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Abstract

The estimation of a large covariance matrix is challenging when the dimension p is large
relative to the sample size n. Common approaches to deal with the challenge have been based
on thresholding or shrinkage methods in estimating covariance matrices. However, in many
applications (e.g., regression, forecast combination, portfolio selection), what we need is not the
covariance matrix but its inverse (the precision matrix). In this paper we introduce a method of
estimating the high-dimensional �dynamic conditional precision�(DCP) matrices. The proposed
DCP algorithm is based on the estimator of a large unconditional precision matrix by Fan and Lv
(2016) to deal with the high-dimension and the dynamic conditional correlation (DCC) model by
Engle (2002) to embed a dynamic structure to the conditional precision matrix. The simulation
results show that the DCP method performs substantially better than the methods of estimating
covariance matrices based on thresholding or shrinkage methods. Finally, inspired by Hsiao and
Wan (2014), we examine the �forecast combination puzzle�using the DCP, thresholding, and
shrinkage methods.
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1 Introduction

In many applications of multivariate statistical analysis, such as forecast combination, optimal

portfolio selection and social networks, the estimation of high-dimensional covariance matrices is

a challenging issue especially when the number of random variables is larger than the number of

observations. There are two popular regularization techniques used in the literature to overcome

the challenge �shrinkage and thresholding methods. See Ledoit and Wolf (2004), Bickel and Levina

(2008), Cai and Liu (2011) and Bailey, Pesaran and Smith (2019).1

In most applications however, what we need is not a covariance matrix but its inverse, which is

known as a precision matrix. Therefore another challenge is to invert a covariance matrix to obtain

the precision matrix. Even more challenging is when a covariance matrix is high-dimensional as it

may be computationally heavy to invert or infeasible to invert.

To overcome the di¢ culty one may directly estimate precision matrices rather than indirectly

from inverting the covariance matrices. Fan and Lv (2016) propose a method called the �innovated

scalable e¢ cient estimation�(ISEE) for the direct estimation of a large precision matrix through

linear transformation, which bypasses inverting a large covariance matrix.

The ISEE method is however for the unconditional high-dimensional precision matrix. Ex-

tending the ISEE of Fan and Lv (2016), we develop a method to estimate the conditional high-

dimensional precision matrices which we will call the �dynamic conditional precision�(DCP) ma-

trix. We �rst use the ISEE method to obtain a transformed data, to which we apply a dynamic

conditional covariance model as in the DCC model of Engle (2002). In this step, we build a large

1There are other papers that use the random matrix theory (RMT) to estimate the covariance matrix, such
as Karoui (2008) who develops an estimator of eigenvectors and eigenvalues of covariance matrices by discretizing
and inverting the Stieltjes transform of a limiting sample spectral distribution. However, as Ledoit and Wolf (LW,
2015) point out, this method does not exploit the natural discreteness of the population spectral distribution for
�nite number of variables (p). LW (2012) use the same discretization strategy as in Karoui (2008), but they match
population eigenvalues to sample eigenvalues on the real line. The drawback of this approach is that they only
consider the case when p < n. LW (2015) extend LW (2012) and develop an estimator of the population eigenvalues
that works also when p > n: They use a di¤erent discretization strategy and show that their estimator works better
than LW (2012) even for p < n. Another related paper is by Mestre (2008) who proposes an estimator of eigenvalues
and eigenvectors of covariance matrices using contour integration of analytic functions in the complex plane. The
review paper by Bun et al (2017) provides a comprehensive overview of the modern techniques in RMT and their
usefulness for estimating large correlation matrices. Recently, Engle et al (2019) use non-linear shrinkage method
which is based on RMT by LW (2012, 2015) to develop an improved estimation of large dynamic covariance matrices
(to be more precise, RMT is used for estimating the unconditional correlation matrix and then use it for correlation
targeting).
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dynamic conditional precision matrix estimator from the product of its diagonal (scale) terms and

its o¤-diagonal (correlation) terms. The diagonal terms are estimated by univariate GARCH-type

conditional variance model (so it is very low-dimensional) and the o¤-diagonal terms are estimated

component-wise (one o¤-diagonal element at a time) by bivariate (thus also low-dimensional) condi-

tional correlation matrices. Lastly, we combine the diagonal elements and the o¤-diagonal elements

to obtain the high-dimensional DCP estimator. We examine the e¢ ciency of the DCP estimator

in comparison with that of several shrinkage methods and thresholding methods by Monte Carlo

simulations, which show that the DCP estimator is more e¢ cient in estimating high-dimensional

conditional precision matrices. Finally, we demonstrate the advantage of the DCP estimator in

resolving the �forecast combination puzzle�.

This paper is organized as follows. We introduce the estimation algorithm of large dynamic

conditional precision matrices in Section 2. In Section 3, Monte Carlo experiments are presented to

examine the performance of the DCP estimator. We study several forecast combination examples

using the DCP estimator in Section 4. Section 5 concludes.

2 Estimating Conditional Precision Matrices

Consider a p-variate random vector

x = (X1; : : : ; Xp)
0 � N (�;�) (1)

where � is a p-dimensional mean vector, � = (�jk) is a p�p covariance matrix. De�ne the precision

matrix as 
 = (!jk), the inverse ��1 of the covariance matrix �. Assume the mean vector � = 0

without loss of generality. Throughout this paper, X represents a random variable, x represents a

vector of the random variables, and X represents a data matrix.

In most applications (in statistical estimation, forecast combination, optimal portfolio estima-

tion, etc), what we need is not the covariance matrix � but its inverse 
 = ��1 (the precision

matrix). For example, consider Xj (j = 1; : : : ; p) as a forecast from model j. The optimal com-

bination w0x of the p forecasts in x (subject to the constraint w0� = 1) can be obtained with the

2



optimal weight given by

w =
��1�

�0��1�
(2)

where � = (1; :::; 1)0 is a p � 1 vector of ones. See Bates and Granger (1969), Stock and Watson

(2004), Timmermann (2006), and Hsiao and Wan (2014). Another example where the precision

matrix 
 = ��1 is needed instead of the covariance matrix � is to form the optimal portfolio

(Markowitz 1952). Consider Xj (j = 1; : : : ; p) as �nancial return from a �nancial asset j. The

optimal portfolio return w0x can be obtained with the optimal weight given by

w =
�0��1�� 


�
�0��1�

�
(�0��1�) (�0��1�)� (�0��1�)2

��1�+


�
�0��1�

�
�
�
�0��1�

�
(�0��1�) (�0��1�)� (�0��1�)2

��1� (3)

where 
 is the targeted return on the portfolio. Nevertheless, the literature is largely about esti-

mation of � rather than 
 = ��1.

Furthermore, all the dynamic models in the literature is entirely about the conditional covariance

matrix �t, and there is no single research paper (to our knowledge) on the conditional precision

matrix 
t. The dynamic conditional covariance matrix models have been studied by Bollerslev et al

(1988), Engle and Kroner (1995), Engle (2002), Engle et al (2019), Pakel et al (2020), among many

others. However, there is no paper on the dynamic conditional precision matrix and we believe

this paper is the �rst on that. Therefore the goal of this paper is to introduce the model of the

high-dimensional dynamic conditional precision matrix 
t and its estimation method. The new

method is based on the ISEE algorithm of Fan and Lv (2016) to deal with the high-dimensionality

and it is based on the DCC model of Engle (2002) to embed a dynamic structure in 
t (not in �t).

Adapting these two approaches produces the proposed DCP matrix estimator.

We will �rst review the ISEE method for the estimation of the unconditional precision matrix


 in subsection 2.1 and then we will introduce our new method for estimation of the conditional

precision matrix 
t in subsection 2.2. Let us establish some notation to begin. For any subsets

A;B � f1; :::; pg ; denote xA a subvector of x formed by its components with indices in A; and


A;B = (!jk)j2A;k2B a submatrix of 
 with rows in A and columns in B: Denote the cardinality of

the set A by jAj : In this paper we make jAj = 2 when the number of nodes p is even and jAj = 2

or 3 when p is an odd number.
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2.1 Unconditional Precision Matrix: the ISEE Algorithm

Inverting the sample covariance matrix is di¢ cult or infeasible. To avoid this problem, Fan and

Lv (2016) suggest a new approach � the innovated scalable e¢ cient estimation (ISEE) of large

precision matrices based on the following linear transformation

z = 
x; (4)

where the mean and variance of z are

E (z) = E (
x) = 0; (5)

COV (z) = COV (
x) = 
COV (x) 
 = 
�
 = 
:

If the transformed vector z can be obtained, then estimating the precision matrix 
 is equivalent

to estimating the covariance matrix of z. Obtaining z by the two parts 
 and x is not feasible since

it depends on the unknown precision matrix 
. Instead, Fan and Lv (2016) break the long vector

z into small subvectors with each subvector corresponding to a partition of the index set f1; :::; pg.

For any subset A � f1; :::; pg, write z = 
x in partition�
zA
zAc

�
=

�

A;A 
A;Ac


Ac;A 
AC ;AC

��
xA
xAc

�
=

�

A;AxA +
A;AcxAc


Ac;AxA +
AC ;ACxAc

�
; (6)

with Ac denoting the complement of the subset A; to obtain

zA = 
A;AxA +
A;AcxAc = 
A;A

�
xA +


�1
A;A
A;AcxAc

�
� 
A;AeA; (7)

where

eA � xA +
�1A;A
A;AcxAc : (8)

From equations (1) and (4), we have z � N (0;
). The subset zA = 
A;AeA � N (0;
A;A),

which means eA � N
�
0;
�1A;A

�
. Note that

E (eAjxAc) = E
�
xA +


�1
A;A
A;AcxAc jxAc

�
= E (xAjxAc) + 
�1A;A
A;AcxAc = 0
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which implies that the conditional mean of xA is

E (xAjxAc) = �
�1A;A
A;AcxAc :

The conditional covariance of xA is

V (xAjxAc) = E
�
(xA � E (xAjxAc))

0 (xA � E (xAjxAc)) jxAc
�
= E

�
e0AeAjxAc

�
= 
�1A;A:

The last equality holds because eA and xAc are independent.2 Hence, the conditional distribution

of xA given xAc is

xAjxAc � N
�
�
�1A;A
A;AcxAc ;


�1
A;A

�
: (9)

Thus, we can obtain eA as the error term from the linear regression of xA on xAc . Accordingly, the

multivariate linear regression of xA on xAc has the form

xA = C
T
AxAc + eA;

where CA = �
Ac;A
�1A;A represents the coe¢ cient matrix and eA is the vector of regression errors.

In matrix form, regress a submatrix XA on the rest of the data XAc

XA = XAcCA +EA;

where XA and XAc are submatrices of X with columns in A and its complements Ac, CA is the

regression coe¢ cient matrix and EA is an n� jAj matrix of errors. For each node j 2 A, Fan and

Lv (2016) consider the univariate linear regression model for response Xj , which is the jth column

of data matrix X

Xj
n�1

= XAc
n�(p�jAj)

�j
(p�jAj)�1

+ Ej
n�1

which is estimated by the penalized least squares with the scaled Lasso

�
�̂j ; �̂

1=2

j

�
= argmin
�j2Rp�jAj;�>0

(

Xj �XAc�j

22
2n�

+
�

2
+ �jj��jj1

)
; (10)

where �� is the Hadamard (component-wise) product of two (p� jAj)-dimensional vectors �j and
2COV(eA;xAc) = COV

�
xA +


�1
A;A
A;AcxAc ;xAc

�
= �A;Ac + 


�1
A;A
A;Ac�Ac;Ac . Based on the property of the

inverse of a partitioned matrix, �A;Ac = �
�1A;A
A;Ac�Ac;Ac . Thus, COV(eA;xAc) = 0. Since eA and xAc have joint
normality, they are independent.
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�
n�1=2jjXkjj2

�
k2Ac with Xk the kth column of X, � � 0 is a regularization parameter associated

with the weighted L1-penalty, and kvkq denotes the Lq-norm of a given vector v for q � 1. Here,

the minimizer �̂
1=2

j , which is over �; provides an estimator of the error standard deviation �̂
1=2

j =

var1=2 (ej) ; where ej is a component of eA corresponding to node j:

Based on the regression step, for each node j in the index set A, de�ne

Êj = Xj �XAc �̂j

ÊA = (Êj)j2A:

Then 
A;A and ẐA are estimated by


̂A;A = (n
�1Ê0AÊA)

�1; (11)

The unobservable submatrix ZA is estimated by

ẐA = ÊA
̂A:

Stacking ẐA for all the partitions A�s, the ISEE estimates the empirical matrix Ẑ as the n � p

matrix

Ẑ
n�p

=
�
ẐA

�
8A

(12)

Therefore, the initial ISEE estimator of the precision matrix of X is the sample covariance matrix

of Ẑ, which is computed as


̂ISEE;ini = n
�1Ẑ0Ẑ: (13)

Remark: In Fan and Lv (2016), they re�ne the initial ISEE estimator by thresholding. For a

given threshold � � 0, de�ne the new estimator with thresholding as


̂ISEE;g = T�

�

̂ISEE;ini

�
;

where T� (B) =
�
bjk1fjbjkj��g

�
denotes the matrix B = (bjk) thresholded at � . The choice of the

threshold � is made through a cross-validation method in Fan and Lv (2016). Based on 
̂ISEE;g,

one can update the (j; k) entry of 
̂ISEE;g when the nodes j and k are from di¤erent index sets
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A�s by replacing the o¤-diagonal entry of the 2� 2 matrix 
̂A;A with A being fj; kg. The resulting

updated precision matrix estimator is 
̂ISEE . We have implemented both 
̂ISEE;ini and 
̂ISEE

in subsection 2.2 and found similar results. Therefore, the results reported in Sections 4 and 5 are

based on 
̂ISEE;ini.

However, (13) is an estimator of the unconditional static precision matrix. In the case where

information is updating, the large precision matrices can be updated and time-varying. In subsec-

tion 2.2, we introduce the dynamic conditional precision (DCP) matrix estimator, for which we will

need to use Ẑ in (12) from the ISEE algorithm (but 
̂ in (13) will not be needed).

2.2 Conditional Precision Matrix: the DCP Algorithm

Consider a p-variate random vector

xt = (X1t; :::; Xpt)
0 jFt�1 � N (0;�t) ; t = 1; :::; n

�t = E (xtx
0
tjFt�1) is the p � p conditional covariance matrix. 
t := ��1t is the p � p conditional

precision matrix. If we knew zt such that

zt
p�1

= 
txt; (14)

then we could estimate 
t directly from the conditional covariance matrix of zt since

E
�
ztz

0
tjFt�1

�
= E

�

txtx

0
t
tjFt�1

�
= 
t�t
t = 
t:

The problem of estimating �t and then inverting it is now transformed into obtaining zt and getting

its conditional covariance matrix.

As we do not know zt in reality, we will estimate it from ẑt which is the tth row of Ẑ
n�p

=
�
ẐA

�
8A

in (12) from the ISEE algorithm. The conditional precision matrix 
t is then estimated from using

ẑt. Inspired by the dynamic conditional correlation (DCC) procedure in Engle (2002), we decompose


t into


t = VtWtVt; (15)

where V 2t � diag(
t) is the conditional variances of ẑt and Wt is the conditional correlation matrix
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of ẑt:We propose that the diagonal elements of Vt are estimated from the univariate GARCH models

for ẑt and the o¤-diagonal elements of Wt are estimated from the pair-wise bivariate conditional

correlation models as in Engle (2002). Once Vt and Wt are estimated, our estimator of 
t is

obtained.

Summarizing, the estimation of dynamic conditional precision matrix 
t is conducted by the

following algorithm. Note that the DCP algorithm is based on the transformed data matrix obtained

in (12) from the ISEE algorithm.

The DCP Algorithm:

1. The DCP uses the transformed data matrix Ẑ
n�p

=
�
ẐA

�
8A
in (12) from the ISEE algorithm.

2. V 2t � diag(
t). 
t has diagonals !̂2j;t, j = 1; : : : ; p estimated from a univariate GARCH model

for the jth variable in Ẑ: Let Wt be the conditional correlation matrix of zt.

3. Let "t � V̂ �1t ẑt; where ẑt is the tth row of Ẑ:

4. For each pair B = fj; kg � f1; :::; pg,

Q̂B;t = �B�
0
B +	B

�
"B;t�1"

0
B;t�1

�
	0B +�BQ̂B;t�1�

0
B; (16)

ŴB;t = diagfQ̂B;tg�1=2 Q̂B;t diagfQ̂B;tg�1=2:

�B, 	B and �B are 2 � 2: ŴB;t has diagonals of ones. Ŵt is constructed from plugging the

o¤-diagonal term in ŴB;t into the (j; k) position in Ŵt:
3

5. 
̂t is obtained by combining the diagonal terms V̂t and the o¤-diagonal term Ŵt


̂t = V̂tŴtV̂t: (17)

The resulting 
̂t is the dynamic conditional precision (DCP) matrix estimator.4

3The DCP algorithm is component-wise for the estimation of the conditional precision matrix 
t, i.e., element by
element for each pair B = fj; kg � f1; :::; pg. We recently found that a similar method was used in Pakel et al (2020)
who did the component-wise estimation of the conditional covariance matrix �t.

4We conjecture that the consistency of the DCP estimator for 
t may be established under some assumptions
that the maximum number of nonzeros in a row in 
t (the degree of non-sparsity) and the dimensionality p grow at
certain rates slow enough relative to the sample size n. We leave this for future research.
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3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to compare performance of the high-dimensional

precision matrix estimator by the DCP algorithm and other shrinkage and thresholding estimators

which compute the covariance matrix and invert it to obtain the precision matrix. This section

has two parts �unconditional and conditional. Subsection 3.1 compares unconditional precision

matrix estimators. Subsection 3.2 compares conditional precision matrix estimators. Four other

high-dimensional matrix regularization approaches are compared:

LW: Ledoit and Wolf (2004)

UT: Bickel and Levina (2008)

AT: Cai and Liu (2011)

MT: Bailey, Pesaran and Smith (2019)

LW is a shrinkage estimator of a large covariance matrix, which is a weighted average between the

large sample covariance matrix and the identity matrix multiplying the mean of diagonal elements.

UT is a �universal thresholding� estimator of a large covariance matrix, where the threshold is

chosen by cross-validation. The elements whose absolute values are smaller than the threshold are

shrunk to 0. AT is an �adaptive thresholding�estimator of a large covariance matrix, where each

element has a di¤erent threshold value. MT is a �multiple testing�estimator of a large covariance

matrix, where the sample covariance matrix is decomposed into the diagonal and correlation matrix.

The correlation matrix is regularized by the universal thresholding method.

Computational loss of all the estimators is analyzed in terms of the Frobenius norm of
�

̂� 


�
.

For any p� p matrix A, the Frobenius norm is de�ned as

kAkF =

vuut pX
i=1

pX
j=1

jaij j2 ; (18)

where aij is the element on the ith row and jth column in matrix A, for i = 1; : : : ; p and j = 1; : : : ; p:
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3.1 Unconditional Precision Matrix

We �x the sample size n to be 100 and increase the number of covariates p from 30, 100 to 500.

This subsection contains two data-generating processes (DGP):

1. DGP 1: � � Toeplitz (0.9).

2. DGP 2: � � Tridiagonal (0.5).

Note that we generate data from a covariance matrix � (not from its inverse) so that the two

DGPs coincide with the models of the four methods (LW, UT, AT, MT). Nevertheless, we are able

to show that ISEE performs more e¢ ciently than all the other four methods in computing the

precision matrices.

Under DGP 1, we use the Toeplitz (0.9) matrix as the true data generating process of covariance

matrix �. The diagonal elements of Toeplitz (0.9) matrix are 1. The o¤-diagonal element with

distance d from the diagonal has the value 0:9d. DGP 1 is a case where it is harder to invert � than

DGP 2. In Table 1, we report the loss in terms of matrix norms of 
̂�
. When the dimensionality

p is increasing, the Frobenius norms under each estimation procedure are increasing. Among all the

�ve unconditional precision matrix estimators, ISEE has the smallest Frobenius norms, indicating

that it outperforms all the other four methods in terms of the matrix norm loss.

Under DGP 2, we use the Tridiagonal (0.5) matrix as the true covariance matrix �. � is a band

matrix with diagonal elements being one and the o¤-diagonal elements which have distance one

from the diagonals are set to 0.5. The rest elements are 0. This DGP 2 is a case where it is easier

to invert �: In Table 1, we also report the matrix norms of 
̂� 
 for the �ve di¤erent estimation

methods. As the dimensionality p increases, ISEE performs as good as the other four estimators

and the Frobenius norms under each estimation procedure are increasing.

3.2 Conditional Precision Matrix

We now examine the performance of the DCP estimator for conditional precision matrices. We

generate data from the following data generating processes

10



xtjFt�1 � N (�t;�t) ; t = 1; : : : ; n

�j;t = �jxj;t�1; �j = 0; j = 1; : : : ; p

�2j;t = 
j + �je
2
j;t�1; 
j = 1� �j

ej;t � N
�
0; �2e;j

�
; �2e;j = 1

�t = DtRtDt

Dt = diag (�1;t; � � � ; �p;t)

"t = D
�1
t xtjFt�1 � N (0; Rt)

Rt = S (1� a� b) + a
�
"t�1"

0
t�1
�
+ bRt�1

S = Toeplitz(0:9):

We set !j = �2 (1� �j), �2e;j = 1, �j = 0:5, �j = 0. For the correlation component, we consider

two di¤erent DGPs.

3. DGP 3: �j = 0:5; a = 0:0, b = 0:0: Constant conditional correlation (CCC, Bollerslev 1990).

4. DGP 4: �j = 0:5; a = 0:5, b = 0:0: Dynamic conditional correlation (DCC, Engle 2002).

We regularize the sample correlation matrix Ŝ using LW, UT, AT and MT methods in subsection

4.1 and then embed a CCC or DCC process to estimate the dynamic precision matrix 
̂t. The new

approaches with an embedded dynamic process are call DLW, DUT, DAT and DMT respectively.

As a comparison we compute the matrix norm loss of 
̂t � 
t using DLW, DUT, DAT and DMT

estimators besides the DCP estimator.

Under DGP 3 (CCC), Rt = R = Toeplitz (0.9). We set the sample size n 2 f20; 50; 100; 200g

and the number of variables p 2 f30; 50; 100g. We compare the performance of the DCP estimator

with four other methods �DLW, DUT, DAT and DMT, using the Frobenius norm as an evaluation

criterion. In Table 2, the Frobenius norms are reported under di¤erent methods. As the sample

size n increases, Frobenius norms of the DCP estimator become smaller. On the other hand, as

the number of variables p increases, Frobenius norms of the DCP method become larger. It shows
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that the estimation errors of the DCP estimator are decreasing in n and increasing in p. Among

the �ve di¤erent estimators, the DCP estimator has the smallest error matrix norms and thus is

the most advantageous in estimating conditional precision matrices, regardless of the sample size n

and the number of variables p. On the other hand, according to the simulation results, there is no

clear convergence pattern for the shrinkage and thresholding estimators. The regularized sample

covariance matrices are sometimes near singular, which makes the average norm loss quite erratic

for these methods. It indicates that the shrinkage and thresholding methods for the covariance

matrices may not be stable to estimate precision matrices.

Under DGP 4 (DCC), the conditional correlation matrix is modeled as Rt = S (1� a� b) +

a
�
"t�1"0t�1

�
+bRt�1, where we set S = Toeplitz (0.9), a = 0:5, b = 0. We compare the performance

of the DCP method with other four methods in terms of matrix norms. In Table 3, the Frobenius

norms are reported. It is shown that matrix norms under the DCP estimator are increasing in p

and decreasing in n. For all the sample size n and the number of variables p, DCP has the smallest

estimation error loss when estimating conditional precision matrices. It is shown to be the most

e¢ cient among all the estimation methods.

To continue exploring the properties of the DCP estimator, we consider an application to the

�forecast combination puzzle�in the next section.

4 Forecast Combination Puzzle

The optimal forecast combination weight w is given by equation (2), where ��1 is the precision

matrix of the forecast errors of p forecasts. However, in practice the optimal forecast combination

is often found to be outperformed by the equally-weighted combined forecast with w = 1
p � =�

1
p ; :::;

1
p

�0
(which will be referred to as the 1=p model below). For example, the 1=p model is

optimal if � = Ip�p in (2). Stock and Watson (2004) call this the �forecast combination puzzle�.

See also Timmermann (2006) and Elliott (2011). Smith and Wallis (2009) show this puzzle can

happen due to estimation error of the combining weights. Hsiao and Wan (2014) consider several

geometric approaches for combining forecasts in large samples �a simple eigenvector approach, a

mean corrected eigenvector and trimmed eigenvector approach. They also consider a mean and

scale corrected simple average of all predictive models for �nite sample and give conditions where
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the simple average is an optimal combination. Claeskens, Magnus, Vasnev, and Wang (2016) show

this puzzle can happen if w is assumed to be �xed. Sun et al (2018) consider time-varying model

averaging weights in forecast combination problems.

When information is updating from time to time, the optimal forecast combination weight is also

time-varying and wt can be computed by �t. Given 
t = ��1t , the optimal forecast combination

weight (subject to the constraint w0t� = 1 for each t) becomes

wt =

t�

�0
t�
; (19)

which is the time-varying version of (2) based on the conditional precision matrix. We apply the

DCP estimator as well as the four other shrinkage and thresholding methods to estimate 
t and

obtain the optimal forecast combination weight wt. Our results show that the DCP estimator is

much more advantageous than the alternative methods including the equal weights 1=p. Under the

optimal forecast combination weight wt obtained using the DCP estimator as in (19), the mean-

squared forecast errors are much smaller than those of the other methods and also smaller than

the simple average combined forecast. Hence the DCP estimator resolves the forecast combination

puzzle.

DGP: In order to demonstrate that the optimal forecast combination weight using the DCP

estimator of 
t outperforms the equally-weighted combined forecast, Monte Carlo simulation is

conducted using the following moving average (MA) process of in�nite order

yt =
1X
k=0

�ket�k; (20)

to generate the data yt with the MA coe¢ cients �k using the rule

�k = (1 + k)
c1 ck2; (21)

according to Hansen (2008). We consider various combinations of c1 2 f0; 0:75g and c2 2

f0:6; 0:7; 0:8; 0:9g. We show the decay of the coe¢ cients �k over k with di¤erent c1 and c2

parameters in Figure 1.
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Figure 1: Plot of �k = (1 + k)
c1 ck2
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When c1 = 0, �k is gradually decaying when k increases. When c1 = 0:75, �k �rst increases and

then decreases.

Models: While the DGP of fytg is MA(1), we make forecasts of yt+1 (one-step ahead) based

on the AR(l) models:

ŷt = �̂+ �̂1yt�1 + � � �+ �̂lyt�l: (22)

We set the number of regression periods (train sample) m = 100 and consider two scenarios:

(i) the number of out-of-sample prediction periods (test sample) n = 100, number of lags l 2

f0; 1; : : : ; 12g, where the dimensionality p = 13 for 13 forecast models and (ii) the number of

prediction periods n = 30, number of lags l 2 f0; 1; : : : ; 49g, where the dimensionality p = 50.

For each n and p combination, we evaluate the MSFE performance of the 11 estimators which are:

1=p, LW, UT, AT, MT, ISEE, DLW, DUT, DAT, DMT and DCP. We report the mean-squared

forecast errors (MSFE) in Tables 4, 5, 6 and 7.

We consider two DGPs depending on whether the conditional covariance matrix of the error

term et is time-varying or not:

5. DGP 5: et � i:i:d:N(0; 1).

6. DGP 6: et follows ARCH(1) with the ARCH parameter 0:5.

Under DGP 5, the variance-covariance structure of the error terms is static. Comparing the

static precision matrix estimator ISEE and the dynamic precision matrix estimator DCP, the mean-
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squared forecast errors with the optimal forecast combination weights obtained using the conditional

DCP estimator are slightly larger than that the MSFEs using static unconditional ISEE estimator.

The MSFEs of both ISEE and DCP estimators are much smaller than the MSFE of the simple 1=p

averaging combined forecasts, as shown in Tables 4 and 5. It indicates that the ISEE and DCP

estimators are the potential solutions to the forecast combination puzzle. When n = 30, p = 50,

that is when n < p, the regularized sample covariance matrices are sometimes hard to invert under

the LW, UT, AT and MT approaches, which leads to unstable and erratic MSFEs as shown in

Table 5.

Under DGP 6, the variance-covariance structure of the error terms is dynamic. The MSFEs

under DGP 6 are reported in Tables 6 and 7. Table 7 contains some erratic MSFEs of the LW,

UT, AT and MT approaches when n < p. After shrinkage or thresholding, the covariance matrices

are sometimes nearly singular, which results in ill-behaved precision matrix estimation and the

erratic values in MSFEs. Comparing the static ISEE estimator and the dynamic DCP estimator,

the MSFEs with the optimal forecast combination weights obtained using dynamic DCP estimator

are much smaller than the MSFEs of using the static ISEE estimator.

5 Conclusions

In this paper, based on the ISEE algorithm by Fan and Lv (2016), we propose the DCP algorithm

for estimating a high-dimensional conditional precision matrix 
t. We show the consistency of

the DCP estimator and examine its e¢ ciency compared with several shrinkage and thresholding

methods by simulation experiments and an application to the forecast combination. We show that

the DCP estimator can address the forecast combination puzzle better than the shrinkage and

thresholding methods for estimating a conditional covariance matrix. The DCP estimator will be

useful in many other applications, such as �nancial portfolio and network theory.

We consider a couple of extensions. One is an application. Besides the forecast combination

application considered in this paper, the estimation of large dynamic precision matrices is critical

in obtaining the optimal portfolio weights. Another is a semiparametric extension, as in Long et al

(2011), which nonparametrically adjusts the parametric DCP estimator and will be useful for real

world applications.
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Table 1: Estimation of Unconditional Precision Matrix
Under DGP 1: Toeplitz (0.9)

p ISEE LW UT AT MT
30 16.37 25.49 56.82 94.69 149.42
100 47.49 67.71 121.34 154.74 156.22
500 159.68 214.84 384.20 300.87 566.46

Under DGP 2: Tridiagonal (0.5)
p ISEE LW UT AT MT
30 195.94 199.35 201.26 254.01 229.99
100 2148.12 2148.44 2176.79 2155.23 2187.17
500 5291.20 5291.40 5291.70 5292.20 5292.00

Notes: Reported is the Frobenius norm of
�

̂� 


�
: The Frobenius norm of a p � p matrix A is

kAkF =
s

pP
i=1

pP
j=1

jaij j2 with aij being the (i; j)th element of A: In this table, n = 100:
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Table 2: Estimation of Conditional Precision Matrix
Under DGP 3: CCC

DCP DLW DUT DAT DMT
p = 30

n = 20 520.01 4733.20 9058.50 8930.40 7116.80
n = 50 86.04 4660.10 3.13�104 2.03�104 1.16�104
n = 100 42.12 4475.00 3.51�104 5.10�104 3.63�104
n = 200 22.32 4091.40 9247.30 2.22�104 3.50�104

p = 50

n = 20 703.90 8339.80 1.07�104 1.27�104 1.12�104
n = 50 191.41 7413.00 1.57�104 4.47�104 6.15�106
n = 100 68.66 7852.70 8.60�104 6.14�106 4.38�105
n = 200 48.71 7598.20 9.55�104 6.13�104 4.54�107

p = 100

n = 20 1971.00 1.99�104 2.16�104 2.42�104 2.36�104
n = 50 439.31 1.82�104 3.30�104 1.28�105 6.05�105
n = 100 182.40 1.63�104 8.19�104 5.58�106 3.10�107
n = 200 84.46 1.51�104 7.41�104 1.07�105 3.22�105

Note: Reported is the time-average of the Frobenius norms, n�1
Pn
t=1





̂t � 
t



F
: The Frobenius

norm of a p� p matrix A is kAkF =
s

pP
i=1

pP
j=1

jaij j2 with aij being the (i; j)th element of A:
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Table 3: Estimation of Conditional Precision Matrix
Under DGP 4: DCC

DCP DLW DUT DAT DMT
p = 30

n = 20 1179.50 2.31�104 3.07�104 4.24�106 2.46�104
n = 50 425.69 1.94�104 3.77�106 2.47�106 5.31�104
n = 100 258.82 1.80�104 3.26�104 6.24�104 9.50�104
n = 200 89.74 1.88�104 9.42�104 6.02�106 6.05�105

p = 50

n = 20 2529.20 3.78�104 6.73�104 5.65�104 4.27�104
n = 50 753.14 3.53�104 5.30�104 6.61�104 7.84�104
n = 100 428.80 3.57�104 5.15�104 2.08�107 8.73�104
n = 200 201.65 3.18�104 3.61�106 1.07�107 3.59�105

p = 100

n = 20 7124.00 8.46�104 1.26�105 1.68�105 9.37�104
n = 50 1637.60 7.88�104 2.45�105 7.33�105 2.74�105
n = 100 961.44 7.78�104 1.53�105 2.04�105 3.93�105
n = 200 418.71 7.18�104 3.71�105 2.31�107 7.51�107

Note: Reported is the time-average of the Frobenius norms, n�1
Pn
t=1





̂t � 
t



F
: The Frobenius

norm of a p� p matrix A is kAkF =
s

pP
i=1

pP
j=1

jaij j2 with aij being the (i; j)th element of A:
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Table 4: MSFE of Forecast Combinations
DGP 5 et � i:i:d:N(0; 1), n = 100; p = 13

1=p LW UT AT MT ISEE DLW DUT DAT DMT DCP
c2 c1 = 0

0:6 1.06 1.00 0.93 0.91 0.91 0.87 1.03 1.11 1.24 1.73 0.89
0:7 1.06 0.99 0.90 0.92 0.92 0.89 1.12 1.56 1.28 1.30 0.91
0:8 1.07 0.99 0.92 0.93 0.91 0.86 1.15 1.60 1.65 1.31 0.93
0:9 1.08 1.01 0.93 1.01 0.94 0.89 1.13 1.32 1.43 1.39 0.95
c2 c1 = 0:75

0:6 1.07 1.03 0.97 0.94 0.98 0.86 1.13 1.21 1.33 1.71 0.92
0:7 1.08 1.05 0.99 0.99 1.00 0.90 1.11 1.61 1.65 2.06 0.97
0:8 1.16 1.05 1.02 1.02 1.14 0.92 1.23 1.31 1.32 2.45 0.95
0:9 1.55 1.13 1.21 1.07 1.05 0.93 1.87 2.84 1.49 2.84 0.97

Notes: We set the number of regression periods (train sample) m = 100 and the number of out-
of-sample prediction periods (test sample) n = 100: The p = 13 forecasts from AR(l) models with
l 2 f0; 1; : : : ; 12g are combined using one of the 11 di¤erent combination weights. Each column
corresponds to each of the 11 di¤erent methods.

Table 5: MSFE of Forecast Combinations
DGP 5 et � i:i:d:N(0; 1), n = 30; p = 50

1=p LW UT AT MT ISEE DLW DUT DAT DMT DCP
c2 c1 = 0

0:6 1.25 0.90 3.21 2.99 5.03 0.85 1.21 6.12 1.39 4.83 1.04
0:7 1.25 0.90 3.19 2.39 9.21 0.84 1.24 9.05 3.17 1.95 1.03
0:8 1.26 0.94 7.21 2.56 3.69 0.83 1.22 163.11 126.11 9.64 1.05
0:9 1.27 0.95 7.50 3.11 4.80 0.87 1.32 147.36 3.23 4.11 1.01
c2 c1 = 0:75

0:6 1.19 0.84 11.93 16.93 6.87 0.79 1.39 875.18 12.65 576.32 1.07
0:7 1.30 0.94 16.49 15.29 5.38 0.89 1.65 959.81 258.16 61.40 1.01
0:8 1.30 1.04 18.66 15.62 5.56 0.93 1.33 284.19 27.10 7.36 1.13
0:9 1.34 1.32 13.47 12.33 4.06 1.15 1.49 223.79 1.32 537.24 1.10

Notes: We set the number of regression periods (train sample) m = 100 and the number of out-
of-sample prediction periods (test sample) n = 30: The p = 50 forecasts from AR(l) models with
l 2 f0; 1; : : : ; 49g are combined using one of the 11 di¤erent combination weights. Each column
corresponds to each of the 11 di¤erent methods.
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Table 6: MSFE of Forecast Combinations
DGP 6 et � ARCH (1), n = 100; p = 13

1=p LW UT AT MT ISEE DLW DUT DAT DMT DCP
c2 c1 = 0

0:6 1.11 1.06 0.97 0.98 0.93 0.90 1.04 1.69 1.65 1.26 0.86
0:7 1.21 1.14 0.94 1.01 1.01 0.89 1.14 1.34 1.84 1.55 0.85
0:8 1.12 1.02 0.94 0.99 1.00 0.90 1.22 1.94 1.28 1.51 0.85
0:9 1.37 1.06 0.98 1.03 0.99 0.91 2.81 1.74 1.55 1.48 0.88
c2 c1 = 0:75

0:6 1.09 1.05 1.25 1.04 0.93 0.93 1.30 1.41 1.48 1.38 0.91
0:7 1.19 1.03 3.37 1.09 1.06 0.93 1.29 2.33 1.69 1.22 0.92
0:8 1.22 1.04 2.01 1.18 0.99 0.94 1.44 2.00 1.74 2.20 0.90
0:9 1.73 1.09 3.63 1.10 1.04 0.98 1.99 3.22 1.83 3.94 0.91

Notes: We set the number of regression periods (train sample) m = 100 and the number of out-
of-sample prediction periods (test sample) n = 100: The p = 13 forecasts from AR(l) models with
l 2 f0; 1; : : : ; 12g are combined using one of the 11 di¤erent combination weights. Each column
corresponds to each of the 11 di¤erent methods.

Table 7: MSFE of Forecast Combinations
DGP 6 et � ARCH (1), n = 30; p = 50

1=p LW UT AT MT ISEE DLW DUT DAT DMT DCP
c2 c1 = 0

0:6 1.24 1.01 7.62 15.84 2.33 0.98 1.20 83.77 2.23 81.09 0.96
0:7 1.30 0.99 3.47 3.14 13.09 0.98 1.34 271.51 15.12 494.76 0.97
0:8 1.27 1.00 17.75 29.30 2.44 0.99 1.29 958.55 25.63 223.75 0.96
0:9 1.31 1.15 1.82 46.11 15.37 1.00 1.34 535.33 6.84 1138.44 0.98
c2 c1 = 0:75

0:6 1.39 1.01 2.44 4.24 21.16 0.99 1.20 104.40 275.27 11.66 0.97
0:7 1.30 1.01 13.48 4.02 7.98 1.00 1.57 175.95 3.39 573.59 0.98
0:8 1.48 1.07 12.51 22.13 2.10 1.01 1.38 67.58 37.17 65.93 0.97
0:9 1.37 1.37 8.56 1.93 7.46 1.04 1.30 709.93 151.23 651.00 0.98

Notes: We set the number of regression periods (train sample) m = 100 and the number of out-
of-sample prediction periods (test sample) n = 30: The p = 50 forecasts from AR(l) models with
l 2 f0; 1; : : : ; 49g are combined using one of the 11 di¤erent combination weights. Each column
corresponds to each of the 11 di¤erent methods.

22


