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1 Introduction

Randomized control trials (RCTs) are an increasingly important tool of applied economics

since, when properly designed and implemented, they can produce internally valid estimates

of causal impact.1 Non-response on outcome measures at endline, however, is an unavoidable

threat to the internal validity of many carefully implemented trials. Long-distance migration

can make it prohibitively expensive to follow members of an evaluation sample. Conflict,

intimidation or natural disasters sometimes make it unsafe to collect complete response

data. In high-income countries, survey response rates are often low and may be declining.2

The recent, increased focus on the long-term impacts of interventions has also made non-

response especially relevant. Thus, researchers often face the question: How much of a threat

is attrition to the internal validity of a given study?

In this paper, we approach attrition in field experiments with baseline outcome data as

an identification problem in a nonseparable panel model. We focus on two identification

questions generated by attrition in field experiments. First, does the difference in mean

outcomes between treatment and control respondents identify the average treatment effect

for the respondent subpopulation (ATE-R)? Second, is this estimand equal to the average

treatment effect for the study population (ATE)?3 To answer these questions, we examine

the testable implications of the relevant identifying assumptions and propose procedures to

test them. Our results provide insights that are relevant to current empirical practice.

We first conduct a systematic review of 91 recent field experiments with baseline data

in order to document attrition rates and understand how authors test for attrition bias.

Attrition and attrition tests are both common in published field experiments. Although

the implementation of attrition tests varies widely, we identify two main types of tests:

(i) a differential attrition rate test that determines if attrition rates are different across

treatment and control groups, and (ii) a selective attrition test that determines if the mean of

baseline observable characteristics differs across the treatment and control groups conditional

on response status. While authors report a differential attrition rate test for 81% of field

experiments, they report a selective attrition test only 60% of the time. In addition, for a

substantial minority of field experiments (34%), authors conduct a determinants of attrition

test for differences in the distributions of respondents and attritors.

Next, we present a formal treatment of attrition in field experiments with baseline out-

1Since in the economics literature the term “field experiment” generally refers to a randomized controlled
trial, we use the two terms interchangeably in this paper. We do not consider “artefactual” field experiments,
also known as “lab experiments in the field,” since attrition is often not relevant to such experiments.

2See, for example, Meyer et al. (2015) and Barrett et al. (2014).
3We refer to the population selected for the evaluation as the study population.
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come data. Specifically, we establish the identifying assumptions in the presence of attrition

for two cases that are likely to be of interest to the researcher. For the first case, in which

the researcher’s objective is internal validity for the respondent subpopulation (IV-R), the

identifying assumption is random assignment conditional on response status (IV-R assump-

tion). This implies that the difference in the mean outcome across the treatment and control

respondents identifies the ATE-R, a local average treatment effect for the respondents. In

the second case, where internal validity for the study population (IV-P) is of interest, the

identifying assumption is that the unobservables that affect response and outcome are inde-

pendent in addition to the initial random assignment of the treatment (IV-P assumption).

If this identifying assumption holds, the ATE for the study population is identified. This

second case is especially relevant in settings where the study population is representative of

a larger population.

We then derive testable restrictions for each of the above identifying assumptions. The

IV-R assumption implies a joint hypothesis of two equalities on the baseline outcome distri-

bution; specifically, for treatment and control respondents as well as treatment and control

attritors. Meanwhile, the IV-P assumption implies a joint hypothesis of equality on the

baseline outcome distribution across all four treatment/response subgroups. Like all tests of

identifying assumptions, a test of attrition bias can only be tested by implication in general.

Hence, we show that the aforementioned testable restrictions are sharp, meaning that they

are the strongest implications that we can test given our data.4 We apply our two proposed

tests to data from a large-scale RCT of the Progresa program in Mexico, in which the study

population is representative of a broader population of interest. Across two main outcomes

collected in the same survey, we reject the IV-P identifying assumption for one outcome

while not rejecting it for another.

Since the IV-R and IV-P assumptions are random-assignment-type restrictions, ran-

domization tests are a natural choice in this context.5 We therefore propose “subgroup”-

randomization procedures (Lehmann and Romano, 2005, Chapter 5.11) to approximate exact

p-values for Kolmogorov-Smirnov (KS) and Cramer-von-Mises (CM) statistics of the sharp

testable restrictions mentioned above. We further extend this approach to testing for attri-

tion bias given stratified randomization and to identify heterogeneous treatment effects.

Given their relevance to current empirical practice, we also provide a formal treatment of

4Sharp testable restrictions are the restrictions for which there are the smallest possible set of cases
such that the testable restriction holds even though the identifying assumption does not. The concept of
sharpness of testable restrictions was previously developed and applied in Kitagawa (2015), Hsu et al. (2019),
and Mourifié and Wan (2017).

5The mean versions of our sharp testable restrictions for both the IV-R and IV-P identifying assumptions
can be implemented using simple regression tests which we outline in Section B.
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the differential attrition rate test and the use of covariates. In order to understand the role

of differential attrition rates for internal validity, we apply the framework of partial compli-

ance from the local average treatment effect (LATE) literature to potential response.6 We

demonstrate that even though equal attrition rates are sufficient for IV-R under additional

assumptions, they are not a necessary condition for internal validity in general. We illus-

trate using an analytical example and simulations that it is possible to have differences in

attrition rates across treatment and control groups while IV-P holds. Next, we examine the

use of covariates in testing the IV-R or IV-P assumption, which is useful for settings where

baseline outcome data is not available. We note two types of covariates may be included:

(i) determinants of the outcome, and (ii) “proxy” variables which are determined by the

same variables as the outcome in question. Using covariates that do not fulfill either of these

criteria can lead to a false rejection of the IV-R or IV-P assumption.

To illustrate the empirical relevance of our results, we apply our tests of the IV-R and IV-

P assumptions to outcomes from five published field experiments in our review with available

data and the highest overall attrition rates. We also consider the authors’ attrition tests and

note that their approach differs from ours in several ways. Using our tests, we do not reject

the IV-R assumption for any of the outcomes we examine, even though two of the experiments

did not conduct a selective attrition test. More surprisingly, for about two thirds of the

outcomes we examine, we cannot reject the IV-P assumption. We also find several empirical

examples consistent with the theoretical conditions under which the differential attrition rate

test does not control size, thereby providing evidence of their empirical relevance. Overall,

our empirical results are promising for field experiments where IV-P is of interest.

This paper has several implications for empirical practice. First, our theoretical and em-

pirical results imply that the most widely used test in the literature, the differential attrition

rate test, may lead to a false rejection of internal validity in practice. The second most

widely used test, the selective attrition test, is implemented using a variety of approaches,

the majority of which focus on IV-R and only use respondents. Our theoretical results in-

dicate, however, that the implication of the relevant identifying assumption is a joint test

that uses all of the available information in the baseline data, and thus includes both respon-

dents and attritors. Finally, while the majority of testing procedures pertain to IV-R and

not IV-P, the use of determinants of attrition tests suggests that some researchers may be

interested in implications of the estimated treatment effects for the study population. More

generally, this paper highlights the importance of understanding the implications of attrition

for a broader population when interpreting field experiment results for policy.7

6See the foundational work in the LATE literature (Imbens and Angrist, 1994; Angrist et al., 1996).
7External validity can be assessed in a number of ways (see, for example, Andrews and Oster (2019) and
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This paper contributes to a growing literature that considers methodological questions

relevant to field experiments.8 Given the wide use of attrition tests, we formally examine

the testing problem here. Our focus complements a thread in this literature that outlines

various approaches to correcting attrition bias in field experiments (Lee, 2009; Huber, 2012;

Behagel et al., 2015; Millán and Macours, 2019).9 These corrections build on the vast

sample selection literature in econometrics going back to Heckman (1976, 1979).10 While

the larger sample selection literature is broadly concerned with population objects, work

relevant for program evaluation propose corrections for objects pertaining to subpopulations

(e.g. Lee, 2009; Huber, 2012; Chen and Flores, 2015). Our paper provides tests of identifying

assumptions emphasizing the distinction between the (study) population and the respondent

subpopulation. Finally, the randomization tests we propose contribute to recent work that

examines the potential use of randomization tests in analyzing field experiment data (Young,

2018; Athey and Imbens, 2017; Athey et al., 2018; Bugni et al., 2018).

We also build on other strands of the econometrics literature. Recent work on nonpara-

metric identification in nonseparable panel data models informs our approach (Altonji and

Matzkin, 2005; Bester and Hansen, 2009; Chernozhukov et al., 2013; Hoderlein and White,

2012; Ghanem, 2017). Specifically, the identifying assumptions in this paper fall under the

nonparametric correlated random effects category (Altonji and Matzkin, 2005). Further-

more, we build on the literature on randomization tests for distributional statistics (Dufour,

2006; Dufour et al., 1998).

The paper proceeds as follows. Section 2 presents the review of the field experiment

literature. Section 3 formally presents the identifying assumptions and their sharp testable

restrictions. It also includes a formal treatment of differential attrition rates and of the role

Azzam et al. (2018)). In our setting, we note that if IV-R holds but not IV-P, we may be able to draw
inference from the local average treatment effect for respondents to a broader population.

8Bruhn and McKenzie (2009) compare the performance of different randomization methods; McKenzie
(2012) discusses the power trade-offs of the number of follow-up samples in the experimental design; Baird et
al. (2018) propose an optimal method to design field experiments in the presence of interference; de Chaise-
martin and Behaghel (2018) present how to estimate treatment effects in the context of randomized wait
lists; Abadie et al. (2018) propose alternative estimators that reduce the bias resulting from endogenous
stratification in field experiments.

9Other work considers corrections for settings with sample selection and noncompliance. Chen and Flores
(2015) rely on monotonicity restrictions to construct bounds for average treatment effects in the presence of
partial compliance and sample selection. Fricke et al. (2015) consider instrumental variables approaches to
address these two identification problems.

10Nonparametric Heckman-style corrections have been proposed for linear and nonparametric outcome
models (e.g. Ahn and Powell, 1993; Das et al., 2003). Inverse probability weighting (Horvitz and Thompson,
1952; Hirano et al., 2003; Robins et al., 1994) is another important category of corrections for sample selection
bias, frequently used in the field experiment literature. Attrition corrections for panel data have also been
proposed (e.g. Hausman and Wise, 1979; Wooldridge, 1995; Hirano et al., 2001). Finally, nonparametric
bounds is an alternative approach relying on weaker conditions (Horowitz and Manski, 2000; Manski, 2005;
Lee, 2009; Kline and Santos, 2013).
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of covariates in testing internal validity. In Section 4, we propose a subgroup-randomization

procedure to obtain p-values for the distributional null hypotheses. Section 5 presents simu-

lation experiments to illustrate the theoretical results. Section 6 presents the results of the

empirical application exercise. Section 7 concludes.

2 Attrition in the Field Experiment Literature

We systematically reviewed 88 recent articles published in economics journals that report

the results of 91 field experiments. The objective of this review is to understand both

the extent to which attrition is observed and the implementation of tests for attrition bias

in the literature.11 Our categorization imposes some structure on the variety of different

estimation strategies used to test for attrition bias in the literature.12 In keeping with our

panel approach, we focus on field experiments in which the authors had baseline data on at

least one main outcome variable.13

We review reported overall and differential attrition rates in field experiment papers and

find that attrition is common. As depicted in Panel A in Figure 1, even though 22% of field

experiments have less than 2% attrition overall, the distribution of attrition rates has a long

right tail. Specifically, 43% of reviewed field experiments have an attrition rate higher than

the average of 15%.14 Of the experiments that report a differential attrition rate, Panel B in

Figure 1 illustrates that a majority have little differential attrition for the abstract results:

66% have a differential rate that is less than 2 percentage points, and only 12% have a

11We included articles from 2009 to 2015 that were published in the top five journals in economics as
well as four highly regarded applied economics journals that commonly publish field experiments: Ameri-
can Economic Review, American Economic Journal: Applied Economics, Econometrica, Economic Journal,
Journal of Development Economics, Journal of Political Economy, Review of Economics and Statistics, Re-
view of Economic Studies, and Quarterly Journal of Economics. Section A.1 in the online appendix includes
additional details on the selection of papers and relevant attrition rates. Section F in the online appendix
contains a list of all the papers included in the review.

12We identify fifteen estimation strategies used to conduct attrition tests (see Section B in the online
appendix).

13We exclude 58 field experiments that were published during that time period, since they lack baseline
data for any outcome mentioned in the abstract. Of those, slightly less than half (45%) are experiments for
which the baseline outcome is the same for everyone by design and hence is not informative (see Section A.1
in the online appendix).

14To understand the extent of attrition that is relevant to the main outcomes in the paper, we focus
on attrition rates that are relevant to outcomes reported in the abstract (i.e. “abstract results”). Most
papers report attrition rates at the level of the data source or subsample, rather than at the level of the
outcome. Since the number of data sources and/or subsamples that are relevant to the abstract results vary
by experiment, we include one attrition rate per field experiment for consistency. Specifically, we report
the highest attrition rate relevant to an abstract result. Authors do not in general report attrition rates
conditional on baseline response. A noteworthy finding from Table B.1 in the online appendix is that attrition
rates are higher on average for experiments in high-income countries.
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Figure 1: Attrition Rates Relevant to Main Outcomes in Field Experiments

Panel A. Overall Attrition Rate Panel B. Differential Attrition Rate

Notes: We report one observation per field experiment. Specifically, the highest attrition rate
relevant to a result reported in the abstract of the article. The Overall rate is the attrition rate
for the full sample, which is composed of the treatment and control groups. The Differential rate
is the absolute value of the difference in attrition rates across treatment and control groups. The
blue (orange) line depicts the average overall (differential) attrition rate in our sample of field
experiments. Panel A includes 90 field experiments and Panel B includes 74 experiments since the
relevant attrition rates are not reported in some articles.

differential attrition rate that is greater than 5 percentage points.15

We then study how authors test for attrition bias. Notably, attrition tests are widely used

in the literature: 90% of field experiments with an attrition rate of at least 1% for an outcome

with baseline data conduct at least one attrition test. We first identify two main types of tests

that aim to determine the impact of attrition on internal validity: (i) a differential attrition

rate test, and (ii) a selective attrition test. A differential attrition rate test determines

whether the rates of attrition are statistically significantly different across treatment and

control groups. In contrast, a selective attrition test aims to determine whether, conditional

on being a respondent and/or attritor, the mean of observable characteristics is the same

across treatment and control groups. We find that there is no consensus on whether to

conduct a differential attrition rate test or a selective attrition test, however (Panel A in

Table 1). In the field experiments that we reviewed, the differential attrition rate test is

substantially more common (81%) than the selective attrition test (60%). In fact, 30% of

the articles that conducted a differential attrition rate do not conduct a selective attrition

15It is possible, however, that these numbers reflect authors’ exclusion of results with higher differential
attrition rates than those that were reported or published.
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test.16

Table 1: Distribution of Field Experiments by Attrition Test

Panel A: Differential and Selective Attrition Tests

Proportion of field experiments that conduct:
Selective attrition test

No Yes Total

Differential attrition rate test
No 10% 10% 19%
Yes 30% 51% 81%

Total 40% 60% 100%

Panel B: Types of Selective Attrition Test

Conditional on conducting a selective attrition test:

Test using respondents and attritors 27%
Test using respondents only 68%
Test using attritors only 5%

Total† 100%

Panel C: Determinants of Attrition Tests

Proportion of field experiments that conduct:
Determinants of attrition test

Yes No Total

Differential attrition rate test only 11% 19% 30%
Selective attrition test only 1% 8% 10%
Differential & selective attrition tests 22% 29% 51%
No differential & no selective attrition test 0% 10% 10%

Total 34% 66% 100%

Notes: Panel A and C include 73 field experiments that have an attrition rate of
at least 1% for an outcome with baseline data. Panel B includes 44 of those exper-
iments that conducted a selective attrition test (†). For details on the classification
of the empirical strategies, see Section B in the online appendix.

We further consider if selective attrition tests include both the respondents and the

attritors or if they include either only the respondents or only the attritors (Panel B in Table

1). Conditional on having conducted any type of selective attrition test, authors include both

respondents and attritors in only 27% of those field experiments. Instead, authors conduct

a selective attrition test on the sample of respondents in most cases (68%). Although our

review is limited to experiments in which baseline outcome data is available, covariates are

typically included in attrition tests along with the baseline outcome. In particular, 98% of

field experiments that report a selective attrition test include more than one baseline variable

16We also consider some potential determinants of the use of selective attrition tests: overall attrition
rates, differential rates, year of publication, journal of publication. We do not find any strong correlations
given the available data.

7



in that test.17 A key issue that arises with the inclusion of covariates is how to approach the

issue of multiple testing. We find that 77% of the experiments that implement a selective

attrition test conduct it on an average of 16 variables, and none of those implement a multiple

testing correction (Table B.2 in online appendix). Only a minority of authors conduct a joint

test across all of the baseline variables included in the test (21%).

Another important aspect of testing for attrition bias is testing for differences in the

distributions of respondents and attritors. Such tests can illustrate the implications of the

main results of the experiment for the study population. We define a determinants of attrition

test as a test of whether baseline outcomes and covariates correlate with response status and

find that authors conduct such a test in approximately one-third of field experiments (Panel

C of Table 1). Table 1 illustrates that conducting the determinants of attrition test does

not have a one-to-one relationship with either conducting a differential attrition rate test or

conducting a selective attrition test.18

3 Identifying Treatment Effects in the Presence of Attrition

This section presents a formal treatment of attrition in field experiments with baseline out-

come data. First, we present identifying assumptions for counterfactual distributions in the

presence of non-response and show their sharp testable implications when baseline outcome

data is available for both completely and stratified randomized experiments. We further

examine the role of differential attrition rates in this context and discuss the implications of

our theoretical analysis for empirical practice.

3.1 Internal Validity in the Presence of Attrition

An empirical example motivates our treatment of internal validity in the presence of attri-

tion. After deriving the implications of our identifying assumptions, we demonstrate how

to test those implications in that example. We also consider the limits of testing identi-

fying assumptions and present the extension of the results to stratified randomization and

heterogeneous treatment effects.

17Although identifying which variables are outcomes or covariates is beyond the scope of this paper, we
note that in 91% of the experiments the selective attrition test includes at least one variable that we can
easily identify as a covariate (such as age or gender).

18Approximately half of the determinants of attrition tests are conducted using the same regression used to
test for differential attrition rates. We categorize this strategy as both types of tests since authors typically
interpret both the coefficients on treatment and the baseline covariates.
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3.1.1 Motivating Example

To illustrate the problem of attrition in field experiments, we use data collected for the

randomized evaluation of Progresa, a social program in Mexico that provides cash to eligible

poor households on the condition that children attend school and family members visit

health centers regularly (Skoufias, 2005). The evaluation of Progresa relied on the random

assignment of 320 localities into the treatment group and 186 localities into the control group.

These localities, which constitute the study population, were selected to be representative

of a larger population of 6396 eligible localities across seven states in Mexico.19 The surveys

conducted for the experiment include a baseline and three follow-up rounds collected 5, 13,

and 18 months after the program began.20 We examine two outcomes of the evaluation that

have been previously studied: (i) current school enrollment for children 6 to 16 years old,

and (ii) paid employment for adults in the last week.

Table 2: Summary Statistics for the Outcomes of Interest for Progresa

Full Sample Respondent Subsample at Follow-up

Round N
Control
Mean

T − C p-value
Attrition

Rate
Control
Mean

T − C p-value

Panel A. School Enrollment (6-16 years old)

Baseline 24353 0.824 0.007 0.455
Pooled 0.183 0.793 0.046 0.000
1st 0.142 0.814 0.043 0.000
2nd 0.234 0.829 0.046 0.000
3rd 0.174 0.740 0.047 0.000

Panel B. Employment Last Week (18+ years old)

Baseline 31237 0.471 -0.006 0.546
Pooled 0.161 0.464 0.014 0.002
1st 0.096 0.460 0.016 0.016
2nd 0.196 0.459 0.009 0.138
3rd 0.192 0.472 0.018 0.001

Notes: T and C refer to treatment and control group, respectively. T − C is the difference in means between the
treatment and control groups and the p-value is estimated with a regression of outcome on treatment that clusters
standard errors at the locality level. The attrition rates reported are conditional on responding to the baseline survey.
Pooled refers to data from all three follow-ups combined.

In Table 2, we report the initial sample size for each outcome of interest as well as

summary statistics of the outcome by treatment group at baseline and follow-up. The failure

to reject the null hypothesis of the equality of means across the treatment and control groups

at baseline is suggestive evidence that the randomization procedure was implemented as

19Localities were eligible if they ranked high on an index of deprivation, had access to schools and a clinic,
and had a population of 50 to 2500 people. See INSP (2005) for details about the experiment. For this
analysis, we use the evaluation panel dataset, which can be found on the official website of the evaluation at
https://evaluacion.prospera.gob.mx/es/eval_cuant/p_bases_cuanti.php.

20The baseline was collected in October 1997 and the three follow-ups were collected in October 1998,
June 1999, and November 1999.
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intended. In the context of treatment randomization and absence of attrition, differences in

a mean outcome across treatment and control groups at follow-up would identify the average

treatment effect of Progresa for the study population. Pooling data from the three follow-

up rounds, we would conclude that the impact of Progesa on the probability that children

attend school (adults work) is an increase of 4.6 (1.4) percentage points. The attrition rate,

however, varies from 10% to 24% depending on the outcome and the follow-up round. These

attrition rates raise the question of whether the differences in mean outcomes in respondents

identify at least one of two objects of interest: (i) the average treatment for the respondent

subpopulation (ATE-R) or (ii) the average treatment effect for the entire study population

(ATE).

3.1.2 Internal Validity and its Testable Restrictions

In a field experiment with baseline outcome data, we observe individuals i = 1, . . . , n over

two time periods, t = 0, 1. We will refer to t = 0 as the baseline period, and t = 1 as the

follow-up period. Individuals are randomly assigned in the baseline period to the treatment

and control groups. We use Dit to denote treatment status for individual i in period t,

where Dit ∈ {0, 1}.21 Hence, the treatment and control groups can be characterized by

Di ≡ (Di0, Di1) = (0, 1) and Di = (0, 0), respectively. For notational brevity, we let an

indicator variable Ti denote the group membership. Specifically, Ti = 1 if individual i

belongs to the treatment group and Ti = 0 if individual i belongs to the control group.

For each period t = 0, 1, we observe an outcome Yit, which is determined by the treatment

status and a dU × 1 vector of time-invariant and time-varying variables, Uit,

Yit = µt(Dit, Uit). (1)

Given this structural function, we can define the potential outcomes Yit(d) = µt(d, Uit) for

d = 0, 1.22 To simplify illustration, we postpone the discussion of covariates to Section 3.3.2.

Consider a properly designed and implemented RCT such that by random assignment

the treatment and control groups have the same distribution of unobservables. That is,

(Ui0, Ui1) ⊥ Ti, which can be expressed as (Yi0(0), Yi0(1), Yi1(0), Yi1(1)) ⊥ Ti using the poten-

tial outcomes notation. This implies that the control group provides a valid counterfactual

outcome distribution for the treatment group, i.e. Yi1(0)|Ti = 1
d
= Yi1|Ti = 0, where

d
=

denotes the equality in distribution. In this case, any difference in the outcome distribution

21The extension to the multiple treatment case is in Section D of the online appendix.
22We choose to use the structural notation here since it is more common in the panel literature. This

notation also allows us to refer to the unobservables that affect the outcome, which play an important role
in understanding internal validity questions in our problem.
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between treatment and control groups in the follow-up period can be attributed to the treat-

ment. The ATE can be identified as the difference in mean outcomes between the treatment

and control group,

E[Yi1(1)− Yi1(0)]︸ ︷︷ ︸
ATE

= E[Yi1|Ti = 1]− E[Yi1|Ti = 0]. (2)

We now introduce the possibility of attrition in our setting. We assume that all individ-

uals respond in the baseline period (t = 0), but there is possibility of non-response in the

follow-up period (t = 1) as in Hirano et al. (2001). Response status in the follow-up period

is determined by the following equation,23

Ri = ξ(Ti, Vi), (3)

where Vi denotes a vector of unobservables that determine response status, and Ri = 1 if in-

dividual i responds, otherwise it is zero. We can also define potential response for individual i

asRi(τ) = ξ(τ, Vi) for τ = 0, 1. Following Lee (2009), random assignment in the context of at-

trition is given by (Ui0, Ui1, Vi) ⊥ Ti, which implies (Yi0(0), Yi0(1), Yi1(0), Yi1(1), Ri(0), Ri(1))

⊥ Ti using potential outcome and response notation as in Assumption 1 in Lee (2009).

Hence, instead of observing the outcome for all individuals in the treatment and control

groups at follow-up, we can only observe the outcome for respondents in both groups.

Two questions arise in this setting. First, do the control respondents provide an appropri-

ate counterfactual for the treatment respondents, Yi1|Ti = 0, Ri = 1
d
=Yi1(0)|Ti = 1, Ri = 1?

This would imply that we can obtain internally valid estimands for the respondent subpopu-

lation, such as the ATE-R, E[Yi1(1)−Yi1(0)|Ri = 1]. Second, do the outcome distributions of

treatment and control respondents in the follow-up period identify the potential outcome dis-

tribution of the study population with and without the treatment, Yi1|Ti = τ, Ri = 1
d
= Yi1(τ)

for τ = 0, 1? This would imply that we can obtain internally valid estimands for the study

population, such as the ATE.

The next proposition provides sufficient conditions to obtain each of the aforementioned

equalities as well as their respective sharp testable restrictions. Part a (b) of the follow-

ing proposition refers to the case where we can obtain valid estimands for the respondent

subpopulation (study population).

Proposition 1. Assume (Ui0, Ui1, Vi) ⊥ Ti.

(a) If (Ui0, Ui1) ⊥ Ti|Ri holds, then

23Since non-response is only allowed in the follow-up period, we omit time subscripts from the response
equation for notational convenience.
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(i) (Identification) Yi1|Ti = 0, Ri = 1
d
= Yi1(0)|Ti = 1, Ri = 1

(ii) (Sharp Testable Restriction) Yi0|Ti = 0, Ri = r
d
= Yi0|Ti = 1, Ri = r for r = 0, 1.

(b) If (Ui0, Ui1) ⊥ Ri|Ti holds, then

(i) (Identification) Yi1|Ti = τ, Ri = 1
d
= Yi1(τ) for τ = 0, 1.

(ii) (Sharp Testable Restriction) Yi0|Ti = τ, Ri = r
d
= Yi0 for τ = 0, 1, r = 0, 1.

The proof of the proposition is given in Section A. The assumption in (a) is random

assignment conditional on response status. The equality in (a.i) implies the identification of

the ATE-R, i.e. E[Yi1|Ti = 1, Ri = 1] − E[Yi1|Ti = 0, Ri = 1] = E[Yi1(1) − Yi1(0)|Ri = 1],

as well as the identification of quantile and other distributional treatment effects for the

respondent subpopulation. We will refer to this case as internal validity for the respondent

subpopulation (IV-R) and the assumption in (a) as the IV-R assumption. The restriction

in (a.ii) implies that the appropriate test of the implication of the IV-R assumption is a

joint test of the equality of the baseline outcome distribution between treatment and control

respondents as well as treatment and control attritors.24

The assumption in (b) implies missing-at-random as defined in Manski (2005).25 To-

gether with random assignment, it implies that treatment and response status are jointly

independent of the unobservables in the outcome equation. We will refer to this case as

internal validity for the study population (IV-P) and the assumption in (b) as the IV-P as-

sumption. The equality in (b.i) implies identification of the ATE as the difference in mean

outcomes between treatment and control respondents, i.e. E[Yi1|Ti = 1, Ri = 1]−E[Yi1|Ti =

0, Ri = 1] = E[Yi1(1) − Yi1(0)], as well as the identification of quantile and other distri-

butional treatment effects for the study population. The restriction in (b.ii) is the testable

implication of the IV-P assumption under random assignment. The resulting null hypothesis

24If IV-R is of interest, a natural question is whether one should simply test the implication of
(Ui0, Ui1) ⊥ Ti|Ri = 1 in lieu of the IV-R assumption ((Ui0, Ui1) ⊥ Ti|Ri). This would be empirically
relevant if it is plausible that (Ui0, Ui1) ⊥ Ti|Ri = 1 holds while (Ui0, Ui1) ⊥ Ti|Ri = 0 is violated. Using
the subgroups defined by potential response status, we note that a primitive condition for this to hold is

(Ui0, Ui1)|(Ri(0), Ri(1))
d
= (Ui0, Ui1)|max{Ri(0), Ri(1)}. This condition is not empirically plausible since it

implies that the unobservable distribution is the same for always-responders, treatment-only and control-only
responders, but different for the never-responders.

25In the cross-sectional setup, the missing-at-random assumption is given by Yi|Ti, Ri
d
= Yi|Ti. Manski

(2005) establishes that this assumption is not testable in that context. We obtain the testable implications
by exploiting the panel structure. It is important to emphasize that this definition of missing-at-random is
different from the assumption in Hirano et al. (2001) building on Rubin (1976), which would translate to
Yi1 ⊥ Ri|Yi0, Ti in our notation. Finally, while we do not distinguish between observables and unobservables
here, it is worth noting that Assumption 3 in Huber (2012) provides a set of conditions that imply the
assumption in Proposition 1(b).
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in this case is the equality of the baseline outcome distribution regardless of both treatment

and response status.

3.1.3 Application of Tests to Motivating Example

Returning to our motivating example from the Progresa evaluation, we aim to understand

whether the differences in mean outcomes across treatment and control respondents at follow-

up reported in Table 2 are estimating an internally valid object, such as the ATE-R or the

ATE. We do so by testing the implications of the relevant identifying assumptions. Since both

outcomes in our example are binary, the restrictions in Proposition 1 simplify to restrictions

on the baseline mean for each outcome across the four treatment-response subgroups.

We first inspect the mean baseline outcome across the four subgroups presented in Table

3 and notice distinct patterns across the two outcomes of interest. The share of children

who attend school at baseline is similar across treatment and control respondents as well as

treatment and control attritors. This is consistent with the testable restriction in Proposition

1(a.ii) implied by the IV-R assumption, which is random assignment conditional on response

status. When we compare respondents and attritors, however, we find meaningful differences.

At baseline, school enrollment for the respondents in the pooled follow-up sample was around

87%, while enrollment for the attritors in the same sample was 61%. Thus, children that

are observed in the follow-up data are substantially different from those that are not. This

suggests a violation of the testable restriction of the IV-P assumption in Proposition 1(b.ii),

which requires all four treatment-response subgroups to have the same mean outcome at

baseline. In contrast, the share of employed adults at baseline is similar in all four subgroups,

which is consistent with the testable implication of the IV-P assumption.

Table 3 also presents the p-values of the tests of the IV-R and IV-P assumptions based

on the restrictions in Proposition 1(a.ii) and (b.ii), respectively. For school enrollment,

we specifically cannot reject the IV-R assumption, but we do reject the IV-P assumption

at the 5% significance level.26 Thus, we do not reject the assumption that the difference

in school attendance rates across treatment and control respondents at follow-up identifies

the ATE-R. We do, however, reject the assumption that this difference could identify the

ATE. In contrast, for the outcome of employment, we do not reject either the IV-R or the

IV-P assumption.27 In other words, we do not reject the assumption that the difference

26It is worth noting that a multiple testing correction would not change the decisions of any of the tests in
our example. For instance, applying the Bonferroni correction for each outcome would yield a significance
level for each hypothesis of 0.63% to control a family-wise error rate of 5% across the eight tests we conduct.

27A natural question that arises from this example is why we find different patterns of response across
two outcomes that were collected from the same surveys. We conduct a determinants of attrition test, and
find that the probability that a household responds to the employment question for all adults and does not

13



Table 3: Internal Validity in the Presence of Attrition for Progresa

Follow-up Attrition Rate Mean Baseline Outcome by Group
Test of
IV-R

Test of
IV-P

C
Differen-

tial
TR CR TA CA p-value p-value

Panel A. School Enrollment (6-16 years old)

Pooled 0.187 -0.007 0.878 0.874 0.615 0.605 0.836 0.000
1st 0.150 -0.013 0.875 0.871 0.550 0.554 0.810 0.000
2nd 0.244 -0.017 0.901 0.897 0.590 0.595 0.824 0.000
3rd 0.168 0.009 0.859 0.856 0.697 0.663 0.217 0.000

Panel B. Employment Last Week (18+ years old)

Pooled 0.157 0.007 0.463 0.468 0.472 0.486 0.698 0.132
1st 0.100 -0.007 0.464 0.471 0.472 0.473 0.825 0.860
2nd 0.195 0.001 0.463 0.465 0.474 0.496 0.566 0.058
3rd 0.175 0.027 0.463 0.469 0.471 0.481 0.769 0.503

Notes: The mean baseline outcomes correspond to the groups of treatment respondents (TR), control respondents (CR),
treatment attritors (TA), and control attritors (CA). Pooled refers to all the three follow-ups. The tests of internal validity
were conducted using the regression tests proposed in Section B. All regression tests use clustered standard errors at the
locality level. For further details on the implementation of the tests, see Sections 4 and 6.

in employment rates between treatment and control respondents at follow-up identifies the

ATE.

Understanding treatment effects for the study population is especially relevant to under-

standing the impact of large-scale programs such as Progresa, where the study population

is representative of a larger population. In this type of study, if we do reject the IV-P as-

sumption but not the IV-R assumption for an outcome such as school enrollment, we can

still draw inferences about an average treatment effect on a larger population. That average

treatment effect, however, is a local average treatment effect for the type of participants for

which there would be follow-up data available for a given outcome.

3.1.4 Attrition Tests as Identification Tests

Like other tests of identifying assumptions, tests of internal validity in the presence of at-

trition can only be tested by implication in general. In our problem, if we impose time

homogeneity on the structural function and the unobservable distribution (Chernozhukov et

al., 2013), specifically µ0 = µ1 and Ui0|Ti, Ri
d
= Ui1|Ti, Ri, then the testable restriction in

Proposition 1(a.ii) holds if and only if identification (a.i) holds. This equivalence relationship

does not hold in general, however. Hence, while rejection of a test of the implication in (a.ii)

allows us to refute the identifying assumption in question, it is possible not to reject the test

respond to the school enrollment question for all children is positively correlated with household size, and
is even more closely correlated with the number of children 6-16 years old in the household. This suggests
that non-response on the school enrollment question may be driven by survey fatigue.
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even when identification fails.28 This point is illustrated in the following example.

Example. Suppose that there are two unobservables that enter the outcome equation, Uit =

(U1
it, U

2
it)
′ for t = 0, 1, such that (U1

i0, U
1
i1) ⊥ Ti|Ri whereas (U2

i0, U
2
i1) 6⊥ Ti|Ri. Let the

outcome at baseline be a trivial function of U2
i0, whereas the outcome in the follow-up period

is a non-trivial function of both U1
i0 and U2

i0, e.g.

Yi0 = U1
i0

Yi1 = U1
i1 + U2

i1 + Ti(β1U
1
i1 + β2U

2
i1)

As a result, even though Yi0|Ti = 1, Ri
d
= Yi0|Ti = 0, Ri holds, Yi1(0)|Ti = 1, Ri = 1

d

6= Yi1|Ti =

0, Ri = 1. In other words, the control respondents do not provide a valid counterfactual

for the treatment respondents in the follow-up period despite the identity of the baseline

outcome distribution for treatment and control groups conditional on response status. We

can illustrate this by looking at the average treatment effect for the treatment respondents,

E[Yi1(1)− Yi1(0)|Ti = 1, Ri = 1]

=E[U1
i1 + U2

i1 + β1U
1
i1 + β2U

2
i1|Ti = 1, Ri = 1]︸ ︷︷ ︸

E[Yi1|Ti=1,Ri=1]

−E[U1
i1 + U2

i1|Ti = 1, Ri = 1]︸ ︷︷ ︸
6=E[Yi1|Ti=0,Ri=1]

.

Hence, E[Yi1|Ti = 1, Ri = 1]−E[Yi1|Ti = 0, Ri = 1] 6= β1E[U1
i1|Ti = 1, Ri = 1]+β2E[U2

i1|Ti =

1, Ri = 1], i.e. the difference in mean outcomes between treatment and control respondents

does not identify an average treatment effect for the treatment respondents.29

The above example illustrates why we cannot test identification “directly”, since it would

require us to observe the counterfactual of the treatment respondents. This illustrates the

importance of using sharp testable restrictions. Since we can only test an identifying as-

sumption by implication, it is crucial that we test the strongest possible implication of the

identifying assumption in question.

28While the converse (i.e. that identification holds while the testable implication on the baseline outcome
distribution is violated) is theoretically possible, it is not an interesting case empirically. If a field experimen-
talist finds violations of the testable implication of the IV-R assumption, it is highly unlikely that he/she will
discount this evidence and argue that identification of the ATE-R remains possible from a simple difference
of mean outcomes between treatment and control respondents.

29We could however have a case in which the control respondents provide a valid counterfactual for the
treatment respondents even though the treatment effect for individual i depends on an unobservable that is
not independent of treatment conditional on response, i.e. U2

it. Specifically, let Yit = U1
it +Ti(β1U

1
it + β2U

2
it)

and consider the identification of an average treatment effect, E[Yi1(1) − Yi1(0)|Ti = 1, Ri = 1] = E[U1
i1 +

β1U
1
i1 + β2U

2
i1|Ti = 1, Ri = 1]− E[U1

i1|Ti = 1, Ri = 1] = E[Yi1|Ti = 1, Ri = 1]− E[Yi1|Ti = 0, Ri = 1], since
E[U1

i1|Ti = 1, Ri = 1] = E[U1
i1|Ti = 0, Ri = 1]. Note however that in this case what we identify is no longer

internally valid for the entire respondent subpopulation, but for the smaller subpopulation of treatment
respondents.
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3.1.5 Heterogeneous Treatment Effects and Stratified Randomization

In this section, we extend our analysis to discuss heterogeneous treatment effects and strati-

fied randomization. Heterogeneous treatment effects, more formally referred to as conditional

average treatment effects (CATE), are of interest in many experiments. Stratified random-

ization is also common in empirical practice. Sometimes it is a necessity of the design, such

as when the study is randomized within roll-out waves or locations. At other times, it is

included in the experimental design with the aim of increasing precision and reducing bias

of both average and heterogeneous treatment effects. The results in this section are relevant

both for stratified randomized experiments and for completely randomized experiments that

estimate heterogeneous treatment effects.30

In the following, let Si denote the stratum of individual i which has support S, where

|S| < ∞.31 To exclude trivial strata, we assume that P (Si = s) > 0 for all s ∈ S through-

out the paper. In a stratified randomized experiment, random assignment is defined by

(Ui0, Ui1, Vi) ⊥ Ti|Si, whereas in a completely randomized experiment this conditional inde-

pendence assumption holds as an implication of simple randomization ((Si, Ui0, Ui1, Vi) ⊥ Ti).

As a result, the following proposition applies to both completely and stratified randomized

experiments.

Proposition 2. Assume (Ui0, Ui1, Vi) ⊥ Ti|Si.

(a) If (Ui0, Ui1) ⊥ Ti|Si, Ri, then

(i) (Identification) Yi1|Ti = 0, Si = s, Ri = 1
d
= Yi1(0)|Ti = 1, Si = s, Ri = 1, for

s ∈ S.

(ii) (Sharp Testable Restriction) Yi0|Ti = 0, Si = s, Ri = r
d
= Yi0|Ti = 1, Si = s, Ri = r

for r = 0, 1, s ∈ S.

(b) If (Ui0, Ui1) ⊥ Ri|Ti, Si, then

(i) (Identification) Yi1|Ti = τ, Si = s, Ri = 1
d
= Yi1(τ)|Si = s, for τ = 0, 1, s ∈ S.

(ii) (Sharp Testable Restriction) Yi0|Ti = τ, Si = s, Ri = r
d
= Yi0(0)|Si = s for τ = 0, 1,

r = 0, 1, s ∈ S.

30This framework can also be extended to test unconfoundedness assumptions, which motivate IPW-type
attrition corrections (Huber, 2012), using baseline data. While interesting, this issue is outside the scope of
the present paper.

31The finiteness of the number of strata motivates the finite-support assumption on S. It is worth noting
however that the results in the proposition hold for continuous conditioning variables as well.
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The equality in (a.i) implies that we can identify the average treatment effect conditional

on S for respondents as the difference in mean outcomes between treatment and control

respondents in each stratum,

E[Yi1(1)− Yi1(0)|Ti = 1, Si = s, Ri = 1]

=E[Yi1|Ti = 1, Si = s, Ri = 1]− E[Yi1|Ti = 0, Si = s, Ri = 1]. (CATE-R) (4)

Alternatively, the ATE-R can then be identified by averaging over Si, i.e.
∑

s∈S P (Si =

s|Ri = 1) (E[Yi1|Ti = 1, Si = s, Ri = 1]− E[Yi1|Ti = 0, Si = s, Ri = 1]). The testable restric-

tion in (a.ii) is the identity of the distribution of baseline outcome for treatment and control

groups conditional on response status and stratum. In other words, the equality of the out-

come distribution for treatment and control respondents (as well as for treatment and control

attritors) conditional on stratrum is the sharp testable restriction of the IV-R assumption in

the case of block randomization. The results in part (b) of the proposition refer to IV-P in

the context of block randomization. Thus, they are also conditional versions of the results

in Proposition 1(b).

3.2 Differential Attrition Rates and Internal Validity

When attrition rates across treatment and control groups are not equal, specifically P (Ri =

0|Ti = 1) 6= P (Ri = 0|Ti = 0), we call this a differential attrition rate as in Section 2. Since

the differential attrition rate test is widely used, we examine the relationship between equal

attrition rates and IV-R as well as IV-P.

In order to understand the role of differential attrition rates in testing IV-R, we use po-

tential response to characterize different response types that will differ in terms of their

distribution of unobservables. Here we adapt the terminology of never-takers, always-

takers, compliers and defiers from the LATE literature (Imbens and Angrist, 1994; Angrist

et al., 1996) to our setting: never-responders ((Ri(0), Ri(1)) = (0, 0)), always-responders

((Ri(0), Ri(1)) = (1, 1)), treatment-only responders ((Ri(0), Ri(1)) = (0, 1)), and control-only

responders ((Ri(0), Ri(1)) = (1, 0)). As shown in Figure 2, the treatment and control re-

spondents and attritors are composed of different response types (Ri(0), Ri(1)).

We can now examine the difference in attrition rates and what it measures in terms of

the proportions of the aforementioned response types, which we define as:

p00 ≡ P ((Ri(0), Ri(1)) = (0, 0)), p01 ≡ P ((Ri(0), Ri(1)) = (0, 1)),

p10 ≡ P ((Ri(0), Ri(1)) = (1, 0)), p11 ≡ P ((Ri(0), Ri(1)) = (1, 1)). (5)
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Figure 2: Respondent and Attritor Subgroups

Control
(Ti = 0)

Treatment
(Ti = 1)

Attritors
(Ri = 0)

(Ri(0), Ri(1)) = (0, 1)
(Ri(0), Ri(1)) = (0, 0)

(Ri(0), Ri(1)) = (1, 0)
(Ri(0), Ri(1)) = (0, 0)

Respondents
(Ri = 1)

(Ri(0), Ri(1)) = (1, 0)
(Ri(0), Ri(1)) = (1, 1)

(Ri(0), Ri(1)) = (0, 1)
(Ri(0), Ri(1)) = (1, 1)

Note that by random assignment, (Ri(0), Ri(1)) ⊥ Ti, the attrition rates in the treatment

and control groups are given by

P (Ri = 0|Ti = 0) = p00 + p01, P (Ri = 0|Ti = 1) = p00 + p10. (6)

The difference in attrition rates across groups measures the difference between the proportion

of treatment-only and control-only responders, i.e. P (Ri = 0|Ti = 0)− P (Ri = 0|Ti = 1) =

p01 − p10. Thus, equal attrition rates occur if p01 = p10.

Next, we illustrate the relationship between the differential attrition rates and the IV-R

assumption (Proposition 1(a)), (Ui0, Ui1) ⊥ Ti|Ri. To do so, we express the distribution of

unobservables, (Ui0, Ui1), for treatment and control respondents as a mixture of the distri-

butions of response types (Ri(0), Ri(1)). We omit the analysis for attritors for brevity, since

it is analoguous. Under random assignment, the unobservable distribution of treatment and

control respondents is given by the following

FUi0,Ui1|Ti=1,Ri=1 =
p01FUi0,Ui1|(Ri(0),Ri(1))=(0,1) + p11FUi0,Ui1|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 1)
,

FUi0,Ui1|Ti=0,Ri=1 =
p10FUi0,Ui1|(Ri(0),Ri(1))=(1,0) + p11FUi0,Ui1|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 0)
.

When the IV-R assumption holds, the two distributions on the left hand side of the above

equations agree. This equality holds in three different cases outlined in the following propo-

sition.

Proposition 3. Suppose, in addition to (Ui0, Ui1, Vi) ⊥ Ti, one of the following is true,

(i) (Ui0, Ui1) ⊥ (Ri(0), Ri(1)) (Unobservables in Y ⊥ Potential Response)

(ii) Ri(0) ≤ Ri(1) (wlog), (Monotonicity)

& P (Ri = 0|Ti) = P (Ri = 0) (Equal Attrition Rates)

(iii) (Ui0, Ui1)|Ri(0), Ri(1)
d
= (Ui0, Ui1)|Ri(0) +Ri(1) (Exchangeability)

& P (Ri = 0|Ti) = P (Ri = 0) (Equal Attrition Rates)
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then (Ui0, Ui1) ⊥ Ti|Ri.

The proof of the proposition is given in Section A. Note that in (i) there are no re-

strictions on the attrition rates. This assumption requires that all four treatment-response

subgroups have the same unobservable distribution, which not only implies IV-R, but also

IV-P, under random assignment. In (ii), where both equal attrition rates and monotonicity

are required for IV-R to hold, the respondent subpopulation is solely composed of always-

responders ((Ri(0), Ri(1)) = (1, 1)). Lee (2009) uses the monotonicity assumption to bound

the average treatment effect for the always-responders when attrition rates are not equal.

The exchangeability restriction in (iii) merits some discussion. Specifically, it is weaker than

monotonicity, since it allows for both treatment-only and control-only responders, but it as-

sumes that these “inconsistent” types have the same distribution of (Ui0, Ui1). While strong

in general, this assumption may be more realistic in experiments with two treatments. If

coupled with equal attrition rates, exchangeability implies the IV-R assumption.

The above discussion and proposition illustrate that equal attrition rates without further

assumptions do not imply IV-R. To illustrate this point further, we present two examples.

Example 1. (Internal Validity & Differential Attrition Rates)

Assume that potential response satisfies monotonicity, i.e. p10 = 0, and (Ui0, Ui1) ⊥ (Ri(0), Ri(1)).

Furthermore, there is a group of individuals for whom it is too costly to respond if they

are in the control group. Hence, this group will only respond if assigned the treatment

(p01 > 0). By the above proposition, under random assignment, (Ui0, Ui1) ⊥ (Ri(0), Ri(1))⇒
(Ui0, Ui1)|Ti, Ri

d
= (Ui0, Ui1). Panel A of Figure 3 illustrates the resulting distribution of Uit.

However, due to the presence of treatment-only responders, P (Ri = 1|Ti = 1) = p11 + p01,

and P (Ri = 1|Ti = 0) = p11. Hence, even though we not only have IV-R but also IV-P, we

have differential attrition rates (−p01) across treatment and control groups.

Example 2. (Equal Attrition Rates & Violation of Internal Validity)

Assume that potential response violates monotonicity, such that there are treatment-only and

control-only responders,32 but their proportions are equal (p10 = p01 > 0), which yields equal

32Violations of monotonicity are especially plausible in settings where we have two treatments. For the
classical treatment-control case, a nice example of a violation of monotonicity of response is given in Glen-
nerster and Takavarasha (2013). Suppose the treatment is a remedial program for public schools targeted
toward students that have identified deficiencies in mathematics. Response in this setting is determined by
whether students remain in the public school, which depends on their treatment status and initial mathe-
matical ability, Vi. On one side, low-achieving students would drop out of school if they are assigned to the
control group, but would remain in school if assigned the treatment. On the other side, parents of high-
achieving students in the treatment group may be induced to switch their children to private schools because
they are unhappy with the larger class sizes, while in the control group those students would remain in the
public school. Furthermore, in the context of the LATE framework, de Chaisemartin (2017) provides several
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Figure 3: Distribution of Uit for Different Response Types
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Notes: The above figure illustrates the distribution of Uit for the different subpopulations in Examples

1 and 2, where we assume Uit|(Ri(0), Ri(1)) = (r0, r1)
i.i.d.∼ N(δr0r1 , 1) for all r0, r1 ∈ {0, 1}2 for t = 0, 1.

Panel A represents Example 1 where we assume (Ui0, Ui1) ⊥ (Ri(0), Ri(1)), hence δ00 = δ01 = δ11. Panel
B represents Example 2 where δr0r1 is unrestricted for (r0, r1) ∈ {0, 1}2.

attrition rates across treatment and control groups.33 If (Ui0, Ui1) 6⊥ (Ri(0), Ri(1)), then the

different response types will have different distributions of unobservables, as illustrated in

Panel B of Figure 3. As a result, the distribution of (Ui0, Ui1) for treatment and control

respondents defined in (20)-(21) will be different and hence IV-R is violated.

While Example 1 shows that differential attrition rates can coincide with internal validity,

Example 2 illustrates that internal validity can be violated even though we have equal attri-

tion rates. In Section 5, we design simulation experiments that mimic the above examples

to illustrate these points numerically.

A further limitation of the focus on differential attrition rates in empirical practice is

that we cannot use it to test IV-P, even in cases where the differential attrition rate test

is a valid test of IV-R. For instance, consider the case in which monotonicity holds and

the attrition rates are equal across groups. We can then identify the ATE-R, since the

respondent subpopulation is composed solely of always-responders as pointed out above.

If the researcher is interested in identifying the treatment effect for the study population,

however, s/he would have to test whether the always-responders are “representative” of the

study population. To do so, one would have to test the restriction of the IV-P assumption

in Proposition 1(b.ii).

applications where monotonicity is implausible and establishes identification of a local average treatment
effect under an alternative assumption.

33In the multiple treatment case, equal attrition rates are possible without requiring any two response
types to have equal proportions in the population. See Section C in the online appendix for a derivation.
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3.3 Implications for Empirical Practice

Our theoretical analysis underscores the importance of the object of interest in determining

the appropriateness of an attrition test. Hence, explicitly stating the object of interest,

whether it is the ATE-R, ATE, CATE-R or CATE, is important to justify a particular

attrition test. Our results further clarify the interpretation of attrition tests in the field

experiment literature. The differential attrition rate test, which is implemented in 81% of

papers in our review, is not based on a necessary condition of IV-R. Most of the selective

attrition tests, which are performed in 60% of the papers, are based on mean implications

of the IV-R assumption. The most common version of this test (40% of all papers) uses

respondents only; and hence, it does not exploit all the information in the baseline sample,

specifically the attritors. Sixteen percent of papers do implement a selective attrition test

that includes both respondents and attritors, suggesting that some authors are aware of the

value of this information. Several of the null hypotheses they use, however, do not constitute

IV-R or IV-P tests. This is perhaps unsurprising given the wide range of null hypotheses

tested (see Section B.2 in the online appendix). Although authors do not in general conduct

a direct test of IV-P, the inclusion of respondents and attritors in some selective attrition

tests as well as the use of determinants of attrition tests suggest that some authors are likely

interested in IV-P.

3.3.1 Mean Tests of Internal Validity

The vast majority of selective attrition tests implemented in the literature are based on

restrictions on the mean of the baseline variables in question. The distributional restrictions

in Proposition 1 test the IV-R (IV-P) assumption which implies the identification of the

entire distribution of the potential outcomes, and as a result the identification of the ATE-

R (ATE). In some experiments, however, researchers may be solely interested in average

treatment effects. Here, we discuss the weaker sufficient conditions to identify these objects

and their sharp testable implications.

If the ATE-R is the object of interest, then the following assumption is sufficient for its

identification,

E[Yit(0)|Ti, Ri] = E[Yit(0)|Ri], t = 0, 1. (7)

Note that this assumption is implied by the IV-R assumption in Proposition 1(a). Its sharp

testable implication, E[Yi0|Ti, Ri] = E[Yi0|Ri], is the mean version of the testable restriction

in Proposition 1(a), so it includes testable restrictions on attritors and respondents. Similarly,
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if the object of interest is the ATE, then the relevant identifying assumption is

E[Yit(0)|Ti, Ri] = E[Yit(0)], t = 0, 1, (8)

which is similarly the mean version of the IV-P assumption in Proposition 1(b). The testable

restriction of this assumption, E[Yi0|Ti, Ri] = E[Yi0], involves all treatment-response sub-

groups as its distributional version in Proposition 1(b.ii).

The mean restrictions of the identifying assumptions of the ATE-R and ATE can be im-

plemented in a straightforward manner using regression-based tests. We present the relevant

regressions and null hypotheses in Section B.

3.3.2 The role of covariates

An important question that arises in empirical practice is whether to include covariates in

attrition tests. In some cases, using covariates may be the only way to test attrition bias.

In particular, some experiments target a population for which the baseline outcome always

takes on the same value by design (i.e. if a job training program is targeted to unemployed

people and employment is the main outcome). In other field experiments, baseline outcome

data may not be available. We therefore provide a formal discussion of the role of covariates

in attrition tests in this section.

Suppose that the researcher has the following a priori information on Wit, a dW × 1

vector of covariates,

Wit = νt(Uit), (9)

i.e. that these covariates are functions of Uit, the determinants of the outcome Yit, for t = 0, 1.

This identifies two types of covariates: (i) covariates that are themselves determinants of

the outcome, i.e. W k
it = U j

it for some k, j, k = 1, . . . , dW , j = 1, . . . , dU , or (ii) “proxy”

variables, which are covariates determined by the same factors as the outcome Yit. If this a

priori information is true, the sharp testable restrictions of the IV-R and IV-P assumptions

in Proposition 1 as well as Proposition 2 would be imposed on the joint distribution of

Zi0 = (Yi0,W
′
i0)
′ and not solely on the marginal distribution of Yi0.

34 However, if this a

priori information is false and Wit also depends on unobservables that affect response, Vi,

i.e. Wit = ξt(Uit, Vi), then the testable restrictions on Wi0 may be violated even if the

identifying assumption in question holds.

The main takeaway from the above discussion is that the testable restriction of the IV-

34See Section B for details on regression tests for the multivariate case.
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R or IV-P assumption for the outcome in question, Yit, consists of a joint hypothesis of

the relevant restrictions on the vector of baseline outcome and covariates, Zi0, assuming (9).

This outcome-specific approach to testing attrition bias is further supported by our Progresa

example, which illustrates empirically that attrition may affect internal validity differently

depending on the outcome in question.

In our review of field experiments, we find that most authors use covariates in attrition

tests regardless of the design of the study. The average number of variables (outcomes and

covariates) used in the selective attrition tests in our review is 17 with 75% of those tests

using more than 10 variables and a maximum of 46. It is important to point out that studies

that implement the selective attrition tests on all baseline variables, Zi0 = (Yi0,W
′
i0, X

′
i0)
′,

are testing the IV-R assumption for all determinants of those variables, Eit = (U ′it, η
′
it)
′,

where Zit = ξt(Eit). Our results suggest that the inclusion of Xi0, which do not satisfy (9)

by definition (i.e. not solely determined by Uit), may lead to false rejection of the IV-R or

IV-P assumption for the outcome in question. Another reason for potential over-rejection of

internal validity in the literature is that a substantial proportion of the implementation of

selective attrition tests in the literature consists of individual tests for each baseline variable

without correcting for multiple testing.

The implications of our analysis for empirical practice resonate with existing recom-

mendations in the literature regarding the random assignment method used to ensure the

similarity of treatment and control groups in terms of baseline observables in a given sample

(i.e. “balance”). In seminal work on clinical trials, Altman (1985) emphasizes that imbal-

ance should only concern the researcher if the variable in question relates to the outcome.

Bruhn and McKenzie (2009) compare different stratified randomization procedures in terms

of their ability to achieve balance. They point to the potential cost of using “irrelevant” vari-

ables in their simulation study and find that baseline outcome is by far the most informative

determinant of future outcomes in various datasets.

4 Randomization Tests of Internal Validity

We present randomization procedures to test the IV-R and IV-P assumptions for completely

and stratified randomized experiments. If distributional treatment effects are the object

of interest, then the distributional hypotheses are the testable restrictions of the relevant

identifying assumptions. Furthermore, the use of randomization tests is an increasingly

common approach to estimating treatment effects (Young, 2018). Thus, authors may want

to implement randomization procedures when testing for attrition bias, even when their

focus is on mean rather than distributional effects.
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The proposed procedures approximate the exact p-values of the proposed distributional

statistics under the cross-sectional i.i.d. assumption when the outcome distribution is con-

tinuous.35 They can also be adapted to accommodate possibly discrete or mixed outcome

distributions, which may result from rounding or censoring in the data collection, by applying

the procedure in Dufour (2006). In this section, we focus on distributional statistics for the

testable restrictions on the baseline outcome as in Propositions 1 and 2. The randomization

procedures we propose, however, can be applied to test joint distributional hypotheses that

include covariates as in Section 3.3.2.

We first outline a general randomization procedure that we adapt to the different settings

we consider.36 Given a dataset Z and a statistic Tn = T (Z) that tests a null hypothesis H0,

we use the following procedure to provide a stochastic approximation of the exact p-value

for the test statistic Tn exploiting invariant transformations g ∈ G0 (Lehmann and Romano,

2005, Chapter 15.2). Specifically, the transformations g ∈ G0 satisfy Z
d
= g(Z) under H0

only.

Procedure 1. (Randomization)

1. For gb, which is i.i.d. Uniform(G0), compute T̂n(gb) = T (gb(Z)),

2. Repeat Step 1 for b = 1, . . . , B times,

3. Compute the p-value, p̂n,B = 1
B+1

(
1 +

∑B
b=1 1{T̂n(gb) ≥ Tn}

)
.

A test that rejects when p̂n,B ≤ α is level α for any B (Lehmann and Romano, 2005,

Chapter 15.2). In our application, the invariant transformations in G0 consist of permuta-

tions of individuals across certain subgroups in our data set. The subgroups are defined

by the combination of response and treatment in the case of completely randomized trials,

and all the combinations of response, treatment, and stratum in the case of trials that are

randomized within strata.

4.1 Completely Randomized Trials

The testable restriction of the IV-R assumption, stated in Proposition 1(a.ii), implies that

the distribution of baseline outcome is identical for treatment and control respondents as

well as treatment and control attritors. Thus, the joint hypothesis is given by

H1
0 : FYi0|Ti=0,Ri=r = FYi0|Ti=1,Ri=r for r = 0, 1. (10)

35We maintain the cross-sectional i.i.d. assumption to simplify the presentation. The randomization pro-
cedures proposed here remain valid under weaker exchangeability-type assumptions.

36See Lehmann and Romano (2005); Canay et al. (2017) for a more detailed review.
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The general form of the distributional statistic for each of the equalities in the null hypothesis

above is

T 1
n,r =

∥∥√n (Fn,Yi0|Ti=0,Ri=r − Fn,Yi0|Ti=1,Ri=r

)∥∥ for r = 0, 1,

where for a random variable Xi, Fn,Xi
denotes the empirical cdf, i.e. the sample analogue of

FXi
, and ‖.‖ denotes some non-random or random norm. Different choices of the norm give

rise to different statistics. We use the KS and CM statistics in the simulations since they

are the most widely known and used. The former is obtained by using the L∞ norm over

the sample points, i.e. ‖f‖n,∞ = maxi |f(yi)|, whereas the latter is obtained by using an L2

norm, i.e. ‖f‖n,2 =
∑n

i=1 f(yi)
2/n. In order to test the joint hypothesis in (10), the two

following statistics that aggregate over T 1
n,r for r = 0, 1 are standard choices in the literature

(Imbens and Rubin, 2015),37

T 1
n,m = max{T 1

n,0, T
1
n,1},

T 1
n,p = pn,0T

1
n,0 + pn,1T

1
n,1, where pn,r =

n∑
i=1

1{Ri = r}/n for r = 0, 1.

Let G10 denote the set of all permutations of individual observations within respondent

and attritor subgroups, for g ∈ G10 , g(Z) = {(Yi0, Tg(i), Rg(i)) : Rg(i) = Ri, 1 ≤ i ≤ n}. Under

H1
0 and the cross-sectional i.i.d. assumption, Z

d
= g(Z) for g ∈ G10 . Hence, we can obtain

p-values for T 1
n,m and T 1

n,p under H1
0 by applying Procedure 1 using the set of permutations

G10 .

We now consider testing the restriction of the IV-P assumption stated in Proposition

1(b.ii). This restriction implies that the distribution of the baseline outcome variable is

identically distributed across all four subgroups defined by treatment and response status.

Let (Ti, Ri) = (τ, r), where (τ, r) ∈ T ×R = {(0, 0), (0, 1), (1, 0), (1, 1)} and (τj, rj) denote

the jth element of T ×R. Then, the joint hypothesis is given wlog by

H2
0 : FYi0|Ti=τj ,Ri=rj = FYi0|Ti=τj+1,Ri=rj+1

for j = 1, . . . , |T × R| − 1. (11)

37There are other possible approaches to construct joint statistics. We compare the finite-sample perfor-
mance of the two joint statistics we consider numerically in Section E of the online appendix.
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In this case, the two statistics that we propose to test the joint hypothesis are:

T 2
n,m = max

j=1,...,|T ×R|−1

∥∥√n (Fn,Yi0|Ti=τj ,Ri=rj − Fn,Yi0|Ti=τj+1,Ri=rj+1

)∥∥ ,
T 2
n,p =

|T ×R|−1∑
j=1

wj
∥∥√n (Fn,Yi0|Ti=τj ,Ri=rj − Fn,Yi0|Ti=τj+1,Ri=rj+1

)∥∥
for some fixed or data-dependent non-negative weights wj for j = 1, . . . , |T × R| − 1.

Under H2
0 and the cross-sectional i.i.d. assumption, any random permutation of individ-

uals across the four treatment-response subgroups will yield the same joint distribution of

the data. Specifically, for g ∈ G20 , g(Z) = {(Yi0, Tg(i), Rg(i)) : 1 ≤ i ≤ n}. We can hence apply

Procedure 1 using G20 to obtain approximately exact p-values for the statistic T 2
n,m or T 2

n,p

under H2
0 .

4.2 Stratified Randomized Trials

As pointed out in Section 3.1.5, the testable restrictions in the case of stratified or block

randomized trials (Proposition 2) are conditional versions of those in the case of completely

randomized trials (Proposition 1). Thus, in what follows we lay out the conditional versions of

the null hypotheses, the distributional statistics, and the invariant transformations presented

in Section 4.1.

We first consider the restriction in Proposition 2(a.ii), which yields the following null

hypothesis

H1,S
0 : FYi0|Ti=0,Si=s,Ri=r = FYi0|Ti=1,Si=s,Ri=r for r = 0, 1, s ∈ S. (12)

To obtain the test statistics for the joint hypothesis H1,S
0 , we first construct test statistics

for a given s ∈ S,

T 1,S
n,m,s = max

r=0,1

∥∥√n (Fn,Yi0|Ti=0,Si=s,Ri=r − Fn,Yi0|Ti=1,Si=s,Ri=r

)∥∥ ,
T 1,S
n,p,s =

∑
r=0,1

pr|sn
∥∥√n (Fn,Yi0|Ti=0,Si=s,Ri=r − Fn,Yi0|Ti=1,Si=s,Ri=r

)∥∥ ,
where p

r|s
n =

∑n
i=1 1{Ri = r, Si = s}/

∑n
i=1 1{Si = s}. We then aggregate over each of those
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statistics to get

T 1,S
n,m = max

s∈S
T 1,S
n,m,s,

T 1,S
n,p =

∑
s∈S

psnT
1,S
n,p,s, where psn =

n∑
i=1

1{Si = s}/n for s ∈ S.

In this case, the invariant transformations under H1,S
0 are the ones where n elements are per-

muted within response-strata subgroups. Formally, for g ∈ G1,S0 , g(Z) = {(Yi0, Tg(i), Sg(i), Rg(i)) :

Sg(i) = Si, Rg(i) = Ri, 1 ≤ i ≤ n}, where Z = {(Yi0, Ti, Si, Ri) : 1 ≤ i ≤ n}. Under H1,S
0 and

the cross-sectional i.i.d. assumption within strata, Z
d
= g(Z) for g ∈ G1,S0 . Hence, using G1,S0 ,

we can obtain p-values for T 1,S
n,m and T 1,S

n,p under H1,S
0 .

We now consider testing the restriction in Proposition 2(b.ii). The resulting null hypoth-

esis is given wlog by the following

H2,S
0 : FYi0|Ti=τj ,Si=s,Ri=rj = FYi0|Ti=τj+1,Si=s,Ri=rj+1

for j = 1, . . . , |T × R| − 1, s ∈ S.
(13)

To obtain the test statistics for the joint hypothesis H2,S
0 , we first construct test statistics

for a given s ∈ S,

T 2,S
n,m,s = max

j=1,...,|T ×R|−1

∥∥√n (Fn,Yi0|Ti=τj ,Si=s,Ri=rj − Fn,Yi0|Ti=τj+1,Si=s,Ri=rj+1

)∥∥ ,
T 2,S
n,p,s =

|T ×R|−1∑
j=1

wj,s
∥∥√n (Fn,Yi0|Ti=τj ,Si=s,Ri=rj − Fn,Yi0|Ti=τj+1,Si=s,Ri=rj+1

)∥∥ ,
given fixed or random non-negative weights wj,s for j = 1, . . . , |T × R| − 1 and s ∈ S. We

then aggregate over each of those statistics to get

T 2,S
n,m = max

s∈S
T 2,S
n,m,s,

T 2,S
n,p =

∑
s∈S

wsT
2,S
n,p,s,

given fixed or random non-negative weights ws for s ∈ S.

Under the above hypothesis and the cross-sectional i.i.d. assumption within strata, the

distribution of the data is invariant to permutations within strata, i.e. for g ∈ G2,S0 , g(Z) =

{(Yi0, Tg(i), Sg(i), Rg(i)) : Sg(i) = Si, 1 ≤ i ≤ n}. Thus, applying Procedure 1 to T 2,S
n,m or T 2,S

n,p

using G2,S0 yields approximately exact p-values for these statistics under H2,S
0 .

In practice, it may be possible that response problems could lead to violations of internal
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validity in some strata but not in others. If that is the case, it may be more appropriate to

test interval validity for each stratum separately. Recall that when the goal is to test the IV-

R assumption, the stratum-specific hypothesis is H1,s
0 : FYi0|Ti=0,Si=s,Ri=r = FYi0|Ti=1,Si=s,Ri=r

for r = 0, 1. Hence, for each s ∈ S, one can use G1,S0 in the above procedure to obtain

p-values for T 1,S
n,m,s and T 1,S

n,p,s, and then perform a multiple testing correction that controls

either family-wise error rate or false discovery rate. We can follow a similar approach when

the goal is to test the IV-P assumption conditional on stratum.

The aforementioned subgroup-randomization procedures split the original sample into

respondents and attritors or four treatment-response groups. This approach does not directly

extend to cluster randomized experiments.38 Given the widespread use of regression-based

tests in the empirical literature, we illustrate how to test the mean implications of the

distributional restrictions of the IV-R and IV-P assumptions using regressions for completely,

cluster, and stratified randomized experiments in Section B.

5 Simulation Study

We illustrate the theoretical results in the paper using a numerical study. The simulations

demonstrate the performance of the differential attrition rate test as well as both the mean

and distributional tests of the IV-R and IV-P assumptions.

5.1 Simulation Design

The data-generating process (DGP) is described in Panel A of Table 4. We randomly assign

individual observations into the treatment (Ti = 1) and control (Ti = 0) groups, and gener-

ate the response equation by further assigning individuals to one of the four response types

according to proportions given by pr0r1 for (r0, r1) ∈ {0, 1}2. The unobservable, Uit, has

time-varying and time-invariant components. The time-varying unobservable, ηi1, follows

an AR(1) process and is independent of potential response in all variants of our design for

simplicity. We allow dependence between the time-invariant unobservable, αi, and potential

response by allowing the means of the conditional distributions to differ for each response

type (i.e. δr0r1 for all (r0, r1) ∈ {0, 1}2), while maintaining E[αi] = 0. Conversely, when

the conditional mean is the same for all subpopulations, αi and potential response are inde-

pendent. In order to introduce treatment heterogeneity, treatment enters into two terms of

the outcome equation: β1Dit and β2Ditαi. Specifically, letting β2 be non-zero allows for the

ATE-R to differ from the ATE. The ATE always equals β1, however, since E[αi] = 0.

38To test the distributional restrictions for cluster randomized experiments, the bootstrap-adjusted critical
values for the KS and CM-type statistics in Ghanem (2017) can be implemented.
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We conduct simulations using four variants of this simulation design, which are sum-

marized in Panel B of Table 4.39 Design I demonstrates the case in which the differential

attrition rate test would in fact detect a violation of internal validity. This case requires

both monotonicity in the response equation as well as dependence between the unobserv-

ables that affect the outcome and potential response (Uit 6⊥ (Ri(0), Ri(1))). We also allow

attrition rates to differ across the treatment and control groups. Design II demonstrates a

setting in which there is IV-R, but not IV-P. For that set-up, we impose monotonicity in the

response equation as well as equal attrition rates, while allowing for dependence between Uit

and (Ri(0), Ri(1)).

Table 4: Simulation Design

Panel A. Data-Generating Process

Outcome:
Yit = β1Dit + β2Ditαi + αi + ηit for t = 0, 1
where β1 = β2 = 0.25.

Treatment: Ti
i.i.d.∼ Bernoulli(0.5), Di0 = 0, Di1 = Ti.

Response:
Ri = (1− Ti)Ri(0) + TiRi(1)
where pr0r1 = P ((Ri(0), Ri(1)) = (r0, r1)) for r0, r1 ∈ {0, 1}2

.

Unobservables:



Uit = (αi, ηit)
′, t = 0, 1,

αi|Ri(0), Ri(1)
i.i.d.∼


N(δ00, 1) if (Ri(0), Ri(1)) = (0, 0),
N(δ01, 1) if (Ri(0), Ri(1)) = (0, 1),
N(δ10, 1) if (Ri(0), Ri(1)) = (1, 0),
N(δ11, 1) if (Ri(0), Ri(1)) = (1, 1).

ηi1 = 0.5ηi0 + εi0, (ηi0, εi0)′
i.i.d.∼ N(0, 0.5I2)

Panel B. Variants of the Design

Design I II III IV

Monotonicity in the Response Equation
Yes

(p10 = 0)
Yes

(p10 = 0)
Yes

(p10 = 0)
No

Equal Attrition Rates No
Yes

(p01 = 0) No
Yes

(p10 = p01)

(Ui0, Ui1) ⊥ (Ri(0), Ri(1)) No No Yes No

Notes: For an integer k, Ik denotes a k × k identity matrix. In Designs I and II, we let δ00 = −0.5,
δ01 = 0.5, and δ11 = −(δ00p00 +δ01p01)/p11, such that E[αi] = 0. In Design III, δr0r1 = 0 for all (r0, r1) ∈
{0, 1}2, which implies Uit ⊥ (Ri(0), Ri(1)) for t = 0, 1. In Design IV, δ00 = −0.5, δ01 = −δ10 = 0.25, and
δ11 = −(δ00p00 + δ01p01 + δ10p10)/p11. As for the proportions of the different subpopulations, in Designs
I-III, we let p00 = P (Ri = 0|Ti = 1), p01 = P (Ri = 0|Ti = 0)−P (Ri = 0|Ti = 1), and p11 = 1−p00−p01,
whereas in Design IV, we fix p10 = p01, p00 = p10/4, and P (Ri = 0|Ti = 0) = p00 + p10.

39We only consider these four designs to keep the presentation clear. However, it is possible to combine
different assumptions. For instance, if we assume p01 = p10 and (Ui0, Ui1) ⊥ (Ri(0), Ri(1)), then we would
have equal attrition rates and IV-P. We can also obtain a design that satisfies exchangeability by assuming
δ01 = δ10. If combined with p01 = p10, then we would have equal attrition rates and IV-R only (Proposition
3(iii)).
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Designs III and IV illustrate Examples 1 and 2 in Section 3.2, respectively. Design III

demonstrates a setting in which we have differential attrition rates and IV-P. Specifically,

Design III relies on the assumptions of monotonicity and differential attrition rates as in

Design I, but assumes independence between Uit and (Ri(0), Ri(1)). Finally, Design IV

follows Example 2 in demonstrating a case in which there are equal attrition rates and a

violation of internal validity. Thus, we allow for dependence between Uit and (Ri(0), Ri(1)),

and a violation of monotonicity by letting p10 and p01 be non-zero. We maintain equal

attrition rates in this design by imposing p01 = p10.

We use a sample size of n = 2, 000 as well as 2,000 simulation replications. We chose a

range of attrition rates from the results of our review of the empirical literature (see Figure

1). Specifically, we allow for attrition rates in the control group from 5% to 30%, and

differential attrition rates from zero to ten percentage points.

5.2 Differential Attrition Rates and Tests of Internal Validity

Table 5 reports simulation rejection probablilities for the differential attrition rate test as well

as the mean and distributional tests of the IV-R and IV-P assumption across Designs I-IV

using a 5% level of significance. We also report the estimated difference in mean outcomes

for the treatment and control respondents in the follow-up period (t = 1),

Ȳ TR
1 − Ȳ CR

1 =

∑n
i=1 Yi1Di1Ri∑n
i=1Di1Ri

−
∑n

i=1 Yi1(1−Di1)Ri∑n
i=1(1−Di1)Ri

, (14)

its standard deviation, and the rejection probability of a t-test of its significance (p̂0.05) in

columns 10 through 12 of Table 5.

First, we consider the performance of the differential attrition rate test. Columns 1

through 3 of Table 5 report the simulation mean of the attrition rates for the control (C)

and treatment (T ) groups as well as the probability of rejecting a differential attrition rate

test, which is a two-sample t-test of the equality of attrition rates between groups. The

differential attrition rate test rejects at a simulation frequency above the nominal level (5%)

in Designs I and III, whereas it rejects at approximately the nominal level in Designs II

and IV. This is not surprising, since the former designs allow for differential attrition rates,

whereas the latter impose that the attrition rates are equal. Designs I and II, which obey

monotonicity and allow for dependence between Uit and potential response, illustrate the

typical cases in which the differential attrition rate test can be viewed as a test of IV-R.

Designs III and IV, on the other hand, illustrate the concerns we raise regarding the use

of the differential attrition rate test as a test of IV-R. In Design III, the unobservables in the

outcome equation are independent of potential response. Thus, regardless of the response
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equation and the attrition rates, we not only have internal validity for respondents but also

for the study population. The differential attrition rate test however rejects at a frequency

higher than the nominal level because the attrition rates are different. Design IV, however,

allows for equal attrition rates but a violation of internal validity. Thus, the differential

attrition rate test does not reject above nominal levels.

Columns 4 through 7 of Table 5 report simulation results of the tests of the IV-R as-

sumption. The first three tests are based on the following mean testable restrictions from

Proposition 1(a.ii),

H1,1
0,M : E[Yi0|Ti = 0, Ri = 1] = E[Yi0|Ti = 1, Ri = 1], (CR− TR)

H1,2
0,M : E[Yi0|Ti = 0, Ri = 0] = E[Yi0|Ti = 1, Ri = 0], (CA− TA)

H1
0,M : H1,1

0,M & H1,2
0,M, (Joint) (15)

where the subscript M denotes the mean implication of the relevant distributional restric-

tion. H1,1
0,M (H1,2

0,M) tests the implication for respondents (attritors) only. We present the tests

of these two hypotheses since they rely on an approach that is similar to widely used tests in

the literature. The mean implication of the sharp testable restriction in Proposition 1(a.ii),

H1
0,M, is a joint hypothesis of H1,1

0,M and H1,2
0,M. These hypotheses are linear restrictions on

the fully saturated regression of baseline outcome on treatment and response given in Section

B, which we test using χ2 statistics. We also examine the finite-sample performance of the

KS statistic of the sharp testable restriction of the IV-R assumption in (10). The reported

p-values of the KS statistic defined below are obtained using the randomization procedure

to test H1
0 from Section 4,

KS1
n,m = max{KS1

n,0, KS
1
n,1},where for r = 0, 1

KS1
n,r = max

i:Ri=r

∣∣√n (Fn,Yi0(yi0|Ti = 1, Ri = r)− Fn,Yi0(yi0|Ti = 0, Ri = r))
∣∣ . (16)

The tests of the IV-R assumption behave according to our theoretical predictions. In

Designs II and III, where IV-R holds, the tests control size. In Designs I and IV, where

IV-R is violated, they reject with simulation probability above the nominal level. In general,

the relative power of the test statistics may differ depending on the DGP. In our simulation

design, however, the rejection probabilities of the attritors-only test (CA-TA) and the joint

tests (Mean and KS) are significantly higher than the test based on the difference between

the treatment and control respondents (CR-TR).40

40This may be because the treatment-only responders are proportionately larger in the control attritor
subgroup than in the treatment respondent subgroup.
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Columns 8 and 9 of Table 5 report the simulation results of the mean and distributional

tests of the IV-P assumption given in Proposition 1(b.ii). The distributional hypothesis H2
0

is given in (11). Its mean version is defined as follows

H2
0,M : E[Yi0|Ti = τj, Ri = rj] = E[Yi0|Ti = τj+1, Ri = rj+1] for j = 1, . . . , |T × R| − 1,

(17)

where (τj, rj) denote the jth element of T ×R = {(0, 0), (0, 1), (1, 0), (1, 1)}. We test the mean

version of the hypothesis using the χ2 statistic of the linear restrictions on the regression

in Section B as in the above. To test the distributional hypothesis, we use the KS statistic

given below

KS2
n = max

j=1,2,3
KS2

n,j, where (18)

KS2
n,j = max

i:(Ti,Ri)∈{(τj ,rj),(τj+1,rj+1)}

∣∣√n (Fn,Yi0|Ti=τj−1,Ri=rj−1
− Fn,Yi0|Ti=τj ,Ri=rj

)∣∣ .
The p-values of the KS statistic are obtained using the randomization procedure to test H2

0

in Section 4.

The test statistics of the IV-P assumption also behave according to our theoretical predic-

tions. In Designs I, II and IV, where Uit 6⊥ (Ri(0), Ri(1)), they reject the IV-P assumption at

a simulation frequency higher than the nominal level. Design II is notable since IV-R holds,

but IV-P does not. Thus, while the mean tests of the IV-R assumption are not rejected at a

simulation frequency above the nominal level, the tests of the IV-P assumption are rejected

above the nominal level. In addition, the difference in mean outcomes between treatment

and control respondents is different from the ATE (0.25), even though it is internally valid

for the respondents. In Design III, which is the only design where IV-P holds, both the mean

and KS tests control size. Examining the difference in mean outcomes between treatment

and control respondents at follow-up in this design, we find that it is unbiased for the ATE

across all combinations of attrition rates.

Overall, the simulation results illustrate the limitations of the differential attrition rate

test and show that the tests of the IV-R and IV-P assumptions we propose behave according

to our theoretical predictions. For a more thorough numerical analysis of the finite-sample

behavior of the KS and CM statistics, see Section E in the online appendix.
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6 Empirical Applications

To complement the simulations presented above, we apply the proposed tests of attrition

bias to five published field experiments. This exercise builds on the simulation results by

demonstrating the existence of a few notable regularities on a set of data generated from

experiments. The data comes from five articles with both high attrition rates and publicly

available data that includes attritors.41 Thus, the exercise is not intended to draw inference

about implications of applying various attrition tests to a representative sample of published

field experiments. In addition, field experiments that are published in prestigious journals

may not to be representative of all field experiment data–especially if perceptions of attrition

bias had an impact on publication.

6.1 Implementation of Attrition Tests

Across the five selected articles included in this exercise, we conduct attrition tests for a

total of 33 outcomes. This includes all outcomes that are reported in the abstracts as well

as all other unique outcomes.42 For each outcome included in this exercise, the appropriate

attrition test depends on the type of outcome and the approach to randomization used in

the experiment. For fully randomized experiments, we apply joint tests of the IV-R and

IV-P assumptions in Proposition 1. For stratified experiments, we instead apply the tests of

the assumptions in Proposition 2.43 For continuous outcomes in non-clustered experiments,

we report p-values of the KS distributional tests using the appropriate randomization proce-

dure.44 For binary outcomes and also for all outcomes from clustered experiments, we apply

regression-based mean tests (see Section B). For all tests, the results are presented in a way

that is designed to preserve the anonymity of the results and papers. Thus, attrition rates

are presented as ranges, the results are not linked to specific articles, and we randomize the

order of the outcomes such that they are not listed by paper.

In addition to the tests of the restrictions in Propositions 1 and 2, we also consider how

our tests might compare to other approaches. We apply a version of the tests commonly

used in the literature for completeness, including: the differential attrition rate test, the IV-

41We selected the articles with the five highest attrition rates for which the data required to implement
the attrition tests is available (see Section A.2 in the online appendix for details).

42If the article reports results separately by wave, we report attrition tests for each wave of a given outcome.
We did not, however, report results for each heterogeneous treatment effect unless those results were reported
in the abstract.

43When the number of strata in the experiment is larger than ten, we conduct a test with strata fixed
effects only as opposed to the fully interacted regression in Section B in order to avoid high dimensional
inference issues. Under the null, this specification is an implication of the sharp testable restrictions proposed
in Proposition 2.

44We apply the Dufour (2006) randomization procedure to accommodate the possibility of ties.
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R test using the respondent subsample only and the IV-R test using the attritor subsample

only. We use the same approaches to handling stratification and continuous outcomes in all

three IV-R tests to ensure they are directly comparable, but that also means that those tests

do not generally replicate versions of those attrition tests that are used in published field

experiments. Instead, we indicate whether authors’ attrition tests reject for the outcomes for

which they are available. In keeping with our findings from Section 2, there is heterogeneity

in the application of attrition tests across these articles. Two of the articles reported only a

differential attrition rate test, while three also reported some type of selective attrition test.

Our approach differs from the authors of the selected papers in a number of key ways.

First, since response rates vary across questions within a survey, we calculate a separate

(differential) attrition rate for each outcome. Second, we also conduct separate tests of

attrition bias for each outcome reported in the abstract. Third, we focus only on the baseline

outcome, while authors typically include covariates.

6.2 Results of the Empirical Applications

First, we consider the results of the attrition tests reported by the authors (Table 6). The

authors conduct differential attrition rate tests that are relevant to 30 of the 33 outcomes

that we consider. They reject the null hypothesis of equal attrition rates at a significance

level of 5% in 23 cases. The authors conduct a selective attrition test for 8 of the 33 outcomes

that we include in our exercise.45 Conditional on implementing a selective attrition test, the

authors largely do not find evidence of selective attrition; they reject the null hypothesis

at the 10% level for two of the eight outcomes. Since authors do not state their object of

interest, it is not clear whether they intend to test for IV-R or IV-P.

We implement outcome-specific differential attrition rate tests that are directly compa-

rable to our IV-R and IV-P tests. We reject the null hypothesis at the 5% level for 9 out of

33 outcomes (3 outcomes after correcting for multiple hypothesis testing).46 The relatively

high differential attrition rates we find in this exercise are perhaps not surprising, given

that overall attrition rates and differential attrition rates seem to be correlated, and these

outcomes have fairly high attrition rates (McKenzie, 2019).

In contrast, for the proposed joint IV-R test, all of the reported p-values are larger

than 10%. Thus, for any of the outcomes reported here, a researcher using this test would

45This type of test is much less widely implemented since the authors of two of the articles that we
consider do not conduct selective attrition tests, and authors that do conduct selective attrition tests typically
implement them on a limited set of outcomes.

46We note that our test of differential attrition rate rejects less frequently than the authors’ implementation
of the test. This difference appears to be driven by authors’ use of the survey-level (differential) attrition
rate for the test while we focus on the outcome-level (differential) attrition rates.
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not reject the identifying assumption that implies that differences between treatment and

control respondents are internally valid for the respondent subpopulation. Similarly, the IV-

R tests using only respondents or attritors have p-values larger than 5% for all 33 outcomes.

Although there is often a substantial difference in the p-values for these two simple tests

relative to the joint test for a given outcome, there is no consistent pattern in the direction

of those differences.

Next, we consider the results of our proposed IV-P test. We do not reject the IV-P

assumption at the 5% level for a majority of outcomes in this exercise, specifically 26 out of

33 (28 of 33 when accounting for multiple hypothesis testing).47 In addition, we find empirical

cases that are consistent with the testable implications of Example 1. For 8 out of the 33

outcomes, the differential attrition rate test that we implement rejects the null hypothesis at

the 5% level, whereas the IV-P test does not reject at the 5% level. This provides suggestive

evidence that the theoretical conditions under which the differential attrition rate test does

not control size are empirically relevant. Overall, our results have promising implications for

randomized experiments in which the study population is intended to be representative of a

larger population.

7 Conclusion

This paper presents the problem of testing attrition bias in field experiments with baseline

outcome data as an identification problem in a panel model. The proposed tests are based

on the sharp testable restrictions of the identifying assumptions of the specific object of

interest: either the average treatment effect for the respondents, the average treatment

effect for the study population or a heterogeneous treatment effect. This study also provides

theoretical conditions under which the differential attrition rate test, a widely used test,

may not control size as a test of internal validity. The theoretical analysis has important

implications for current empirical practice in testing attrition bias in field experiments. It

also highlights that the majority of testing procedures used in the empirical literature have

focused on the internal validity of treatment effects for the respondent subpopulation. The

theoretical and empirical results, however, suggest that the treatment effects of the study

population are important and possibly attainable in practice.

While this paper is a step forward toward understanding current empirical practice and

establishing a standard in testing attrition bias in field experiments, it opens several questions

for future research. Despite the availability of several approaches to correct for attrition

47Although the number of outcomes from a given field experiment varies widely, the results are not driven
by any one experiment or type of outcome.
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bias (Lee, 2009; Huber, 2012; Behagel et al., 2015; Millán and Macours, 2019), alternative

approaches that exploit the information in baseline outcome data as in the framework here

may require weaker assumptions and hence constitute an important direction for future work.

The extension of the analysis in this paper to the problem of attrition in the presence of

partial compliance is another interesting direction. Furthermore, several practical aspects of

the implementation of the proposed test may lead to pre-test bias issues. For instance, the

proposed tests may be used in practice to inform whether an attrition correction is warranted

or not in the empirical analysis. Empirical researchers may also be interested in first testing

the identifying assumption for treatment effects for the respondent subpopulation and then

testing their validity for the entire study population. Inference procedures that correct for

these and other pre-test bias issues are a priority for future work.

Finally, this paper has several policy implications. Attrition in a given study is often used

as a metric to evaluate the study’s reliability to inform policy. For instance, What Works

Clearinghouse, an initiative of the U.S. Department of Education, has specific (differential)

attrition rate standards for studies (IES, 2017). Our results indicate an alternative approach

to assessing potential attrition bias. Furthermore, questions regarding external validity of

treatment effects measured from field experiments are especially important from a policy

perspective. This paper points to the possibility that in the presence of response problems,

the identified effect in a given field experiment may only be valid for the respondent subpop-

ulation, and hence may not identify the ATE for the study population. This is an important

issue to consider when synthesizing results of field experiments to inform policy.
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A Proofs

Proof. (Proposition 1)
(a) Under the assumptions imposed it follows that FUi0,Ui1|Ti,Ri

= FUi0,Ui1|Ri
, which implies

that for d = 0, 1, FYit(d)|Ti,Ri
=
∫

1{µt(d, u) ≤ .}dFUit|Ti,Ri
(u) =

∫
1{µt(d, u) ≤ .}dFUit|Ri

(u) =
FYit(d)|Ri

for t = 0, 1. (i) follows by letting t = 1 and d = 0, while conditioning the left-hand
side of the last equation on Ti = 0 and Ri = 1, and the testable implication in (ii) follows
by letting t = d = 0.

Following Hsu et al. (2019), we show that the testable restriction is sharp by showing

that if (Yi0, Yi1, Ti, Ri) satisfy Yi0|Ti = 0, Ri = r
d
= Yi0|Ti = 1, Ri = r for r = 0, 1, then

there exists (Ui0, Ui1) such that Yit(d) = µt(d, Uit) for some µt(d, .) for d = 0, 1 and t = 0, 1,
and (Ui0, Ui1) ⊥ Ti|Ri that generate the observed distributions. By the arbitrariness of Uit
and µt, we can let Uit = (Yit(0), Yit(1))′ and µt(d, Uit) = dYit(1) + (1− d)Yit(0) for d = 0, 1,
t = 0, 1. Note that Yi0 = Yi0(0) since Di0 = 0 w.p.1. Now we need to construct a distribution
of Ui = (U ′i0, U

′
i1) that satisfies

FUi|Ti,Ri
≡ FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ti,Ri

= FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ri

as well as the relevant equalities between potential and observed outcomes. We proceed by
first constructing the unobservable distribution for the respondents. By setting the appro-
priate potential outcomes to their observed counterparts, we obtain the following equalities
for the distribution of Ui for the treatment and control respondents

FUi|Ti=0,Ri=1 = FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ti=0,Ri=1 = FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1FYi0|Ti=0,Ri=1

FUi|Ti=1,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1FYi0|Ti=1,Ri=1

By construction, FYi0|Ti,Ri=1 = FYi0|Ri=1. Now generating the two distributions above using
FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti,Ri=1 which satisfies FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1

yields Ui ⊥ Ti|Ri = 1 and we can construct the observed outcome distribution (Yi0, Yi1)|Ri =
1 from Ui|Ri = 1.

The result for the attritor subpopulation follows trivially from the above arguments,

FUi|Ti=0,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=0,Ri=0FYi0|Ti=0,Ri=0,

FUi|Ti=1,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=1,Ri=0FYi0|Ti=1,Ri=0,

Since FYi0|Ti,Ri=0 = FYi0|Ri=0 by construction, it remains to generate the two distributions
above using the same FYi0(1),Yi1(0),Yi1(1)|Yi0,Ri=0. This leads to a distribution of Ui|Ri = 0 that
is independent of Ti and that generates the observed outcome distribution Yi0|Ri = 0.

(b) Under the given assumptions, it follows that FUi0,Ui1|Ti,Ri
= FUi0,Ui1|Ti = FUi0,Ui1

where
the last equality follows by random assignment. Similar to (a), the above implies that for d =
0, 1 and t = 0, 1, FYit(d)|Ti,Ri

=
∫

1{µt(d, u) ≤ .}dFUit|Ti,Ri
(u) =

∫
1{µt(d, u) ≤ .}dFUit

(u) =
FYit(d). (i) follows by letting t = 1, while conditioning the left-hand side of the last equation
on Ti = τ and Ri = 1 for d = τ and τ = 0, 1, whereas (ii) follows by letting d = t = 0 while
conditioning on Ti = τ and Ri = r for τ = 0, 1, r = 0, 1.

To show that the testable restriction is sharp, it remains to show that if (Yi0, Yi1, Ti, Ri)
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satisfies Yi0|Ti, Ri
d
= Yi0(0), then there exists (Ui0, Ui1) such that Yit(d) = µt(d, Uit) for

some µt(d, .) for d = 0, 1 and t = 0, 1, and (Ui0, Ui1) ⊥ (Ti, Ri). Similar to (a.ii), we let
Uit = (Yit(0), Yit(1))′ and µt(d, Uit) = dYit(1) + (1 − d)Yit(0). Then Yi0 = Yi0(0) by similar
arguments as in the above. Furthermore, FYi0|Ti,Ri

= FYi0 by construction and it follows
immediately that

FUi|Ti=0,Ri=1 = FYi0(1),Yi1,Yi1(1)|Yi0Ti=0,Ri=1FYi0 ,

FUi|Ti=1,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1FYi0 ,

FUi|Ti=0,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=0,Ri=0FYi0 ,

FUi|Ti=1,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=1,Ri=0FYi0 .

Now constructing all of the above distributions using the same FYi0(1),Yi1(0),Yi1(1)|Ti,Ri
that

satisfies FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1 implies the result.

Proof. (Proposition 2) The proof is immediate from the proof of Proposition 1 by condition-
ing all statements on Si.

Proof. (Proposition 3) For notational brevity, let Ui = (U ′i0, U
′
i1). We first note that by

random assignment, it follows that

FUi|Ti,Ri(0),Ri(1) = FUi|Ti,ξ(0,Vi),ξ(1,Vi)=FUi|ξ(0,Vi),ξ(1,Vi) = FUi|Ri(0),Ri(1). (19)

As a result,

FUi|Ti=1,Ri=1 =
p01FUi|(Ri(0),Ri(1))=(0,1) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 1)
, (20)

FUi|Ti=0,Ri=1 =
p10FUi|(Ri(0),Ri(1))=(1,0) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 0)
. (21)

If (i) holds, then FUi|Ri(0),Ri(1) = FUi
, hence

FUi|Ti=1,Ri=1 =
p01FUi

+ p11FUi

P (Ri = 1|Ti = 1)
= FUi

, FUi|Ti=0,Ri=1 =
p10FUi

+ p11FUi

P (Ri = 1|Ti = 0)
= FUi

.

We can similarly show that FUi|Ti,Ri=0 = FUi
, it follows trivially that Ui|Ti, Ri

d
= Ui|Ri.

Alternatively, if we assume (ii), Ri(0) ≤ Ri(1) implies p10 = 0. As a result, P (Ri =
0|Ti = 1) = P (Ri = 0|Ti = 0) iff p01 = 0. It follows that the terms in (20) and (21)
both equal FUi|(Ri(0),Ri(1))=(1,1). Similarly, it follows that FUi|Ti=1,Ri=0 = FUi|Ti=0,Ri=0 =
FUi|(Ri(0),Ri(1))=(0,0), which implies the result.

Finally, suppose (iii) holds, then equal attrition rates imply that p01 = p10. The ex-
changeability restriction implies that FUi|(Ri(0),Ri(1))=(0,1) = FUi|(Ri(0),Ri(1))=(1,0). Hence,

FUi|Ti=1,Ri=1 =
p01FUi|(Ri(0),Ri(1))=(0,1) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 1)

=
p10FUi|(Ri(0),Ri(1))=(1,0) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 0)
= FUi|Ti=0,Ri=1. (22)
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Similarly, it follows that FUi|Ti=1,Ri=0 = FUi|Ti=0,Ri=0, which implies the result.

B Regression Tests of Internal Validity

In this section, we show how to implement regression-based tests of internal validity for
respondents (H1

0,M) and internal validity for the study population (H2
0,M). We follow the

same notational conventions as in the paper.

B.1 Completely and Clustered Randomized Experiments

Yi0 = γ11TiRi + γ01(1− Ti)Ri + γ10Ti(1−Ri) + γ00(1− Ti)(1−Ri) + εi

H1
0,M : γ11 = γ01 & γ10 = γ00,

H2
0,M : γ11 = γ01 = γ10 = γ00.

Both hypotheses are joint hypotheses of linear restrictions on linear regression coefficients.
Hence, they are straightforward to test using the appropriate standard errors.

If a column-vector Wi0 of dW baseline covariates is also used to test for internal validity,
then the regression-based test should consider both the baseline outcome and the baseline
covariates, i.e. Zi0 = (Yi0,W

′
i0)
′, ∀j = 1, . . . , (dW + 1)

Zj
i0 = γj11TiRi + γj01(1− Ti)Ri + γj10Ti(1−Ri) + γj00(1− Ti)(1−Ri) + εi

H1
0,M : γj11 = γj01 & γj10 = γj00 ∀ j = 1, . . . , (dW + 1)

H2
0,M : γj11 = γj01 = γj10 = γj00 ∀ j = 1, . . . , (dW + 1)

B.2 Stratified Randomized Experiments

Yi0 =
∑
s∈S

[γs11TiRi + γs10Ti(1−Ri) + γs01(1− Ti)Ri + γs00(1− Ti)(1−Ri)] 1{Si = s}+ εi

Hence, for s ∈ S,

H1,s
0,M : γs11 = γs01 & γs10 = γs00,

H2,s
0,M : γs11 = γs01 = γs10 = γs00.

One could either test the above null hypotheses jointly for all s ∈ S or approach it as a
multiple testing problem for each s ∈ S and perform an appropriate correction.

If a column-vector Wi0 of dW baseline covariates is also used to test for internal validity,
then the regression-based test should consider both the baseline outcome and the baseline
covariates, i.e. Zi0 = (Yi0,W

′
i0)
′

Zi0 =
∑
s∈S

[γs11TiRi + γs10Ti(1−Ri) + γs01(1− Ti)Ri + γs00(1− Ti)(1−Ri)] 1{Si = s}+ εi
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H1,s
0,M : γs,j11 = γs,j01 & γs,j10 = γs,j00 ∀ j = 1, . . . , (dW + 1)

H2,s
0,M : γs,j11 = γs,j01 = γs,j10 = γs,j00 ∀ j = 1, . . . , (dW + 1)
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