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Abstract

We propose a model for interval-valued time series (ITS), e.g. the collection of

daily intervals of high/low stock returns over time, that specifies the conditional joint

distribution of the upper and lower bounds of the interval as a mixture of truncated

bivariate normal distribution. This specification guarantees that the natural order of

the interval (upper bound not smaller than lower bound) is preserved. The model also

captures the potential conditional heteroscedasticity and non-Gaussian features in ITS.

The standard EM algorithm, when applied to the estimation of mixture models with

truncated distribution, does not provide a closed-form solution in M step. We propose

a new EM algorithm that solves this problem. We establish the consistency of the

maximum likelihood estimator. Monte Carlo simulations show the new EM algorithm

has good convergence properties. We apply the model to the interval-valued IBM daily

stock returns and it exhibits superior performance over competing methods.

Key Words: interval-valued data, mixture transition model, EM algorithm, trun-

cated normal distribution.
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1 Introduction

Interval data refers to data sets where the observation is an interval in contrast to a single

point. Intervals arise in a variety of situations. There are instances when the data is di-

rectly collected in interval format. A standard example is survey design that avoids asking

participants about private or sensitive information, e.g. income, and the answer is provided

in interval format, e.g. [$50K, $100K]. In these cases, interval data is the only data format

available to the researchers. In other instances, intervals arise as a result of aggregating data.

The data may be collected at the individual level, e.g., gas prices in a gas station, but the

research question deals with a larger unit, e.g., gas prices at the county level. Rather than

providing an average of gas station prices, aggregating the data in interval format for each

county is more informative because it preserves the internal price variation of each county.

Financial data, e.g., tick-by-tick stock transaction data recorded at the ultra-high frequency,

generally collapses to a lower frequency single point, e.g. the daily closing price. Aggre-

gating the data into intervals, e.g. daily max/min price interval, is more useful because it

provides information on both the price level and the daily price volatility. A similar example

is the interval of daily low/high temperature that provides relevant information for decision

making. Finally, intervals can also arise because there is uncertainty on the measurement of

the variable of interest. Regardless of the data generation mechanism of intervals, we define

an interval-valued time series (ITS) as a collection of interval data observed over time.

The literature on modeling interval data and ITS can be divided into two categories de-

pending on the data representation: the center/range system (e.g. center and range are

respectively the midpoint and the distance between the upper and lower bounds.) or the

upper/lower bound system. In the center/range system, the interval constraint is that the

range cannot be smaller than zero. Lima Neto and de Carvalho (2010) propose modeling

center and range separately while imposing non-negative constraints on the parameters of

the range equation, which are unnecessarily too restrictive and complicate the estimation of

the system. Tu and Wang (2016) overcome this restriction by log-transforming the range.

However, it requires bias correction for the conditional mean and can fail when zero is present

in range data. In the upper/lower bound system, an equivalent interval constraint is that

2



the upper bound cannot be smaller than the lower bound. González-Rivera and Lin (2013)

propose a constrained regression model (GL) that preserves this natural order of the interval.

They assume that the bivariate errors of the system of bounds follow a bivariate truncated

normal distribution, where the truncation encloses the constraint that the upper bound is

not smaller than the lower bound. However, this assumption is restrictive as the consistency

of the estimators heavily depends on it.

The previous literature explores a variety of ways to preserve the interval constraint, and

mainly focuses on modeling the conditional mean of ITS. To the best of our knowledge, none

of the existing work has considered modeling the potential conditional heteroskedasticity

in ITS, a feature that has been widely recognized in point-valued time series (PTS). One

exception is thatGLmay produce conditional heteroskedasticity as a byproduct. In addition,

many PTS exhibit non-Gaussian features that may also appear in ITS, such as flat streches,

burst of activities, outliers and changepoints (see e.g., Le et.al. 1996, Wong and Li 2000),

opening a door for models capable of generating more flexible predictive densities, an issue

that has not been addressed in the current ITS literature. By contrast, there is a vast

amount of literature on modeling conditional heteroskedasticity and non-Gaussian behaviors

for PTS. Particularly, Le et. al. (1996) propose a Mixture Transition Distribution (MTD)

model for the univariate PTS that seeks to account for the non-Gaussian features. Their idea

is to specify the conditional distribution for the variable of interest as a mixture distribution,

where each component contains only one lag from the information set. The fact that MTD

is able to handle conditional heteroskedasticity is noted and discussed by Berchtold and

Raftery (2002). MTD is generalized by Wong and Li (2000) under the name of Mixture

Autoregressive (MAR) model to entertain more flexibility by allowing each component to

depend on the full information set. Hassan and Lii (2006) extend MTD for the marked

point process under a bivariate setting.

In this paper, we propose a model for ITS in the upper/lower bound system in the spirit of

the MTD model and its extensions. We specify the joint distribution of the upper bound

(xt) and lower bound (yt) conditional on the information set as a mixture of truncated bi-

variate normal distribution, where for each component the bivariate normal distribution is
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truncated at xt � yt. The information set enters the conditional distribution as a linear func-

tion through the pseudo location parameter of the truncated bivariate normal distribution

for each component.1 The model comes with several benefits. First, it is able to preserve

the natural order of ITS, that is, the upper bound not smaller than the lower bound. Sec-

ond, the model can capture conditional heteroskedasticity without modeling it explicitly, as

the dynamics enter the covariance matrix via the truncation and the mixture framework.

Third, the mixture distribution that the model based on provides great flexibility in terms

of approximating the underlying true conditional distribution, and hence can improve the

quality of density forecast.

It is well known that the maximum likelihood estimator (MLE) does not have a closed-form

solution for mixture models resulting from the complexity of the likelihood. In the literature,

EM algorithm is a standard device to find the MLE for mixture models due to its simplicity

and monotonicity in the likelihood (see e.g. Hamilton 1990, Le et. al. 1996, Hassan and

Lii 2006). However, such a standard EM algorithm fails in our model as no closed-form

solution can be obtained in the M step. This is caused by the normalizing factor in the

truncated normal distribution, which possesses a complex form after taking the derivative.

To overcome this problem, we propose a new EM algorithm.2 The innovation is made by

constructing a high level pseudo complete data generating process that brings in more la-

tent variables than the standard EM algorithm. Specifically, at each time the observation is

generated in four steps. First, a membership variable (latent) is generated from a multino-

mial distribution that suggests which component the observation truly comes from. Second,

conditional on the observation coming from the component indicated in the previous step,

a variable (latent) is obtained from a geometric distribution that indicates the number of

invalid observations (xt < yt) before the occurrence of a valid observation (xt � yt). Third,

generate the corresponding number of invalid observations (latent) independently from the

area of the bivariate normal distribution where xt < yt. Fourth, draw one observation from

1
The pseudo location parameter of a truncated bivariate normal distribution can be interpreted as the

location parameter of the bivariate normal distribution (before the truncation). It is called pseudo because

it no longer represents the mean (location) of the truncated distribution after the truncation is imposed.
2
The new EM algorithm can be applied generally to data sets with any kinds of truncation either in the

time series setting or for cross-sectional probability clustering.
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the area of the bivariate normal distribution where xt � yt, and treat it as the valid observa-

tion. The Monte Carlo simulations indicate that the new EM algorithm performs well with

the finite sample. We show that the MLE is consistent under some regular assumptions. We

apply the model to IBM daily stock return ITS and show that it outperforms the competing

models.

The organization of the paper is as follows. In Section 2, we introduce the truncated mixture

transition model and discuss its properties. In Section 3, we propose the new EM algorithm.

In Section 4, we show the consistency of the MLE. In Section 5, we perform the Monte Carlo

simulations. In Section 6, we apply our model to IBM daily stock return ITS. We conclude

in Section 7.

2 The Truncated Mixture Transition Model

2.1 Definition

Let xt be the upper bound, and yt be the lower bound of the interval observed at time t.

The interval time series data has the following format

{ (xt, yt), t = 1, . . . T }

where by construction xt > yt, and we denote Yt = (xt, yt)0 hereafter. We say that Yt is

generated by a truncated mixture transition (TMT (P,Q)) model if its conditional density

function given the past information set can be written as

f(Yt|F t�1) =
PX

j=1

↵jfj(Yt|Y t�1
t�Q) (2.1)

PX

j=1

↵j = 1,↵j > 0, j = 1, . . . , P
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where P is the number of components and is assumed to be fixed, and Q is the number

of lags in each component.3 F t�1 is the information set up to time t � 1, and Y
t�1
t�Q =

(Yt�Q, Yt�Q+1, ..., Yt�1). fj(Yt|Y t�1
t�Q) is a truncated bivariate normal probability density func-

tion truncated at xt > yt. That is, for each component, the upper bound is not smaller than

the lower bound. The truncated density has the following form (see e.g. Nath 1972)

fj(Yt|Y t�1
t�Q) =

1

2⇡|⌃j|Ft,j
exp[�1

2
(Yt � µt,j)

0
⌃

�1
j (Yt � µt,j)] (2.2)

where µt,j = Cj + Bj,1Yt�1 + ... + Bj,QYt�Q, Cj (2 ⇥ 1) is a constant vector, Bj,r (2 ⇥ 2)

(r = 1, ..., Q) is a matrix, ⌃j (2 ⇥ 2) is a positive semi-definite matrix, and |A| is the

determinant of matrix A. (2.2) di↵ers from a bivariate normal distribution in the extra

normalization term: Ft,j = 1 � �( �w0µt,jp
w0⌃jw

), which represents the cumulative distribution of

the truncated area (xt � yt). � is the standard normal cumulative distribution function,

and w = (1,�1)0.

2.2 Theoretical properties

Given the definition above, we can write down the conditional mean of Yt:

E(Yt|F t�1) =
PX

j=1

↵j(M
1
o,t,j + µt,j) (2.3)

where

M
1
o,t,j =

⌃jwp
w0⌃jw

�( �w0µt,jp
w0⌃jw

)

1� �( �w0µt,jp
w0⌃jw

)
(2.4)

� is the standard normal density function. Unlike the normal density, where µt,j is the mean

3
The analysis in this paper can be modified to accommodate the case where Q is allowed to be component

specific.
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for component j, the additional term, M1
o,t,j, represents the mean shift after the truncation

(see Nath 1972 for moments of truncated normal distribution). As a result, the conditional

mean is no longer µt,j but a nonlinear function of F t�1. We also show that the natural order

of interval time series is preserved at the conditional mean level: w
0
E(Yt|F t�1)) � 0. The

proof can be found in Appendix A.1.

A promising feature of TMT model is that it can produce a time-varying conditional variance

to capture conditional heteroskedasticity. To see this, the conditional variance is given by:

V (Yt|F t�1) (2.5)

=E(YtY
0
t |F t�1)� E(Yt|F t�1)E(Yt|F t�1)0

=
PX

j=1

↵j(M
2
o,t,j + µt,j(M

1
o,t,j)

0 +M
1
o,t,jµ

0
t,j + µt,jµ

0
t,j)

�(
PX

j=1

↵j(M
1
o,t,j + µt,j))(

PX

j=1

↵j(M
1
o,t,j + µt,j))

0

where

M
2
o,t,j = ⌃j +

⌃jww
0
⌃j

w0⌃jw

�w
0
µt,jp

w0⌃jw

�( �w0µt,jp
w0⌃jw

)

1� �( �w0µt,jp
w0⌃jw

)
(2.6)

3 Estimation

In this section, we discuss the estimation of the TMT model using maximum likelihood

(ML). The goal is to estimate the set of parameters  = {↵j, Aj,⌃j|8j} by maximizing the

likelihood:

L( ) = 1
T�Q

TX

t=Q+1

log[
PX

j=1

↵jfj(Yt|Y t�1
t�Q, Bj,⌃j)] (3.1)

where Aj = (Cj, Bj,1, ..., Bj,Q). We first consider an unconditional version of (3.1), where
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µt,j = µj doesn’t depend on the information set. The corresponding log-likelihood function

for ⇥ = {↵j, µj,⌃j|8j} can be written as

L(⇥) =
1

T

TX

t=1

log[
PX

j=1

↵jfj(Yt|µj,⌃j)] (3.2)

Estimating ⇥ is easier than  because the conditional distribution of Yt doesn’t depend

on the information set and can be viewed as if the data is drawn i.i.d. from the mixture

distribution. Therefore, we will first illustrate the ML estimation of (3.2) and then (3.1).

Clearly, no closed-form solution can be obtained from maximizing (3.2). In fact, the like-

lihood functions of mixture models are usually non-concave, and often have several local

maxima (see e.g. Redner and Walker 1984). Dempster et. al. (1977) propose the expecta-

tion maximization (EM) algorithm, and it has been widely applied to find the ML estimators

for mixture models due to its simplicity and monotonicity property (see Dempster et. al.

1977), e.g., Hamilton (1990) uses EM algorithm to estimate the regime switching model.

The statistical properties of EM algorithm have been studied extensively in the literature

(see e.g. Wu 1983, Meng 1994, McLachlan and Krishnan 2007, and Balakrishnan, et. al.

2017).

A review of the EM algorithm for normal mixture models in unconditional setting (each

fj(.) in (3.2) represents a normal distribution) can be found in Appendix A.2. Lee and Scott

(2010) apply the EM algorithm to a truncated normal mixture model with each component

truncated by a rectangle, e.g., s  Yt  k, where s and k are vectors with the same dimension

as Yt. Although our model has a di↵erent type of truncation (xt � yt, or w0
Yt � 0) , their

arguments can be adapted to derive an EM algorithm. However, this EM algorithm fails to

have a closed-form solution in the M step, mainly due to the truncation term ( �(.)
1��(.)) in the

density (see Appendix A.3 for details). As a result, numerical maximization is needed in M

step (see e.g. Lange 1995), sacrificing the simplicity of the EM algorithm. In the following,

we propose a new EM algorithm that solves this problem.
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3.1 A new EM algorithm for truncated normal mixture model

(unconditional case)

The new EM algorithm begins by transforming the data generating process into a missing

data framework as follow. To obtain the observation Yt, a latent variable zt is generated

from a multinomial distribution, indicating which component the observation truly comes

from. Next, conditional on zt, another latent variable nt can be generated from a geomet-

ric distribution. nt represents the number of invalid draws (xt < yt) from the respective

component (a bivariate normal distribution) before a valid draw (xt � yt) arrives. The

valid draw (the (nt + 1)th draw) is then treated as the t
th observation (Yt). In other words,

only the valid draw can be observed while all the invalid draws (if any) are latent. Denote

Y
A
t = {Yt,1, Yt,2, ..., Yt,nt , Yt,nt+1} as all the draws for time t. We now formalize the above

data generating process.

Let zt follow a multinomial distribution:

g(zt|⇥) =
PY

j=1

↵
ztj
j (3.3)

Given the role nt plays in the above pseudo complete data generating process, it is natural

to specify its distribution conditional on zt as a geometric distribution, a discrete probability

distribution that describes the number of failures before the first occurrence of success.

q(nt|zt,⇥) =
PY

j=1

h
(1� Fj)

ntFj

iztj
(3.4)

where Fj = 1 � �( �w0µjp
w0⌃jw

) is the cumulative distribution for the truncated area (xt � yt)

for component j, and represents the probability of getting a valid draw from the bivariate

normal distribution. Then, the conditional density of Y A
t is specified as below
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h(Y A
t |zt, nt,⇥) =

PY

j=1


f
N
j (Yt,nt+1)

Fj

ntY

k=1

(
f
N
j (Yt,k)

1� Fj
)

�ztj
(3.5)

where fN
j (.) is the bivariate normal density of component j. Next, the joint density function

of the pseudo complete data ({Y A
t , zt, nt}) can be constructed,

l(Y A
t , zt, nt|⇥) = g(zt|⇥)q(nt|zt,⇥)h(Y A

t |zt, nt,⇥)

=
PY

j=1


↵jf

N
j (Yt,nt+1)

ntY

k=1

f
N
j (Yt,k)

�ztj
(3.6)

and we can write down the pseudo complete log-likelihood function.

L
C(⇥) =

1

T

TX

t=1

PX

j=1

ztj[log↵j + logf
N
j (Yt,nt+1) +

ntX

k=1

logf
N
j (Yt,k)] (3.7)

E Step: the above likelihood (3.7) is replaced with its conditional expectation. See Appendix

A.4 for details.

Q(⇥|⇥l)

=E(LC(⇥)|Y,⇥l)

=
1

T

TX

t=1

PX

j=1

z̃tj[log↵j + logf
N
j (Yt,nt+1) + ñt,j(

ˆ
logf

N
j (Yt,k)(

f
N,l
j (Yt,k)

1� F
l
j

)dYt,k)] (3.8)

where f
N,l
j (.) and F

l
j are respectively f

N
j (.) and Fj conditional on ⇥l (the parameter set of

the previous (lth) iteration). ñt,j = E(nt|ztj = 1, Y,⇥l) =
1�F l

j

F l
j

, and
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z̃tj = P (ztj = 1|Y,⇥l)

=
P (ztj = 1, Yt|⇥l)

P (Yt|⇥l)

=
↵
l
jf

l
j(Yt)

PP
r=1 ↵

l
rf

l
r(Yt)

(3.9)

M Step: We can obtain a closed-form solution by maximizing Q(⇥|⇥l). See Appendix A.5

for details.

↵
l+1
j =

PT
t=1 z̃tj

N
(3.10)

µ
l+1
j =

PT
t=1 z̃tj(Yt + ñt,j(M

1,l
d,j + µ

l
j))PT

t=1 z̃tj(1 + ñt,j)
(3.11)

⌃
l+1
j =

PT
t=1 z̃tj[(Yt � µ

l+1
j )(Yt � µ

l+1
j )0 + ñt,jM

2
d0,j]PT

t=1 z̃tj(1 + ñt,j)
(3.12)

where M
2
d0,j = M

2,l
d,j + (µl

j � µ
l+1
j )(M1,l

d,j)
0 + (M1,l

d,j)(µ
l
j � µ

l+1
j )0 + (µl

j � µ
l+1
j )(µl

j � µ
l+1
j )0. M1,l

d,j

and M
2,l
d,j are respectively M

1
d,j and M

2
d,j conditional on ⇥

l.

M
1
d,j =

�⌃jwp
w0⌃jw

�( w0µjp
w0⌃jw

)

1� �( w0µjp
w0⌃jw

)
(3.13)

M
2
d,j = ⌃j +

⌃jww
0
⌃j

w0⌃jw

w
0
µjp

w0⌃jw

�( w0µjp
w0⌃jw

)

1� �( w0µjp
w0⌃jw

)
(3.14)

It is interesting to notice that (3.11) and (3.12) are the first two moments of the pseudo

complete sample weighted by z. For example, the numerator in (3.11) not only includes

the observed valid draw (Yt) but also imputes the sum of the latent invalid draws at time

t with its conditional expectation that is feasible at the current iteration: ñt,j(M
1,l
d,j + µ

l
j).

Similar pattern can also be observed in the denominator with 1+ ñt,j being the total number

of draws at time t. Moreover, our EM algorithm includes the standard EM algorithm for
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normal mixture models (Appendix) as a special case. To see this, suppose no truncation is

imposed, we have Fj = 1, and ñt,j = 0. Therefore, the E step and M step become the same

as in Appendix.

Finally, repeat E step and M step until convergence. Clearly, the new EM algorithm provides

a closed-form solution and is able to maintain the monotonicity property. Furthermore, the

constraints on parameters are satisfied by construction, e.g., ⌃l+1 is positive semi-definite,
PP

j=1 ↵
l+1
j = 1, and ↵l+1

j > 0.

3.2 A new EM algorithm for truncated normal mixture model

(conditional case)

We now discuss the conditional case. The EM algorithm is applied to the likelihood (3.1) to

estimate  = {↵j, Aj,⌃j|8j 2 P}. Similar to section 3.1, the pseudo complete log-likelihood

function can be constructed:

L
C( ) =

1

T �Q

TX

t=Q+1

PX

j=1

ztj[log↵j + logf
N
t,j(Yt,nt+1) +

ntX

k=1

logf
N
t,j(Yt,k)] (3.15)

E Step: the conditional expectation of complete log-likelihood function can be written as

Q( | l)

=E[LC( )|Y, l]

=
1

T �Q

TX

t=Q+1

PX

j=1

z̃tj[log↵j + logf
N
t,j(Yt,nt+1) + ñt,j(

ˆ
logf

N
t,j(Yt,k)(

f
N,l
t,j (Yt,k)

1� F
l
t,j

)dYt,k)] (3.16)

where z̃tj =
↵l
jf

l
t,j(Yt)

PP
r=1 ↵

l
rf

l
t,r(Yt)

. ñt,j = E(nt|ztj = 1, Y, l) =
1�F l

t,j

F l
t,j

. fN,l
t,j (.) and F

l
t,j are respectively

f
N
j (.) and Fj conditional on  l and with µj replaced by µt,j = Cj +Bj,1Yt�1+ ...+Bj,QYt�Q.

M Step: maximizing Q( | l) gives the iterated rules for  . See Appendix A.6 for details.
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↵
l+1
j =

PT
t=Q+1 z̃tj

T � P
(3.17)

A
l+1
j = (X̄ 0

jȲj + X̃
0
jM̃

1
d0,T̄ ,j)

0(X̄ 0
jX̄j + X̃

0
jX̃j)

�1 (3.18)

⌃
l+1
j =

PT
t=Q+1 z̃tj[(Yt � A

l+1
j Xt�1)(Yt � A

l+1
j Xt�1)0 + ñt,jM

2
d0,t,j]PT

t=P+1 z̃tj(1 + ñt,j)
(3.19)

where M̃
1
d0,T̄ ,j = (M̃1

d0,Q+1,j, ..., M̃
1
d0,T,j)

0, and M̃
1
d0,t,j =

p
z̃tjñt,j(M1

d,t,j + µ
l
t,j). M

1
d,t,j is M

1
d,j

with µ
l
j replaced by µ

l
t,j = C

l
j + B

l
j,1Yt�1 + ... + B

l
j,QYt�Q, and M

2
d0,t,j is M

2
d0,j with µ

l
j

and µ
l+1
j replaced by µ

l
t,j and µ

l+1
t,j respectively. Furthermore, X̄j =

q
z̃j⌧

1+2Q
1 � X, and

X = (⌧ 1T�Q, (Y
T�1
Q )0, ..., (Y T�Q

1 )0), where ⌧ ba is a vector of ones with dimension a ⇥ b. X̃j =q
(z̃j � ñj)⌧

1+2Q
1 � X, z̃j = (z̃Q+1,j, ..., z̃T,j)0, ñj = (ñQ+1,j, ...ñT,j)0, Ȳj =

p
z̃j⌧

2
1 � (Y T

Q+1)
0,

and X
0
t�1 = (1, Y 0

t�1, ..., Y
0
t�Q). The operator � represents Hadamard product.

The iterated rules for ↵j and ⌃j remain similar to these in Section 3.1 with only minor

changes. Note that Aj has an iterated rule that resembles the format of the maximum

likelihood estimates for a vector autoregressive model (V AR). When truncation is not in

presence, it becomes Al+1
j = (X̄ 0

jȲj)0(X̄ 0
jX̄j)�1. Therefore, (3.18) can be viewed as applying

V AR to the pseudo complete sample.

4 Asymptotic theory

In this section, we discuss the asymptotic properties of the ML estimator. The following

theorem shows that under some regular conditions, the MLE is consistent. We begin by

imposing the following assumptions:

Assumption 1. {Yt} are generated from (2.1), and are strictly stationary and ergodic.

Assumption 2.  0 is the true parameter set, and  0 is an interior point of ⌅, where ⌅ is

a compact subset of { 2 (0, 1)P�1 ⇥ R(5+4Q)P : ⌃j are positive definite 8j}.

Assumption 3. E(kYtk2) < 1, where k.k is the Euclidean norm.

These assumptions are fairly regular in the literature. It may be challenging to verify As-
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sumption 1 as the model is nonlinear. The necessary and su�cient conditions for stationarity

and ergodicity that are imposed on parameters remain for future research. Notice that for

the Gaussian MTD and MAR models, the su�cient and necessary conditions for first-order

and second-order stationarity have been derived (see e.g., Le et. al. 1996, Wong and Li

2000). Assumption 2 and Assumption 3 are su�cient to ensure the uniform convergence of

the likelihood function.

The following theorem establishes the strong consistency of ML estimator and the proof can

be found in Appendix A.7.

Theorem 1. Under Assumption 1,2 and 3, the maximum likelihood estimator  ̂ = argmax
 2⌅

L( )

is strongly consistent, that is  ̂ !  0 a.s.

5 Monte Carlo Simulation

In this section, we perform Monte Carlo simulation to evaluate the finite sample performance

of the proposed EM algorithm on the TMT model. Experiments are designed for both

unconditional and conditional cases.

5.1 Unconditional case experiments

We consider two cases with the number of components being P = 2 (DGP 1) and P = 3

(DGP 2). The data generating process is as follow. First, we set the parameters according to

the configurations in Table 1 and Table 2. Second, we calculate ⌘j for all j, which represents

the corresponding component weight for each component before the truncation is imposed.

The relationship between ↵j and ⌘j can be described as: ↵j = ⌘jFjPP
j=1 ⌘jFj

. Third, a large

enough sample is drawn from the bivariate normal mixture distribution (component weight

⌘j). Finally, only the observations that satisfy the constraint xt � yt are kept.4

4
From these observations that satisfy the constraint, start collecting from the 101

th
observation (the

initial 100 observations are discarded, known as the burn-in period) until the desired sample size is reached.
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The initial values of parameters are estimated using K-means 5, from where the EM algorithm

iterates until convergence to find the MLE. 6 We consider two sample sizes (T = 200 and

T = 1000). The number of Monte Carlo replications is 100.

In Table 1 and Table 2, we report the means and standard errors of the estimated parameters

across replications. The biases of parameters are small in both DGPs. As the sample size

increases, the estimates get closer to the true values and the standard errors become smaller.

One should bear in mind that in all the DGPs, it is not necessary to impose constraints on

µ (e.g., w0
µ � 0) since µ is not the mean of the truncated normal distribution.

Two components ↵ µ ⌃

True
0.4

8
7

1 0.5
0.5 1

0.6
4
3

2 0.3
0.3 2

EM
0.3995
(0.0374)

7.9666
(0.1653)
7.0037
(0.1961)

1.0137 0.5303
(0.2103) (0.2237)
0.5303 1.0735
(0.2237) (0.3297)

(T=200)

0.6005
(0.0374)

3.9657
(0.3028)
2.9665
(0.2932)

2.0160 0.3161
(0.4444) (0.3399)
0.3161 1.9763
(0.3399) (0.4059)

EM
0.3997
(0.0180)

7.9961
(0.0730)
7.0083
(0.0754)

1.0002 0.4988
(0.1015) (0.0774)
0.4988 1.0136
(0.0774) (0.1138)

(T=1000)

0.6003
(0.0180)

3.9994
(0.1122)
3.0082
(0.1301)

1.9831 0.2975
(0.1873) (0.1224)
0.2975 1.9995
(0.1224) (0.1994)

Note: the numbers in parentheses are standard errors.

Table 1: Simulation results for DGP 1

5
K-means provides bias estimates because it doesn’t account for the truncation. It treats the sample as if

it comes from a bivariate normal mixture distribution. Nevertheless, in our experiments, these initial values

are usually good enough for the EM algorithm to converge to the true parameters.
6
The stopping criterium is set such that either 200 iterations are reached or the increase in log-likelihood

(3.2) is less than e�10
.
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Three components ↵ µ ⌃

True

0.2
10
9

1 0.5
0.5 1

0.3
2
2

3 1
1 3

0.5
�4
�6

5 2
2 5

0.1971
(0.0280)

9.7305
(1.4018)
8.7987
(1.2179)

1.0930 0.5093
(0.4596) (0.2354)
0.5093 1.0291
(0.2354) (0.4231)

EM

(T=200)
0.2966
(0.0350)

2.2173
(1.5182)
2.1865
(1.3117)

2.9945 1.0580
(0.9741) (0.5984)
1.0580 2.9086
(0.5984) (1.1476)

0.5063
(0.0349)

�4.1199
(0.4724)
�5.9924
(0.3916)

5.2792 2.0684
(1.3622) (0.7550)
2.0684 4.8277
(0.7550) (0.9366)

0.1991
(0.0144)

10.0053
(0.1045)
9.0070
(0.1022)

0.9981 0.5074
(0.1107) (0.0882)
0.5074 1.0219
(0.0882) (0.1183)

EM

(T=1000)
0.3010
(0.0159)

2.0231
(0.2787)
2.0295
(0.2621)

2.9561 0.9945
(0.4035) (0.2765)
0.9945 3.0806
(0.2765) (0.5105)

0.4999
(0.0176)

�3.9821
(0.1661)
�5.9978
(0.1804)

4.9736 2.0095
(0.4139) (0.3685)
2.0095 4.9974
(0.3685) (0.5284)

Note: the numbers in parentheses are standard errors.

Table 2: Simulation results for DGP 2

To visualize the truncations on the mixture distribution, we plot in Figure 1 the truncations

for two component in DGP 1. For a better comparison, each component is re-centered at

the origin (shifted by µj) together with the truncation lines.
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Note: µj(i) is the i
th element of µj.

Figure 1: Truncation of component density

In Figure 2(a), we plot the likelihood (3.2) for a one-time implementation of the EM algorithm

in DGP 1. It provides the evidence that monotonicity in likelihood holds for the new EM

algorithm. Moreover, the speed of convergence is fast with convergence achieved in about

20 iterations.
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(a) Unconditional experiment
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(b) Conditional experiment

Figure 2: Log-likelihood
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5.2 Conditional case experiments

Unlike the unconditional case where each observation is temporally independent, the condi-

tional case carries time dependence in each observation. Hence, the data generating process

is slightly di↵erent. First, we set the parameters as in Table 3. Second, at time t, we calculate

⌘t,j for each j, where the subscript t comes from Ft,j as µj is now replaced with µt,j. Notice

that ↵j is fixed while ⌘t,j changes with time. Third, independent random draws (e.g. 1000

draws) are made from the bivariate normal mixture distribution (component weight ⌘t,j).

Fourth, we keep the draws that satisfy the constraint xt � yt, from which one is selected

randomly as the observation at time t. Repeat the above steps until a sample with desired

sample size is generated.7

In Table 3, we design three cases (DGP 3 and DGP 4 are TMT (2, 1), and DGP 5 is

TMT (3, 1)). Specifically, DGP 3 considers two components with the constraint (xt � yt)

binding for one but not the other. 8 DGP 4 focuses on the case where the constraint is

binding for both components. DGP 5 is a combination with the restriction not binding,

binding with low persistency, and binding with high persistency. To visualize the constraint,

we plot in Figure 3 the truncations for DGP 5. As the truncation is time varying, it cuts the

density at di↵erent locations after re-centering (shifted by µt,j for each t and each j). The

variation in truncations is smaller for the low persistency component because the location

of truncation is more likely to be dominated by the constant Cj.

7
Similar to section 5.1, the first 100 observations are discarded.

8
The constraint will not be binding if w0µt,j = w0

(Cj +Bj,1Yt�1+ ...+Bj,QYt�Q) � 0. In our simulation,

we fix B and manipulate C to allow the restriction to be binding or not.
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DGP ↵ C B ⌃

3
NB 0.4

2
0

0.1 �0.8
�0.8 0.1

0.4 0.3
0.3 0.4

B 0.6
�2
�2

0.7 �0.1
�0.1 0.7

0.4 0.3
0.3 0.4

4
B 0.4

0
0

0.1 �0.8
�0.8 0.1

0.4 0.3
0.3 0.4

B 0.6
2
2

0.2 �0.1
�0.1 0.2

0.4 0.3
0.3 0.4

5

B 0.5
2
2

0.1 �0.8
�0.8 0.1

0.4 0.3
0.3 0.4

NB 0.3
2
0

0.3 �0.4
�0.4 0.3

0.4 0.3
0.3 0.4

B 0.2
�2
�2

0.2 �0.1
�0.1 0.2

0.4 0.3
0.3 0.4

Note: B and NB denote binding and not binding respectively.

Table 3: Data Generating Process (DGP 3 - DGP 5)
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(a) Binding (high persistency) (b) Not Binding

(c) Binding (low persistency)

Figure 3: Truncations of DGP 5

We initialize the EM algorithm by randomly choosing 50 points from the parameter space.9

Each point runs EM algorithm separately. The one that achieves the highest likelihood is

chosen. We consider two sample sizes (T = 200 and T = 1000). The number of Monte Carlo

replications is 100.

We summarize the average results across replications from Table 4 to Table 6. Standard

errors are calculated over replications. In all cases, the EM algorithm performs satisfactory

9
Elements of ↵ is uniformly selected from (0, 1) and sum up to one. Elements of B are uniformly selected

from (�1, 1). Elements of C and o↵-diagonal elements of L are uniformly selected from (�3, 3), where L is

the Cholesky decomposition lower triangle matrix of ⌃ = LL0
. Diagonal elements of L are uniformly selected

from (0, 3). For DGP 9, 200 initial points are chosen to account for a higher dimensional parameter space.
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in both small and large sample experiments. The standard error shrinks towards zero as the

sample size increases. Last but not least, we can see in Figure 2(b) that the monotonicity

of EM algorithm is preserved for the likelihood (3.1).

DGP 3 ↵ C B ⌃

True
0.4

2
0

0.1 �0.8
�0.8 0.1

0.4 0.3
0.3 0.4

0.6
�2
�2

0.7 �0.1
�0.1 0.7

0.4 0.3
0.3 0.4

EM
0.3964
(0.0319)

1.9385
(0.7890)
0.0510
(0.4026)

0.1054 �0.7978
(0.0801) (0.0383)
�0.7941 0.1185
(0.0632) (0.1738)

0.4177 0.3006
(0.2974) (0.0986)
0.3006 0.4096
(0.0986) (0.1867)

(T=200)

0.6036
(0.0319)

�1.9644
(0.4446)
�2.0041
(0.3235)

0.6939 �0.1061
(0.0644) (0.0766)
�0.1023 0.6891
(0.0730) (0.0595)

0.3957 0.2997
(0.0560) (0.0476)
0.2997 0.4015
(0.0476) (0.0661)

EM
0.3989
(0.0152)

2.0073
(0.0734)
0.0038
(0.0785)

0.0983 �0.8009
(0.0127) (0.0163)
�0.8016 0.0989
(0.0133) (0.0170)

0.3937 0.2931
(0.0253) (0.0230)
0.2931 0.3916
(0.0230) (0.0280)

(T=1000)

0.6011
(0.0152)

�2.0037
(0.0625)
�2.0038
(0.0615)

0.6995 �0.1023
(0.0099) (0.0141)
�0.1012 0.6985
(0.0102) (0.0144)

0.4011 0.3006
(0.0234) (0.0212)
0.3006 0.3987
(0.0212) (0.0261)

Note: the numbers in parentheses are standard errors.

Table 4: Simulation results for DGP 3

DGP 4 ↵ C B ⌃

True
0.4

0
0

0.1 �0.8
�0.8 0.1

0.4 0.3
0.3 0.4

0.6
2
2

0.2 �0.1
�0.1 0.2

0.4 0.3
0.3 0.4

EM
0.3988
(0.0415)

�0.0130
(0.2122)
0.0219
(0.2326)

0.1034 �0.8003
(0.2689) (0.2610)
�0.7720 0.0607
(0.2643) (0.2704)

0.3748 0.2805
(0.0747) (0.0718)
0.2805 0.3878
(0.0718) (0.0945)

(T=200)

0.6012
(0.0415)

1.9462
(0.2226)
2.0131
(0.2178)

0.2349 �0.1332
(0.1950) (0.1854)
�0.0790 0.1753
(0.2044) (0.1960)

0.4023 0.2879
(0.0723) (0.0568)
0.2879 0.3944
(0.0568) (0.0728)

EM
0.4010
(0.0177)

�0.0088
(0.1269)
0.0208
(0.1076)

0.0967 �0.7971
(0.1268) (0.1127)
�0.8237 0.1233
(0.1111) (0.1003)

0.3978 0.2940
(0.0386) (0.0322)
0.2940 0.3983
(0.0322) (0.0462)

(T=1000)

0.5990
(0.0177)

1.9644
(0.1349)
2.0605
(0.1935)

0.2187 �0.1178
(0.0863) (0.0838)
�0.1280 0.2271
(0.1189) (0.1173)

0.4085 0.3002
(0.0353) (0.0306)
0.3002 0.4203
(0.0306) (0.0523)

Note: the numbers in parentheses are standard errors.

Table 5: Simulation results for DGP 4

21



DGP 5 ↵ C B ⌃

True

0.5
2
2

0.1 �0.8
�0.8 0.1

0.4 0.3
0.3 0.4

0.3
2
0

0.3 �0.4
�0.4 0.3

0.4 0.3
0.3 0.4

0.2
�2
�2

0.2 �0.1
�0.1 0.2

0.4 0.3
0.3 0.4

0.5078
(0.0427)

1.9985
(0.1535)
1.9867
(0.1433)

0.0978 �0.8027
(0.0551) (0.0687)
�0.7980 0.0972
(0.0515) (0.0642)

0.3910 0.2908
(0.0665) (0.0560)
0.2908 0.3911
(0.0560) (0.0594)

EM

(T=200)
0.2932
(0.0378)

2.0114
(0.1505)
0.0055
(0.1390)

0.2991 �0.3892
(0.0640) (0.0771)
�0.4047 0.3111
(0.0610) (0.0753)

0.3665 0.2736
(0.0887) (0.0746)
0.2736 0.3664
(0.0746) (0.0792)

0.1990
(0.0294)

�2.0138
(0.2691)
�1.8540
(0.4928)

0.2002 �0.1047
(0.0892) (0.1025)
�0.1382 0.2350
(0.1145) (0.1285)

0.3873 0.2917
(0.0944) (0.0820)
0.2917 0.4110
(0.0820) (0.1459)

0.5000
(0.0178)

2.0026
(0.0583)
1.9920
(0.0574)

0.0990 �0.8016
(0.0223) (0.0247)
�0.7969 0.0953
(0.0220) (0.0249)

0.3966 0.2995
(0.0272) (0.0228)
0.2995 0.3991
(0.0228) (0.0253)

EM

(T=1000)
0.3001
(0.0167)

1.9968
(0.0710)
�0.0054
(0.0707)

0.3008 �0.3987
(0.0273) (0.0304)
�0.3983 0.2990
(0.0263) (0.0308)

0.3907 0.2963
(0.0334) (0.0274)
0.2963 0.3986
(0.0274) (0.0334)

0.1999
(0.0115)

�1.9983
(0.0954)
�2.0139
(0.1007)

0.2003 �0.0987
(0.0298) (0.0437)
�0.0960 0.1996
(0.0310) (0.0427)

0.3886 0.2914
(0.0483) (0.0382)
0.2914 0.3906
(0.0382) (0.0493)

Note: the numbers in parentheses are standard errors.

Table 6: Simulation results for DGP 5

6 Empirical Application

We apply TMT to model the interval-valued IBM daily stock returns. The high/low return

is calculated as the percentage change of the highest/lowest daily price with respect to

the closing price of the previous day. For example, the high return at time t is: rhigh,t =

100(Phigh,t � Pclose,t�1)/Pclose,t�1. The data is constructed as an interval-valued time series

with rhigh,t � rlow,t. To visualize the data, we plot a sample from 2004/1/1 to 2018/4/1

(3584 observations) in Figure 4. We can see that the volatility for the high and low returns

is high in some periods while remaining quiet in others, suggesting potentially the presence

of multiple regimes in the variance of the system.
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Figure 4: Daily IBM High/Low Stock Returns (2004/1/1 to 2018/4/1)

We consider TMT model with up to seven components and four lags. That is, P = {2, ..., 7},

and Q = {1, 2, 3, 4}, with total 28 specifications. 10 The best fitted model selected by BIC is

TMT (4, 2). The estimation results are reported in Table 7.11 It is interesting to see that the

fourth component has high volatility (big ⌃) while only happens with a small probability

(small ↵). Figure 5 shows the truncations for each component across time after re-centering

(shifted by µt,j for each t and each j). The truncations vary by component: the first and

second components have truncations almost not binding while for the last two components

the truncations are binding.

10
The case when only one component is involved ( TMT (1, Q) ) turns out to be the same as GL, which,

for a better comparison, will be discussed in the following separately.
11
Standard errors are calculated using block bootstrap (Politis and White 2004)
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Component ↵ C B1 B2 ⌃

1
0.4184
(0.0428)

0.3916
(0.0535)
�0.2864
(0.0688)

0.0681 �0.1033
(0.0331) (0.0412)
�0.0683 0.0801
(0.0411) (0.0501)

�0.0276 0.0327
(0.0368) (0.0370)
�0.1285 0.1480
(0.0402) (0.0397)

0.1838 0.1600
(0.0230) (0.0195)
0.1600 0.1909
(0.0195) (0.0204)

2
0.3635
(0.0450)

0.3678
(0.0859)
�0.4786
(0.0886)

0.1758 �0.1563
(0.0781) (0.0829)
�0.0843 0.1641
(0.0819) (0.1001)

0.0152 �0.0857
(0.0442) (0.0587)
�0.2135 0.1674
(0.0531) (0.0856)

0.5367 0.5165
(0.0883) (0.0832)
0.5165 0.7006
(0.0832) (0.0840)

3
0.1323
(0.0508)

0.4125
(0.1946)
�0.1677
(0.1054)

0.6549 �0.5425
(0.1715) (0.1354)
�0.1510 0.1473
(0.0973) (0.0821)

0.1157 �0.2460
(0.1214) (0.0968)
0.1101 �0.2316
(0.0632) (0.0693)

0.3476 0.1228
(0.0819) (0.0606)
0.1228 0.1778
(0.0606) (0.0617)

4
0.0857
(0.0189)

0.1484
(0.3580)
�0.9836
(0.4077)

0.1015 �0.1265
(0.1948) (0.1856)
�0.1358 0.3614
(0.1980) (0.1778)

0.5265 �0.3146
(0.2271) (0.1736)
�0.0414 0.2858
(0.2525) (0.1805)

5.9263 5.4043
(0.8068) (0.7199)
5.4043 6.2028
(0.7199) (0.8251)

Note: the numbers in parentheses are standard errors.

Table 7: Estimation results of TMT (4, 2)
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(a) First component (b) Second component

(c) Third component (d) Fourth component

Figure 5: Truncations for the fitted TMT (4, 2)

We plot in Figure 6 the fitted conditional means (2.3) together with the realized data.

The persistency in the data seems to be well described. Figure 6 also shows the fitted

conditional variances and correlation coe�cients (2.5) of the high/low returns. The spikes in

the fitted variances is aligned with the volatility clustering in the data. The contemporaneous

conditional correlations stay at a relatively high level most of the time while drop toward

zero during the volatile periods. It aligns with the observation that the ranges (gaps between

upper and lower bounds) tend to be larger in these periods. In Figure 7, we plot some fitted

conditional densities to illustrate the flexibility of the truncated normal mixture distribution.
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Figure 6: Fitted Conditional Mean, Variance and Correlation of Daily IBM High/Low Stock
Returns (2004/1/1 to 2018/4/1)
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Figure 7: Fitted Conditional Density Contours

Given that not all the parameters in Table 7 are significant, and to account for the increase

in parameters when the number of components grows larger, we also consider a restricted

version of the model, RTMT (P ), where the restriction is imposed such that each component

contains only one lag from the information set. For instance, µt,j = Cj+Bj,jYt�j and Bj,r = 0

for r 6= j. We consider up to seven components (P = {1, ..., 7}) for RTMT . Finally, we

compare the TMT and RTMT models with four other models. The number of lags for these

models is selected using BIC. The linear vector autoregressive model serves as a benchmark.

Two multivariate GARCH models are considered to account for conditional heteroskedas-

ticity in the data. See Bauwens et. al. (2006) for a review of multivariate GARCH models.

We also implement GL. Notice that, however, V AR and V AR�MGARCH models cannot

preserve the natural order of the ITS. A detailed comparison of the six models is summarized

in Table 8.

Model for the mean Model for the variance Log-likelihood Number of parameters BIC
V AR(7) -8604 30 -17,454
V AR(7) MGARCH(1,1)-SBEKK -8175 35 -16,064
V AR(7) MGARCH(1,1)-DCC -8155 39 -15,991
GL(7) -8486 33 -17,243

RTMT (5) -6975 49 -14,352
TMT (4, 2) -6833 55 -14,117

Table 8: Evaluation of models

TMT achieves the highest BIC and likelihood while using the most parameters. RTMT
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trades the likelihood and BIC for a smaller number of parameters. V AR uses the smallest

number of parameters and ends up having the smallest likelihood and BIC. After accounting

for time-varying conditional variance, the V AR � MGARCH models improve the perfor-

mance over V AR significantly, implying that the data is conditional heteroskedastic. In

terms of all criteria, GL lies in between V AR and V AR �MGARCH. This suggests that

although GL preserves the natural oder of the interval data, it has a limited ability accom-

modating conditional heteroskedasticity.

7 Conclusions

We propose a truncated mixture transition model for the interval-valued time series. The

natural order of the data (upper bound greater than lower bound) is guaranteed in our

model using truncated normal distributions. The model enjoys great flexibility in terms of

both parameter and density specifications. However, the standard EM algorithm to estimate

mixture models fails since no closed-form solutions can be obtained in M step. Therefore,

a new EM algorithm is proposed, which brings the pseudo data generating process to a

higher level and encloses a closed-form solution in M step. We prove the consistency of the

maximum likelihood estimator. Simulation results show that the new EM algorithm performs

well. Last but not least, we illustrate the performance of the model with an application to

the IBM daily high/low stock returns and it ourperforms other competing models.
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[4] Berchtold, André and Raftery, Adrian (2002), “The Mixture Transition Distribution

Model for High-Order Markov Chains and Non-Gaussian Time Series”, Statist. Sci.,

Vol. 17, pp. 328-356.

[5] Chang, S.H., et. al. (2011), “Cherno↵-Type Bounds for the Gaussian Error Function”,

IEEE Trans. Commun., Vol. 59, pp. 2939–2944.

[6] Dempster, A., et. al. (1977), “Maximum Likelihood from Incomplete Data via the EM

Algorithm”, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39,

pp. 1-38.
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Appendix

A.1 Proof of w0
E(Yt|F t�1)) � 0

It is su�cient to show that w0
M

1
o,t,j + w

0
µt,j � 0 for all j. Thus, it su�ces to prove that

�( �w0µjp
w0⌃jw

)

1� �( �w0µjp
w0⌃jw

)
� �w

0
µjp

w0⌃jw

Let � = �w0µjp
w0⌃jw

. When �  0, the above inequality obviously holds.

When � > 0, we know that 1 � �(�) = 1
2erfc(

�p
2
), where erfc is the complementary error

function defined as erfc(z) = 2p
⇡

´1
z exp(�t

2)dt. Also, we have �(�) = 1p
2⇡
exp(��2

2 ). The

inequality becomes

1p
2⇡

exp(��
2

2
) � 1

2
erfc(

�p
2
)�

Using the property of erfc function: erfc(z)  2p
⇡

exp(�z2)

z+
p

z2+ 4
⇡

, when z > 0, we have

1p
⇡

exp(��2

2 )�

�p
2
+
q

�2

2 + 4
⇡

� 1

2
erfc(

�p
2
)�

Hence, we found the upper bound of 1
2erfc(

�p
2
)�, and it su�ces to show that
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1p
2⇡

exp(��
2

2
) � 1p

⇡

exp(��2

2 )�

�p
2
+
q

�2

2 + 4
⇡

() 1 � 1

1
2 +

q
1
4 +

2
⇡�2

which obviously holds when � > 0 .

A2. The EM algorithm for normal mixture model (unconditional

case)

This section reviews the EM algorithm when the component density fj(Yt|µj,⌃j) in (3.2)

is a bivariate normal distribution. EM algorithm transforms the problem into a missing

data framework and constructs a pseudo complete data generating process. It starts by

assuming that each observation comes from one of the P components, and there is a latent

variable indicating which component the observation truly comes from. Let ztj 2 {0, 1}

be the indicator variable such that ztj = 1 if Yt is generated from component j and 0

otherwise. The objective is to maximize the pseudo complete likelihood of {Y, z}. Denote

zt = {zt1, ..., ztP}. To construct the complete likelihood, the latent variable ztj is specified to

follow a multinomial distribution:

g(zt|⇥) =
PY

j=1

↵
ztj
j (7.1)

The conditional density of Yt on zt is

h(Yt|zt,⇥) =
PY

j=1

h
fj(Yt|µj,⌃j)

iztj
(7.2)

The complete density function becomes
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l(Yt, zt|⇥) = g(zt|⇥)h(Yt|zt,⇥)

=
PY

j=1

h
↵fj(Yt|µj,⌃j)

iztj
(7.3)

Therefore, the complete log-likelihood function for ⇥ can be written as

L
C(⇥) =

1

T

TX

t=1

PX

j=1

ztjlog↵j +
1

T

TX

t=1

PX

j=1

ztjlogfj(Yt|µj,⌃j) (7.4)

where T is the sample size. The EM algorithm begins by initializing the parameter set, ⇥0,

followed by the E and M steps.

E Step: Because z is not observed, L
C(⇥) is replaced with its conditional expectation

(Q(⇥|⇥l)) conditional on the the observed data (Y ) and the parameter set from the previous

iteration (⇥l).

Q(⇥|⇥l) = E(LC(⇥)|Y,⇥l) =
1

T

TX

t=1

PX

j=1

z̃tjlog↵j +
1

T

TX

t=1

PX

j=1

z̃tjlogfj(Yt|µj,⌃j) (7.5)

z̃tj ⌘ E(ztj|Yt,⇥
l)

= P (ztj|Yt,⇥
l)

=
P (ztj, Yt,⇥

l)

P (Yt,⇥
l)

=
↵
l
jfj(Yt|µl

j,⌃
l
j)PP

k=1 ↵
l
kfk(Yt|µl

j,⌃
l
j)

(7.6)

M Step: The updated parameter set is obtained by ⇥l+1 = argmax
⇥

Q(⇥|⇥l):
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↵
l+1
j =

PT
t=1 z̃tj

T
(7.7)

µ
l+1
j =

PT
t=1 z̃tjYtPT
t=1 z̃tj

(7.8)

⌃
l+1
j =

PT
t=1 z̃tj(Yt � µ

l+1
j )(Yt � µ

l+1
j )

0

PT
t=1 z̃tj

(7.9)

Iterate E step and M step until convergence. Dempster et. al. (1977) pointed out that the

likelihood (3.2) is closely related to the feasible pseudo complete likelihood (7.5): L(⇥l) =

Q(⇥l|⇥l)  Q(⇥l+1|⇥l)  L(⇥l+1). Therefore, as Q(⇥|⇥l) is maximized in each itera-

tion (which implies Q(⇥l|⇥l)  Q(⇥l+1|⇥l)), the likelihood (3.2) increases monotonically

(L(⇥l+1) � L(⇥l)).

A.3 The EM algorithm for truncated normal mixture model (un-

conditional case)

Lee and Scott (2010) apply the EM algorithm to the multivariate truncated normal mixture

model with each component truncated by a rectangle, e.g., s  Y  k, where s and k are

vectors with the same dimension as Y . We adapt their arguments to derive the EM algorithm

as below:

E Step: Following the same steps as Appendix A.1, the expression for z̃tj is the same as

(7.6). However, fj(Yt|µl
j,⌃

l
j) is now a truncated bivariate normal distribution.

M Step:

↵
l+1
j =

PT
t=1 z̃tj

T
(7.10)

µ
l+1
j =

PT
t=1 z̃tjYtPT
t=1 z̃tj

� vj(µ
l+1
j ,⌃

l+1
j ) (7.11)

⌃
l+1
j =

PT
t=1 z̃tj(Yt � µ

l+1
j )(Yt � µ

l+1
j )

0

PT
t=1 z̃tj

+ Ij(µ
l+1
j ,⌃

l+1
j ) (7.12)
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where vj(µ
l+1
j ,⌃

l+1
j ) and Ij(µ

l+1
j ,⌃

l+1
j ) are nonlinear functions of µl+1

j and ⌃l+1
j . Details are

discussed in appendix A.3.1.

A.3.1 Derivation of the EM algorithm

Let Y follows a truncated bivariate normal distribution:

f(Y ) =
1

2⇡|⌃|[1� �( �w0µp
w0⌃w

)]
exp[�1

2
(Y � µ)0⌃�1(Y � µ)] (7.13)

Denote Y
o = Y � µ, and its first and second moments are given as (Nath 1972):

M
1
o = ⌃wp

w0⌃w

�( �w0µp
w0⌃w

)

1��( �w0µp
w0⌃w

)

M
2
o = ⌃ + ⌃ww0⌃

w0⌃w
�w0µp
w0⌃w

�( �w0µp
w0⌃w

)

1��( �w0µp
w0⌃w

)

In E step, we can write down the conditional expectation of the complete log-likelihood

function:

Q(⇥|⇥l) = E(LC(⇥)|Y,⇥l) =
1

T

TX

t=1

PX

j=1

z̃tj


log↵j � log2⇡ � 1

2
log|⌃j|

� 1

2
(Yt � µj)

0
⌃

�1
j (Yt � µj)� log(1� �(

�w
0
µjp

w0⌃jw
))

�

where 1� �( �w0µjp
w0⌃jw

) = 1p
⇡

´1
�w0µjp
2w0⌃jw

exp(�t
2)dt.

First, we take derivative of log(1� �( �w0µjp
w0⌃jw

)) with respect to µj
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@

@µj


log(1� �(

�w
0
µjp

w0⌃jw
))

�
=

1

1� �( �w0µjp
w0⌃jw

)

⇢
1p
⇡

wp
2
p
w0⌃jw

exp(�(
�w

0
µjp

2
p

w0⌃jw
)2)

�

=
�( �w0µjp

w0⌃jw
)

1� �( �w0µjp
w0⌃jw

)

wp
w0⌃jw

=
ww

0
M

1
o,j

w0⌃jw

where M
1
o,j is M

1
o with µ = µj and ⌃ = ⌃j.

Next, take the derivative of Q(⇥|⇥l) with respect to µj

@

@µj
[Q(⇥|⇥l)] =

1

T

TX

t=1

z̃tj


⌃

�1
j Yt �⌃

�1
j µj �

ww
0
M

1
o,j

w0⌃jw

�
= 0

We can get:

µj =

PT
t=1 z̃tjYtPT
t=1 z̃tj

-vj(µj,⌃j)

where vj(µj,⌃j) =
⌃jww0M1

o,j

w0⌃jw
.

Now, we take derivative of Q(⇥|⇥l) with respect to ⌃j.

First, we can get

w
0
M

2
o,jw = w

0
⌃jw + w

0
⌃jw(

�w
0
µjp

w0⌃jw
)[

�( �w0µjp
w0⌃jw

)

1� �( �w0µjp
w0⌃jw

)
]

where M
2
o,j is M

2
o with µ = µj and ⌃ = ⌃j.

Next, take derivative of log(1� �( �w0µjp
w0⌃jw

)) with respect to ⌃j
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@

@⌃j
[log(1� �(

�w
0
µjp

w0⌃jw
))] =

1

1� �( �w0µjp
w0⌃jw

)

⇢
1p
⇡
[

w
0
µj

2
p
2(w0⌃jw)

3
2

ww
0
exp(�(

�w
0
µjp

2
p
w0⌃jw

)2)]

�

=
1

2
(

�w
0
µjp

w0⌃jw
)(

�( �w0µjp
w0⌃jw

)

1� �( �w0µjp
w0⌃jw

)
)(

�ww
0

w0⌃jw
)

=
1

2

w
0
M

2
o,jw � w

0
⌃jw

w0⌃jw
(
�ww

0

w0⌃jw
)

=
1

2
w[

1

w0⌃jw
�

w
0
M

2
o,jw

(w0⌃jw)2
]w0

Then, we take the derivative of Q(⇥|⇥l) with respect to ⌃j

@

@⌃j
[Q(⇥|⇥l)] =

1

T

TX

t=1

z̃tj

⇢
�1

2
⌃

�1
j +

1

2
⌃

�1
j (Yt � µj)(Yt � µj)

0
⌃

�1
j

�1

2
w[

1

w0⌃jw
�

w
0
M

2
o,jw

(w0⌃jw)2
]w0

�

= 0

Some linear algebra properties were used: @log|A|
@A = (A0)�1 and @x0A�1x

@A = �A
�1
xx

0
A

�1.

Finally, we can get:

⌃j =

PT
t=1 z̃tj(Yt � µj)(Yt � µj)0PT

t=1 z̃tj

+ Ij(µj,⌃j)

where Ij(µj,⌃j) = ⌃jw[
1

w0⌃jw
� w0M2

o,jw

(w0⌃jw)2 ]w
0
⌃j.
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A.4 E step of the new EM algorithm

E[LC(⇥)|Y,⇥l]

=Ez,n|Y,⇥l{E[LC(⇥)|z, n, Y,⇥l]}

=Ez,n|Y,⇥l{E[
1

T

TX

t=1

PX

j=1

ztj(log↵j + logf
N
j (Yt,nt+1) +

ntX

k=1

logf
N
j (Yt,k))|z, n, Y,⇥l]}

=Ez,n|Y,⇥l{ 1
T

TX

t=1

PX

j=1

ztj(log↵j + logf
N
j (Yt,nt+1) + ntE[logfN

j (Yt,k)|z, n, Y,⇥l])}

=Ez|Y,⇥l{ 1
T

TX

t=1

PX

j=1

ztj(log↵j + logf
N
j (Yt,nt+1) + E(nt|z, Y,⇥l)E[logfN

j (Yt,k)|z, n, Y,⇥l])}

=Ez|Y,⇥l{ 1
T

TX

t=1

PX

j=1

ztj(log↵j + logf
N
j (Yt,nt+1)+

(
1X

nt=0

nt

PY

h=1

[(1� F
l
h)

ntF
l
h]

zth)(

ˆ
logf

N
j (Yt,k)

PY

m=1

(
f
N,l
m (Yt,k)

1� F l
m

)ztmdYt,k))}

=
1

T

TX

t=1

PX

j=1

Ez|Y,⇥l{ztj(log↵j + logf
N
j (Yt,nt+1)+

(
1X

nt=0

nt

PY
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[(1� F
l
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ntF
l
h]

zth)(

ˆ
logf

N
j (Yt,k)

PY

m=1

(
f
N,l
m (Yt,k)

1� F l
m

)ztmdYt,k))}

=
1

T

TX

t=1

PX

j=1

P (ztj|Y,⇥l)[log↵j + logf
N
j (Yt,nt+1)+

1� F
l
j

F
l
j

(

ˆ
logf

N
j (Yt,k)(

f
N,l
j (Yt,k)

1� F
l
j

)dYt,k)]

=
1

T

TX

t=1

PX

j=1

z̃tj[log↵j + logf
N
j (Yt,nt+1) + ñt,j(

ˆ
logf

N
j (Yt,k)(

f
N,l
j (Yt,k)

1� F
l
j

)dYt,k)]

where Ez,n|Y,⇥l(.) takes the joint expectation of z and n conditional on Y and ⇥
l. Law of

iterated expectation E(Y |X) = E[E(Y |Z,X)|X] was used.
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A.5 M step of the new EM algorithm

To begin with, we derive the first two moments for Y coming from the invalid truncation

area (x < y), whose density of the has the following form:

f(Y, µ,⌃) =
1

2⇡
p

|⌃|[1� �( w0µp
w0⌃w

)]
exp[�1

2
(Y � µ)0⌃�1(Y � µ)] (7.14)

Let Y d = Y � µ. Then, the first and second moments of Y d =

0

@x
d

y
d

1

A are:

M
1
d = �⌃wp

w0⌃w

�( w0µp
w0⌃w

)

1��( w0µp
w0⌃w

)

M
2
d = ⌃ + ⌃ww0⌃

w0⌃w
w0µp
w0⌃w

�( w0µp
w0⌃w

)

1��( w0µp
w0⌃w

)

• Take derivative of (3.8) with respect to µj.
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@µj
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f
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j)� µj

TX

t=1
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where M
1,l
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1
d with µ = µ

l
j, ⌃ = ⌃

l
j.

• Take derivative of (3.8) with respect to ⌃�1
j .
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l+1
j )(Yt � µ

l+1
j )0 +

TX

t=1

z̃tjñt,j⌃j �
TX

t=1

z̃tjñt,jM
2
d0,j = 0

)⌃
l+1
j =

PT
t=1 z̃tj[(Yt � µ

l+1
j )(Yt � µ

l+1
j )0 + ñt,jM

2
d0,j]PT

t=1 z̃tj(1 + ñt,j)

where M
2
d0,j = M

2,l
d,j + (µl

j � µ
l+1
j )(M1,l

d,j)
0 + (M1,l

d,j)(µ
l
j � µ

l+1
j )0 + (µl

j � µ
l+1
j )(µl

j � µ
l+1
j )0, and

M
2,l
d,j is M

2
d with µ = µ

l
j, ⌃ = ⌃

l
j.

A.6 M step of the new EM algorithm (conditional case)

The closed-form solution for ↵j and ⌃j can be easily derived similar to the unconditional

case. Here we focus on Aj. Notice that maximizing Q( | l) is equivalent to minimizing the

following expression for the purpose of taking derivative with respect to Aj:

L(A) =
TX

t=P+1

PX

j=1

z̃tj[(Yt � AjXt�1)
0
⌃

�1
j (Yt � AjXt�1) +

ñt,j

ˆ Tr

((Yt,k � AjXt�1)
0
⌃

�1
j (Yt,k � AjXt�1))(

f
N,l
t,j (Yt,k)

1� F
l
t,j

)dYt,k]

=
PX

j=1

{[vec(Ȳj)� (I2 ⌦ X̄j)vec(A
0
j)]

0(⌃�1
j ⌦ IT�Q)[vec(Ȳj)� (I2 ⌦ X̄j)vec(A

0
j)] +

ˆ
[vec(Ỹj)� (I2 ⌦ X̃j)vec(A

0
j)]

0(⌃�1
j ⌦ IT�Q)[vec(Ỹj)� (I2 ⌦ X̃j)vec(A

0
j)]f

l
j(Ỹj)dỸj}

where Ỹj =
p

(z̃j � ñj)⌧ � Yk, and Yk = (YQ+1,k, ..., YT,k)0. Take derivative of L(A) with

respect to vec(A0
j):
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@L(A)

@vec(A0
j)

=� 2(I2 ⌦ X̄j)(⌃
�1
j ⌦ IT�Q)vec(Ȳj) + 2(I2 ⌦ X̄j)

0(⌃�1
j ⌦ IT�Q)(I2 ⌦ X̄j)vec(A

0
j)+ˆ

[�2(I2 ⌦ X̃j)(⌃
�1
j ⌦ IT�Q)vec(Ỹj) + 2(I2 ⌦ X̃j)

0(⌃�1
j ⌦ IT�Q)(I2 ⌦ X̃j)vec(A

0
j)]f(Ỹj)dỸj

=� (I2 ⌦ X̄j)
0(⌃�1

j ⌦ IT�Q)vec(Ȳj) + (I2 ⌦ X̄j)
0(⌃�1

j ⌦ IT�Q)(I2 ⌦ X̄j)vec(A
0
j)�

(I2 ⌦ X̃j)
0(⌃�1

j ⌦ IT�Q)vec(M̃
1
d0,T̄,j) + (I2 ⌦ X̃j)

0(⌃�1
j ⌦ IT�Q)(I2 ⌦ X̃j)vec(A

0
j)

=� [(⌃�1
j ⌦ X̃

0
j)vec(M̃

1
d0,T̄,j) + (⌃�1

j ⌦ X̄
0
j)vec(Ȳj)] + [(⌃�1

j ⌦ X̄
0
jX̄j) + (⌃�1

j ⌦ X̃
0
jX̃j)]vec(A

0
j)

=� [vec(X̃ 0
jM̃

1
d0,T̄ ,j⌃

�1
j ) + vec(X̄ 0

jȲj⌃
�1
j )] + [⌃�1

j ⌦ (X̄ 0
jX̄j + X̃

0
jX̃j)]vec(A

0
j)

=� (⌃�1
j ⌦ I2)vec(X̃

0
jM̃

1
d0,T̄ ,j + X̄

0
jȲj) + [⌃�1

j ⌦ (X̄ 0
jX̄j + X̃

0
jX̃j)]vec(A

0
j)

=0

Then, we can write down vec(A0
j) as:

vec(A0
j)

=[⌃�1
j ⌦ (X̄ 0

jX̄j + X̃
0
jX̃j)]

�1(⌃�1
j ⌦ I2)vec(X̃

0
jM̃

1
d0,T̄ ,j + X̄

0
jȲj)

=(I2 ⌦ (X̄ 0
jX̄j + X̃

0
jX̃j)

�1)vec(X̃ 0
jM̃

1
d0,T̄,j + X̄

0
jȲj)

=vec[(X̄ 0
jX̄j + X̃

0
jX̃j)

�1(X̃ 0
jM̃

1
d0,T̄,j + X̄

0
jȲj)]

Therefore, we have

A
l+1
j = (X̃ 0

jM̃
1
d0,T̄,j + X̄

0
jȲj)

0(X̄ 0
jX̄j + X̃

0
jX̃j)

�1

A.7 Proof of Theorem 1

First, we introduce a lemma that shows the mixture truncated normal distribution is iden-

tifiable.

Lemma 1. Let ⌫ = (µ,⌃), and suppose that ⇤ = {F (Y, ⌫); ⌫ 2 R6
, Y 2 R2} is the family
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of distributions whose density is given by

f(Y, ⌫) =
1

2⇡
p

|⌃|[1� �( �w0µp
w0⌃w

)]
exp[�1

2
(Y � µ)0⌃�1(Y � µ)] (7.15)

Then  �(Y ) =
PP

j=1 ↵jF (Y, ⌫j), the class of finite mixtures of ⇤, is identifiable. � =

{↵j, ⌫j|8j}, ↵j > 0, and
PP

j=1 ↵j = 1. In other words,  �(Y ) =  �⇤(Y ) ) � = �
⇤.

Proof of Lemma 1:

We first define the exponential family.

If, for some ��finite measure µ,

dF (Y, ⌧) = a(⌧)b(Y )exp[⌧ 0h(Y )]dµ(Y ) (7.16)

for Y 2 Rn, ⌧(m ⇥ 1), and h(Y ) (m ⇥ 1), where a(⌧) > 0, b(Y ) � 0 and a, b, hj, for

j = 1, 2, . . . ,m are all measurable, then F is called an exponential family member.

Barndor↵-Nielsen (1965) proves that the class  is identifiable if all of the following hold: (a)

F belongs to the exponential family, (b) µ is n-dimensional Lebesgue measure, (c) functions

hj, j = 1, 2, . . . ,m, are all continuous, and (d) the set {y : y = h(Y ), b(Y ) > 0, Y 2 Rn}

contains a nonempty open set.

First, we show that the distribution with density given by (7.15) belongs to exponential

family as it can be written as:

dF (Y, ⌧)

dµ(Y )
=

1

2⇡
p

|⌃|[1� �( �w0µp
w0⌃w

)]
exp[�1

2
(Y � µ)0⌃�1(Y � µ)]

= a(⌧)b(Y )exp[⌧ 0h(Y )]

where µ is two-dimensional Lebesgue measure. ⌧ =
⇣
⌃

�1
µ, �1

2vec(⌃
�1)

⌘
, a(⌧) =

np
|⌃|[1�

�( �w0µp
w0⌃w

)]exp(12µ
0
⌃

�1
µ)
o�1

, b(Y ) = 1
2⇡ , and h(Y ) =

⇣
Y, vec(Y Y

0)
⌘0
.
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The image of the mapping h: R2 ! R6, for x � y is the set ⌦ = {h(Y ), x � y}, which

contains an open set ⌦0 = {h(Y ), x > y}. In addition, the map from ⌧ to ⌫ is unique.

Lemma 1 follows. 2

Now, we can proceed to prove Theorem 1. It is straightforward to see that L( ) is a

measurable function of data for each  2 ⌅, and continuous in  . Therefore, it su�ces

to show that (a) the log-likelihood follows a uniform strong law of large numbers: sup
 2⌅

|

L( )� E[L( )] |! 0 a.s. as T ! 1; (b) the identification condition: E[L( )]  E[L( 0)],

and E[L( )] = E[L( 0)] implies  =  0. (see Amemiya (1973, Lemma 3)).

Let L( ) = 1
T�P

P
t l( ). By Assumption 1 and continuity of l( ), l( ) is stationary and

ergodic (see Krengel (1985, Proposition 4.3)), and hence E[L( )] = E[l( )]. To verify (a),

it su�ces to show that E[sup
 2⌅

| l( ) |] < 1 (see Rao (1962) or Straumann and Mikosch

(2006 Theorem 2.7)). Kalliovirta et.al. (2016) prove the the above inequality holds for the

likelihood in their model one side at a time. We are going to adapt similar similar procedures

here. Specifically, we know that

l( ) = log{
PX

j=1

↵j(2⇡)
�1|⌃j|�1/2

exp[�1

2
(Yt � AjXt�1)

0
⌃

�1
j (Yt � AjXt�1)]/[

1

2
erfc(�w

0
AjXt�1/

p
2w0⌃jw)]}

where w = (1,�1)0. Assumption 2 implies that, � � |⌃j| � �, 8j for some � > 0, and � <

1, and that w0
⌃jw � �, 8j for some � > 0. We also know that exp[�1

2(Yt�AjXt�1)0⌃
�1
j (Yt�

AjXt�1)]  1. In addition, when�w
0
AjXt�1/

p
2w0⌃jw  0, erfc(�w

0
AjXt�1/

p
2w0⌃jw) �

1, and thus we can see that l( )  log(⇡�1
�
�1/2). When �w

0
AjXt�1/

p
2w0⌃jw > 0, we

apply the inequality erfc(x) � 1
2exp(�2x2) (see Chang et. al. (2011, Theorem 2)), thus
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erfc(�w
0
AjXt�1/

p
2w0⌃jw) � 1

2
exp(�w

0
AjXt�1X

0
t�1A

0
jw/w

0
⌃jw)

� 1

2
exp[�1

�
tr(Xt�1X

0
t�1A

0
jww

0
Aj)]

� 1

2
exp[�1

�
tr(Xt�1X

0
t�1)tr(A

0
jww

0
Aj)]

� 1

2
exp[�

�
X

0
t�1Xt�1]

where the last inequality holds by compactness of ⌅ (Assumption 2). That is, tr(A0
jww

0
Aj) 

, 8j for some 0 <  < 1. Now, it can be seen that

l( )  log{
PX

j=1

↵j(2⇡)
�1
�
�1/24exp[



�
X

0
t�1Xt�1]}

= log(2⇡�1
�
�1/2) +



�
X

0
t�1Xt�1

Therefore, regardless of the value of �w
0
AjXt�1/

p
2w0⌃jw, we have l( )  log(2⇡�1

�
�1/2)+


�X

0
t�1Xt�1.

On the other hand, it can be seen that

(Yt � AjXt�1)
0
⌃

�1
j (Yt � AjXt�1)

=tr[(Yt � AjXt�1)(Yt � AjXt�1)
0
⌃

�1
j ]

tr[(Yt � AjXt�1)(Yt � AjXt�1)
0]tr(⌃�1

j )

=(Yt � AjXt�1)
0(Yt � AjXt�1)tr(⌃

�1
j )

(1 + Y
0
t Yt +X

0
t�1Xt�1)⇢

where the first inequality holds because both (Yt�AjXt�1)(Yt�AjXt�1)0 and ⌃
�1
j are positive

semi-definite. The second last inequality is implied by Cauchy-Schwarz inequality and As-

sumption 2 (tr(⌃�1
j )  ⇢, 8j for some 0 < ⇢ < 1). Furthermore, erfc(�w

0
AjXt�1/

p
2w0⌃jw) 

2, thus
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l( ) � log{
PX

j=1

↵j(2⇡)
�1
�

�1/2
exp[�1

2
(1 + Y

0
t Yt +X

0
t�1Xt�1)⇢]}

= G1 �
1

2
⇢(1 + Y

0
t Yt +X

0
t�1Xt�1)

for some finite G1. Overall, we have G1� 1
2⇢(1+Y

0
t Yt+X

0
t�1Xt�1)  l( )  log(2⇡�1

�
�1/2)+


�X

0
t�1Xt�1, from which E[sup

 2⌅
| l( ) |] < 1 holds because X

0
t�1Xt�1 = 1 + Y

0
t�1Yt�1 + ... +

Y
0
t�QYt�Q, and E(Y 0

t Yt) < 1 for all t by Assumption 3.

Now, we verify (b). Let s(Y t�1
t�Q, 0) be the stationary distribution of Y t�1

t�Q as , then

E[L( )]� E[L( 0)]

=

¨
s(Y t�1

t�Q, 0)[
PX

j=1

↵j,0fj(Yt|Y t�1
t�Q, Aj,0,⌃j,0)]log

PP
j=1 ↵jfj(Yt|Y t�1

t�Q, Aj,⌃j)
PP

j=1 ↵j,0fj(Yt|Y t�1
t�Q, Aj,0,⌃j,0)

dYtdY
t�1
t�Q

=

ˆ
s(Y t�1

t�Q, 0){
ˆ

[
PX

j=1

↵j,0fj(Yt|Y t�1
t�Q, Aj,0,⌃j,0)]log

PP
j=1 ↵jfj(Yt|Y t�1

t�Q, Aj,⌃j)
PP

j=1 ↵j,0fj(Yt|Y t�1
t�Q, Aj,0,⌃j,0)

dYt}dY t�1
t�Q

where the inner integral is the negative Kullback-Leibler divergence between two mixture

densities:
PP

j=1 ↵jfj(Yt|Y t�1
t�Q, Aj,⌃j) and

PP
j=1 ↵j,0fj(Yt|Y t�1

t�Q, Aj,0,⌃j,0). Therefore, E[L( )]�

E[L( 0)]  0 and the equality holds if and only if

PX

j=1

↵jfj(Yt|Y t�1
t�Q, Aj,⌃j) =

PX

j=1

↵j,0fj(Yt|Y t�1
t�Q, Aj,0,⌃j,0)

By the identification result from Lemma 1, we have that ↵j = ↵j,0, ⌃j = ⌃j,0 and AjXt�1 =

Aj,0Xt�1 for all j, where AjXt�1 = Aj,0Xt�1 implies either that Aj = Aj,0 or that Xt�1 takes

values only on a 2(Q� 1) dimensional hyperplane. The latter is impossible as {Xt�1} takes

values on H ⇢ R2Q, where H has positive Lebesque measure. Therefore, ↵j = ↵j,0, ⌃j = ⌃j,0

and Aj = Aj,0 for all j.
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