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growth has an e¤ect on reducing stock return volatility, indicating the counter-cyclical variation
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1 Introduction

When the bivariate normal distribution assumption is made on the dependent and independent

variables, it implies the linear mean regression function between them. However, many economic

theories suggest nonlinear relationships between dependent and independent variables. For exam-

ple, in the consumption-based capital asset pricing model (CCAPM), a representative household is

solving a utility maximization problem subject to budget constraints. The optimization constraint

obtained from the consumption Euler equation explains the trade-o¤ between consumption in two

consecutive periods, and the household�s consumption and investment decision at each time period.

This theoretical constraint from the consumption Euler equation suggests that the consumption

growth rate a¤ects the pricing of assets in a nonlinear way.

In this paper, we examine how important this theoretical constraint is in estimating and pre-

dicting asset returns in the conditional mean and conditional variance when using the consumption

growth as a predictor. We start from a bivariate normal density, and then incorporate the nonlin-

earity implied by the consumption Euler equation into the estimation of the joint distribution of

the consumption growth and asset return. That is to tilt the bivariate normal density towards a

target density satisfying the consumption-based asset pricing model, which will produce the max-

imum entropy (ME) density. In using the exponentially tilted ME density, our paper is closely

related to Robertson et al (2005) and especially to Giacomini and Ragusa (2014) in economics lit-

erature. However we derive the conditional mean and variance functions analytically from the ME

density, instead of drawing them numerically from the ME density. We implement the �recursive

integration�method proposed in Mao and Ullah (2020) to estimate the conditional mean and the

conditional variance regression functions of asset returns conditional on the consumption growth.

Since we wish to examine the importance of a theoretical constraint in asset pricing, we de-

termine the conditional moment functions of asset returns according to the estimated ME density

subject to the CCAPM constraint. Our ME conditional mean and variance estimators are purely

data-driven subject to the theoretical CCAPM constraint. We then carry out both in-sample esti-

mation and out-of-sample prediction to investigate the importance of the theoretical constraint in

asset pricing. Our �ndings suggest that incorporating the theoretical constraint does improve the
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predictability of asset returns in mean especially in tails, and that the consumption growth has an

e¤ect on reducing stock return volatility, explaining the counter-cyclical variation of stock market

volatility with a consumption-based asset pricing model as presented in Campbell and Cochrane

(1999).

We organize this paper in the following order. In Section 2, we present the conditional mean

regression function obtained from using the bivariate maximum entropy distribution with incor-

porating the theoretical constraint from the CCAPM. We use the recursive integration algorithm

to estimate the conditional mean regression function. In Section 3, we carry out a simulation to

illustrate our method. In Section 4, we estimate the ME mean regression function of the US stock

returns conditional on the consumption growth and analyze the role of the CCAPM constraint in

the nonlinearity of the ME mean function. In Section 5, we examine the out-of-sample predictabil-

ity of US stock returns in the conditional mean. In Section 6, we introduce the ME conditional

variance function and examine the e¤ect of consumption growth on the stock return volatility. Sec-

tion 7 concludes. The mathematical details of the CCAPM constraint and the recursive integration

algorithm described in Section 2 are explained in Appendix (Section 8).

2 Maximum Entropy Regression under a Theoretical Constraint

We consider fyt; xtg ; t = 1; : : : ; T; to be independent and identically distributed observations from

an absolutely continuous bivariate distribution f (y; x). Suppose the conditional mean of y given x

exists and it provides a formulation for the regression model as

y = E(yjx) + u (1)

� m (x) + u;

where the error term u is such that E(ujx) = 0, and the mean regression function (conditional

mean) is

m(x) =

Z
y
y
f(y; x)

f(x)
dy =

1

f (x)

Z
y
yf(y; x)dy; (2)
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where f (x) is the marginal density of x:

When the joint density of y and x is not known, which is often the case, we propose the

maximum entropy method based on the information theory to estimate f(y; x) and the recursive

integration method to solve the conditional mean/variance of y given x: We explain the method in

the following three subsections.

2.1 Maximum Entropy Distribution

We start with a �proposed�joint density f (y; x). Our goal is to get the optimal �target�density

~f (y; x) which incorporates the importance of theoretical constraints. The optimal target density

~f (y; x) is achieved by maximizing the Kullback-Leibler type entropy (information), which has the

form

Max
~f
H( ~f) � �

Z
x

Z
y

~f(y; x) log
~f(y; x)

f(y; x)
dydx (3)

subject to Z
x

Z
y
yixj ~f(y; x)dydx = �ij ; 0 � i+ j � k; (4)

Z
x

Z
y
gm (y; x) ~f(y; x)dydx = 0; m = 1; : : : ;M; (5)

where k is the highest order of moments conditions. gm (y; x) is the mth constraint based on

economic theory such as the CCAPM. M represents the total number of theoretical constraints.

In general, the maximum entropy approach can be applied to various examples in economics and

�nance to incorporate the importance of theoretical constraints, such as the production-based asset

pricing model in Cochrane (1991), portfolio allocation and option pricing problems in Golan (2017).

In this paper, we are interested in analyzing the relationship between the asset return y and the

consumption growth x according to the consumption-based asset pricing model. Hence, we use the

consumption Euler equation as the theoretical constraint in this paper. With the single constraint

from the CCAPM, i.e. M = 1, and gm (y; x) will be denoted as g (y; x) for simplicity.

According to Hansen and Singleton (1983), consumers solve the time-additive utility maximiza-
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tion problem, which takes the form

Et

1X
�=0

�t+�
C1��t+�

1� �; (6)

subject to the sequence of budget constraints

Ct+� +Bt+�+1 � (1 + rt+� )Bt+� +Wt+� : (7)

Consumers have a constant relative risk aversion (CRRA) type utility function with risk aversion

parameter �. � is the discount factor. Ct+� , Bt+� and Wt+� are the real consumption, saving

and wealth at time t + � . 1 + rt+� represents the gross asset return at time t + � . Forming the

Lagrangian,

L = Et
1X
�=0

 
�t+�

C1��t+�

1� � + �t+� ((1 + rt+� )Bt+� +Wt+� � Ct+� �Bt+�+1)
!
; (8)

where �t+� is the Lagrangian multiplier of budget constraint at time t+� . The �rst-order necessary

conditions for the above maximization problem are

@L
@Ct+�

= Et
�
�t+�C��t+� � �t+�

�
= 0; (9)

@L
@Ct+�+1

= Et
�
�t+�+1C��t+�+1 � �t+�+1

�
= 0;

@L
@Bt+�+1

= Et (�t+� + �t+�+1 (1 + rt+�+1)) = 0:

Substituting out �t+� and �t+�+1 from the �rst two equations in (9) and rearranging the third

equation, the consumption Euler equation is

Et
�
�X��

t+�Yt+� � 1
�
= 0; (10)

where Xt+� � Ct+�
Ct
; Yt+� � 1 + rt+� . (10) shows the optimal trade-o¤ between consumption at

time t and time t + � . The marginal utility of consumption at time t is equal to the product of

5



marginal utility of consumption at time t+ � and total investment return at time t.

According to Cochrane (2000), the value of an asset depends on the delay and risk of its

payments. In consumption-based asset pricing models, risk corrections to asset prices should be

driven by the relationship between asset payo¤s and consumption. For a given expected payo¤ of

an asset, the asset price is a¤ected by the state of the economy. When the economy is going through

a recession, investors feel poorer and contract their consumption. Risky assets cannot guarantee

investors with certain amount of consumption. Thus, they are sold at lower prices comparing to an

asset in a state where the economy is experiencing a boom when investors feel wealthy and expand

their consumption. The decrease in asset prices during economic recession re�ects a discount of their

riskiness, which is determined by the relationship between asset payo¤ and consumption. Based on

the above economic intuition, we are interested in predicting asset returns using the information

included in the consumption Euler equation in (10), which indicates a certain relationship between

asset price and consumption growth.

Since we are interested in studying the relationship between consumption growth and asset

return at the same time, we drop the time subscripts of both variables. De�ne x � log (X) and

y � log (Y ). After a Taylor series expansion up to the 4th order1, the consumption Euler equation

in (10) becomes

g (y; x) = log � � �x+ y + 1
2
� (�+ 1)x2 � �xy � 1

6
� (�+ 1) (�+ 2)x3

+
1

2
� (�+ 1)x2y +

1

24
� (�+ 1) (�+ 2) (�+ 3)x4 � 1

6
� (�+ 1) (�+ 2)x3y: (11)

The derivation of (11) is shown in subsection 8.1. When the risk aversion parameter � is recognized

as 3, which has been commonly used in the literature, the consumption Euler equation in (11)

becomes

g (y; x) = log � � 3x+ y + 6x2 � 3xy � 10x3 + 6x2y + 15x4 � 10x3y: (12)

In general, the risk aversion parameter � can be estimated using generalized method of moments

1Generally, the function of theoretical restrictions can be expanded to any higher orders. For our consumption-
based asset pricing model, we expand the Euler equation up to the 4th order. For other applications, expansions
with higher than the 4th order may be useful.
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(GMM) and generalized empirical likelihood (GEL) methods. See Kitamura and Stutzer (1997),

Imbens et al (1998), Bera and Bilias (2002), and Kitamura et al (2004). Since it is not our primary

interest to estimate the risk aversion parameter � in our empirical analysis in Sections 4-6, where

we predict the stock returns using consumption growth rates, we set the � value to be 3 as well as

a range of values from 0.1 to 4.6 as used in Giacomini and Ragusa (2014). We report the empirical

results based on all these � choices in Sections 4-6.

When the true joint density of x and y is not known, parametric functional forms of their

relationship are usually assumed. In particular, a regression function is often considered to be

linear. Under the linearity assumption, the highest order of moment conditions k in (4) is 2, as

implied by a bivariate normal density for y and x. In this paper, we assume that the initially

proposed joint density f (y; x) follows the bivariate normal distribution, and thus m (x) is proposed

to be linear.

In our consumption-based asset pricing application, all moment conditions in (4) are �nite.

With a reasonable choice of the risk aversion parameter �, the theoretical constraint in (11) is also

�nite. Therefore, according to Komunjer and Ragusa (2016), the target maximum entropy density

exists and is unique.

By solving the maximization problem in (3), we obtain the target ME density ~f (y; x) of the

form

~f (y; x) = exp
�
�
�
�00 + �10y + �01x+ �20y

2 + �02x
2 + �11yx+ �gg (y; x)

�	
; (13)

where �ij is the Lagrangian multiplier that corresponds to the moment conditionR
x

R
y y

ixj ~f(y; x)dydx = �ij in (4) ; and �g is the Lagrangian multiplier that corresponds to the

theoretical constraint in (5). Given the joint density form in (13), the marginal density of x is

achieved by integrating y out, and the marginal density of y by integrating x out, viz.,

~f (x) =

Z
y
exp

�
�
�
�00 + �10y + �01x+ �20y

2 + �02x
2 + �11yx+ �gg (y; x)

�	
dy; (14)

~f (y) =

Z
x
exp

�
�
�
�00 + �10y + �01x+ �20y

2 + �02x
2 + �11yx+ �gg (y; x)

�	
dx:
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The Lagrangian multipliers not only characterize the above density functions, but also represent the

relative strength of each moment condition and the theoretical constraint. See Golan et al (1996),

Ullah (1996), and Golan (2017). To estimate the Lagrangian multipliers, we use the Newton method

considered by Wu (2003, 2010). According to the functional form of the theoretical constraint of

the consumption Euler equation in (11), the third order and fourth order terms bring non-normality

into the maximum entropy joint density ~f (y; x), which tilts the initially proposed bivariate normal

density f (y; x). It will make a nonlinear mean regression model. We then examine the gains from

incorporating the theoretical constraint g (y; x) in estimation and prediction of conditional mean.

2.2 ME Mean Regression Function

First, let us de�ne

�10 (x; �) � �
1

6
�g� (�+ 1) (�+ 2)x

3 +
1

2
�g� (�+ 1)x

2 + (�11 � �g�)x+ (�10 + �g) : (15)

�10 (x; �) is a function of the log consumption growth rate x, the risk aversion parameter �, and

the Lagrange multipliers �g, �11 and �10. Based on the ME joint density in (13) and ME marginal

density in (14), the conditional mean of y given x is represented as2

m(x;�;�) = E(yjx) = 1
~f(x)

Z
y
y ~f(y; x)dy (16)

=

R
y y exp

�
�
�
�00 + �10y + �01x+ �20y

2 + �02x
2 + �11yx+ �gg (y; x)

�	
dyR

y exp f� [�00 + �10y + �01x+ �20y2 + �02x2 + �11yx+ �gg (y; x)]g dy

=

R
y y exp

�
�
�
�20y

2 + �10 (x; �) y
�	
dyR

y exp f� [�20y2 + �10 (x; �) y]g dy
; (17)

where � =(�20; �11; �10; �g)
0 : When � = 3;

�10 (x; 3) = �10�gx3 + 6�gx2 + (�11 � 3�g)x+ (�10 + �g) : (18)

2Since the discount factor � in (10) does not play a role in Equation (16), our prediction results are robust to the
choice of �. When � is unknown, one can refer to Hahn et al. (2019) on estimation of �.
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Observing the numerator and denominator in (17), we de�ne the following integrals as functions

of x

Fr (x;�;�) �
Z
y
yr exp

�
�[�20y2 + �10(x; �)y]

	
dy; (19)

where r = 0; 1; 2; : : :. Then the conditional mean function in (16) is expressed as

m(x;�;�) =
F1(x;�;�)

F0(x;�;�)
: (20)

When the Lagrangian multipliers � are estimated by the Newton method,

m
�
x; �̂;�

�
=
F1

�
x; �̂;�

�
F0

�
x; �̂;�

� : (21)

This is our maximum entropy conditional mean estimator.

Moreover, the response function � (x;�;�) � dm(x;�;�)
dx (the derivative of the conditional mean)

can be written as

� (x;�;�) =
F 01 (x;�;�)F0 (x;�;�)� F1 (x;�;�)F 00 (x;�;�)

F 20 (x;�;�)
; (22)

and its estimator is given by �
�
x; �̂;�

�
. When the Lagrangian multipliers are given and the risk

aversion parameter � is �xed, Fr (x;�;�) is only a function in terms of x, and can be written simply

as Fr (x;�;�) = Fr (x), m(x;�;�) = m (x), and � (x;�;�) = � (x).

2.3 Recursive Integration Algorithm

Since the theoretical constraint g (y; x) in (11) contains the third and fourth order terms, it is not

likely to solve out the exponential polynomial integrals in both the numerator and denominator in

(17). One can use numerical methods to compute the integrals at every value of x. However, it can

be very computationally expensive in large samples and thus is unsatisfactory. As an alternative,

Mao and Ullah (2020) introduce a recursive integration method which not only solves the conditional
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mean function m(x) but also reduces the computational cost.

We present the recursive integration method as the following algorithm. Given the de�nition

of Fr (x) in (19), we use F 0r(x) to represent the �rst derivative of Fr(x).

Recursive Integration Algorithm

1. Write the �rst derivatives of F0(x); F1(x) and F2(x) in a linear system,

F 00(x) = �01(x)F1(x); (23)

F 01(x) = �12(x)F2(x);

F 02(x) = �21(x)F1(x) + �22(x)F2(x);

where � (x)�s denote the corresponding coe¢ cients as functions of x.

2. Starting from a given initial value x0, trace out functions F0(x), F1(x) and F2(x) over the
entire range of x with a small increment h,

F0(x0 + h) � F0(x0) + F 00(x)h; (24)

F1(x0 + h) � F1(x0) + F 01(x)h;
F2(x0 + h) � F2(x0) + F 02(x)h;

3. Given that m(x) = F1(x)
F0(x)

and � (x) = dm(x)
dx , trace out the conditional mean and response

functions.

The mathematical derivation of (23) is provided in subsection 8.2. Note that Equation (23) is about

integrating (19) over inde�nite domain. The results for the de�nite domain integration are similar

to the above. For the step size h in Equation (24), we have used several �xed small values and

found that our estimation results are robust to the choice of h. Computing time of our algorithm

does not vary much when h value changes.

3 Simulation

In this section, we design a simulation to evaluate the performance of our maximum entropy

conditional mean estimator and illustrate the usefulness of the recursive integration method shown

in subsection 2.3.
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We �rst generate data fyt; xtg ; t = 1; : : : ; T; from a bivariate normal distribution

N

��
0
0

�
;

�
�2y ��y�x

��y�x �2x

��
; (25)

where � captures the linear correlation between y and x. (25) has a bivariate normal joint density

f (y; x). Then, with k = 2 in (4), the target density ~f (y; x) tilts the proposed bivariate normal

density by incorporating the theoretical constraint g (y; x) in (11). Thus, ~f (y; x) has the form

~f (y; x) = f (y; x)� exp [��gg (y; x)] : (26)

We then use the Monte-Carlo Markov-Chain (MCMC) method to draw data from the target density

~f (y; x), under which the relationship between y and x is no longer linear. See Chib and Greenberg

(1995) for the usefulness of the MCMCmethod in drawing samples from unnamed densities. We �rst

estimate ~f (y; x) by solving the entropy maximization problem in (3). After we obtain the estimated

maximum entropy joint density, we use the recursive integration method introduced in subsection

2.3 to compute m (x). As a comparison, we run a linear regression of y on x, which corresponds

to the initially proposed bivariate normal density. Fixing the parameter values at �g = 0:1, � = 3,

�y = 1, we evaluate the estimation results based on both proposed and target densities when

�x 2 f0:1; 0:2g, and the correlation coe¢ cient � 2 f0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g.

In this case, the theoretical constraint we use is Equation (12). De�ne the root mean squared error

(RMSE) under the proposed and target densities as

RMSE� =

 
1

T

TX
t=1

�
yt � ŷ�t

�2!1=2
; (27)

where � = LN or ME. Here, ŷLNt is estimated from the linear (denoted as LN) regression based on

the proposed density. ŷME
t is estimated by the maximum entropy conditional mean m̂ (xt) shown

in (21). We compute the Monte Carlo average of the RMSEs over 100 replications with sample

size T = 500. Table 1 reports results under �x = 0:1 and 0:2 while the correlation coe¢ cient � is
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changing from 0 to 0:9.

The results in Table 1 show that incorporating the theoretical constraint improves the estimation

of the conditional mean of y given x regardless of the variance of x and coe¢ cient of correlation �. As

the coe¢ cient of correlation � increases, RMSE under both proposed and target density decreases

because stronger linearity prevails. Even when � gets very large, which indicates a strong linear

relationship between y and x, the maximum entropy conditional mean estimator still outperforms

the simple linear regression. Since the true data generating process is never known in practice, the

result indicates that our ME mean regression estimator would provide a better estimation method.

In the next section we apply the ME method for estimating the mean regression function of stock

returns conditional on consumption growth.

4 Estimating Stock Returns: ME Mean Regression Function

Based on the economic theory in subsection 2.1, we are interested in analyzing the relationship be-

tween stock return and consumption growth. To examine the role of the theoretical constraint

in (11) to predict stock return, we conduct in-sample estimation in this section. We investi-

gate how consumption growth rate serves as a stock return predictor by using quarterly and

monthly data. Quarterly aggregate real consumption data are available on Martin Lettau�s web-

site (https://sites.google.com/view/martinlettau), containing observations from 1952Q1 to 2016Q3.

Monthly aggregate real consumption data from 1959JAN to 2016DEC are downloaded from the

webpage of FRED of the Federal Reserve Bank at St. Louis. Stock index data at di¤erent frequen-

cies are obtained from Amit Goyal�s website (http://www.hec.unil.ch/agoyal/). According to the

introduction of economic theory in subsection 2.1, x represents the real consumption growth rate

and y represents the asset return. We take logarithms for both the aggregate real consumption

and stock index data, and then compute the �rst-di¤erences to obtain the consumption growth and

stock return. Each variable is then scaled by dividing its sample standard deviation.

Having the data of y and x available, we �rst obtain ~f (y; x), the maximum entropy joint density

between y and x. Then, we plug in ~f (y; x) into (16) and (22) to estimate our ME conditional mean
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function and its response function. We also report the estimation results under the simple linear

regression. Because the ME conditional mean estimator exhibits nonlinearity as the maximum

entropy density incorporates the theoretical constraint, the improvement in the ME nonlinear

model over the linear model sheds light on the contribution of the theoretical constraint in the

regression function of the stock return when the consumption growth is a regressor.

As a comparison, we also consider the nonparametric (NP) kernel methods in this empirical

study, for which ŷt is computed by the local constant least squares (LCLS) and local linear least

squares (LLLS) estimators. The local constant (Nadaraya-Watson) nonparametric kernel estima-

tor is ~m (x) =
P
ytwt (x), where wt (x) =

K((xt�x)=b)P
K((xt�x)=b) in which K (�) is a kernel function and

b is the bandwidth. For more detail, see Pagan and Ullah (1999). Minimizing the local con-

stant weighted squared errors
P
(yt �m (x))2K ((xt � x) =b) with respect to m (x) provides the

local constant nonparametric kernel estimator ~m (x). The local linear nonparametric kernel es-

timators m� (x) and �� (x) are obtained by minimizing the local linear weighted squared errorsP
(yt �m (x)� (xt � x)� (x))2K ((xt � x) =b) with respect to m (x) and � (x).

4.1 Quarterly Data

We use quarterly data for both variables from 1952Q1 to 2016Q3. After taking di¤erences of the

raw data set, there are T = 258 observations totally. When the risk aversion parameter � takes

the value 3, we show the conditional mean of stock return plot in Figure 1. The black curve

represents estimated conditional mean of stock return under the ME conditional mean estimator,

which shows clear nonlinearity at both left and right tails. We de�ne the average response coe¢ cient

�� =
R
x � (x)

~f (x)dx with ~f (x) in (14) is approximated by �� � 1
T

PT
t=1 � (xt). Over the range of

x, the ME conditional mean estimator has an average response coe¢ cient ��ME = 0:1554. In this

case where � = 3, if consumption growth increases by 1%, on average stock return goes up by

0:1554% under the ME model. The estimated Lagrangian multiplier of the theoretical constraint

�̂g is �0:0013: The slope of maximum entropy conditional mean curve changes according to x,

the consumption growth rate. It shows that the marginal e¤ect of consumption growth on stock

return is varying rather than being �xed as in the linear regression. In Figure 1, the red line
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represents the estimated stock return based on linear model (LN), which has the regression result

ŷ = 0:1142 + 0:1414x, where the slope is �̂LN = 0:1414. Comparing the ME regression with the

linear regression, the ME mean function has a larger average marginal e¤ect of consumption growth

on stock return than the linear model.

RMSE from conditional stock return estimations under maximum entropy (black line) and initial

(red line) densities are RMSEME = 0:9837 and RMSELN = 0:9880; respectively. As a comparison,

the NP kernel methods have RMSE under LCLS and LLLS are 0.9857 (with the average response

coe¢ cient ��LCLS = 0:0868) and 0.9848 (with the average response coe¢ cient ��LLLS = 0:1829),

respectively.

To examine the signi�cance of �̂g, i.e. the importance of the theoretical constraint, we expand

choice of the risk aversion parameter � according to a range of 10 values from 0:1 to 4:6 considered

in Giacomini and Ragusa (2014). In Table 2, we report the RMSE of the conditional mean stock

return estimation under the ME density with various values of the risk aversion parameters �, the

average response coe¢ cient ��, as well as the corresponding �̂g. The RMSE of conditional mean

stock return estimation under the ME density does not change a lot under di¤erent risk aversion

levels � since the Lagrangian multiplier �g also changes with � when implementing the Newton

method to estimate the Lagrangian multiplier. As shown in Table 2, the estimation e¢ ciency is

improved over the linear model (RMSELN = 0:9880) regardless of the choice of �, which indicates

that nonlinearity arising from imposing the theoretical constraint provides extra information for

the stock return mean function for all values of �.

4.2 Monthly Data

Following the analysis based on quarterly data, we want to check whether increasing data frequency

may strengthen the importance of incorporating the theoretical constraint. We use monthly data

from 1959JAN to 2016DEC. After di¤erencing the raw data set, there are 695 observations totally.

We conduct the in-sample estimation based on all the T = 695 observations. When the risk aversion

parameter � is 3, we display the conditional mean regression functions of stock return in Figure

2. The black curve represents the estimated ME conditional mean of stock return. Over the range
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of x, it has an average response coe¢ cient ��ME = 0:1137. When � = 3, if consumption growth

increases by 1%, stock return goes up by 0:1137% on average under maximum entropy estimation.

The estimated Lagrangian multiplier of the theoretical constraint �̂g is �0:0013:

In Figure 2, the red line represents the estimated stock return based on the linear model,

which is characterized by ŷ = 0:0897 + 0:1311x with slope �̂LN = 0:1311. The slope of the ME

conditional mean curve changes with the consumption growth while the slope is constant in the

linear regression. On average, consumption growth has a similar marginal e¤ect on stock return

under the ME estimation compared to that in the linear regression when using monthly data. The

RMSE from conditional mean stock return estimations under target (black line) and proposed

(red line) densities are RMSEME = 0:9904 and RMSELN = 0:9930; respectively. RMSE from

conditional stock return estimation under LCLS and LLLS are 0.9913 (with ��LCLS = 0:0652) and

0.9907 (with ��LLLS = 0:1311) for a comparison.

Similarly to what we have examined with the quarterly data, we check the contribution of the

theoretical constraint at di¤erent risk aversion levels �. In Table 3, we have reported RMSE, ��,

and �̂g when � is changing from 0.1 to 4.6. Our ME model outperforms the linear model at all risk

aversion levels in terms of estimation e¢ ciency in RMSE.

5 Predicting Stock Returns: ME Mean Regression Function

In addition to the in-sample analysis of the relationship between stock return and consumption

growth rate, we study the out-of-sample predictability of stock return given consumption growth

rate as a predictor. We report the prediction results under the ME conditional mean estimator,

simple linear regression, and nonparametric kernel methods. Improvement in the prediction by the

ME model over the linear model shows the relevance of theoretical constraint in prediction of stock

return using consumption growth rate.

Suppose T is the total sample size. We divide the entire sample into two periods. We use R to

denote the number of regression periods and P to denote the number of prediction periods. The

forecast horizon is denoted as s. The number of prediction periods is thus T � R � s. We use the
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root mean squared forecast error (RMSFE) as the evaluating criterion

RMSFE� =

0@ 1

T �R� s

TX
t=R+s+1

�
yt � ŷ�t

�21A1=2 ; (28)

where � = LN, ME, or NP. LN refers to the linear prediction model. Under the ME distributions,

yt+s = m (xt) + ut+s, where ut+s is the error term at time t + s. ŷME
t is computed as m̂ (xt) =

m
�
xt; �̂; �

�
according to (21). NP refers to the nonparametric kernel method. In the out-of sample

prediction, we report only LCLS. Examination of the predictability of stock return is conducted by

using the same quarterly and monthly data.

5.1 Quarterly Data

The quarterly data has the sample size T = 258. We consider three choices of regression periods

with R 2 f80; 120; 160g, which correspond to 20, 30, and 40 years. We consider two forecast

horizons s 2 f1; 4g, for one quarter and one year ahead forecasts. The results are presented in

Table 4. Prediction results under the choice of risk aversion parameter � = 3, which is often used

in literature, are reported on the top row. In the following rows, we report the prediction results

when risk aversion parameter � is changing between 0.1 to 4.6. As a comparison, out-of-sample

RMSFE based on simple linear models (LN) and nonparametric kernel methods (NP) are shown in

the last two rows of Table 4. All the numbers shown in Table 4 are RMSFE values. According to

Table 4, forecast accuracy improves under the ME model by incorporating the theoretical constraint

compared to the linear model for di¤erent values of �, even though the improvement is not large.

This result is robust for all values of R and s.

We report p-values of the Giacomini-White (GW 2006) test for the conditional predictive ability

of the ME and NP models in comparison to the linear model (LN) using quarterly data in Table 5.

The GW statistics are constructed with the test function using a constant term plus one lagged loss-

di¤erence. The results show that most of the GW p-values appears to be systematic yet not very

signi�cant, which indicates a weak gain in predictive ability of the ME model from incorporating

the CCAPM theoretical constraint.
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5.2 Monthly Data

The monthly data has the sample size T = 695. We consider R 2 f240; 360; 480g, corresponding

to 20, 30, and 40 years. We consider four forecast horizons s 2 f1; 3; 6; 12g. We report the results

in Table 6. For a comparison, RMSFE are also reported for LN and NP in the last two rows. All the

numbers shown in Table 6 are RMSFE values, which show the forecast accuracy improvement based

on the ME density. However, the gain from incorporating the theoretical constraint is relatively

small. The gain becomes somewhat weaker when the data frequency increases from quarterly to

monthly. In Table 7, we report the GW p-values using monthly data to compare predictive ability

of the ME models with the linear model. The p-values become less signi�cant when the data

frequency increases to monthly from quarterly. Incorporating the theoretical constraint becomes

less helpful with a higher data frequency in predicting stock returns.

6 Estimating Stock Volatility: ME Variance Regression Function

Similarly to Equation (16), we compute the conditional second moment of stock return by

h(x;�;�) � E(y2jx) = 1
~f(x)

Z
y
y2 ~f(y; x)dy (29)

=

R
y y

2 exp
�
�
�
�20y

2 + �10 (x; �) y
�	
dyR

y exp f� [�20y2 + �10 (x; �) y]g dy

=
F2(x;�;�)

F0(x;�;�)
=
F2(x)

F0(x)
:

The conditional volatility of stock return y given consumption growth x can be obtain by

V (x;�;�) � h(x;�;�)� (m(x;�;�))2 : (30)

According to Equation (20), the conditional volatility function is represented by

V (x;�;�) =
F2(x)

F0(x)
�
�
F1(x)

F0(x)

�2
: (31)

17



To examine the e¤ect of the consumption growth on stock return volatility, we use quarterly data

for both variables from 1952Q1 to 2016Q3 with 258 observations in total. When the risk aversion

parameter � takes the value 3, we report the ME variance regression function of stock return

conditional on the consumption growth in Figure 3, over the range of x from �2:5 to 2:5. According

to Figure 3, the conditional stock return volatility is a decreasing function in the consumption

growth. It indicates that the consumption growth has an e¤ect on reducing stock return volatility.

We approximate the average slope coe¢ cient �
 � 1
T

PT
t=1

dV (xt)
dxt

, where dV (xt)
dxt

is computed based

on Equation (31) as follows

dV (x)
dx

=
F 02 (x)F0 (x)� F2 (x)F 00 (x)

F 20 (x)
� 2F1(x)

F0(x)

F 01 (x)F0 (x)� F1 (x)F 00 (x)
F 20 (x)

: (32)

Over the range of x, the ME conditional volatility estimator has an average slope coe¢ cient

�
 = �0:0227. Our empirical result helps explaining the counter-cyclical variation of stock market

volatility with a consumption-based asset pricing model as presented in Campbell and Cochrane

(1999).

We have also examined the e¤ect of the consumption growth rate on stock return volatility

using monthly data, which we do not report for space. We �nd the monthly e¤ect to be smaller as

the frequency of data gets higher because the monthly consumption growth is smaller and noisier

than the quarterly consumption growth.

7 Conclusions

In this paper, we estimate the conditional moment functions of asset returns through an information-

theoretic maximum entropy method, which incorporates the consumption Euler equation from the

consumption-based capital asset pricing model into the maximum entropy density estimation. We

have demonstrated the simplicity and e¢ ciency of the ME estimator of the mean and variance

function of the asset returns. We �nd that incorporating the CCAPM theoretical constraint im-

proves the mean prediction, although this improvement is small or mostly at tails. We also �nd the
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ME volatility regression suggests that there exists a negative relationship between the consumption

growth and the stock return volatility.

In order to further examine the predictability of asset returns using the same ME method, one

may consider more than just one theoretical constraint from the CCAPM as done in this paper.

Alternative theoretical models to the consumption-based asset pricing model, such the dividend-

based or the production-based asset pricing models may be investigated, which we leave for other

work.
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8 Appendix

8.1 4th-Order Taylor Expansion of Theoretical Constraint

In this subsection, we show the mathematical derivation of the 4th-order Taylor expansion of

consumption Euler equation in (10) to obtain (11). After we drop the subscripts of X and Y , we

de�ne G (Y;X) � �X��Y � 1. According to the Taylor Theorem, G (Y;X) is approximated as

G (Y;X) � G (Y0; X0) +
@G

@Y
� (Y � Y0) +

@G

@X
� (X �X0) +

@2G

@Y 2
� (Y � Y0)

2

2

+
@2G

@X2
� (X �X0)2

2
+

@2G

@Y @X
� (Y � Y0) � (X �X0)

+
@3G

@Y 3
� (Y � Y0)

3

3!
+

@3G

@Y 2@X
� (Y � Y0)

2

2
� (X �X0)

+
@3G

@Y @X2
� (Y � Y0) �

(X �X0)2

2
+
@3G

@X3
� (X �X0)3

3!

+
@4G

@Y 4
� (Y � Y0)

4

4!
+

@4G

@Y 3@X
� (Y � Y0)

3

3!
� (X �X0)

+
@4G

@Y 2@X2
� (Y � Y0)

2

2
� (X �X0)2

2

+
@4G

@Y @X3
� (Y � Y0) �

(X �X0)3

3!
+
@4G

@X4
� (X �X0)4

4!
;

under the 4th-order expansion. The partial derivatives are computed as

@G

@Y
= �X��;

@G

@X
= ���X���1Y;

@2G

@Y 2
= 0;

@2G

@X2
= �� (�+ 1)X���2Y;

@2G

@Y @X
= ���X���1;

@3G

@Y 3
=

@3G

@Y 2@X
= 0;

@3G

@Y @X2
= �� (�+ 1)X���2;

20



@3G

@X3
= ��� (�+ 1) (�+ 2)X���3Y;

@4G

@Y 4
=

@4G

@Y 3@X
=

@4G

@Y 2@X2
= 0;

@4G

@Y @X3
= ��� (�+ 1) (�+ 2)X���3;

@4G

@X4
= �� (�+ 1) (�+ 2) (�+ 3)X���4Y:

All the above partial derivatives are evaluated at (X0; Y0). After rearranging all the terms, (11) is

obtained.

8.2 Recursive Integration

In this subsection, we explain the mathematical details of the recursive integration method in

subsection 2.3 with inde�nite range. When the integral range of y is de�nite from a to b, the

procedure to compute m(x) and � (x) is similar.

When the range for y is from �1 to +1, de�ne the following integrals as functions of x.

Fr (x) �
Z +1

�1
yr exp�[�20y2 + �10(x)y]dy;

where r = 0; 1; 2; : : : :

F0 (x) �
Z +1

�1
exp�[�20y2 + �10(x)y]dy;

F1 (x) �
Z +1

�1
y exp�[�20y2 + �10(x)y]dy;

F2 (x) �
Z +1

�1
y2 exp�[�20y2 + �10(x)y]dy:
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Firstly, assuming �20 > 0,

0 =

Z +1

�1
d exp�[�20y2 + �10(x)y]

=

Z +1

�1
(�2�20y � �10(x))e�[�20y

2+�10(x)y]dy

= �2�20F1 (x)� �10(x)F0 (x) :

Secondly,

F0 (x) =

Z +1

�1
exp�[�20y2 + �10(x)y]dy

= ye�[�20y
2+�10(x)y]j+1�1 �

Z +1

�1
yde�[�20y

2+�10(x)y]

=

Z +1

�1
(2�20y

2 + �10(x)y)e
�[�20y2+�10(x)y]dy

= 2�20F2 (x) + �10(x)F1 (x) :

Thirdly,

F1 (x) =

Z +1

�1
y exp�[�20y2 + �10(x)y]dy

=

Z +1

�1
exp�[�20y2 + �10(x)y]d

�
1

2
y2
�

=
1

2
y2e�[�20y

2+�10(x)y]j+1�1 �
Z +1

�1

1

2
y2de�[�20y

2+�10(x)y]

=

Z +1

�1

1

2
y2(2�20y + �10(x))e

�[�20y2+�10(x)y]dy

= �20F3 (x) +
1

2
�10(x)F2 (x) :

Thus,

F3 (x) =
1

�20
F1 (x)�

�10(x)

2�20
F2 (x) : (33)
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De�ne

F 00 (x) �
dF0(x)
dx

; F 01 (x) �
dF1(x)
dx

; F 02 (x) �
dF2(x)
dx

; and �010(x) �
d�10(x)
dx

:

Firstly, solve for F 00 (x)

F 00 (x) � d
dx

Z +1

�1
exp�[�20y2 + �10(x)y]dy

=

Z +1

�1

d
dx
exp�[�20y2 + �10(x)y]dy

= �
Z +1

�1
�010(x)ye

�[�20y2+�10(x)y]dy

= ��010(x)F1 (x) :

Secondly, solve for F 01 (x)

F 01 (x) � d
dx

Z +1

�1
y exp�[�20y2 + �10(x)y]dy

=

Z +1

�1

d
dx
y exp�[�20y2 + �10(x)y]dy

= �
Z +1

�1
�010(x)y

2e�[�20y
2+�10(x)y]dy

= ��010(x)F2 (x) :

Thirdly, solve for F 02 (x)

F 02 (x) � d
dx

Z +1

�1
y2 exp�[�20y2 + �10(x)y]dy

=

Z +1

�1

d
dx
y2 exp�[�20y2 + �10(x)y]dy

= �
Z +1

�1
�010(x)y

3e�[�20y
2+�10(x)y]dy

= ��010(x)F3 (x) :
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Substitute F3 (x) for (33) to obtain

F 02 (x) =
�010(x)�10(x)

2�20
F2 (x)�

�010(x)

�20
F1 (x) :

The expressions for F 00(x), F
0
1(x), and F

0
2 (x) can be written in a linear system,

F 00(x) = �01(x)F1(x);

F 01(x) = �12(x)F2(x);

F 02(x) = �21(x)F1(x) + �22(x)F2(x);

where ��s denote the corresponding coe¢ cients.

Since

F0(x0 + h) � F0(x0) + F
0
0(x)h;

F1(x0 + h) � F1(x0) + F
0
1(x)h;

F2(x0 + h) � F2(x0) + F
0
2(x)h;

for a given initial value x0 and a small increment h, the functions of x, F0(x), F1(x) and F2(x) can

be traced out. Given that

m(x) =
F1(x)

F0(x)
;

� (x) =
F 01 (x)F0 (x)� F1 (x)F 00 (x)

F 20 (x)
;

the ME conditional mean function and its response function can be traced out as well.
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Table 1. Monte Carlo: Estimation of the LN and ME Mean Regression Functions
�x = 0:1

� 0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

RMSELN 1:0026 1:0004 0:9818 0:9515 0:9191 0:8694 0:8013 0:7214 0:5881 0:4309
RMSEME 0:9933 0:9913 0:9744 0:9434 0:9120 0:8636 0:7997 0:7136 0:5839 0:4280

�x = 0:2

� 0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

RMSELN 1:0097 1:0066 0:9897 0:9629 0:9253 0:8962 0:8178 0:7354 0:6322 0:4326
RMSEME 0:9958 0:9917 0:9761 0:9569 0:9244 0:8825 0:8148 0:7300 0:6295 0:4320

Notes: Reported are the Monte Carlo average of RMSEs for the linear (LN) and the maximum

entropy (ME) mean regression functions over 100 replications, with the sample size T = 500; �x 2
f0:1; 0:2g ; and the correlation coe¢ cient � 2 f0; : : : ; 0:9g.
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Figure 1: Conditional Mean Regression Functions of Quarterly Stock Return

­4 ­3 ­2 ­1 0 1 2 3 4 5
Consumption Growth (x)

­4

­3

­2

­1

0

1

2

3

C
on

di
tio

na
l S

to
ck

 R
et

ur
n 

(E
(y

|x
))

Scatter Plot
Linear Regression
Maximum Entropy

LN

ME

28



Table 2. Conditional Mean Regression Functions of Quarterly Stock Return
� 0:1 0:6 1:1 1:6 2:1 2:6 3:1 3:6 4:1 4:6

RMSEME 0:9788 0:9798 0:9809 0:9818 0:9826 0:9833 0:9838 0:9843 0:9847 0:9850
��ME 0:1832 0:1738 0:1676 0:1631 0:1597 0:1571 0:1550 0:1534 0:1520 0:1509

�̂g �:8885 �:0656 �:0188 �:0076 �:0037 �:0020 �:0012 �:0007 �:0005 �:0003

Notes: The RMSEME of the maximum entropy (ME) mean regression functions for quarterly data

are reported with di¤erent values of �. For comparison, the linear (LN) mean regression gives

RMSELN = 0:9880 and �̂LN = 0:1414:
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Figure 2: Conditional Mean Regression Functions of Monthly Stock Return
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Table 3. Conditional Mean Regression Functions of Monthly Stock Return
� 0:1 0:6 1:1 1:6 2:1 2:6 3:1 3:6 4:1 4:6

RMSEME 0:9909 0:9907 0:9906 0:9905 0:9905 0:9904 0:9904 0:9904 0:9903 0:9903
��ME 0:1132 0:1144 0:1150 0:1150 0:1147 0:1142 0:1135 0:1128 0:1121 0:1113

�̂g �:4343 �:0388 �:0129 �:0059 �:0031 �:0018 �:0011 �:0008 �:0006 �:0004

Notes: The RMSEME of the maximum entropy (ME) mean regression functions for monthly data

are reported with di¤erent values of �. For comparison, the linear (LN) mean regression gives

RMSELN = 0:9930 and �̂LN = 0:1311:
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Table 4. RMSFE under ME, LN and NP Models (Quarterly)
R = 80 R = 120 R = 160

s = 1 s = 4 s = 1 s = 4 s = 1 s = 4

� = 3 1.0528 1.0565 1.0270 1.0268 0.9980 1.0163
� = 0:1 1.0498 1.0575 1.0243 1.0244 0.9996 1.0131
� = 0:6 1.0507 1.0569 1.0234 1.0246 0.9978 1.0134
� = 1:1 1.0513 1.0566 1.0236 1.0250 0.9971 1.0139
� = 1:6 1.0519 1.0565 1.0242 1.0255 0.9970 1.0146
� = 2:1 1.0522 1.0565 1.0253 1.0260 0.9972 1.0152
� = 2:6 1.0526 1.0565 1.0263 1.0265 0.9976 1.0158
� = 3:1 1.0528 1.0565 1.0272 1.0269 0.9981 1.0164
� = 3:6 1.0530 1.0566 1.0280 1.0272 0.9986 1.0168
� = 4:1 1.0532 1.0566 1.0286 1.0276 0.9990 1.0173
� = 4:6 1.0533 1.0566 1.0292 1.0278 0.9995 1.0176
LN 1.0568 1.0577 1.0358 1.0318 1.0057 1.0216
NP 1.0645 1.0574 1.0312 1.0283 1.0011 1.0108

Notes: The quarterly data has T = 258. We consider the three sample sizes for the estimation

period with R 2 f80; 120; 160g, each corresponding to 20, 30, and 40 years. Two forecast horizons
s 2 f1; 4g, for one quarter and one year ahead forecasts, are reported.
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Table 5. GW Test p-values in Comparison to LN (Quarterly)
R = 80 R = 120 R = 160

s = 1 s = 4 s = 1 s = 4 s = 1 s = 4

� = 3 0.1472 0.3397 0.0893 0.0560 0.2508 0.2557
� = 0:1 0.1022 0.2993 0.3758 0.0431 0.7345 0.2853
� = 0:6 0.0776 0.2963 0.2335 0.0370 0.5555 0.2835
� = 1:1 0.0850 0.3062 0.1555 0.0377 0.4235 0.2747
� = 1:6 0.1010 0.3174 0.1146 0.0412 0.3367 0.2668
� = 2:1 0.1173 0.3252 0.0993 0.0460 0.2868 0.2614
� = 2:6 0.1337 0.3335 0.0924 0.0514 0.2612 0.2578
� = 3:1 0.1506 0.3412 0.0889 0.0571 0.2491 0.2552
� = 3:6 0.1674 0.3480 0.0855 0.0630 0.2444 0.2533
� = 4:1 0.1835 0.3541 0.0803 0.0688 0.2434 0.2517
� = 4:6 0.1988 0.3595 0.0762 0.0746 0.2443 0.2503
NP 0.5917 0.9483 0.5607 0.8028 0.7083 0.5276

Notes: The quarterly data has T = 258. We consider the three sample sizes for the estimation

period with R 2 f80; 120; 160g, each corresponding to 20, 30, and 40 years. Two forecast horizons
s 2 f1; 4g, for one quarter and one year ahead forecasts, are reported.
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Table 6. RMSFE under ME, LN and NP Models (Monthly)
R = 240 R = 360 R = 480

s = 1 s = 3 s = 1 s = 3 s = 1 s = 3

� = 3 1.0322 1.0284 0.9837 0.9852 1.0207 1.0232
� = 0:1 1.0336 1.0286 0.9840 0.9854 1.0210 1.0235
� = 0:6 1.0333 1.0286 0.9839 0.9854 1.0209 1.0235
� = 1:1 1.0329 1.0285 0.9838 0.9853 1.0208 1.0235
� = 1:6 1.0327 1.0285 0.9838 0.9853 1.0208 1.0234
� = 2:1 1.0325 1.0284 0.9837 0.9853 1.0208 1.0233
� = 2:6 1.0323 1.0284 0.9837 0.9852 1.0207 1.0233
� = 3:1 1.0322 1.0284 0.9837 0.9852 1.0207 1.0232
� = 3:6 1.0321 1.0284 0.9837 0.9851 1.0207 1.0232
� = 4:1 1.0320 1.0283 0.9836 0.9850 1.0206 1.0231
� = 4:6 1.0320 1.0283 0.9836 0.9850 1.0206 1.0231
LN 1.0340 1.0301 0.9850 0.9864 1.0278 1.0220
NP 1.0405 1.0289 0.9947 0.9908 1.0387 1.0393

R = 240 R = 360 R = 480
s = 6 s = 12 s = 6 s = 12 s = 6 s = 12

� = 3 1.0345 1.0307 0.9832 0.9890 1.0244 1.0248
� = 0:1 1.0355 1.0305 0.9835 0.9854 1.0246 1.0246
� = 0:6 1.0354 1.0305 0.9834 0.9855 1.0246 1.0246
� = 1:1 1.0351 1.0306 0.9834 0.9855 1.0245 1.0247
� = 1:6 1.0349 1.0306 0.9833 0.9855 1.0245 1.0247
� = 2:1 1.0347 1.0307 0.9833 0.9856 1.0245 1.0248
� = 2:6 1.0346 1.0307 0.9832 0.9856 1.0244 1.0248
� = 3:1 1.0345 1.0307 0.9832 0.9856 1.0244 1.0248
� = 3:6 1.0344 1.0307 0.9832 0.9857 1.0244 1.0248
� = 4:1 1.0344 1.0306 0.9831 0.9857 1.0243 1.0249
� = 4:6 1.0343 1.0306 0.9831 0.9857 1.0243 1.0250
LN 1.0355 1.0322 0.9853 0.9901 1.0260 1.0281
NP 1.0347 1.0358 0.9824 1.0009 1.0274 1.0440

Notes: The monthly data has the sample size T = 695. We report for the estimation window

sizes R 2 f240; 360; 480g, each corresponding to 20, 30, and 40 years. The forecast horizons are
s 2 f1; 3; 6; 12g months.
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Table 7. GW Test p-values in Comparison to LN (Monthly)
R = 240 R = 360 R = 480

s = 1 s = 3 s = 1 s = 3 s = 1 s = 3

� = 3 0.3829 0.8862 0.7445 0.9121 0.3419 0.8397
� = 0:1 0.3831 0.8234 0.8103 0.9135 0.3565 0.8374
� = 0:6 0.3817 0.9192 0.8111 0.9116 0.3508 0.8397
� = 1:1 0.3794 0.9045 0.8028 0.9110 0.3473 0.8411
� = 1:6 0.3792 0.8940 0.7893 0.9111 0.3449 0.8417
� = 2:1 0.3808 0.8881 0.7734 0.9115 0.3434 0.8415
� = 2:6 0.3820 0.8860 0.7570 0.9118 0.3424 0.8407
� = 3:1 0.3831 0.8865 0.7415 0.9121 0.3418 0.8394
� = 3:6 0.3840 0.8885 0.7275 0.9124 0.3414 0.8379
� = 4:1 0.3848 0.8912 0.7151 0.9125 0.3412 0.8361
� = 4:6 0.3854 0.8941 0.7044 0.9126 0.3412 0.8342
NP 0.3957 0.7014 0.4985 0.3748 0.5730 0.5145

R = 240 R = 360 R = 480
s = 6 s = 12 s = 6 s = 12 s = 6 s = 12

� = 3 0.2555 0.2304 0.5082 0.6022 0.4412 0.4250
� = 0:1 0.2561 0.2465 0.5606 0.6130 0.5027 0.4224
� = 0:6 0.2529 0.2402 0.5531 0.6117 0.4864 0.4223
� = 1:1 0.2520 0.2366 0.5445 0.6101 0.4734 0.4226
� = 1:6 0.2523 0.2343 0.5352 0.6082 0.4627 0.4232
� = 2:1 0.2532 0.2326 0.5254 0.6061 0.4537 0.4239
� = 2:6 0.2544 0.2312 0.5157 0.6040 0.4463 0.4245
� = 3:1 0.2558 0.2302 0.5063 0.6018 0.4400 0.4251
� = 3:6 0.2571 0.2293 0.4975 0.5996 0.4349 0.4257
� = 4:1 0.2584 0.2286 0.4894 0.5974 0.4305 0.4262
� = 4:6 0.2596 0.2280 0.4819 0.5953 0.4269 0.4266
NP 0.3845 0.6830 0.2343 0.6142 0.7936 0.4292

Notes: The monthly data has the sample size T = 695. We report for the estimation window

sizes R 2 f240; 360; 480g, each corresponding to 20, 30, and 40 years. The forecast horizons are
s 2 f1; 3; 6; 12g months.
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Figure 3. ME Variance Regression Function
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Notes: Reported is the estimated ME variance function of the stock return conditional on the

consumption growth, using quarterly data from 1952Q1 to 2016Q3 with T = 258 and the risk

aversion parameter � = 3.
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