firstly. Considering − 1
NTh20

∑N
i=1

∑T
t=1

(
φ(1)

(
vit
h0

)
Zµ,i

)
, we get

E

(
− 1

NTh20

N∑
i=1

T∑
t=1

(
φ(1)

(
vit
h0

)
Zµ,i

))
=
−1

h20

∫∫
φ(1)

(
v

h0

)
fv(v | X,Z)Z dvdF (X)

=
1

h0

∫∫
φ (τ) τfv(τh0 | X,Z)Z dτdF (X)

=
h20
2
E
(
Zf (3)

v (0 | X,Z)
)
. (A.13)

Considering 1
NTh30

∑N
i=1

∑T
t=1

(
φ(2)

(
vit
h0

) (
Zµ,iX

T
it

))
, we achieve

E

(
1

NTh30

N∑
i=1

T∑
t=1

(
φ(2)

(
vit
h0

)
Zµ,iX

T
it

))
=

1

h30

∫∫
φ(2)

(
v

h0

)
fv(v | X,Z)

(
ZXT

)
dvdF (X)

=
1

h20

∫∫
φ (τ) (τ 2 − 1)fv(τh0 | X,Z)

(
ZXT

)
dτdF (X)

=E
(
ZXTf (2)

v (0 | X,Z)
)
. (A.14)

Considering 1
NTh0

∑N
i=1

∑T
t=1

(
φ(2)

(
vit
h0

)(
Zµ,i
h0

ZTµ,i
h0

))
, we can obtain

E

(
1

NTh30

N∑
i=1

T∑
t=1

φ(2)

(
vit
h0

)(
Zµ,iZ

T
µ,i

))
=

1

h30

∫∫
φ(2)

(
v

h0

)
fv(v | X,Z)

(
ZZT

)
dvdF (X)

=
1

h20

∫∫
φ (τ) (τ 2 − 1)fv(τh0 | X,Z)

(
ZZT

)
dτdF (X)

=E
(
ZZTf (2)

v (0 | X,Z)
)
. (A.15)
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Then it follows that

µ̂− µ0 = (Φ + op(1))−1 {−Ψ(β̂ − β0) + op(1)}, (A.16)

where Φ = limN→∞(1/N)
∑N

i=1 E
(
Zµ,iZ

T
µ,if

(2)
v (0 | Xit, Zµ,i)

)
and Ψ = limN,T→∞(1/(NT ))

∑N
i=1∑T

t=1 E
(
Zµ,iX

T
itf

(2)
v (0 | Xit, Zµ,i)

)
.

Substituting (A.16) into (A.11), we can have

1

NTh20

N∑
i=1

T∑
t=1

[
−φ(1)

(
vit
h0

)
Xit + φ(2)

(
vit
h0

)
Xit{−XT

it (β̂ − β0)h−10 + ZT
µ,i(Φ

−1Ψ(β̂ − β0))h−10 }

+
1

2
φ(3)

(
v∗it
h0

)
Xit{−XT

it (β̂ − β0)h−10 + ZT
µ,i(Φ

−1Ψ(β̂ − β0))h−10 }2
]

+ op(β̂ − β0) = 0.

(A.17)

Define

MNT =
−1

NTh20

N∑
i=1

T∑
t=1

(
φ(1)

(
vit
h0

)
Xit

)
,

JNT =
1

NTh20

N∑
i=1

T∑
t=1

(
φ(2)

(
vit
h0

)
Xit(X

T
it − ZT

µ,iΦ
−1Ψ)h−10

)
,

we then get

β̂ − β = J−1NTMNT (1 + op(1)). (A.18)

With some calculations, we can obtain

E

(
−1

NTh20

N∑
i=1

T∑
t=1

φ(1)

(
vit
h0

)
Xit

)
=

1

h20

∫∫
φ(1)

(
v

h0

)
fv(v | X,Z)X dvdF (X)

=
1

h0

∫∫
φ (τ) τfv(τh0 | X,Z)X dτdF (X)

=
h20
2
E
(
Xf (3)

v (0 | X,Z)
)
. (A.19)

E

(
1

NTh30

N∑
i=1

T∑
t=1

φ(2)

(
vit
h0

)(
Xit(X

T
it − ZT

µ,iΦ
−1Ψ

))

=
1

h30

∫∫
φ(2)

(
v

h0

)
fv(v | X,Z)

(
X(XT − ZTΦ−1Ψ)

)
dvdF (X)

=
1

h20

∫∫
φ (τ) (τ 2 − 1)fv(τh0 | X,Z)

(
X(XT − ZTΦ−1Ψ)

)
dτdF (X)

=E
(
X(XT − ZTΦ−1Ψ)f (2)

v (0 | X,Z)
)
. (A.20)

Meanwhile, based on above calculations, we have
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Cov(MNT )

=E

{(
1

NTh0

N∑
i=1

T∑
t=1

(
φ(1)

(
vit
h0

)
Xit

h0

))(
1

NTh0

N∑
i=1

T∑
t=1

(
φ(1)

(
vit
h0

)
Xit

h0

))T }
{1 + op(1)}

=
1

NTh40

∫∫
φ(1)2

(
v

h0

)
fv(v | X,Z)XXTdvdF (X){1 + op(1)}

=
1

NTh30
v2L{1 + op(1)}, (A.21)

where v2 =
∫
φ2 (τ) τ 2dτ and L = limN,T→∞(1/(NT ))

∑N
i=1

∑T
t=1 E

(
XitX

T
itfv(0 | Xit, Zµ,i)

)
.

To show Theorem 2.2, it is sufficient to show the asymptotic normality for M∗
NT =√

NTh30MNT , where we prove that for any unit vector d ∈ Rq,

{dT Cov(M∗
NT )d}−1/2{dTM∗

NT − dTE(M∗
NT )} d→ N(0, 1). (A.22)

Then we check Lyapunov’s condition. Let ξi = −1/
√
NTh0φ

(1)
(
vit
h0

)
dTXit, we need to prove

NTE|ξ1|3 → 0. As
(
dTXit

)2 ≤ ‖d‖2‖Xit‖2 and φ(1)(.) is bounded, we have

NTE|ξ1|3 ≤ O((NT )−1/2h
−3/2
0 )→ 0. (A.23)

Thus the asymptotic normality for M∗
NT holds with√

NTh30
(
MNT − h20M/2

) d→ N(0, v2L). (A.24)

According to Slutsky’s Theorem, we obtain Theorem 2.2.

�

Proof of Theorem 3.1

The main proof steps here are similar with those of Proof of Theorem 2.1. We briefly outline

the proof. Recall that

QNT (γ1, β) =
1

NTh1

N∑
i=1

T∑
t=1

φ

(
Ŷit − γ1 −XT

itβ

h1

)

=
1

NTh1

N∑
i=1

T∑
t=1

φ

(
Yit − αi + αi − α̂i − X̃T

itθ

h1

)
, (A.25)

where X̃T
it = (1 XT

it ) and θ = (γ1 βT )T . Define δNT = h21 +
√

(NTh31)
−1

, it is suf-

ficient to show that for any given η, there exists a large number constant a such that
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P
{

sup‖c‖=aQNT (θ0 + δNT c) < QNT (θ0)
}
≥ 1 − η, where ‖ · ‖ represents the Euclidean dis-

tance, and θ0 is the true parameter value. Applying the Taylor expansion, it follows

QNT (θ0 + δNT c)−QNT (θ0)

=
1

NTh1

N∑
i=1

T∑
t=1

[
φ

(
vit + αi − α̂i − δNT cT X̃it

h1

)
− φ

(
vit + αi − α̂i

h1

)]

=
1

NTh1

N∑
i=1

T∑
t=1

[
−φ(1)

(
vit + αi − α̂i

h1

)(
δNT c

T X̃it

h1

)

+
1

2
φ(2)

(
vit + αi − α̂i

h1

)(
δNT c

T X̃it

h1

)2

− 1

6
φ(3)

(
v∗it
h1

)(
δNT c

T X̃it

h1

)3
 , (A.26)

where v∗it is between vit +αi− α̂i and vit +αi− α̂i− δNT cT X̃it. Following the same steps as the

Proof of Theorem 2.1, with assumption that
√
Th21 → ∞ (i.e., Na/T → 0 for some a > 4/3),

one can obtain ‖θ̂ − θ0‖ ≤ δNT .

�

Proof of Theorem 3.2

Recall that X̃T
it = (1 XT

it ), θ = (γ1 βT )T , and θ̂ = [γ̂1 β̂T ]T . If θ̂ maximises (3.5), it will

satisfy the following equation

1

NTh1

N∑
i=1

T∑
t=1

φ(1)

(
Yit − αi − (α̂i − αi)− X̃T

it θ̂

h1

)(
−X̃it

h1

)
= 0. (A.27)

Then we can achieve

1

NTh1

N∑
i=1

T∑
t=1

φ(1)

(
vit
h1

)(
−X̃it

h1

)

+
1

NTh1

N∑
i=1

T∑
t=1

φ(2)

(
vit
h1

)(
X̃it

h1

)(
αi − α̂i − X̃T

it (θ̂ − θ)
h1

)

+
1

2NTh1

N∑
i=1

T∑
t=1

φ(3)

(
v∗it
h1

)(
X̃it

h1

)(
αi − α̂i − X̃T

it (θ̂ − θ)
h1

)2

= 0, (A.28)

where v∗it is between vit and vit + αi − α̂i. It can be shown that the third term on the left-

hand side of (A.28) is dominated by the second term. With assumption that
√
Th21 →∞ (i.e.,

Na/T → 0 for some a > 4/3), we could then follow the same proof steps as those of Proof of

Theorem 2.2 to achieve the results.

�
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