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Abstract

The exact finite sample distribution of the F statistic using the heteroskedasticity-

consistent (HC) covariance matrix estimators of the regression parameter estimators

is unknown. In this paper, we derive the exact finite sample distribution of the F

(= t2) statistic for a single linear restriction on the regression parameters. We show

that the F statistic can be expressed as a ratio of quadratic forms, and therefore

its exact cumulative distribution under the null hypothesis can be derived from the

result of Imhof (1961). A numerical calculation is carried out for the exact distribution

of the F statistic using various HC covariance matrix estimators, and the rejection

probability under the null hypothesis (size) based on the exact distribution is examined.

The results show the exact finite sample distribution is remarkably reliable, while, in

comparison, the use of the F -table leads to a serious over-rejection when the sample

is not large or leveraged/unbalanced. An empirical application highlights that the use

of the exact distribution of the F statistic will increase the accuracy of inference in

empirical research.
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1 Introduction

The presence of heteroskedasticity of unknown form in the disturbances of linear regression

models has been a topic of major concern for inference in economic models. Under het-

eroskedasticity, the ordinary least squares (OLS) estimators of the regression parameters are

well known to be consistent. However, the usual estimators for the covariance matrix of

the regression parameters are inconsistent and/or biased. Numerous work has been done to

formulate an unbiased and consistent estimate for the covariance matrix of the regression

parameters. Earlier contributions include Eicker (1963), Huber (1967) and Hinkley (1977).1

White (1980), in a seminal paper, introduces the well-known “White Standard Errors” which

is able to estimate the covariance matrix of the regression parameters consistently under an

unknown form of heteroskedasticity of the disturbances.

Not long after White (1980) established the asymptotic consistency of the heteroskedasticity-

consistent (HC) covariance estimator, it was quickly recognized that inferences based on

the “White Standard Errors” over-reject the null hypothesis when the sample is not large.

MacKinnon and White (1985) provide simulation evidence and, linking the problem to the

reduction in error variance brought by least squares fitting, further propose variants of the

“White Standard Errors” to achieve better finite sample properties through adjusting for

degrees of freedom and leverages and by using the jackknife. These corrections, however, are

far from satisfactory, as shown in simulations by Angrist and Pishke (2009), who note that

the covariance estimates are not merely biased but also have higher volatilities than default

OLS estimates, which contributes to their high rejection rates. Extensions on inferences us-

ing variants of the HC covariance estimators include McCaffrey and Bell (2002), Cribari-Neto

(2004), MacKinnon (2013), Hausman and Palmer (2012) and Imbens and Kolesár (2016).

Recent studies have pointed out that the over-rejection problem remains problematic in

considerably large samples when the data are leveraged/unbalanced. Based on simulation

studies Young (2016) examines the distortion of the t-statistic due to interactions of the

hypothesis and the data. Chesher and Austin (1991) use the Imhof method to calculate exact

finite-sample distributions of t-statistics distinguished by the variance estimators, investigate

how these t-distributions differ with the first-order asymptotic normal approximation and

the second-order Edgeworth approximations, show that their tests based on the Jackknife

standard error estimator generally outperform in terms of the test size being close to the

1A related literature to the heteroskedasticity-consistent (HC) covariance matrix estimation of the re-
gression coefficients is on the estimation of the heteroskedastic error variances themselves. Rao (1970)
proposes the MInimum Norm Quadratic Unbiased Estimation (MINQUE) of the heteroskedastic error vari-
ances. Horn et al. (1975) proposes an “almost unbiased” estimator as an estimator of heteroskedastic error
variance, which MacKinnon and White (1985) uses to construct HC2 as appears below in Equation (7). The
variance estimator of Horn et al. (1975) is almost unbiased as its asymptotic bias is of order n−1 when errors
are heteroskedastic, and it is unbiased when errors are homoskedastic.
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nominal size, and compare the behavior of tests under homoskedasticity and under changes

in the regression designs. Hansen (2017) derives the exact distribution of a t-type statistic,

and through simulations show that using the “White Standard Errors” has significant size

distortion when the data is highly leveraged. He also proposes corrections for the t-type test

statistic under i.i.d. normal disturbances. However, the proposed methods perform poorly

when the disturbances are heteroskedastic. The basic idea behind these papers are that the

nominal sample size may be “misleading” as the regression results may depend heavily on

only a part of the observations rather than equally on all the data, which will lead to a higher

volatility of the results and the over-rejection of the test statistic.

In view of these issues, in contrast, this paper derives the exact finite sample distribution

of an F -type (t2-type) test statistic for testing regression parameters under the heteroskedas-

ticity of unknown form. This test statistic is valid for a single linear restriction on the re-

gression parameter including the test for the zero restriction on each coefficient. It is shown

that this proposed F -type test statistic can be expressed as a ratio of quadratic forms, and

therefore its exact cumulative distribution under the null hypothesis can be easily written,

and straightforwardly implemented from the result of Imhof (1961) on the distribution of

a quadratic form.2 Further, we carry out numerical calculation of the proposed test statis-

tic using Imhof (1961) to present the cumulative distribution functions and probability of

rejections under various HC covariance estimators of regression estimators. The accuracies

are confirmed from their corresponding simulation-based results. It is shown that the exact

distribution of the F -type test statistic based on various HC covariance estimators provides

accurate testing results.3

We conduct Monte Carlo simulations to examine the behavior of the test’s size of the

F statistic under the exact Imhof distribution and compare them with values in the F -

table. It is found that the empirical size behavior of the F statistic using the exact Imhof

distribution is generally very good except when the sample size is very small (e.g., n = 15).

Using the exact Imhof distribution is always much better than using the F -table. When

the Imhof distribution is used, the HC estimator of MacKinnon and White (1985) exhibits

only slightly better size behavior in comparison with other HC estimators in White (1980),

Hinkley (1977), and Cribari-Neto (2004) as all of these HC estimators are somewhat similar

when the exact Imhof distribution is employed. It indicates that the selection between HC

estimators appears irrelevant for empirical researches if the exact Imhof distribution is used.

To the contrary, when the F -table is used, the HC estimator of MacKinnon and White

(1985) is clearly much better than the HC estimators of White (1980), Hinkley (1977), and

2For applications of Imhof (1961) in a separate context of studying distributional properties of estimators,
see Bao et al. (2017), Ullah (2004), Nakamura and Nakamura (1998), and Farebrother (1985), among others.

3The accurate test size of using the exact Imhof distribution would also produce more accurate confidence
intervals which can be computed from inverting the test statistics using the Imhof distribution.
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slightly better than the HC estimator of Cribari-Neto (2004). The robustness of our results,

under a non-normal distribution of errors and when the estimated parameters are used in

the F -distribution, are also analyzed.

In an empirical application of the exact Imhof distribution, it is shown that the p-values

of the F statistic from the exact distribution are similar to the wild bootstrap p-values, while

the p-values from the F -table are different from the wild bootstrap p-values. This empirical

application highlights that the exact p-values obtained from the exact Imhof distribution of

the F statistic does increase the accuracy of inference in empirical research.

The remainder of this paper is organized as follows. In Section 2, the model and the F

test statistic are discussed, various HC covariance matrix estimators are presented, and the

need of the exact distribution for the statistic is discussed to set the goal of this paper. In

Section 3 we derive the exact distribution for the statistic, and compare it for the different HC

estimators by a numerical calculation. In Section 4, Monte Carlo simulation is conducted to

examine the size behavior of the F statistic. In Section 5, we present an empirical application.

Section 6 concludes.

2 Test Statistic and HC Covariance Matrix Estimators

In this paper we consider the linear model with independent, heteroskedastic and normally

distributed errors

yi = β0 +

p∑
k=1

βkxik + εi, εi ∼ N(0, σ2
i ), i = 1, . . . , n. (1)

Let the error vector be denoted as ε = (ε1, . . . , εn)′ with its variance-covariance matrix

Var(ε) ≡ Ω = diag {σ2
i }. Let X be the nonstochastic matrix with its ith row being x′i =

(1, xi1, . . . , xip). The regression parameter vector β = (β0, β1, . . . , βp)
′ is estimated by the

ordinary least squares (OLS) estimator

β̂ = (X′X)−1X′y, (2)

which has the variance-covariance matrix

Var(β̂) = (X′X)−1X′ΩX(X′X)−1 ≡ Σ. (3)

Let ei be the ith element of the n × 1 residual vector e = y − Xβ̂, and denote hij ≡
x′i(X

′X)−1xj.

We are interested in testing for the null hypothesis with a single linear restriction on the
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parameter vector, H0 : r′β = r0, where r′ is a 1 × (p + 1) non-random vector and r0 is a

scalar constant. We consider the F statistic of the form, under H0,

F = t2 =

(
r′β̂ − r0√

r′Σ̂r

)2

=
ε′X(X′X)−1rr′(X′X)−1X′ε

r′(X′X)−1X′Ω̂X(X′X)−1r
, (4)

where (X′X)−1X′Ω̂X(X′X)−1 ≡ Σ̂ is a consistent estimator of Σ.

The following approaches to estimate Σ have been proposed in the literature. Each

approach has a particular form of Ω̂, which leads to a different HC estimator for Σ̂.

• HC0 is the original formulation used in White standard errors. White (1980) shows

that, when using

Ω̂ = diag
{
e2i
}
, (5)

X′Ω̂X/n =
∑n

i=1 e
2
ixix

′
i/n is a consistent estimator of X′ΩX/n.

• HC1 (Hinkley, 1977) adjusts for degrees of freedom in HC0 and sets

Ω̂ = diag

{
e2i

1− p/n

}
. (6)

• HC2 (MacKinnon and White, 1985) adjusts for the leverage values hii,

Ω̂ = diag

{
e2i

1− hii

}
. (7)

Note that, in the special case of a ‘balanced’ data for which hii = p/n for all i,

HC2 becomes HC1 of Hinkley (1977). MacKinnon and White (1985) construct HC2

based on the results of Horn et al. (1975). Wu (1986, Equation 5.2 and Lemma

3) shows that, if hij = 0 then E(e2i ) = (1 − hii)σ
2
i , and more generally E(e2i ) =

(1 − hii)σ
2
i + O(n−1). Further, Wu (1986, Theorem 5) shows that Σ̂ using HC2,

Σ̂ = (X′X)−1{
∑n

i=1 e
2
ixix

′
i/(1 − hii)}(X′X)−1 has similar properties, i.e., if hij = 0

then E(Σ̂) = Σ, and more generally E(Σ̂) = Σ +O(n−1).

• HC3 is introduced by MacKinnon and White (1985). HC3 is the “jackknife” estimator

of the covariance matrix of β̂ based on Efron (1982, Equation 3.13). MacKinnon

and White (1985) shows that the jackknife estimator of Σ can be expressed as Σ̂ =
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(X′X)−1X′Ω̂X(X′X)−1 with

Ω̂ = diag

{
e2i

(1− hii)2

}
.4 (8)

• HC4 (Cribari-Neto, 2004) adjusts the residuals by a leverage factor that increases with

the leverage

Ω̂ = diag

{
e2i

(1− hii)δi

}
, (9)

where δi = min
{

4, nhii
p

}
increases with the leverage values hii.

The above five HC estimators can be expressed in a unified form by setting Ω̂ = diag {gie2i },
with gi = 1 for HC0, gi = n/(n− p) for HC1, gi = 1/(1− hii) for HC2, gi = 1/(1− hii)2 for

HC3, and gi = 1/(1− hii)δi for HC4.

In applied work, inference using the F statistic with each of these HC estimators is

usually based on its asymptotic distribution, because its exact finite sample distribution is

not available. However, when the asymptotic distribution is used to assess the significance

of an F -value, it is well known that the F statistic using each of these HC estimators suffers

from substantial size distortion even when n is fairly large, especially when the data are

leveraged/unbalanced. See MacKinnon and White (1985), Hausman and Palmer (2012),

Long and Ervin (2000), MacKinnon (2013), among many others.

In view of this problem together with the fact that no exact finite sample distribution

theory for the F statistic using HCs is available, our goal in this paper is to derive one, as

presented in the next section.

3 Exact Distribution of the F Statistic

In this section we show that the F statistic can be expressed as a ratio of quadratic forms, and

therefore its exact cumulative distribution under the null hypothesis can be easily obtained

from the result of Imhof (1961) on the distribution of a quadratic form.

3.1 Exact Distribution of the F Statistic Using HC

We now derive the exact distribution of the F test statistic shown in Equation (4) using

each of HC0, HC1, HC2, HC3 and HC4. Denote di = r′(X′X)−1xi and D = diag(d2i ). The

4The original HC3 in MacKinnon and White (1985, Equation 12) is slightly different. See also Hausman
and Palmer (2012, p. 233).
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denominator of Equation (4) can be rewritten as e′DGe, where G = diag(gi). Denoting

the OLS residual vector e = Mε with M = In − X(X′X)−1X, Equation (4) can then be

rewritten as a ratio of quadratic forms:

F = t2 =
ε′X(X′X)−1rr′(X′X)−1X′ε

ε′MDGMε
=
ε′Aε

ε′Bε
, (10)

where A = X(X′X)−1rr′(X′X)−1X and B = MDGM. Thus, the cumulative distribution

function (CDF) is

Pr (F ≤ c) = Pr
(
t2 ≤ c

)
= Pr

(
ε′Aε

ε′Bε
≤ c

)
= Pr (ε′(A− cB)ε ≤ 0) = Pr (ε′Nε ≤ 0) , (11)

where N = A− cB.

Remark 1: Under heteroskedasticity, the F statistic is the ratio of two quadratic forms

that may not be independent. Independence requires that AΩB = 0, which however is

not guaranteed since Ω can be any positive-definite diagonal matrix. This violates the

independence assumption of the Snedecor’s F distribution and raises questions for inference

using the Snedecor’s F distribution.

Following Imhof (1961) and assuming normal errors εi ∼ N(0, σ2
i ) with heteroskedasticity,

Equation (11) can be written as

Pr (F ≤ c) =
1

2
− 1

π

∫ ∞
0

sin θ(u)

uρ(u)
du, (12)

where

θ(u) =
1

2

J∑
j=1

[νj tan−1(λju)], (13)

ρ(u) =
J∏
j=1

(1 + λ2ju
2)

1
4
νj , (14)

λj is the non-zero eigenvalues of NΩ, J is the number of non-zero λj, and νj is the degrees of

freedom of ε2j . Specifically, in this situation, all of νj = 1 because ε2j follows the chi-squared

distribution with the degree of freedom 1.5 Then, substituting Equations (13) and (14) into

5The notation hr, r = 1, . . . ,m, used in Equations (1.1) and (3.2) of Imhof (1961) is νj , j = 1, . . . , J in
this paper. The values of δr and x in these Imhof’s equations are both zero in this paper.
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Equation (12), we obtain the Imhof distribution function of the F statistic:

Pr (F ≤ c) =
1

2
− 1

π

∫ ∞
0

sin
(

1
2

∑J
j=1[tan−1(λju)]

)
u
∏J

j=1(1 + λ2ju
2)

1
4

du ≡ Imhof(Ω̂,NΩ, c). (15)

The first argument Ω̂ of the function, Imhof(Ω̂,NΩ, c), is to indicate that the F statistic in

Equation (4) and Equation (10) uses an HC estimator Ω̂ discussed in Section 2. The second

argument NΩ of the function indicates that the eigenvalues λj in Equation (15) are those

of NΩ.

Remark 2: Note that, while the first argument Ω̂ of the function, Imhof(Ω̂,NΩ, c), is

estimated, the second argument NΩ includes the unknown true Ω. Hence, the CDF,

Imhof(Ω̂,NΩ, c), will be referred to as the “Infeasible” Imhof distribution. On the other

hand, when the estimated NΩ̂ is used to compute the eigenvalues λj in Equation (15), we

will refer to Imhof(Ω̂,NΩ̂, c) as the “Feasible” Imhof distribution.

3.2 Exact Distribution of the F Statistic When Ω Is Known

To compare the exact distribution of the F statistic when different estimators Ω̂ are used, we

also derive the oracle exact distribution of the F statistic using the true Ω. Hence, we call

this oracle exact CDF as the “Benchmark”, as it plays a benchmark role in the comparison.

The Benchmark is computed as follows.

Assuming that Ω is known, Equation (4) can be rewritten as follows:

F ∗ =
ε′X(X′X)−1rr′(X′X)−1X′ε

r′(X′X)−1X′ΩX(X′X)−1r
=
ε′Aε

b∗
= ε′

(
A

b∗

)
ε. (16)

The F statistic using the true covariance matrix Ω is denoted as F ∗. The CDF for F ∗ is

Pr(F ∗ ≤ c) = Pr

(
ε′
(

A

b∗

)
ε ≤ c

)
= Pr (ε′N∗ε ≤ c) , (17)

where N∗ ≡ A/b∗, with A being the same as before and b∗ ≡ r′(X′X)−1X′ΩX(X′X)−1r

being a scalar.

Similarly, using Imhof (1961), Equation (17) can be written as

Pr (F ∗ ≤ c) =
1

2
− 1

π

∫ ∞
0

sin θ(u)

uρ(u)
du, (18)

where
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θ(u) =
1

2

J∑
j=1

[νj tan−1(λ∗ju)]− 1

2
cu, (19)

ρ(u) =
J∏
j=1

(1 + λ∗2j u
2)

1
4
νj , (20)

λ∗j is the non-zero eigenvalues of L ≡ N∗Ω, and νj = 1 because ε2j follows the chi-squared

distribution with 1 degree of freedom.

Then, substituting Equations (19) and (20) into Equation (18), we obtain the CDF of

F ∗, which we refer to as Benchmark,

Pr (F ∗ ≤ c) =
1

2
− 1

π

∫ ∞
0

sin
(

1
2

∑J
j=1[tan−1(λ∗ju)]− 1

2
cu
)

u
∏J

j=1(1 + λ∗2j u
2)

1
4

du ≡ Benchmark(Ω,L, c). (21)

The first argument Ω of the function, Benchmark(Ω,L, c), is to indicate the F ∗ in Equation

(16) uses the true Ω. The second argument L of the function indicates that the non-zero

eigenvalues λ∗j in Equation (21) are those of L ≡ N∗Ω.

Remark 3: Only one eigenvalue of L is one and all the others are zero.6 Hence the eigen-

values of L do not depend on Ω or the sample size n. The Benchmark CDF, Pr(F ∗ ≤ c),

remains unchanged even when the sample size n or the error variance-covariance matrix

Ω = diag {σ2
i } changes. Furthermore, as pointed out by the referees, the benchmark dis-

tribution is equivalent to the χ2 distribution with 1 degree of freedom.7 This makes the

Benchmark distribution a perfect benchmarking criterion to be compared with, justifying

its name. These properties of the Benchmark distribution enable us to evaluate the exact

Imhof distributions of the F statistic using different HC estimators, by comparing them with

respect to the Benchmark distribution. That is what we do next.

6Note that L and H ≡ Ω1/2LΩ−1/2 = Ω1/2 (N∗) Ω1/2 have the same characteristic equations and
the same eigenvalues, because |L − λI| = 0 and |Ω1/2| |L − λI| |Ω−1/2| = 0. As b∗ is a scalar,

H = Ω1/2X (X′X)
−1

rr′ (X′X)
−1

X′Ω1/2/b∗ is symmetric and idempotent. Hence, the eigenvalues of H

and L are either 1’s or 0’s. Further, rank(H) = 1 because H = ξξ′/b∗ with ξ ≡ Ω1/2X (X′X)
−1

r being an
n×1 vector. Therefore, only one of the eigenvalues of H or L, is 1 and all the other eigenvalues are 0. Then,
(19) and (20) are simplified as θ(u) = 1

2 tan−1(u)− 1
2cu and ρ(u) = (1 + u2)

1
4 .

7For y ∼ N(Xβ,Ω), r′(X′X)−1X′y − r′β ∼ N(0, b∗), where b∗ = r′(X′X)−1X′ΩX(X′X)−1r. Therefore,(
r′(X′X)−1X′y − r′β√

b∗

)2

∼ χ2
1.
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3.3 Comparing the Exact Distribution Pr(F ≤ c) of F Statistic

Using a Different HC w.r.t. the Benchmark Distribution

Pr(F ∗ ≤ c)

In this subsection, in order to assess the effect of using the HC covariance matrix estimators,

we compare the Infeasible Imhof distribution Pr(F ≤ c) in Equation (15) with the Benchmark

CDF Pr(F ∗ ≤ c) in Equation (21). To compare them under highly leveraged data, we adopt

the same design as in Hansen (2017), based on the following heteroskedastic dummy variable

regression

yi = β0 +
3∑

k=1

βkxik + εi, εi ∼ N(0, σ2
i ), i = 1, . . . , n. (22)

Each dummy variable xik equals 1 only for 3 observations (i.e. Σn
i=1xik = 3 for k = 1, 2, 3). We

are interested only in the coefficient β1. In simulation, we use n ∈ {15, 30, 50, 100, 150, 500},
c ∈ (0, 20], and

σ2(x1) = I(x1 = 1) + aI(x1 = 0), (23)

with I(·) being the indicator function. We consider two cases with a = 0.5 (Case 1) and

a = 2 (Case 2).

The CDF plots of Pr(F ≤ c) using different HCs and the Benchmark CDF Pr(F ∗ ≤ c)

are presented in Figure 1 (for Case 1) and Figure 2 (for Case 2). Since the results for

n > 50 are similar, we show only n = 15 and n = 50 in each figure. Note that, in these

cases with heteroskedasticity, the F statistic in Equation (4) does not follow the Snedecor

F -distribution, and using the F -table is incorrect. Therefore we use the Benchmark as an

evaluation criterion. We compare the (vertical) distance between the CDF plots of Pr(F ≤ c)

and the Benchmark CDF Pr(F ∗ ≤ c), to find which HC yields the best exact distribution

closest to the Benchmark. While the distance can be formally measured by the Kolmogorov-

Smirnov statistic or the Cramer-von Mises statistic, Figures 1 and 2 are clear enough to tell

the differences between the CDF plots.

[Insert Figures 1 and 2 Here]

As we have noted in Remark 2 after presenting Equation (21), the Benchmark distribution

remains unchanged even when the sample size changes from n = 15 in the upper panel to

n = 50 in the lower panel of each of Figures 1 and 2, or when the error variance-covariance

matrix Ω changes from Case 1 to Case 2 in these figures. This invariance property makes

the Benchmark CDF as a benchmark to be compared with the Infeasible Imhof CDF plots

using different HC estimators. Figures 1 and 2 show that, among the Infeasible Imhof CDFs
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from using HC0, HC1, HC2 and HC4, the one from using HC3 is the closest to Benchmark,

indicating that HC3 is the most precise among these HC estimators.

4 Monte Carlo Simulation

In this section, we examine the empirical size behavior of the F statistic using the HC

estimators in finite samples by Monte Carlo simulation. MacKinnon and White (1985), and

Cribari-Neto and Lima (2010) have studied the behavior of the HC estimators through Monte

Carlo simulations. In a recent paper, MacKinnon (2013) provided an extensive discussion

on the setup of Monte Carlo simulations for studying the performance of HC estimators. We

consider the following simple linear model, that is similar to the one in MacKinnon (2013),

for the data generating process (DGP):

yi = β0 + β1xi + εi, εi ∼ N(0, σ2
i ), σ2

i = exp(x2i ), (24)

where β = (β0, β1)
′ = (0, 0)′ and xi ∼ N(0, 1). To examine the size behavior of the F

statistic, the null hypothesis H0 : r′β = r0 with r′ = (0 1) and r0 = 0 is considered.

4.1 Size of the F Statistic Using the Infeasible Imhof Distribution

In this subsection, we employ the true value of variance-covariance matrix (Ω) to calculate

the Infeasible Imhof distribution in Equation (15). The Monte Carlo average values of the

Rejection Rate of the F statistic under the null hypothesis, i.e., the size of the test, are

computed from the following steps:

1. Randomly generate xi from N(0, 1).

2. Randomly generate εi from N(0, σ2
i ) where σ2

i = exp(x2i ) and calculate yi following

(24) under the null hypothesis that r′β = 0.

3. Calculate the F statistic using each of HC0, HC1, HC2, HC3 and HC4.

4. Find the Imhof critical value cImhof
α from Equation (15), satisfying

Imhof (Ω̂,NΩ, cImhof
α ) = α. (25)

Also find the critical value from the F -table and denote it as cFα.
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5. Repeat Steps (2)-(4) for 1000 times and calculate rejection rates

Rejection RateImhof =
1

1000

∑
I(F > cImhof

α ), (26)

Rejection RateF =
1

1000

∑
I(F > cFα). (27)

Note that Steps (2)-(4) are conditional on the data matrix X generated from Step (1).

6. Repeat Steps (1)-(5) 100 times (for different dataset of X), and calculate the average

value of Rejection Rates over the 100 replications. We then present them in Table 1

for α ∈ {0.10, 0.05, 0.01}.

Also, presented in Table 1 are the Monte Carlo average values of Rejection Rate using

the Benchmark cumulative distribution shown in Equation (21), i.e., using the Benchmark

critical value, cBenchmark
α , satisfying

Benchmark(Ω,N∗Ω, cBenchmark
α ) = α. (28)

Table 1 shows the size performance of the F test using the Infeasible Imhof critical values

and the Benchmark critical values. All the size values using the Imhof critical values are

generally very close to the nominal significance levels. This indicates that the Infeasible

Imhof critical values are pretty precise. They are much better than the size values computed

using the critical values from the F -table.

[Insert Table 1 Here]

4.2 Size of the F Statistic Using the Feasible Imhof Distribution

Table 1 considers the Infeasible Imhof distribution which employs the unknown true variance-

covariance matrix Ω of the regression error term. As the true value of Ω is unknown in

practice, we obtain the Feasible Imhof distribution by replacing Ω with Ω̂ in Equation (25),

i.e., using the Imhof critical values, cImhof
α , satisfying

Imhof(Ω̂,NΩ̂, cImhof
α ) = α. (29)

The size results of using the Feasible Imhof distribution are presented in the left panel of

Table 2 under the heading of “Using Feasible Imhof Distribution”. Note that there are

two more panels in Table 1 and Table 2, which are labeled as “Using F -table” and “Using

Benchmark”. Although the values of these two panels in Table 1 are identical to those in

Table 2, we repeat reporting them just for ease of comparison.
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[Insert Table 2 Here]

From Table 2, we make the following observations:

1. The empirical size behavior of the F statistic using the Feasible Imhof distribution

(Table 2) is only slightly worse than the size using the Infeasible Imhof distribution

(Table 1). The size is generally very good except when the sample size is very small

(n = 15).

2. Using the Feasible Imhof distribution is almost always much better than using the

F -table.

3. When the Feasible Imhof distribution is used, HC3 exhibits only slightly better size be-

havior in comparison with HC0, HC1, HC2, and HC4. All HC estimators are somewhat

similar when the exact Imhof distribution is employed. It indicates that the selection

between HC estimators appears irrelevant for empirical researches if the exact Imhof

distribution is used.

4. When the F -table is used, HC3 is clearly much better than HC0, HC1, HC2, and is

slightly better than HC4.

5. When the test statistic’s distribution is misspecified as a Snedecor F distribution (i.e.,

using the F table), it appears that the empirical size decreases monotonically towards

zero below the nominal size as the sample size n increases. This is much less so when

the Imhof distribution is used (in both Tables 1 and 2).

4.3 Size of the F Statistic Using the Feasible Imhof Distribution

(with Skewed-normal Errors)

To test the robustness of our method, in this subsection, we consider the regression error

term following a skewed-normal distribution to investigate the size performance of the F

statisic using its Feasible Imhof distribution. Tables 3 and 4, respectively, show the size

of the F statistic using the Feasible Imhof distribution with skewed-normal errors for mild

skewness value of .5 and more severe skewness of .9

[Insert Tables 3 and 4 Here]

From Tables 3 and 4, we find the following.

13



1. Comparing Tables 2 and 3, the empirical size behavior of the F statistic using the

Feasible Imhof distribution under the skewed-normal error distribution with a mild

skewness is similar with its size behavior under the symmetric normal error distribution.

However, the empirical size behavior of the F statistic using the F table under skewed-

normal error distribution with a mild skewness is obviously worse, especially when the

sample size is small n = 15, than its size using the F table under the symmetric normal

distribution.

2. Comparing Tables 3 and 4, in most cases, the empirical size behavior of the F statistic

using the Feasible Imhof distribution under skewed-normal errors with severe skewness

is only slightly worse than the its size using the Feasible Imhof distribution under the

skewed-normal error terms with mild skewness.

3. In general, using the Feasible Imhof distribution is almost always much better than

using the F -table even when the error terms follow a skew-normal distribution.

4.4 Size of the F Statistic Using the Feasible Imhof Distribution

(with Non-normal t(5) Errors)

In the previous subsections, we have assumed that the regression error term follows a normal

distribution and skewed normal distributions. In practical situations, the error terms may

have fatter tails than a normal distribution. We now consider that the error term follows

the Student-t distribution with 5 degrees of freedom to investigate the size performance of

the F statisic using its Feasible Imhof distribution.

[Insert Table 5 Here]

From Table 5, we find the following. Although the derivation of the exact Imhof dis-

tribution in Section 3 is under the assumption that the regression errors follow the normal

distribution, the results with a non-normal distribution, t(5), do not change the conclusions

that we have obtained with the normal distribution in Tables 1 and 2. Importantly, all the

observations we have made from Table 2, as summarized in subsection 4.2, remain valid

under the t(5) distribution with fat tails. To reiterate, it means that using the Imhof dis-

tribution is almost always much better than using the F -table. If the Imhof distribution is

used, all the HC estimators are somewhat similar.

14



5 Empirical Application

How do we use the exact Imhof distribution of the F statistic in empirical applications? How

does it work relative to using the F -table or relative to the bootstrap methods? To answer

these questions, we take the housing price data from a popular econometrics textbook by

Jeffrey Wooldridge. The data called HPRICE1 in Wooldridge (2016) was collected from the

real estate pages of the Boston Globe newspaper during 1990. It includes home sales data in

the Boston area with the following information. For home i, yi denotes the natural logarithm

of the house price, xi1 denotes the natural logarithm of the assessment value, xi2 the number

of bedrooms, xi3 the natural logarithm of the lot size in square feet, xi4 denotes the natural

logarithm of the house size in square feet, and xi5 is a dummy variable with xi5 = 1 if the

home is of colonial style and 0 otherwise. The data is highly leveraged and heteroskedastic.

The sample size is n = 88.

The p-values of the F statistic to test for the null hypothesis of a single linear restriction on

the coefficient vector β, are computed in Table 6, where six different single linear restrictions

are considered. In the table, we report the four different p-values of the F statistic to test

for each restriction. The p-values are computed in the following three different methods.

The first method of computing the p-value of an F -value is from using the Feasible Imhof

distribution function in Equation (15) with the c value being replaced by the F -value. The

“Imhof p-value” (which is the exact p-value) of an F value is computed from

1− Imhof(Ω̂,NΩ̂, F ). (30)

The R code for computing the Imhof p-value will be available from the authors’ websites.

The second method of computing the p-value of an F -value is from using the F -table.

Although this is not correct, we present it here to show how wrong it is. We can tell this by

comparing the F -table p-value and the wild bootstrap p-value.8

The third method of computing the p-value of an F -value is from using the wild bootstrap,

which takes following steps. The model in Equation (1) is estimated by the ordinary least

squares method, yi = β̂0 +
∑5

k=1 β̂kxik + ei, where β̂k’s are the OLS estimates and ei is

the estimated residual. Let e
(b)
i = f(ei)v

(b)
i , where f(ei) = ei/(1 − hii). The choice for

v
(b)
i is based on either Mammen’s two-point distribution suggested by MacKinnon (2013) or

the Rademacher distribution proposed by Davidson and Flachaire (2008). Once the wild

8Unlike in simulation where we have the Benchmark in (21) which can be used to evaluate the performance
of the Imhof distribution, we do not have such a benchmark criterion in empirical applications. Thus we
compare the feasible Imhof p-values with the wild bootstrap p-values. Many simulation studies suggested that
the wild bootstrap gives good performance (e.g., Flachaire, 2005), while some recent studies, e.g., Djogbenou
et al. (2019), suggested that alternative variants of the wild bootstrap may perform quite differently. Here
we use the wild bootstrap just to verify that the Imhof procedure works.
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bootstrapped residuals e
(b)
i are obtained, the wild bootstrap data y

(b)
i can be generated from

y
(b)
i = β̂0 +

∑5
k=1 β̂kxik + e

(b)
i , conditional on the observed data of xik. Then, the model

is estimated for the bootstrap samples and the associated values of the test statistic F (b),

for b = 1, . . . , B, are calculated. Repeat these steps B times in order to estimate the wild

bootstrap p-value, which is 1
B

∑B
b=1 I(F (b) > F ).

[Insert Table 6 Here]

The four different p-values of the F statistic for each of the six different single linear

restrictions are presented in Table 6, where the wild bootstrap p-values are computed with

B = 10, 000. Table 6 presents the p-values of the F statistic using each of the five HC

estimators (HC0, HC1, . . . , HC4). In order to evaluate the Imhof p-values, we need a

benchmark to compare them with. However, for empirical applications, we can not compute

the Benchmark distribution in Equation (21). As we know the wild bootstrap “works” in

the present setup of linear models (see Hausman and Palmer (2012) for some simulation

results), we evaluate the p-values by examining how close the Imhof p-values from Equation

(30) and the F -table p-values are to the wild bootstrap p-values. From Table 6, we find the

following.

1. Imhof p-values are very close to the wild bootstrap p-values.

2. In most of the cases, Imhof p-values with HC3 are closer to the wild bootstrap p-values

than Imhof p-values with the other HC estimators.

3. The distances between F -table p-values and Wild bootstrap p-values are larger than

the distances between Imhof p-values and Wild bootstrap p-values.

4. F -table p-values with HC3 are generally closer to the wild bootstrap p-values than

F -table p-values with the other HC estimators.

5. Although Imhof p-values are as good as the wild bootstrap p-values, the computation

time of wild bootstrap is far longer than the Imhof procedure. For example, the

computation of the Imhof procedure takes less than a second on a Windows notebook

computer, while the computation of the wild bootstrap takes 45 seconds for each p-

value.

6. In a few cases in Table 6, we may observe that the F -table p-values with HC3 are

very close to the Imhof p-values, e.g., β3, β4 and β5. We speculate that these are for

coefficients of variables that may be more balanced and less-leveraged. However, we

also note that this is largely with HC3. Even for these three cases, the F-table p-values

and the Imhof p-values are quite different when HC0, HC1, HC2, and HC4 are used.
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This empirical application highlights that the p-values obtained from the Feasible Imhof

distribution of the F statistic does increase the accuracy of inference in empirical research as

the results demonstrate that the use of the Feasible Imhof distribution delivers the p-values

similar to the wild bootstrap p-values.

6 Conclusions

When the regression errors are homoskedastic, the exact finite sample distribution of the F

statistic is the Snedecor F -distribution. When the regression errors are heteroskedastic, the

exact finite sample distribution of the F statistic using an HC covariance matrix estimator

is unknown. The common practice in applied research is either to use the Snedecor F -

distribution (which is wrong) or to use the asymptotic distribution. It is well known that

the asymptotic inference based on White’s (1980) HC standard errors (known as HC0) tends

to over-reject when the sample is not large or leveraged/unbalanced. Various corrections

(HC1, HC2, HC3, HC4, and more) to White’s HC0 have been proposed to improve the

finite sample behavior. However their over-rejection remains problematic even in fairly large

samples.

In this paper, we have derived the exact finite sample distribution of the F statistic

using the HC covariance matrix estimators (HC0, HC1, HC2, HC3 and HC4) when the

regression errors are heteroskedastic and normal. It is shown that the F statistic under the

null hypothesis using various HC covariance matrix estimators can be expressed as a ratio

of quadratic forms, and therefore its exact cumulative distribution under the null hypothesis

can be easily written from the result of Imhof (1961). A numerical calculation is carried out

to present the exact (infeasible) Imhof distribution of the F statistic using different HCs.

We examine the Imhof procedure when the estimated parameters are used in the F -

distribution, which we call the Feasible Imhof distribution. Simulation results show the

Feasible Imhof distribution is remarkably reliable, and in comparison, the critical values

from the F -table lead to a serious over-rejection problem when the sample is not large or

leveraged/unbalanced. The F -type test statistic based on various HC covariance estimators

can provide more accurate testing results in terms of the test size behavior when the Feasible

Imhof distribution is used.

We have also examined robustness of our Imhof based F -distribution under non-normal

distributions of errors. Given that the Imhof procedure assumes normal errors, it is important

to examine how it performs under some severe departures from the normality such as the t5

distribution and departures from symmetry.

Finally, we present an empirical application which demonstrates that the use of the

Feasible Imhof distribution can improve the accuracy of inference in empirical research as
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evidenced by the similarity of the Feasible Imhof p-values and the wild bootstrap p-values.
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Figure 1: CDF for sample size n = 15 (upper figure), n = 50 (lower figure)
Case 1 with a = 0.5 in Equation (23)

Notes: The exact Infeasible Imhof CDFs of F using different HCs are calculated using
Imhof(Ω̂,NΩ, c) in Equation (15), and Benchmark is calculated using Benchmark(Ω,L, c) in
Equation (21).
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Figure 2: CDF for sample size n = 15 (upper figure), n = 50 (lower figure)
Case 2 with a = 2 in Equation (23)

Notes: The exact Infeasible Imhof CDFs of F using different HCs are calculated using
Imhof(Ω̂,NΩ, c) in Equation (15), and Benchmark is calculated using Benchmark(Ω,L, c) in
Equation (21).
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Table 6: Empirical Application: Rejection Probabilities with Different HC Estimators

HC0 HC1 HC2 HC3 HC4
H0 : β1 = 0

F -Statistic 45.14748 42.06925 40.18185 35.11130 28.61864
Imhof p-value 0.00000 0.00000 0.00000 0.00000 0.00000
F -table p-value 0.00000 0.00000 0.00000 0.00000 0.00000
Wild bootstrap p-value (Mammen) 0.00020 0.00020 0.00020 0.00040 0.00100
Wild bootstrap p-value (Rademacher) 0.00000 0.00000 0.00000 0.00000 0.00000

H0 : β2 = 0
F -Statistic 1.50145 1.39908 1.26527 1.05235 0.79717
Imhof p-value 0.31279 0.31279 0.32210 0.32686 0.31671
F -table p-value 0.22396 0.24030 0.26394 0.30798 0.37455
Wild bootstrap p-value (Mammen) 0.34153 0.34153 0.33653 0.33623 0.32983
Wild bootstrap p-value (Rademacher) 0.35874 0.35874 0.35264 0.34823 0.34133

H0 : β3 = 0
F -Statistic 0.07409 0.06904 0.05382 0.03754 0.01686
Imhof p-value 0.82260 0.82260 0.83461 0.84445 0.86335
F -table p-value 0.78615 0.79340 0.81713 0.84684 0.89700
Wild bootstrap p-value (Mammen) 0.81308 0.81308 0.80928 0.80498 0.79718
Wild bootstrap p-value (Rademacher) 0.81768 0.81768 0.80868 0.80008 0.78628

H0 : β4 = 0
F -Statistic 0.49756 0.46364 0.44222 0.38857 0.33664
Imhof p-value 0.52759 0.52759 0.53208 0.53444 0.51954
F -table p-value 0.48257 0.49785 0.50792 0.53478 0.56336
Wild bootstrap p-value (Mammen) 0.53135 0.53135 0.52975 0.52855 0.52545
Wild bootstrap p-value (Rademacher) 0.51805 0.51805 0.51535 0.51265 0.50585

H0 : β5 = 0
F -Statistic 1.50869 1.40582 1.40069 1.29511 1.29898
Imhof p-value 0.25141 0.25141 0.25179 0.25059 0.23238
F -table p-value 0.22285 0.23918 0.24003 0.25842 0.25772
Wild bootstrap p-value (Mammen) 0.25493 0.25493 0.25543 0.25463 0.25453
Wild bootstrap p-value (Rademacher) 0.25733 0.25733 0.25733 0.25663 0.25683

H0 : β2 + β5 = 0
F -Statistic 3.35403 3.12534 3.04230 2.73146 2.44761
Imhof p-value 0.08505 0.08505 0.08654 0.08587 0.07170
F -table p-value 0.07067 0.08080 0.08487 0.10221 0.12156
Wild bootstrap p-value (Mammen) 0.08621 0.08621 0.08201 0.07991 0.07921
Wild bootstrap p-value (Rademacher) 0.08921 0.08921 0.08711 0.08621 0.08561

Notes: Reported are the F statistics testing for each of the six different single restrictions.

Four different p-values of each F statistic are computed from using the Imhof distribution, the

F -table, and two different ways of the wild bootstrap methods.
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