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SUMMARY

Structural changes often occur in economics and finance due to changes in preferences,

technologies, institutional arrangements, policies, crises, etc. Improving forecast accuracy of

economic time series with structural changes is a long-standing problem. Model averaging

aims at providing an insurance against selecting a poor forecast model. All existing model

averaging approaches in the literature are designed with constant (non-time-varying) com-

bination weights. Little attention has been paid to time-varying model averaging, which is

more realistic in economics under structural changes. This paper proposes a novel model

averaging estimator which selects optimal time-varying combination weights by minimizing

a local jackknife criterion. It is shown that the proposed time-varying jackknife model av-

eraging (TVJMA) estimator is asymptotically optimal in the sense of achieving the lowest

possible local squared error loss in a class of time-varying model averaging estimators. Un-

der a set of regularity assumptions, the TVJMA estimator is
√
Th-consistent. A simulation

study and an empirical application highlight the merits of the proposed TVJMA estimator

relative to a variety of popular estimators with constant model averaging weights and model

selection.
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1 Introduction

Structural instability is a long-standing problem in time series econometrics (e.g., Stock &

Watson (1996, 2002, 2005), Rossi (2006), and Rossi & Sekhposyan (2011)). Macroeconomic

and financial time series, especially over a long period, are likely to be affected by structural

instability due to changes in preferences, technologies, policies, crises, etc. For example,

Stock & Watson (1996) find substantial instability in 76 representative US monthly post-

war macroeconomic time series. Rossi & Sekhposyan (2011) argue that due to structural

breaks, most forecast models for output growth lost their predictive ability in the mid-1970s,

and became essentially useless over the last two decades. In finance, Welch & Goyal (2008)

confirm that the predictive regressions of excess stock returns perform poorly in out-of-

sample forecast of the U.S. equity premium, and Rapach & Zhou (2013) argue that model

instability and uncertainty seriously impair the forecasting ability of individual predictive

regression models. In labor economics, Hansen (2001) finds “strong evidence of a structural

break in U.S. labor productivity between 1992 and 1996, and weaker evidence of a structural

break in the 1960s and the early 1980s”. Thus, it is crucial to take into account such model

instability and uncertainty in economic forecasting.

An approach to reducing the adverse impact of model instability and uncertainty is model

averaging, which compromises across the competing models and yields an insurance against

selecting a poor model. There has existed a relatively large literature on Bayesian model

averaging; see Hoeting et al. (1999) for a comprehensive review. In recent years, frequentist

model averaging has received growing attention in econometrics and statistics (e.g., Buckland

et al. (1997), Yang (2001), Hjort & Claeskens (2003), Yuan & Yang (2005), Hansen (2007,

2008), Wan et al. (2010), Liu & Okui (2013), Liu (2015)). Most of the works focus on model

averaging weights determination, related inference, and asymptotic optimality. Recently,

Hansen & Racine (2012) have proposed a jackknife model averaging (JMA) which selects

model averaging weights by minimizing a cross-validation criterion. The advantage of the

JMA estimator mainly lies in that the asymptotic optimality theory is established under

heteroskedastic error settings. Zhang et al. (2013) broaden Hansen & Racine’s (2012) scope

of asymptotic optimality of the JMA estimator to encompass models with a non-spherical

error covariance structure and lagged dependent variables, thus allowing for dependent data

and dynamic regression models.

However, a potential problem with the aforementioned model averaging approaches is

that, one predictive regression model may yield the best forecast in one period but can be

dominated by other models in another period. This implies that optimal model averaging

weights should change over time. There are various reasons for adopting this potentially

useful time-varying approach. First, a time series model may suffer from structural instability

in economics and finance. Therefore, as Stock & Watson (2003) point out, a predictor

useful in one period does not guarantee its forecasting performance in other periods. The
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empirical results in Stock & Watson (2007) suggest that a substantial fraction of forecasting

relations are unstable. Second, macroeconomic and financial series may follow different

dynamics in different time periods. For example, they may have state-dependent dynamic

structures. Third, because of possible collinearity among predictors, variable selection and

model selection are inherently unstable (Stock & Watson (2012)). Thus, to handle such

instability, it may be better to use time-varying weights instead of constant weights in model

averaging. Furthermore, since the underlying economic structure is likely to be affected by

technological progress, preference changes, policy switches, crises, and so on, it is desirable

to use time-varying parameter models to capture structural changes. To our knowledge,

there has been no work on selecting optimal time-varying weights in model averaging where

each model itself may also have time-varying parameters.

The present paper fills this gap by proposing a time-varying jackknife model averag-

ing (TVJMA) estimator that selects model averaging weights by minimizing a local cross-

validation criterion. Our approach complements the existing literature on constant JMA

weights and avoids the difficulty associated with whether structural changes exist. Specif-

ically, we assume that model parameters, as well as model averaging weights, are smooth

unknown functions of time. This approach is consistent with the evidence of types of insta-

bility documented in economics, namely smooth structural changes (e.g., Rothman (1998),

Grant (2002), Chen & Hong (2012) and Chen (2015)). Hansen (2001) points out that it

might seem more reasonable to allow a structural change to take effect with a period of

time rather than to be effective immediately. To allow the weights in model averaging to

change over time, we employ the local smoothing idea to the squared error loss, leading to a

local constant model averaging estimator. Moreover, we follow the spirit of Robinson (1989)

and use a local constant method to estimate the time-varying parameters in each candidate

model. Furthermore, we extend the candidate models from static regressions to dynamic

regressions, which cover more applications in economics and finance.

In this paper, we show that the proposed TVJMA estimator is asymptotically optimal in

the sense of achieving the lowest possible local squared error loss in a class of time-varying

model averaging estimators, under three model settings. The first two settings admit a

non-diagonal covariance structure for regression errors, including heteroscedastic errors as

in Hansen & Racine (2012), with exogenous regressors. As a result, we include the non-

time-varying JMA estimator in Hansen & Racine (2012) as a special case of our TVJMA

estimator, under heteroscedastic errors in a nested set-up. Our theoretical analysis allows

the model averaging weights to be continuously changing over time, which avoids restricting

the weights to a discrete set as in Hansen & Racine (2012). The conditions required for

optimality of our TVJMA estimator are neither stronger nor weaker than those required by

Hansen & Racine (2012). The third model setting we consider involves lagged dependent

variables with i.i.d. regression errors, where we prove the asymptotic optimality of the
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TVJMA estimator by allowing the regressors to be locally stationary, in the sense of Ing &

Wei (2003) and Vogt (2012).

In a simulation study and an empirical application, we compare forecast performance of

the TVJMA estimator with several other model averaging estimators, including the Mallow

model averaging (MMA) of Hansen (2007), JMA, a smoothed Akaike information crite-

rion (SAIC) model averaging (Buckland et al. (1997)), a smoothed Bayesian information

criterion (SBIC) model averaging, a nonparametric version of bias-corrected AIC model se-

lection (Cai & Tiwari (2000), AICc), and a smoothed AICc (SAICc) model averaging. It is

documented that for various structural changes, our TVJMA estimator outperforms these

competing estimators under strictly exogenous regressors with ARMA and GARCH-type

errors. Additionally, for dynamic models, the TVJMA estimator remains to be superior to

other estimators under consideration.

Compared with the existing model averaging literature, our proposed approach has a

number of appealing features. First, we extend conventional constant weight model averaging

to time-varying weight model averaging. In particular, we propose a novel time-varying

jackknife model averaging approach by exploring local information at each time point instead

of over the whole sample period. The TVJMA weights selected by our method are allowed

to change smoothly over time, which is consistent with evolutionary instability of economic

relationships. Our result includes the constant JMA estimator in Hansen & Racine (2012)

as a special case. Second, we also allow parameters in each candidate model to change

smoothly over time. A nonparametric approach is used to estimate the time-varying model

parameters, avoiding a potentially misspecified functional form of time-varying parameters

by any parametric approach (e.g., time-varying smooth transition regression). Third, we

allow regressors to be locally stationary (Dahlhaus (1996, 1997), Vogt (2012)), and as a result,

time-varying parameter dynamic regression models (e.g., time-varying parameter models

with lagged dependent variables) can be included as candidate models.

The remainder of this paper is organized as follows. Section 2 introduces the local

jackknife criterion and develops the asymptotic optimality theory of the proposed TVJMA

estimator for a general nonlinear model with heteroscedasticity. In Section 3, we consider

a special class of local constant TVJMA estimators for a time-varying parameter model.

Section 4 develops an asymptotic optimality theory of the TVJMA estimator for a time-

varying parameter regression model with lagged dependent variables. Section 5 presents a

simulation study under constant and time-varying parameter linear regressions respectively.

Section 6 examines the empirical forecast performance of the TVJMA estimator for S&P 500

stock returns. Section 7 concludes. Throughout, all convergences occur when the sample

size T →∞. All mathematical proofs are given in an Online Appendix.
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2 Model Averaging Estimator

We consider a general nonlinear data generating process (DGP)

Yt = µt + εt = ft(Xt) + εt, t = 1, · · · , T, (1)

where Yt is a dependent variable, Xt = (X1t, X2t, · · · ) is possibly countably infinite, εt is

an unobservable disturbance with E(εt|Xt) = 0 almost surely (a.s.), ft(x) is an unknown

smooth function of time t, and T is the sample size. Note that when the functional form of

ft(·) is known up to some finite dimensional parameters, e.g., ft(x) = x′βt, the conditional

mean of Yt given Xt is parametrically specified, where parameter βt is possibly time-varying.

A time-varying parameter regression with ft(x) = x′βt will be considered in Section 3. The

conventional constant parameter linear models are included as a special case if we assume

that ft(·) = f(·) is linear. When the functional form of ft(·) is unknown, we can estimate

ft(·) using nonparametric methods, such as the Nadaraya-Watson estimator or the local lin-

ear estimator. For notational simplicity, we let Y = (Y1, · · · , YT )′, µ = (µ1, · · · , µT )′ and

X = (X ′1, X
′
2, · · · , X ′T )′. Furthermore, we assume that E(ε|X) = 0 where ε = (ε1, · · · , εT )′

so that µ = E(Y|X). We denote var(ε|X) = Ω, where Ω is a positive definite symmetric ma-

trix. This setup allows a non-diagonal covariance structure for regression errors. Therefore,

heteroscedastic and autocorrelated errors are allowed.

2.1 Model Framework and Jackknife Criterion

Consider a sequence of candidate models indexed by m = 1, · · · ,MT , which are allowed to be

misspecified for the underlying DGP. The number of models, MT , may depend on the sample

size T . For different models, explanatory variables may be different. Let {µ̂1, · · · , µ̂MT } be

a set of nonparametric estimators of µ. Specifically, for the m-th model, the estimator of µ

may be written as µ̂m = PmY, where Pm is a T ×T matrix, which depends on both Kt and

X but not on Y. For instance, Pm is defined in (18) below when a local constant estimator

is used, and so µ̂m is a local estimator for the conditional mean. For each time t = 1, · · · , T ,

let w = (w1, · · · , wMT )′ be a weight vector which satisfies

HT =

{
w ∈ [0, 1]MT :

MT∑
m=1

wm = 1

}
. (2)

Given w, an averaging estimator at any time point t for the conditional mean is

µ̂t(w) ≡
MT∑
m=1

wmµ̂mt =

MT∑
m=1

wmetPmY = etP(w)Y, (3)

where et is a 1×T vector, in which the t-th element is 1 and all others are zero, µ̂mt = etPmY

and P(w) =
∑MT

m=1w
mPm. Then the model averaging estimator of µ can be fitted as

µ̂(w) = (µ̂1(w), · · · , µ̂T (w))′.
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Denote µ̃m = (µ̃m1 , · · · , µ̃mT )′ as the jackknife estimator of µ for the m-th model, where µ̃mt
is the estimator µ̂mt obtained with the t-th observation (Yt,Xt) removed from the sample, the

so-called “leave-one-out” estimator. Then, we obtain µ̃m = P̃mY, where P̃m has zeros on

the diagonal and depends on Kt and X; see (19) below for an example in a special setup. The

jackknife model averaging estimator of µt, which smooths across the MT jackknife estimators

at time point t, is obtained as

µ̃t(w) =

MT∑
m=1

wmµ̃mt = et

MT∑
m=1

wmP̃mY = etP̃(w)Y, (4)

where P̃(w) =
∑MT

m=1w
mP̃m.

Set µ̃(w) = (µ̃1(w), · · · , µ̃T (w))′. Let Kt = diag{k1t, · · · , kTt}, where kst = k( s−t
Th

), the

kernel k(·) : [−1, 1]→ R+ is a prespecified symmetric probability density, and h ≡ h(T ) is a

bandwidth which depends on the sample size T such that h → 0 and Th → ∞ as T → ∞.

We shall minimize the local cross-validation (CV) squared error criterion,

CVt,T (w) = (Y − µ̃(w))′Kt(Y − µ̃(w)). (5)

We obtain the optimal time-varying weight vector ŵt = argminw∈HT
CVt,T (w), which mini-

mizes CVt,T (w). The TVJMA estimator of µt for any given time point t is µ̂t(ŵt).

The jackknife (or CV) criterion is widely used in selecting regression models (e.g., Allen

(1974), Stone (1974) and Geisser (1975)), and the asymptotic optimality of model selection

using the CV criterion is established by Li (1987) for homoskedastic regression and by An-

drews (1991) for heteroskedastic regression, respectively. In this paper, the CV criterion

defined above is locally weighted by Kt at each time point. This local CV criterion chooses

the optimal weights by generating the smallest CV value over the local sample leaving out

the observation (Xt, Yt) at time t. Thus, the time-varying weight vector ŵt is essentially

a constant weight in the neighborhood of any fixed time point t, which combines different

models to yield the lowest local squared error loss.

Note that there are two key differences between our TVJMA estimator and the JMA esti-

mators proposed by Hansen & Racine (2012) and Zhang et al. (2013). One major difference

is that we allow the model averaging weights to change with time smoothly. In contrast,

Hansen & Racine (2012) and Zhang et al. (2013) restrict the weights to be constant in a

discrete set or a continuous set. We extend constant wights to time-varying weights, which

can accommodate time-varying predictive power of candidate models. Another difference

is that the models in Hansen & Racine (2012) and Zhang et al. (2013) are linear regres-

sions, while in the present paper, ft(·) can be nonlinear, and parameters in each candidate

model are allowed to be unknown smooth functions of time. Theoretically, we establish the

asymptotic optimality of the TVJMA estimator based on a set of smoothly time-varying pa-

rameter models. Simulation studies show that the proposed TVJMA estimator outperforms
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the existing model averaging methods in the presence of smooth structural changes as well

as recurrent breaks.

2.2 Asymptotic Optimality

To establish the asymptotic optimality of the TVJMA estimator, we consider the following

local squared error loss and associated risk criterion:

Lt,T (w) = (µ̂(w)− µ)′Kt(µ̂(w)− µ), (6)

and

Rt,T (w) = E(Lt,T (w)|X) = µ′A′(w)KtA(w)µ+ tr(P′(w)KtP(w)Ω), (7)

where µ̂(w) =
∑MT

m=1w
mµ̂m is the weighted average of the forecasts of MT models, and

A(w) = IT −P(w).

Let L̃t,T (w) and R̃t,T (w) be the local jackknife squared error loss and risk, which are

obtained by replacing µ̂(w) by µ̃(w), A(w) by Ã(w), and P(w) by P̃(w), respectively.

Specifically,

L̃t,T (w) = (µ̃(w)− µ)′Kt(µ̃(w)− µ) (8)

and

R̃t,T (w) = µ′Ã′(w)KtÃ(w)µ+ tr(P̃′(w)KtP̃(w)Ω). (9)

Let

ξt,T = inf
w∈HT

Rt,T (w) (10)

and

Ω̃ = Ω− diag(Ω11, · · · ,ΩTT ), (11)

where Ωtt is the t-th diagonal element of Ω, and ζ(A) denotes the maximum singular value

of matrix A.

Extending the results of Hansen & Racine (2012) and Zhang et al. (2013), we prove that

the TVJMA estimator µ̂(ŵt) satisfies the following optimality (OPT) property

(OPT ) :
Lt,T (ŵt)

infw∈HT
Lt,T (w)

p→ 1, as T →∞.

This suggests that the local average squared error of the TVJMA estimator is asymptoti-

cally equivalent to the local average squared error of the infeasible best possible averaging
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estimator. This optimality property is the same as that in Zhang et al. (2013), except that

we now allow the weights to change smoothly over time.

To guarantee that the TVJMA estimator satisfies the OPT property under a DGP that

allows smooth-changing parameters and a non-diagonal error covariance structure, we impose

a set of regularity conditions:

Assumption 1. {εt} is a sequence of innovations such that ε = (ε1, · · · , εT )′ satisfies ε|X ∼
N(0,Ω), where Ω is a T × T symmetric positive-definite matrix.

Assumption 2. The maximum singular value of Ω satisfies ζ(Ω) ≤ C <∞, where C is a

constant.

Assumption 3. For 1 ≤ m ≤ MT , where MT may depend on the sample size T , the

maximum singular value of Pm satisfies limT→∞max1≤m≤MT
ζ(Pm) <∞ a.s..

Assumption 4. For 1 ≤ m ≤ MT , the maximum singular value of P̃m is finite when the

sample size T →∞, i.e., limT→∞max1≤m≤MT
ζ(P̃m) <∞ a.s..

Assumption 5. For any given time point t, the local risk R̃t,T (w), i.e., the conditional expec-

tation of the local jackknife squared error criterion given X, satisfies supw∈HT
|R̃t,T (w)/Rt,T (w)−

1| → 0 a.s. as T →∞.

Assumption 6. For any given time point t, MT ξ
−2G
t,T

∑MT

m=1R
G
t,T (w0

m) → 0 a.s., for some

constant G ≥ 1, where w0
m is an MT ×1 weight vector with the m-th element taking the value

of unity and other elements zeros.

Assumption 6′. For any given time point t, ξ−2t,T
∑MT

m=1Rt,T (w0
m)→ 0 a.s., where w0

m is an

MT × 1 weight vector with the m-th element taking the value of unity and other elements

zeros.

Assumption 7. For any given time point t, supw∈HT
|tr(KtP̃(w)Ω̃)/R̃t,T (w)| → 0 a.s. as

T →∞.

Assumption 8. k : [−1, 1]→ R+ is a symmetric bounded probability density function.

Assumption 9. The bandwidth h = cT−λ for 0 < λ < 1 and 0 < c <∞.

Assumption 1 is the same as condition (11) in Zhang et al. (2013), which is limited to

Gaussian regressions. This condition can be removed to obtain the asymptotic optimality

of the TVJMA estimator for a time-varying parameter regression in Section 3. Assumption

2 ensures the largest singular values of the error covariance matrix Ω to be finite when the

sample size T → ∞, corresponding to condition (12) in Zhang et al. (2013). Assumptions

3 and 4 correspond to conditions (A.3) and (A.4) of Hansen & Racine (2012), respectively.
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Both of them are rather mild, because typical estimators satisfy the regularity conditions

that the maximum singular values of the corresponding matrixes are bounded.

Assumption 5 imposes the condition that the leave-one-out estimator is asymptotically

equivalent to the local risk of the regular estimator µ̂(w), uniformly over the class of av-

eraging estimators. This is a standard condition for the application of cross-validation and

almost the same as condition (10) in Zhang et al. (2013), except that the continuous time-

varying set HT is used here instead of the continuous constant set Hn in Zhang et al. (2013).

In Section 3, we will consider time-varying parameter regressions as candidate models, where

Assumption 5 is ensured by more primitive conditions; see (A.18) in Appendix.

Assumption 6 requires MT

∑MT

m=1R
G
t,T (w0

m)→∞ at a rate slower than ξ2Gt,T →∞ as T →
∞. Assumption 6′ is weaker than Assumption 6, when G is set to 1. To gain further insight

into Assumptions 6 and 6′, we define ηt,T = max1≤m≤MT
Rt,T (w0

m). Then, we obtain more

primitive conditions for Assumptions 6 and 6′ that M2
T ξ
−2G
t,T ηGt,T → 0 a.s. and MT ξ

−2
t,Tηt,T → 0

a.s., respectively. These conditions restrict the rates of MT →∞, ξt,T →∞ and ηt,T →∞; in

particular they require that the infimum risk ξt,T explode quickly enough and the maximum

risk of an individual model do not explode very quickly. Note that ξt,T → ∞ is obviously

necessary for Assumptions 6 and 6′ to hold, which is pointed out by Hansen (2007) that

this is no finite approximating model for which the bias is zero in linear regression as well

as nonparametric regression. Like Ando & Li (2014), we consider a case with ξt,T ∼ T 1−δ̃

for δ̃ < 1/2. From Assumptions 2, 3 and 8, we can obtain ηt,T = Op(T ). Given ξt,T → ∞
with the rate T 1−δ̃, MT → ∞ with a slower rate than TG−δ̃G and ηt,T = Op(T ), and so

Assumptions 6 and 6′ hold. Assumption 6 is required for the asymptotic optimality of all

MMA and JMA estimators; see more discussions in Wan et al. (2010) and Zhang et al.

(2013).

Assumption 7 restricts the correlation strength among unobservable disturbances and

can be removed when disturbances are not correlated. Under the set-up of linear DGP,

Assumption 7 can be simplified to supw∈HT
|tr(P̃(w)Ω̃)/R̃t,T (w)| → 0 a.s. as T → ∞,

which is the same as condition (14) in Zhang et al. (2013). If all candidate models are linear

regressions with constant parameters, it can be shown that supw∈HT
|tr(P̃(w)Ω̃)/R̃t,T (w)| ≤

ξ−1t,Tγmax1≤m≤MT
ζ(P̃mΩ̃), where γ is the number of regressors. It follows that condition (14)

boils down to condition (22) in Zhang et al. (2013), which assumes that the growth rate

of the number of regressors in the largest model must be slower than the rate at which

ξt,T → ∞. In this paper, under the linear regression setting with time-varying parameters

in Section 3, we can establish the asymptotic optimality without Assumption 7.

In Assumption 8, the kernel is symmetric and bounded, and has a compact support

[−1, 1]. It usually discounts the observations whose values are far away from the time point

of interest. This implies that kmax ≡ maxs,t kst <∞, which is used in our proof. A commonly

used kernel function, the Epanechnikov kernel k(u) = 0.75(1− u2)I(|u| ≤ 1), is employed in
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this paper, where I(·) is the indicator function. Assumption 9 implies h→ 0 and Th→∞
as T → ∞, which is a standard condition for the bandwidth; see Chen and Hong (2012).

Assumption 9 includes the optimal bandwidth h ∝ T−1/5, which minimizes the integrated

mean squared error (MSE) of a smoothed nonparametric estimator; see more discussions in

Cai (2007) and Chen & Hong (2012).

We now state the main result of this section.

Theorem 1. Suppose Assumptions 1-9 hold. Then for any given time point t, the TVJMA

estimator µ̂t(ŵt) satisfies the asymptotic optimality (OPT) property, i.e.,

Lt,T (ŵt)

infw∈HT
Lt,T (w)

p→ 1.

Theorem 1 shows that the local squared error loss obtained from the time-varying com-

bination weight vector ŵt is asymptotically equivalent to the infeasible optimal combination

weight vector at any time point t. This implies that the TVJMA estimator is asymptotically

optimal in the class of time-varying model averaging estimators based on possibly nonlinear

models where the weight vector w is restricted to the set HT , which allows the combination

weights to change smoothly over time.

3 Time-varying Parameter Regression

In this section, we focus on a set of candidate models with a specific form, i.e., time-varying

parameter linear regressions. This is a special case of the general candidate models in Section

2. Consider the m-th time-varying parameter regression model

Yt = Xm
t β

m
t + εmt , t = 1, · · · , T, m = 1, · · · ,MT , (12)

where Xm
t is a 1× qm vector of explanatory variables, βmt is a qm × 1 possibly time-varying

parameter vector, εmt is an unobservable disturbance, and qm is a positive integer that may

be infinite. Note that we allow E(εmt |Xm
t ) 6= 0 in the set of candidate models, which arises

when the m-th model is misspecified for E(Yt|Xm
t ).

As Hansen (2001) points out, “it may seem unlikely that a structural break could be

immediate and might seem more reasonable to allow a structural change to take a period

of time to take effect”. We are thus interested in the following m-th smooth time-varying

parameter model:

Yt = Xm
t β

m

(
t

T

)
+ εmt , t = 1, · · · , T, (13)

where βm : [0, 1] → Rqm is a qm-dimensional vector-valued function on [0, 1]. In the neigh-

borhood of each time point, the model is locally stationary but it is globally nonstationary.
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Various smooth time-varying parameter models have been considered to capture the evo-

lutionary behavior of economic time series. For example, a smooth transition regression

(STR) model is proposed by Chan & Tong (1986) and further studied by Lin & Teräsvirta

(1994), which allows both the intercept and the slope to change smoothly over time. If

the parameter function is correctly specified, parametric models for time-varying parame-

ters can be consistently estimated with the root-T convergence rate. However, there is no

economic theory to justify any concrete functional form assumption for these time-varying

parameters, and the choice of a particular functional form for time-varying parameters is

somewhat arbitrary, probably leading to serious misspecification. Robinson (1989, 1991)

considers a nonparametric time-varying parameter model and it is further studied by Blun-

dell et al. (1998), Cai (2007) and Chen & Hong (2012). One advantage of the nonparametric

approach is that little or restrictive prior information is required for the functional forms

of time-varying parameters, except for the regularity assumption that they evolve over time

smoothly. In the present context, for the time-varying parameter βm(t/T ), we follow the

spirit of the smoothed nonparametric estimation in Robinson (1989).

Instead of specifying a parameterization for βm(t/T ), which may lead to serious bias, we

assume that βm(·) is a smooth time-varying function of the ratio t/T . This assumption is

based upon a common scaling scheme in the literature (e.g., Robinson (1989)). To reduce

the bias and variance of a smoothed nonparametric estimator for βmt at any fixed time point

t, it is necessary to balance the increase between the sample size T and the amount of local

information at time point t. One possible solution, as suggested in Robinson (1989) and Cai

(2007), is to assume a smooth function β(·) on an equally spaced grid over [0,1] and consider

estimation of βm(u) at fixed points u ∈ [0, 1]. We note that the parameter βmt depends on

the sample size T , so that new information accumulates at time point t when T increases.

This ensures the consistency of parameter βmt at any time point t (Cai (2007), Chen & Hong

(2012)).

For any s in a neighborhood of a fixed time point t, βms follows a Taylor expansion:

βms ≈ βmt , s ∈ [t− Th, t+ Th]. (14)

Define K−t = diag{k1t, k2t, · · · , k(t−1)t, 0, k(t+1)t, · · · , kTt} as the weights for Jackknife esti-

mation. Thus for every time point t, we obtain a local constant estimator β̂
m

t for βmt , and

so a local least square estimator µ̂mt and a Jackknife estimator µ̃mt for the m-th candidate

model respectively:

β̂
m

t = (Xm′KtX
m)−1Xm′KtY, (15)

µ̂mt = Xm
t (Xm′KtX

m)−1Xm′KtY (16)

and

µ̃mt = Xm
t (Xm′K−tX

m)−1Xm′K−tY. (17)
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Based on the expressions of µ̂mt and µ̃mt , it is straightforward to obtain

Pm =


Xm

1 (Xm′K1X
m)−1Xm′K1

Xm
2 (Xm′K2X

m)−1Xm′K2

· · ·
Xm
T (Xm′KTXm)−1Xm′KT

 (18)

and

P̃m =


Xm

1 (Xm′K−1X
m)−1Xm′K−1

Xm
2 (Xm′K−2X

m)−1Xm′K−2

· · ·
Xm
T (Xm′K−TXm)−1Xm′K−T

 . (19)

Thus, P̃m = Dm(Pm − IT ) + IT , where Dm is a diagonal matrix with the t-th diagonal

element (1− hmtt )−1, and hmtt is the (t, t) element in Pm.

To establish the asymptotic optimality property of µ̂(ŵ), we impose the following regu-

larity conditions:

Assumption 10. For any given time point t, supw∈HT
tr(P′(w)P(w))ξ−1t,T = op(1).

Assumption 11. For any given time point t, the local average of µ2
t is bounded, i.e.,

1
Th
µ′Ktµ = O(1) a.s. as T →∞.

Assumption 12. For any given time point t, h∗ = O(T−1h−1) and h−1ξ−1t,T → 0 a.s. as

T →∞, where ξt,T is defined in (10) and h∗ = max1≤m≤MT
max1≤t≤T h

m
tt .

As pointed out by a referee, Assumption 10 implies that the bias part dominates the

risk since tr(P′(w)P(w)) is related to the variance part of the risk. Typically, the risk is

minimized by equating its bias part and its variance part. One way to make Assumption 10

hold is to restrict the set for weights. Another way is to restrict the number of candidate

models or the number of variables in candidate models. Assumption 10 is the price for

allowing a dependent and non-normal random error εt. When Assumption 1 (normal errors)

is imposed or it is assumed that ε is a vector of independent variables as in the existing

literature on JMA (e.g., Hansen & Racine (2012) and Ando & Li (2014)), Assumption 10

is no longer needed. Since Theorem 1 has considered normal errors, Theorem 2′ below will

consider the situations where ε is a vector of independent variables without using Assumption

10.

Given Kt, we have 1
Th
µ′Ktµ = 1

Th
(µ1, · · · , µT )′Kt(µ1, · · · , µT ) = 1

Th

∑T
s=1 kstµ

2
s
a.s.→ Eµ2

t ,

as T → ∞. Thus, Assumption 11 implies that the local average of µ2
t is bounded. This is

similar to condition (11) in Wan et al. (2010) and condition (23) in Zhang et al. (2013), which

concern the average of µ2
t over the whole sample period. Finally, the first part of Assumption

12



12 is rather mild, which corresponds to condition (C.2) in Zhang (2015) and equation (5.2) in

Andrews (1991). The second part of Assumption 12 excludes extremely unbalanced designs.

This condition is reasonable and typical for the application of cross-validation; see Li (1987),

Hansen & Racine (2012) and Zhang et al. (2013) for more discussions.

Theorem 2. Suppose Assumptions 2, 3, 6′ and 8-12 hold. Then for any given time point t,

µ̂t(ŵt) satisfies the asymptotic optimality (OPT) property.

Theorem 2 shows that the TVJMA estimator is asymptotically optimal in the class of

time-varying weighted average estimators.

Next, we establish the asymptotic optimality (OPT) result without Assumption 10. The-

orem 2′ below addresses the asymptotic optimality of µ̂t(ŵt).

Theorem 2′. Suppose ε is a vector of independent variables and Assumptions 2, 3, 4, 6′, 8-9

and 11-12 hold. Then for any given time point t, µ̂t(ŵt) satisfies the asymptotic optimality

(OPT) property.

Finally, we consider asymptotic properties of the time-varying parameter averaging esti-

mator. Suppose the DGP is a linear time-varying parameter regression, i.e., Yt = Xtβt + εt,

where Xt is a 1 × q vector of explanatory variables, βt ≡ β(t/T ) is a q × 1 smooth time-

varying parameter vector, and β : [0, 1] → Rq is an unknown smooth function except for

a finite number of points on [0, 1]. Here, q is a fixed integer, and εt is an unobservable

disturbance with E(εt|Xt) = 0 almost surely. A model including only all regressors with

nonzero parameters is called a true model; see Zhang (2015). Any candidate model omitting

regressors with nonzero parameters is called an under-fitted model; see more discussions in

Zhang (2015) and Zhang & Liu (2018). It is not required that the true model be one of the

candidate models. However, at least one candidate model should not be under-fitted. This

implies that one candidate model must include all these regressors with nonzero parameters

and may have some redundant regressors as well. From (15), the time-varying model aver-

aging estimator of parameter βt is β̂t(w) =
∑MT

m=1w
mΠ′mβ̂

m

t , where Πm = (Iqm ,0qm×(q−qm))

(i.e., a column permutation thereof) and the maximum number of columns of Xm in all

candidate models (i.e., max1≤m≤MT
qm) is bounded.

Next, we impose the following regularity conditions:

Assumption 13. For each j = 1, · · · , q, the j-th element of β(·) is continuously differen-

tiable over the unit interval [0, 1].

Assumption 14. For any given time point t, Ψt,T ≡ T−1h−1
∑T

s=1 kstXsX
′
s

p→ Ψ as T →
∞, where Ψ is a q×q symmetric, bounded and positive definite matrix, and T−1/2h−1/2

∑T
s=1 kst

X′tεt = Op(1).
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Assumption 13 places a smoothness condition on parameters, which is commonly im-

posed in the literature; see Robinson (1989, 1991). Assumption 14 can be obtained from

Proposition A.1 in Chen & Hong (2012) and Lemma 3 in Cai (2007). The following the-

orem shows that the TVJMA parameter estimator β̂t(ŵt) is
√
Th-consistent under these

regularity assumptions.

Theorem 3. Suppose Assumptions 3, 8 and 12-14 hold, and h = cT−λ for 1
5
≤ λ < 1,

where 0 < c < ∞. Then for any given time point t in the interior region t ∈ [Th, T − Th],√
Th(β̂t(ŵt)− βt) = Op(1) as T →∞.

A similar result holds for the boundary regions [1, Th]∪[T−Th, T ] if we assume h = cT−λ

for 1
3
≤ λ < 1, where 0 < c <∞. This happens because the local constant estimator suffers

from the well-known boundary effect problem in smoothed nonparametric estimation. As

shown in Cai (2007), the convergence rate of the asymptotic bias with the local constant

estimator is h2 in the interior region, but only h in the boundary regions.

4 Asymptotic Optimality of TVJMA with Lagged De-

pendent Variables

In this section, we develop an asymptotic optimality theory for the TVJMA estimator based

on time-varying parameter regression models that include lagged dependent variables as

regressors. Dynamic regressions are widely used in macroeconomic forecasts. It is highly

desirable to extend the TVJMA estimator from static regressions to dynamic regressions.

Consider the following DGP

Yt =
∞∑
j=1

βjtYt−j + εt, t = 1, · · · , T, (20)

where εt is i.i.d. with mean zero and variance σ2. This is a special case of the DGP in

Section 2.

More generally, exogenous regressors can be added to the candidate models with finitely

many lagged dependent variables. This yields an augmented regression model

Yt =

r1∑
j=1

βjtYt−j +

r2∑
j=1

β(r1+j)tX
∗
tj + εft , t = 1, · · · , T, (21)

where X∗tj is an exogenous variable, εft is the innovation, r1 is the maximal lag order, and r2

is the number of exogenous regressors. Let r1 be allowed to increase and r2 be fixed when T

increases. Denote Y = (Y1, · · · , YT )′, YLt = (Yt−1, · · · , Yt−r1), and let YL = (Y ′L1, · · · , Y ′LT )′

be a T × r1 matrix containing T observations of r1 lagged dependent regressors, X∗ =
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(X∗1 , X
∗
2 , · · · , X∗T ) with X∗t = (X∗t1, · · · , X∗tr2) be a T × r2 matrix containing observations

of r2 exogenous regressors, X = (YL,X
∗) be a T × γ matrix with rank γ = r1 + r2, and

εf = (εf1 , · · · , ε
f
T )′. The regressor matrix Xm of the m-th candidate model is formed by

combining the columns of X. Define P in a similar way to Pm with Xm replaced by X.

Note that Xm is the regressor matrix in the m-th candidate model and qm is the number of

regressors in Xm. Regressors are allowed to be locally stationary (Dahlhaus (1996, 1997)).

Thus, our framework covers AR as well as ARX models with time-varying parameters. For

each candidate model, time-varying parameters are estimated by a local constant method,

which is the same as (15) in Section 3.

We impose the following regularity conditions:

Assumption 15. {Yt} is a locally stationary process, {X∗t} is a strictly stationary process,

and both {Yt} and {X∗t} are β-mixing processes with mixing coefficients {β(j)} satisfying∑∞
j=1 j

2β(j)δ/(1+δ) < C < ∞, supt E||Yt||4 < C and E||X∗t ||4 < ∞ for some constant 0 <

δ < 1 and C > 0.

Assumption 16. Tq−1m hmtt = Op(1), t = 1, · · · , T, m = 1, · · · ,MT , and for any given

time point t, T−1h−1µ′Ktµ = Op(1), γξ∗−1t,T = op(1), and γµ′µξ∗−2t,T = op(1), where ξ∗t,T =

infw∈HT
Vt,T (w) and Vt,T (w) = µ′A′(w)KtA(w)µ+ σ2tr(P′(w)KtP(w)).

Assumption 17. For any given time point t, ζ(T−1h−1X∗
′
KtX

∗) = Op(1), X∗
′
Ktε/

√
Th

d→
N(0,∆), and ζ((T−1X∗

′
MtX

∗)−1) = Op(1), where ∆ is a symmetric, bounded and positive

definite matrix, and Mt ≡ Kt −KtYL(Y′LKtYL)−1Y′L.

Assumption 18. The innovation process {εt} is an i.i.d. sequence with mean 0 and variance

σ2, and satisfies that with some positive constants α1, α2 and α3,

|Ft(d1)− Ft(d2)| ≤ α1|d1 − d2|α2 ,

for all t when |d1 − d2| ≤ α3, where F (·) is the distribution function of εt.

Assumption 19. r6+α4
1 = O(T ) for some α4 > 0 and supt Eε4t <∞.

In Assumption 15, local stationarity is weaker than strict stationarity. Intuitively, local

stationarity implies that when the standardized time t
T

is in a neighborhood of any fixed

point τ ∈ [0, 1], the behavior of time series {Yt} can be approximated up to a certain high

order by a strictly stationary process {Yt(τ)}, and it holds that ||Yt − Yt(τ)|| = Op

(
h+ 1

T

)
,

where h is a bandwidth such that h → 0 as T → ∞; see Dahlhaus (1996, 1997) and Vogt

(2012) for details. Thus, the autocovariance function of {Yt} for all times t, with t
T

in the

neighborhood of τ , can be approximated arbitrarily well by that of the strictly stationary

time series {Yt(τ)}.
Assumption 16 is analogous to Assumptions 10-12, which are used for time-varying pa-

rameter regression models when Xt is assumed to be strictly stationary. The first part
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of Assumption 16 is a counterpart of Assumption 12 and excludes extremely unbalanced

designs. The second part of Assumption 16 concerns the local average behavior of µ2
t for

any given time point t. Like in Shao (1997) and Wan et al. (2010), if {Yt,Xt} is a strictly

stationary process, this is the average behavior of µ2
t over the whole sample period. By

µ′µ/T = Op(1) and Assumption 3, a sufficient condition of the fourth part of Assumption

16 is γTξ∗−2t,T = op(1). By comparing the expression of Vt,T (w) with the risk Rt,T (w) defined

in (7), we can view Vt,T (w) as a kind of risk as well, which may be called as a pseudo-risk.

Hence, the third and fourth parts of Assumption 16 impose a restriction on the relationship

among the number of regressors γ, the sample size T , and the infimum pseudo-risk ξ∗t,T .

Similar assumptions are used in Zhang et al. (2013), Liu & Okui (2013) and Ando & Li

(2014).

When {X∗′t εt} is a stationary ergodic martingale difference sequence with finite fourth

moments and T−1X∗
′
X∗ converges to a symmetric positive definite matrix in probability,

the first part of Assumption 17 holds. The second part of Assumption 17 can be ensured

by more primitive conditions; see more discussions in equation (A.7) in Cai (2007). Here,

X = (X∗
′

1 , · · · ,X∗
′
T )′, with X∗t = (X∗t1, · · · , X∗tr2), is a T × r2 matrix containing observations

of r2 exogenous regressors. In this paper, we assume that r2 is fixed when T increases. It is

conceivable that we could allow r2 to increase with T at the cost of more tedious proof and

other assumptions. Assumption 18 is a mild condition which is the same as condition (K.2)

of Ing & Wei (2003). It holds for any distribution with a bounded probability density. This

assumption is also used to prove Lemma 1 in the Mathematical Appendix. Assumption 19 is

a reiteration of assumptions in Lemma 4 in the Mathematical Appendix. It can be replaced

by the conditions of r2+α4
1 = O(T ) and sup−∞<t<∞ E|εt|S <∞ for all S = 1, 2, · · · .

Next, we impose conditions on the strictly stationary process {Yt(τ)} indexed by τ ∈
[0, 1].

Assumption 20. For any τ ∈ [0, 1] and q > 0, {Yt(τ)} is strictly stationary with E|Yt(τ)|q <
∞ and Yt(τ) +

∑∞
j=1 ajYt−j(τ) = εt, t = · · · ,−1, 0, 1, · · · , where the roots of A(z) = 1 +∑∞

j=1 ajz
j = 0 lie outside the unit circle |z| = 1, and {εt} is a sequence of independent

random variables with mean 0 and variance σ2.

Assumption 21. For any τ ∈ [0, 1], {Yt(τ)} is a stationary β−mixing process with mixing

coefficients {β(j)} satisfying
∑∞

j=1 j
2β(j)δ/(1+δ) < C for some 0 < δ < 1 and 0 < c <∞.

Assumption 20 is a standard condition for ARMA models; see more discussions in Ing

& Wei (2003). The mixing condition in Assumption 21 imposes a restriction on temporal

dependence in {Yt(τ)}, which is commonly used in the literature (e.g., Cai (2007), Chen and

Hong (2012)).
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Theorem 4. Suppose Assumptions 3, 8, 9 and 15-21 hold. Then for any given time point

t, the TVJMA estimator µ̂t(ŵt) in this section satisfies the asymptotic optimality (OPT)

property.

As a main contribution, Theorem 4 extends Theorem 2 for the asymptotic optimality

property of the TVJMA estimator from static regression models with constant parameter-

s to the dynamic regression models with time-varying parameters and locally stationary

regressors.

5 Monte Carlo Simulation

To examine the finite sample performance of the proposed TVJMA estimator, we consider

the following DGPs:

DGP 1 (Smooth Structural Changes):

Yt = µt + εt =
∞∑
j=1

θjF (τ)Xtj + εt, t = 1, · · · , T

where τ = t/T , F (τ) = τ 3, Xt1 = 1, and observations on all other regressors {Xtj, j ≥
2} are generated from i.i.d.N(0, 1) sequences. Following Hansen & Racine (2012), θj =

c
√

2αj−α−1/2, with c > 0 and α = 1.5, and the coefficient c is selected to control the

population coefficient of determination R2 = c2/(1 + c2) to vary on a grid from 0.1 to 0.9.

To examine robustness of the TVJMA estimator, we consider three cases for {εt}: Case

(i) εt ∼ i.i.d.N(0, 1); Case (ii) εt = et,1 + et,2, et,1 ∼ N(0, X2
t2), et,2 = φet−1,2 + ut, ut ∼

i.i.d.N(0, 1) and φ = 0.5. This error process is the same as that of Zhang et al. (2013); Case

(iii) εt =
√
htut, ht = 0.2 + 0.5X2

t2, ut ∼ i.i.d.N(0, 1), which follows the error structure in

Chen and Hong (2012). Note that var(εt|Xt2) 6= σ2 under Case (iii).

We compare (1) the TVJMA estimator with a variety of popular model averaging es-

timators, namely (2) the nonparametric version of bias-corrected AIC in Cai & Tiwari

(2000) (AICc); (3) a smoothed AICc (SAICc); (4) the JMA of Hansen & Racine (2012);

(5) the MMA of Hansen (2007); (6) a smoothed Akaike information criterion (SAIC); and

(7) a smoothed Bayesian information criterion (SBIC). The AICc for order selection is

AICc = ln RSS + (T + tr(S∗))/ (T − (tr(S∗) + 2)), where RSS =
∑T

t=1(Yt − Ŷt)
2 is based

on a local constant regression and tr(S∗) is the number of parameters in the model, which

penalizes extra parameters for a larger value of tr(S∗). For the definition of S∗, see more

discussions in Cai & Tiwari (2000). The SAICc method is the model averaging estimator

with the weight wm = exp(−1
2
AICcm)/

∑MT

m=1 exp(−1
2
AICcm), where AICcm is obtained from

Cai & Tiwari (2000) for the m-th candidate model. The other four model averaging esti-

mators are based on linear regressions with constant combination weights, including JMA,
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MMA, SAIC and SBIC. SAIC, proposed by Buckland et al. (1997), is the least squares mod-

el averaging estimator with the weight wm = exp(−1
2
AICm)/

∑MT

m=1 exp(−1
2
AICm), where

AICm = T ln σ̂2
m + 2m. SBIC is a simplified form of the Bayesian model averaging with the

weight wm = exp(−1
2
BICm) /

∑MT

m=1 exp(−1
2
BICm), where BICm = T ln σ̂2

m +m lnT .

The number of candidate models is determined by the rule in Hansen & Racine (2012),

i.e., MT = [3T 1/3], the nearest integer of 3T 1/3. This yields MT = 11, 14, 15 and 18 for T =

50, 75, 100 and 200, respectively. The candidate models are Yt =
∑m

j=1 β
m
j (τ)Xtj + εmt , t =

1, · · · , T, m = 1, · · · ,MT . For our TVJMA estimator, parameters in these candidate models

are estimated by the local constant method described in Section 3. For the JMA, MMA,

SAIC and SBIC methods, the parameters {βmj (τ)} in candidate models are assumed to be

constant (i.e., they do not depend on τ = t/T ), and as a result, the candidate models are

simplified to Yt =
∑m

j=1 β
m
j Xtj + εmt , t = 1, · · · , T, m = 1, · · · ,MT .

For the TVJMA and AICc methods, we use the Epanechnikov kernel in smoothed non-

parametric estimation; this kernel has been shown to be the optimal kernel for density

estimation (Epanechnikov (1969)) and robust regression (Lehmann & Casella (2006)), al-

though our experience suggests that the choice of k(·) has little impact on the performance

of our TVJMA estimator. For space, we report results based on a rule-of-thumb bandwidth

h = 2.34T−1/5, which attains the optimal rate for MSE (see, e.g., Chen & Hong (2012)).

We generate N = 1000 data sets from the random sample {Yt, X ′t}Tt=1 of size T , and use the

following MSE criterion to assess the accuracy of forecasts:

1

N

N∑
n=1

||µ̂(w)(n) − µ(n)||2, (22)

where µ̂(w)(n) and µ(n) denote the forecast value and the true value of the conditional

expectation of Y in the n-th replication, where n = 1, · · · , N . To simplify comparisons, the

risk (i.e., expected squared error loss) of all model averaging estimators are normalized by

the MSE of the infeasible optimal least squares model averaging estimator, which is the same

as in Hansen & Racine (2012). For space, we report the Monte Calo results in graphical

forms.

Figures 1-3 report the results of simulations under DGP 1. Some MSE plots are not shown

in these figures, because these methods perform so poorly that their results are beyond

the range of the y-axis. In most cases, the TVJMA estimator delivers the most precise

forecasts among all estimators considered, especially when R2 is relatively large. Under

both conditionally heteroscedastic errors and autocorrelated errors, our method displays the

best performance in terms of the risk, as is expected. Also, when the sample size T is large

enough, the AICc and SAICc estimators are sometimes marginally similar to the TVJMA

estimator in the cases of large R2. This happens because the parameters in DGP 1 are

changing over time and the candidate models are time-varying parameter models as well. In

most cases, the TVJMA estimator is preferred to any of the four estimators based on linear
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least squares, although occasionally small to moderate reductions in MSE can be achieved

for the MMA and JMA estimators with small R2 and small T ; see T = 50 for example. We

note that in some cases the TVJMA performances are a bit sensitive to bandwidth selection.

The selection of an optimal bandwidth to estimate the time-varying combination weights

is an important issue for future study. A possible solution is to consider model averaging

bandwidths; see Henderson & Parmeter (2016) and Zhu et al. (2017).

Next, we consider a special case of time-varying parameter dynamic models that contain

lagged dependent variables as regressors:

DGP 2 (Dynamic Regression with Smooth Structural Changes):

Yt =
∞∑
j=1

θjF (τ)Yt−j + εt,

where θj = 1/
√

2αj−α−1/2, F (τ) = τ , εt =
√
R2

c
εt, c =

∑∞
j=1 θ

2
j , εt ∼ i.i.d.N(0, 1) and

α = 1.5. We allow R2 to vary on a grid from 0.1 to 0.9.

Furthermore, to investigate the finite sample performance of the TVJMA estimator under

DGPs with various structural changes, we consider following three DGPs with Case (ii) for

{εt}. For DGPs 3-5 below, θj = c
√

2αj−α−1/2, with various values of c > 0 and α = 1.5.

These parameter values are the same as those in DGP 1:

DGP 3 (Single Structural Break):

Yt =
∞∑
j=1

θjF (τ)Xtj + εt,

where F (τ) = 0.5I(τ ≤ 0.3) + I(τ > 0.3) and τ = t/T .

DGP 4 (Smooth Transition Regression):

Yt =
∞∑
j=1

θjF (τ)Xtj + εt,

where F (τ) = 1.5− 1.5 exp(−3(τ − 0.3)2) and τ = t/T .

DGP 5 (Smooth Structural Changes with Periodicity):

Yt =
∞∑
j=1

θjF (τ)Xtj + εt,

where F (τ) = sin(πτ 2) and τ = t/T .

For each of DGPs 2-5, we generate N data sets of the random sample {Xt, Yt}Tt=1 for

each sample size T = 50, 75, 100 and 200, where Xt1 = 1 and observations on all other

regressors {Xtj, j ≥ 2} are generated from i.i.d.N(0, 1) sequences. The candidate models

and their parameter estimation methods under DGPs 2-5 are the same as those under DGP

1. Specifically, DGP 2 is a dynamic linear regression model with time-varying parameters,
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which is based on Section 4. DGPs 3-5 are based on the same set-up as that of DGP 1,

except that DGPs 3-5 focus on various structural changes with Case (ii) for {εt}. The results

are reported in Figures 4-7.

In Figure 4, we consider the dynamic regression model with smooth time-varying param-

eters under DGP 2. When the sample size T is large enough, the TVJMA estimator yields

a smaller risk than all other four estimators. This is even more clear for small R2.

In Figure 5, we consider the deterministic single break under DGP 3, namely, a single

break with a given breakpoint and size. The TVJMA estimator, not surprisingly, outper-

forms all other estimators when the sample size T is larger than 50 for all R2, while AICc

and SAICc yield smaller risks than SAIC and SBIC respectively; see, for example, the case

with T = 200 and R2 > 0.4.

In Figure 6, we consider the smooth transition regression with nonmonotonic smooth

structural changes under DGP 4. This is considered in Lin & Teräsvirta (1994), which is

further studied by Cai (2007) and Chen (2015). The smooth transition function is a second-

order logistic function. The TVJMA estimator dominates all other estimators. We note that

in most cases, the AICc estimator is similar to the SAICc estimator for large T and large R2,

while both of them have a higher risk than the TVJMA estimator. SAIC achieves a lower

risk for a smaller R2 and SBIC is the least accurate estimator for large R2.

In Figure 7, we consider DGP 5, which has periodic structural changes, covering long

or short period cycles; see Twrdy & Batista (2016) for an example of container throughput

forecasting. The TVJMA estimator outperforms all other estimators. The SAICc estimator

is the worst performing estimator when R2 < 0.3, while its performance improves as R2

increases and yields the second smallest risk when R2 ≥ 0.7.

To sum up, the TVJMA estimator achieves the lowest risk among all the model averaging

estimators under various DGPs. When the sample size T increases, even for small R2, the

TVJMA appears to be the best estimator. When R2 is large, the SAICc estimator achieves a

lower risk than the AICc model selection, which is consistent with the findings in the earlier

literature. However, both of them perform worse than the TVJMA estimator for large T

and all R2. We also consider a benchmark nonparametric local constant estimator without

any model selection. It is shown that the local constant model without model selection

performs quite poorly relative to other methods in most cases. Furthermore, following a

referee’s suggestion, we also compare the TVJMA estimator with a time-varying leave-k-out

cross-validation model averaging (LkoMA) method (e.g., Gao et al. (2016)). We find that

when R2 is small, the TVJMA estimator outperforms the time-varying LkoMA estimator

under different DGPs, especially DGP 2. Nevertheless, when R2 is large, the time-varying

LkoMA estimator achieves a slightly lower risk than the TVJMA estimator except for DGP

2. Developing optimal time-varying leave-k-out cross-validation weight selection methods

and extending the proof technique for the asymptotic optimality property are important
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topics for future research.

6 Empirical Application

It is widely accepted that stock return predictability is an important yet controversial issue

in empirical finance. The conventional wisdom, studied by Campbell (1990) and Cochrane

(1996), is that aggregate dividend yields strongly forecast excess stock return, even at longer

horizons. Other commonly used predictive variables are financial ratios, such as dividend-

price ratio, earnings-price ratio, and book-to-market ratio (Rozeff (1984), Fama & French

(1988), Campbell & Shiller (1988), Lewellen (2004)), as well as corporate payout and financ-

ing activity (Lamont (1998), Baker & Wurgler (2000)). However, Wang (2003) and Welch

& Goyal (2008) show that predictive regressions of excess stock returns perform poorly in

out-of-sample forecasts of the U.S. equity premium while historical average returns generate

superior forecasts, which causes vigorous debates in the literature (Campbell & Thompson

(2008)). It is possible that the presence of structural changes leads to a changing predictive

relationship. Indeed, Pesaran & Timmermann (2007) find that the size of parameter varia-

tions between the break points in models is considerably large, and the parameter estimates

of dividend yields take even opposite signs before and after 1991. Chen & Hong (2012)

find strong evidence against stability in univariate and multivariate predictor regressions for

both the postwar and post-oil-shock sample periods. Furthermore, Rapach & Zhou (2013)

point out that model instability and uncertainty seriously impair the forecasting ability of

predictive regression models.

The sensitivity of empirical results to model parameter estimation highlights the need

of time-varying combination weights in model averaging. In this section, we compare the

performance of stock return forecasts using our TVJMA method and existing methods. The

key distinction between these methods lies in that we allow model combination weights to

change over time in combining time-varying parameter predictive models.

We employ Campbell and Thompson’s (2008) popular dataset, which is used in Chen &

Hong (2012), Jin et al. (2014) and Lu & Su (2015), among many others. We consider the

following predictive regression model:

Yt+1 = αt + β′tXt + εt+1,

where Yt+1 = ln[(Pt+1+Dt+1)/Pt]−rt, Pt is the S&P 500 price index, Dt is the dividend paid

on the S&P 500 price index, rt is the 3-month treasury bill rates, Xt is a set of predictive

variables, i.e., Xt = (Xt1, · · · , Xtp)
′, and p is the number of predictive variables. Quarterly

variables from Welch & Goyal (2008) are available for 1927:01-2005:12, since quarterly stock

returns before 1927 are constructed by interpolation of lower-frequency data, which may be

not reliable.
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Following Welch & Goyal (2008) and Rapach et al. (2010), we consider 14 financial and

economic variables, sorted by relevance to Y: default yield spread (X1), treasury bill rate

(X2), net equity expansion (X3), term spread (X4), log dividend price ratio (X5), log earnings

price ratio (X6), long-term yield (X7), book-to-market ratio (X8), inflation (X9), log dividend

yield (X10), log dividend payout ratio (X11), stock variance (X12), long-term return (X13),

default return spread (X14). For simplicity, we consider the following 14 nested candidate

models: {1, X1}, {1, X1, X2}, · · · , {1, X1, · · · , X14}. All candidate models are time-varying

parameter linear regression models, and parameters are estimated by the local constant

method in (15) in Section 3.

The estimation sample starts from 1947Q1 and our estimation is based on subsamples

with size T1 = 80, 92, 104, 116, 128, 140, 152, 164, 176, 188, 200, 212 and 224, respectively.

The remaining observations are used for out-of-sample recursive forecast accuracy assess-

ment. For example, we use the model averaging weights for the time period T1, ŵT1 , to

construct a forecast of YT1+1. After that we input a new observation and recalculate new

model averaging weights for the time period T1+1 and then obtain a forecast of YT1+2. Thus,

the out-of-sample forecast periods begins from 1967Q1, 1970Q1, 1973Q1, 1976Q1, 1979Q1,

1982Q1, 1985Q1, 1988Q1, 1991Q1, 1994Q1, 1997Q1, 2000Q1 and 2003Q1, respectively, and

all end at 2005Q4. The postwar sample, covering 1947Q1-2005Q4, and the post-oil-shock

subsample, covering 1976Q1-2005Q4, are commonly used in the literature, e.g., Welch &

Goyal (2008),Chen & Hong (2012), etc. The bandwidth employed in TVJMA, AICc and

smoothed AICc is set to be 2.34T−0.21 . Following Ullah et al. (2017), we use the out-of-sample

R̃2 measure:

R̃2 = 1−
∑T−1

t=T1
(Yt+1 − Ŷt+1)

2∑T−1
t=T1

(Yt+1 − Y )2
,

where Ŷt+1 is the prediction of Yt+1 based on a given forecast method, and Y is the historical

average of Yt over the T1 observations. This measure represents the relative difference in

squared error predictive risks. The negative (positive) value of R̃2 suggests that Ŷ yields a

larger (smaller) sum of squared one-period forecast errors than the historical average method.

Another measure we use is the mean square predictive error (MSPE), which is widely

used in the literature (e.g., Sun et al. (2018)).

MSPE =
1

T − T1

T−1∑
t=T1

(Yt+1 − Ŷt+1)
2. (23)

Tables 1 and 2 compare R̃2 and MSPE between the TVJMA estimator and other estima-

tors. We find that in most cases, the TVJMA estimator is almost always the best estimator

among all methods considered. Our finding supports the argument of Chen & Hong (2012)

that instability exists in univariate predictor models for stock returns and smooth structural
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change is a possibility, which explains why the TVJMA estimator is more appropriate than

JMA and MMA. We note that the JMA estimator yields the second smallest forecast errors

in most cases, with the MMA estimator being a close fourth. In most cases, the AICc es-

timator yields the worst performance. It is possible that the evidence of instability is a bit

weak in quarterly data, which is consistent with the findings in Chen & Hong (2012).

7 Conclusion

Although structural changes have received considerable attention in time series econometrics

for a long time, no work has attempted to consider time-varying model averaging for both

linear and nonlinear candidate models, including those with time-varying parameters. We

propose a frequentist method for model averaging with time-varying jackknife combination

weights. This method is more appropriate than the conventional MMA and JMA methods

under structural changes. It is shown that our TVJMA estimator is asymptotically optimal

in the sense of achieving the lowest possible squared error loss in a class of time-varying

model average estimators. In a simulation study, we document that the TVJMA method

outperforms a variety of existing methods, including a nonparametric version of the bias-

correct AIC method. An application to predicting stock returns also demonstrates that the

TVJMA method outperforms many model averaging methods.

We conclude this paper by pointing out some important areas of future work. First, it

would be interesting to propose a time-varying lasso-type method to select relevant regressors

from a set of many potential predictive variables in the first step, and then consider time-

varying model averaging in the second step. This would allow different sets of regressors (so

different models) in different time periods. In these scenarios, time-varying model averaging

weights are expected to yield robust and accurate forecasts. Second, this paper has only

considered a global bandwidth for the TVJMA estimator, which may be severely affected by

the existence of structural changes. It will be desirable to use a time-varying bandwidth for

each time point. Finally, an extension of “leave-k-out” cross-validation model averaging (e.g.,

Gao et al. (2016)) to allow for time-varying combination weights would be highly interesting,

which may be more appropriate for averaging time series models under structural changes.
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Figure 1: Finite-sample Performance under DGP 1 with Case (i)

Notes: (1) DGP 1 (Smooth Structural Changes):

Yt = µt + εt =
∞∑
j=1

θjF (τ)Xtj + εt, t = 1, · · · , T,

where τ = t/T , F (τ) = τ3, Xt1 = 1, and all other regressors {Xtj , j ≥ 2} are i.i.d.N(0, 1)

sequences; θj = c
√

2αj−α−1/2, with c > 0 and α = 1.5.

(2) In each figure, the sample sizes are shown in four panels. The sample size varies from T =

50, 75, 100 and 200.

(3) Three cases for {εt}: Case (i) εt ∼ i.i.d.N(0, 1); Case (ii) εt = et,1 + et,2, et,1 ∼ N(0, X2
t2),

et,2 = φet−1,2 + ut, ut ∼ i.i.d.N(0, 1) and φ = 0.5; Case (iii) εt =
√
htut, ht = 0.2 + 0.5X2

t2,

ut ∼ i.i.d.N(0, 1).

(4) In each panel, the y-axis and the x-axis display the MSE and the population R2, respectively.

Seven methods to estimate parameters are shown in these figures, including TVJMA, AICc in

Cai & Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

24



Figure 2: Finite-sample Performance under DGP 1 with Case (ii)

Notes: (1) DGP 1 (Smooth Structural Changes):

Yt = µt + εt =
∞∑
j=1

θjF (τ)Xtj + εt, t = 1, · · · , T,

where τ = t/T , F (τ) = τ3, Xt1 = 1, and all other regressors {Xtj , j ≥ 2} are i.i.d.N(0, 1)

sequences; θj = c
√

2αj−α−1/2, with c > 0 and α = 1.5.

(2) In each figure, the sample sizes are shown in four panels. The sample size varies from T =

50, 75, 100 and 200.

(3) Three cases for {εt}: Case (i) εt ∼ i.i.d.N(0, 1); Case (ii) εt = et,1 + et,2, et,1 ∼ N(0, X2
t2),

et,2 = φet−1,2 + ut, ut ∼ i.i.d.N(0, 1) and φ = 0.5; Case (iii) εt =
√
htut, ht = 0.2 + 0.5X2

t2,

ut ∼ i.i.d.N(0, 1).

(4) In each panel, the y axis and the x axis display the MSE and the population R2, respectively.

Seven methods to estimate parameters are shown in these figures, including TVJMA, AICc in

Cai & Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.
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Figure 3: Finite-sample Performance under DGP 1 with Case (iii)

Notes: (1) DGP 1 (Smooth Structural Changes):

Yt = µt + εt =
∞∑
j=1

θjF (τ)Xtj + εt, t = 1, · · · , T,

where τ = t/T , F (τ) = τ3, Xt1 = 1, and all other regressors {Xtj , j ≥ 2} are i.i.d.N(0, 1)

sequences; θj = c
√

2αj−α−1/2, with c > 0 and α = 1.5.

(2) In each figure, the sample sizes are shown in four panels. The sample size varies from T =

50, 75, 100 and 200.

(3) Three cases for {εt}: Case (i) εt ∼ i.i.d.N(0, 1); Case (ii) εt = et,1 + et,2, et,1 ∼ N(0, X2
t2),

et,2 = φet−1,2 + ut, ut ∼ i.i.d.N(0, 1) and φ = 0.5; Case (iii) εt =
√
htut, ht = 0.2 + 0.5X2

t2,

ut ∼ i.i.d.N(0, 1).

(4) In each panel, the y-axis and the x-axis display the MSE and the population R2, respectively.

Seven methods to estimate parameters are shown in these figures, including TVJMA, AICc in

Cai & Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.
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Figure 4: Finite-sample Performance under DGP 2

Notes: (1) DGP 2 (Dynamic Regression with Smooth Structural Changes):

Yt = µt + εt =
∞∑
j=1

θjF (τ)Yt−j + εt, t = 1, · · · , T,

where θj = 1/
√

2αj−α−1/2, c =
∑
θ2j , F (τ) = τ , εt = R

c εt with R2 varying on a grid from 0.1

to 0.9, εt ∼ i.i.d.N(0, 1) and α = 1.5.

(2) In each figure, the sample sizes are shown in four panels. The sample size varies from T =

50, 75, 100 and 200.

(3) In each panel, the y-axis and the x-axis display the MSE and the population R2, respectively.

Seven methods to estimate parameters are shown in these figures, including TVJMA, AICc in

Cai & Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.
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Figure 5: Finite-sample Performance under DGP 3 with Case (ii)

Notes: (1) DGP 3 (Single Structural Break):

Yt = µt + εt =

∞∑
j=1

θjF (τ)Xtj + εt, t = 1, · · · , T,

where F (τ) = 0.5I(τ ≤ 0.3)+I(τ > 0.3), τ = t/T , Xt1 = 1, and all other regressors {Xtj , j ≥ 2}
are i.i.d.N(0, 1) sequences; θj = c

√
2αj−α−1/2, with c > 0 and α = 1.5.

(2) In DGP 3, {εt} follows Case (ii) εt = et,1 + et,2, et,1 ∼ N(0, X2
t2), et,2 = φet−1,2 + ut,

ut ∼ i.i.d.N(0, 1) and φ = 0.5.

(3) In each figure, the sample sizes are shown in four panels. The sample size varies from T =

50, 75, 100 and 200.

(4) In each panel, the y-axis and the x-axis display the MSE and the population R2, respectively.

Seven methods to estimate parameters are shown in these figures, including TVJMA, AICc in

Cai & Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.
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Figure 6: Finite-sample Performance under DGP 4 with Case (ii)

Notes: (1) DGP 4 (Smooth transition regression):

Yt = µt + εt =

∞∑
j=1

θjF (τ)Xtj + εt, t = 1, · · · , T,

where F (τ) = 1.5 − 1.5 exp(−3(τ − 0.3)2), τ = t/T , Xt1 = 1 all other regressors {Xtj , j ≥ 2}
are i.i.d.N(0, 1) sequences; θj = c

√
2αj−α−1/2, with c > 0 and α = 1.5.

(2) In DGP 4, {εt} follows Case (ii) εt = et,1 + et,2, et,1 ∼ N(0, X2
t2), et,2 = φet−1,2 + ut,

ut ∼ i.i.d.N(0, 1) and φ = 0.5.

(3) In each figure, the sample sizes are shown in four panels. The sample size varies from T =

50, 75, 100 and 200.

(4) In each panel, the y-axis and the x-axis display the MSE and the population R2, respectively.

Seven methods to estimate parameters are shown in these figures, including TVJMA, AICc in

Cai & Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.
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Figure 7: Finite-sample Performance under DGP 5 with Case (ii)

Notes: (1) DGP 5 (Smooth Structural Changes with Periodicity):

Yt =

∞∑
j=1

θjF (τ)Xtj + εt, t = 1, · · · , T,

where F (τ) = sin(πτ2), τ = t/T , Xt1 = 1, and all other regressors {Xtj , j ≥ 2} are i.i.d.N(0, 1)

sequences; θj = c
√

2αj−α−1/2, with c > 0 and α = 1.5.

(2) In DGP 5, {εt} follows Case (ii) εt = et,1 + et,2, et,1 ∼ N(0, X2
t2), et,2 = φet−1,2 + ut,

ut ∼ i.i.d.N(0, 1) and φ = 0.5.

(3) In each figure, the sample sizes are shown in four panels. The sample size varies from T =

50, 75, 100 and 200.

(4) In each panel, the y-axis and the x-axis display the MSE and the population R2, respectively.

Seven methods to estimate parameters are shown in these figures, including TVJMA, AICc in

Cai & Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.
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Table 1: Out-of-sample R̃2 of Different Methods

TVJMA AICc SAICc JMA MMA SAIC SBIC

Estimation Prediction h = 2.34T−0.21

1947Q1(T1=80) 1967Q1 0.1771◦ 0.0335 0.1018 0.1761◦◦ 0.1657 0.1111 0.1024

1947Q1(T1=92) 1970Q1 0.1242◦ -0.0312 0.0549 0.1228◦◦ 0.1124 0.0512 0.0530

1947Q1(T1=104) 1973Q1 0.1212◦ -0.0443 0.0770 0.1107◦◦ 0.0977 0.0358 0.0367

1947Q1(T1=116) 1976Q1 0.0372◦ -0.1574 -0.0397 0.0025◦◦ -0.0165 -0.1128 -0.0708

1947Q1(T1=128) 1979Q1 0.0357◦ -0.1727 -0.0291 -0.0188◦◦ -0.0381 -0.1393 -0.1007

1947Q1(T1=140) 1982Q1 -0.1057◦ -0.3579 -0.1375◦◦ -0.1830 -0.2064 -0.3210 -0.2220

1947Q1(T1=152) 1985Q1 -0.1833◦ -0.4899 -0.2359◦◦ -0.2586 -0.2829 -0.4043 -0.2567

1947Q1(T1=164) 1988Q1 -0.2630◦◦ -0.6292 -0.2522 ◦ -0.3773 -0.4091 -0.5724 -0.3658

1947Q1(T1=176) 1991Q1 -0.2238◦◦ -0.4310 -0.2242 -0.2194◦ -0.2347 -0.2945 -0.3095

1947Q1(T1=188) 1994Q1 -0.2181 -0.4080 -0.1579◦ -0.2207 -0.2161◦◦ -0.2570 -0.3249

1947Q1(T1=200) 1997Q1 -0.0423◦◦ -0.1979 -0.1005 -0.0365◦ -0.0538 -0.0735 -0.0990

1947Q1(T1=212) 2000Q1 0.0125◦◦ -0.1434 -0.1316 0.0694◦ -0.0207 -0.0383 -0.0330

1947Q1(T1=224) 2003Q1 0.1859 -0.0714 -0.0560 0.1822 0.2909◦◦ 0.3013◦ -0.0543

Notes: (1) The estimation sample begins from 1947Q1, with T1 observations. The prediction

period begins from the quarter indicated in the second column.

(2) Seven methods are shown in Table 1: TVJMA, AICc in Cai & Tiwari (2000), SAICc, JMA,

MMA, SAIC and SBIC estimators. The larger the criteria, the better the method.

(3) The bandwidth used here is 2.34T−0.21 , the same as that in the simulation study.

(4) ◦ and ◦◦ denote the best and the second best forecast among these seven methods, respec-

tively.
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Table 2: Out-of-sample MSPE of Different Methods

TVJMA AICc SAICc JMA MMA SAIC SBIC

Estimation Prediction h = 2.34T−0.21

1947Q1(T1=80) 1967Q1 0.0758◦ 0.0891 0.0827 0.0759◦◦ 0.0769 0.0819 0.0827

1947Q1(T1=92) 1970Q1 0.0803◦ 0.0945 0.0866 0.0804◦◦ 0.0814 0.0870 0.0868

1947Q1(T1=104) 1973Q1 0.0797◦ 0.0947 0.0837 0.0806◦◦ 0.0818 0.0874 0.0874

1947Q1(T1=116) 1976Q1 0.0693◦ 0.0833 0.0748 0.0717◦◦ 0.0731 0.0800 0.0770

1947Q1(T1=128) 1979Q1 0.0708◦ 0.0861 0.0755 0.0748◦◦ 0.0762 0.0836 0.0808

1947Q1(T1=140) 1982Q1 0.0740◦ 0.0908 0.0761◦◦ 0.0791 0.0807 0.0884 0.0817

1947Q1(T1=152) 1985Q1 0.0779◦ 0.0981 0.0814◦◦ 0.0829 0.0845 0.0925 0.0828

1947Q1(T1=164) 1988Q1 0.0695◦◦ 0.0897 0.0690◦ 0.0758 0.0776 0.0866 0.0752

1947Q1(T1=176) 1991Q1 0.0699◦◦ 0.0818 0.0700 0.0697◦ 0.0706 0.0740 0.0748

1947Q1(T1=188) 1994Q1 0.0816 0.0943 0.0776◦ 0.0818 0.0814◦◦ 0.0842 0.0887

1947Q1(T1=200) 1997Q1 0.0875◦◦ 0.1006 0.0924 0.0870◦ 0.0885 0.0901 0.0923

1947Q1(T1=212) 2000Q1 0.0821◦◦ 0.0951 0.0941 0.0774◦ 0.0849 0.0863 0.0859

1947Q1(T1=224) 2003Q1 0.0395 0.0520 0.0513 0.0397 0.0344◦◦ 0.0339◦ 0.0512

Notes: (1) For comparison, all results are multiplied by 10. The estimation sample begins from

1947Q1, with T1 observations. The prediction period begins from the quarter indicated in the

second column.

(2) Seven methods are shown in Table 2: TVJMA, AICc in Cai & Tiwari (2000), SAICc, JMA,

MMA, SAIC and SBIC estimators. The smaller the criteria, the better the method.

(3) The bandwidth used here is 2.34T−0.21 , the same as that in the simulation study.

(4) ◦ and ◦◦ denote the best and the second best forecast among these seven methods, respec-

tively.
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Appendix

1 Appendix A.1

Proof of Theorem 1. First we show

L̃t,T (ŵt)/ inf
w∈HT

L̃t,T (w)
p→ 1 (A.1)

with Assumptions 1 - 7.

Note that

CVt,T (w) = L̃t,T (w) + ε′Ktε+ 2ε′KtÃ(w)µ− 2ε′KtP̃(w)ε

= L̃t,T (w) + ε′Ktε+ 2ε′KtÃ(w)µ− 2(ε′KtP̃(w)ε− tr(KtP̃(w)Ω))− 2tr(KtP̃(w)Ω).

With Assumption 7, (A.1) is valid if the following results hold: as T →∞,

sup
w∈HT

∣∣∣∣∣ε′KtÃ(w)µ

R̃t,T (w)

∣∣∣∣∣ p→ 0, (A.2)

sup
w∈HT

∣∣∣∣∣ε′KtP̃(w)ε− tr(KtP̃(w)Ω)

R̃t,T (w)

∣∣∣∣∣ p→ 0, (A.3)

and

sup
w∈HT

∣∣∣∣∣ L̃t,T (w)

R̃t,T (w)
− 1

∣∣∣∣∣ p→ 0. (A.4)

(A.2)-(A.4) will be verified later.

We next show that

sup
w∈HT

∣∣∣∣Lt,T (w)

Rt,T (w)
− 1

∣∣∣∣ p→ 0. (A.5)

It is straightforward to obtain that

Lt,T (w)−Rt,T (w)

= µ′A′(w)KtA(w)µ+ ε′P′(w)KtP(w)ε− 2µ′A(w)′KtP(w)ε

−[µ′A′(w)KtA(w)µ+ tr(P′(w)KtP(w)Ω)]

= ε′P′(w)KtP(w)ε− tr(P(w)′KtP(w)Ω)− 2µ′A′(w)KtP(w)ε

= D1(w)−D2(w),

where D1(w) = ε′P′(w)KtP(w)ε − tr(P(w)′KtP(w)Ω) and D2(w) = 2µ′A′(w)KtP(w)ε.

Thus, to prove (A.5), we only need to verify the following two results:

sup
w∈HT

∣∣∣∣ D1(w)

Rt,T (w)

∣∣∣∣ p→ 0. (A.6)
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and

sup
w∈HT

∣∣∣∣ D2(w)

Rt,T (w)

∣∣∣∣ p→ 0. (A.7)

Because of the normality assumption, Ω−1/2ε is a vector of independent variables, and this

allows us to use Theorem 2 in Whittle (1960). Thus, based on the Chebyshev’s inequality,

Theorem 2 in Whittle (1960) and Assumption 1, we have, when X is nonstochastic, for any

δ > 0,

Pr

(
sup

w∈HT

∣∣∣∣ε′P′(w)KtP(w)ε− tr(P′(w)KtP(w)Ω)

Rt,T (w)

∣∣∣∣ > δ

)
≤ Pr( sup

w∈HT

|ε′P′(w)KtP(w)ε− tr(P′(w)KtP(w)Ω)| > δξt,T )

≤ Pr

(
sup

w∈HT

MT∑
k=1

MT∑
m=1

wkwm|ε′P′kKtPmε− tr(P′kKtPmΩ)| > δξt,T

)

≤ Pr

(
max

1≤k≤MT

max
1≤m≤MT

|ε′P′kKtPmε− tr(P′kKtPm)Ω)| > δξt,T

)
= Pr {(|ε′P′1KtP1ε− tr(P′1KtP1Ω)| > δξt,T ) ∪

(|ε′P′1KtP2ε− tr(P′1KtP2Ω)| > δξt,T ) ∪ · · · ∪

(|ε′P′1KtPMT
ε− tr(P′1KtPMT

Ω)| > δξt,T ) ∪

(|ε′P′2KtP1ε− tr(P′2KtP1Ω)| > δξt,T ) ∪ · · · ∪(
|ε′P′MT

KtPMT
ε− tr(P′MT

KtPMT
Ω)| > δξt,T

)}
≤

MT∑
k=1

MT∑
m=1

Pr (|ε′P′kKtPmε− tr(P′kKtPmΩ)| > δξt,T )

≤
MT∑
k=1

MT∑
m=1

E

[
(ε′P′kKtPmε− tr(P′kKtPmΩ))2G

δ2Gξ2Gt,T

]

≤ C4δ
−2Gξ−2Gt,T

MT∑
k=1

MT∑
m=1

[
tr
(

(P′kKtPmΩ)
2
)]G

≤ C4δ
−2Gξ−2Gt,T

MT∑
k=1

MT∑
m=1

[ζ(PmΩP′m)kmaxtr(P
′
kKtPkΩ)]

G

≤ C ′4δ
−2Gξ−2Gt,T MT

MT∑
m=1

(
Rt,T

(
w0
m

))G
, (A.8)

where w0
m defines the weight with the m-th element 1 and others 0, and C4 and C ′4 are some

constants. Thus, given Assumption 6, (A.6) with non-stochastic X is verified.

To prove (A.7), we have ||µ′A′kKtPm||2 ≤ ζ2 (Pm) kmaxµ
′A′kKtAkµ ≤ Cµ′A′kKtAkµ,

1 ≤ k ≤ MT , 1 ≤ m ≤ MT with Assumption 3. Based on the Chebyshev’s inequality,
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Theorem 2 in Whittle (1960) and Assumption 1, for any δ > 0, we have

Pr

{
sup

w∈HT

∣∣∣∣µ′A′(w)KtPt(w)ε

Rt,T (w)

∣∣∣∣ > δ

}
≤ Pr

{
sup

w∈HT

∑
1≤m≤MT

∑
1≤k≤MT

wkwm|µ′(IT −Pk)
′KtPmε| > δξt,T

}

≤ Pr

{
max

1≤k≤MT

max
1≤m≤MT

|µ′(IT −Pk)
′KtPmε| > δξt,T

}
= Pr {(|µ′(IT −P1)

′KtP1ε| > δξt,T ) ∪

(|µ′(IT −P′1)KtP2ε| > δξt,T ) ∪ · · · ∪

(|µ′(IT −P1)
′KtPMT

ε| > δξt,T ) ∪

(|µ′(IT −P2)
′KtP1ε| > δξt,T ) ∪ · · · ∪

(|µ′(IT −PMT
)′KtPMT

ε| > δξt,T )}

≤
∑

1≤k≤MT

∑
1≤m≤MT

E

[
(µ′(IT −Pk)

′KtPmε)
2G

δ2Gξ2Gt,T

]
≤ C5δ

−2Gξ−2Gt,T

∑
1≤k≤MT

∑
1≤m≤MT

||µ′(IT −Pk)
′KtPm||2G

≤ C ′5δ
−2Gξ−2Gt,T

∑
1≤k≤MT

∑
1≤m≤MT

(µ′A′kKtAmµ)
G

≤ C ′5δ
−2Gξ−2Gt,T MT

MT∑
m=1

(
Rt,T (w0

m)
)G
, (A.9)

where C5 and C ′5 are some constants. Given Assumption 6, (A.7) with non-stochastic X is

verified.

Besides, for the case of random X, based on the dominated convergence theorem, As-

sumption 5 and (A.2), the results in (A.6) and (A.7) are obtained from (A.8) and (A.9),

respectively.

Define

Vt,T (ŵt) = µ′A′(ŵt)KtA(ŵt)µ+ tr(P′(ŵt)KtP(ŵt)Ω),

and

Ṽn(ŵt) = µ′Ã′(ŵt)KtÃ(ŵt)µ+ tr(P̃′(ŵt)KtP̃(ŵt)Ω).

Next, we follow the spirit in Zhang et al. (2013) to obtain

Lt,T (ŵt)

infw∈HT
Lt,T (w)

− 1 = sup
w∈HT

(
Lt,T (ŵt)

Lt,T (w)
− 1

)
= sup

w∈HT

(
Lt,T (ŵt)

Vt,T (ŵt)

Rt,T (w)

Lt,T (w)

R̃t,T (w)

Rt,T (w)

Vt,T (ŵt)

Ṽt,T (ŵt)
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× Ṽt,T (ŵt)

L̃t,T (ŵt)

L̃t,T (w)

R̃t,T (w)

L̃t,T (ŵt)

L̃t,T (w)
− 1

)

≤ sup
w∈HT

(
Lt,T (w)

Rt,T (w)

)
sup

w∈HT

(
Rt,T (w)

Lt,T (w)

)
sup

w∈HT

(
R̃t,T (w)

Rt,T (w)

)

× sup
w∈HT

(
Rt,T (w)

R̃t,T (w)

)
sup

w∈HT

(
R̃t,T (w)

L̃t,T (w)

)
sup

w∈HT

(
L̃t,T (w)

R̃t,T (w)

)
L̃t,T (ŵt)

infw∈HT
L̃t,T (w)

− 1.

Thus, given (A.2)-(A.4), Theorem 1 holds.

Next, we only need to verify (A.2)-(A.4). Denote ξ̃t,T = infw∈HT
R̃t,T (w). If supw∈HT

∣∣∣ R̃t,T (w)

Rt,T (w)

−1| ≤ 1, we have

ξ̃2Gt,T

[
MT∑
m=1

(R̃t,T (w0
m))G

]−1

=

[
inf

w∈Ht,T

(
Rt,T (w)

R̃t,T (w)

Rt,T (w)

)]2G MT∑
m=1

(Rt,T (w0
m))G

(
R̃t,T (w0

m)

Rt,T (w0
m)

)G
−1

≥ ξ2Gt,T

[
inf

w∈Ht,T

R̃t,T (w)

Rt,T (w)

]2G [
max

1≤m≤MT

R̃t,T (w0
m)

Rt,T (w0
m)

]−G [MT∑
m=1

(Rt,T (w0
m))G

]−1

≥ ξ2Gt,T

[
1 + inf

w∈HT

(
R̃t,T (w)

Rt,T (w)
− 1

)]2G [
sup

w∈HT

(
R̃t,T (w)

Rt,T (w)
− 1

)
+ 1

]−G [MT∑
m=1

(Rt,T (w0
m))G

]−1

≥ ξ2Gt,T

[
1− sup

w∈HT

∣∣∣∣∣R̃t,T (w)

Rt,T (w)
− 1

∣∣∣∣∣
]2G [

sup
w∈HT

∣∣∣∣∣R̃t,T (w)

Rt,T (w)
− 1

∣∣∣∣∣+ 1

]−G

×

[
MT∑
m=1

(Rt,T (w0
m))G

]−1
. (A.10)

Given Assumptions 5 and 6, we obtain the following result from (A.10):

MT ξ̃
−2G
t,T

MT∑
m=1

(R̃t,T (w0
m))G

a.s.→ 0. (A.11)

To prove (A.2), by using the Chebyshev inequality, Theorem 2 of Whittle (1960) and

Assumptions 1-2, we have, for any δ > 0:

Pr

{
sup

w∈HT

∣∣∣∣∣ε′KtÃ(w)µ

R̃t,T (w)

∣∣∣∣∣ > δ

}

≤ Pr

{
sup

w∈HT

M∑
m=1

wm|ε′KtÃ(w0
m)µ| > δξ̃t,T

}

= Pr

{
max

1≤m≤MT

|ε′KtÃ(w0
m)µ| > δξ̃t,T

}
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= Pr
{

(|ε′KtÃ(w0
1)µ| > δξ̃t,T ) ∪ · · · ∪ (|ε′KtÃ(w0

MT
)µ| > δξ̃t,T )

}
≤

MT∑
m=1

Pr
{
|ε′KtÃ(w0

m)µ| > δξ̃t,T

}
≤ δ−2Gξ̃−2Gt,T

MT∑
m=1

E(µ′Ã′(w0
m)Ktε)

2G

≤ C1δ
−2Gξ̃−2Gt,T

MT∑
m=1

[µ′Ã′(w0
m)KtΩKtÃ(w0

m)µ]G

≤ C1δ
−2Gξ̃−2Gt,T δG(Ω)

MT∑
m=1

(tr(KtÃ(w0
m)µµ′Ã′(w0

m)Kt))

≤ C1δ
−2Gξ̃−2Gt,T δG(Ω)kmax

MT∑
m=1

[µ′Ã′(w0
m)KtÃ(w0

m)µ]G,

where C1 is a positive constant. Then from (A.11) and Assumptions 2 and 4, we have

supw∈HT

∣∣∣ε′KtÃ(w)µ

R̃t,T (w)

∣∣∣ p→ 0.

Next, we verify (A.3).

Pr

{
sup

w∈HT

∣∣∣∣∣ε′KtP̃(w)ε− tr(KtP̃(w)Ω)

R̃t,T (w)

∣∣∣∣∣ > δ

}

≤
MT∑
m=1

Pr

{
sup

∣∣∣∣∣ε′KtP̃(w0
m)ε− tr(KtP̃(w0

m)Ω)

R̃t,T (w0
m)

∣∣∣∣∣ > δ

}

≤ δ−2Gξ̃−2Gt,T

MT∑
m=1

E[|ε′KtP̃(w0
m)ε− tr(KtP̃(w0

m)Ω)|]2G

≤ C2δ
−2Gξ̃−2Gt,T

MT∑
m=1

[
tr
(
Ω

1
2 P̃(w0

m)KtΩKtP̃(w0
m)Ω

1
2

)]
≤ C2δ

−2Gξ̃−2Gt,T ζ(Ω)

MT∑
m=1

[
tr
(
P̃(w0

m)KtP̃(w0
m)Ω

)]
≤ C2δ

−2Gξ̃−2Gt,T ζ(Ω)kmax

MT∑
m=1

[
tr
(
P̃′(w0

m)KtP̃(w0
m)Ω

)]
,

where C2 is a positive constant. Then from Assumptions 2, 4 and (A.11), we obtain that

supw∈HT

∣∣∣ε′KtP̃(w)ε−tr(KtP̃(w)Ω)

R̃t,T (w)

∣∣∣ p→ 0.

Finally, we will complete the proof of Theorem 1 by verifying (A.4). Note that

|L̃t,T (w)− R̃t,T (w)|

= |e′P̃′(w)KtP̃(w)e− tr(P′(w)KtP(w)Ω)− 2ε′P̃′(w)KtÃ(w)µ|.
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We only need to prove the following results:

sup
w∈HT

∣∣∣∣∣ε′P̃′(w)KtÃ(w)µ

R̃t,T (w)

∣∣∣∣∣ p→ 0 (A.12)

and

sup
w∈HT

∣∣∣∣∣ε′P̃′(w)KtP̃(w)ε− tr(P′(w)KtP(w)Ω)

R̃t,T (w)

∣∣∣∣∣ p→ 0. (A.13)

For (A.12), we have that

Pr

(
sup

w∈HT

∣∣∣∣∣ε′P̃′(w)KtÃ(w)µ

R̃t,T (w)

∣∣∣∣∣ > δ

)

≤ Pr

(
sup

w∈HT

|ε′P̃′(w)KtÃ(w)µ| > δξ̃t,T

)
≤

MT∑
m=1

Pr
(∣∣∣ε′P̃′(w0

m)KtÃ(w0
m)µ

∣∣∣ > δξ̃t,T

)
≤ δ−2Gξ̃−2Gt,T

MT∑
m=1

E|ε′P̃′(w0
m)KtÃ(w0

m)µ|2G

≤ δ−2Gξ̃−2Gt,T max
1≤m≤MT

P̃′
(
w0
m

) (
µ′Ã′(w0

m)KtΩKtÃ(w0
m)µ

)G
≤ δ−2Gξ̃−2Gt,T Ckmaxζ (Ω)

(
µ′Ã′

(
w0
m

)
KtÃ

(
w0
m

)
µ
)G

.

Then from (A.11) and Assumptions 2 and 4, supw∈HT

∣∣∣ε′P̃′(w)KtÃ(w)µ

R̃t,T (w)

∣∣∣ p→ 0. The proof of

(A.13) is similar to that of (A.12), and thus the proof is omitted. It follows that the proof

of (A.3) is completed. �

2 Appendix A.2

Proof of Theorem 2. Denote the maximum singular values of matrixes Bi, i = 1, 2, by

ζ(B1) and ζ(B2). It is known that for any square matrices B1 and B2 with identical dimen-

sions, the following simple inequalities are obtained:

ζ(B1B2) ≤ ζ(B1)ζ(B2), (A.14)

and

ζ(B1 +B2) ≤ ζ(B1) + ζ(B2). (A.15)

See more discussions of these inequalities in proof of Theorem 5.2 in Li (1987) and proof of

Theorem 2.2 in Zhang et al. (2013).
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Let h̃ = h∗

1−h∗ . By Assumption 12, we have h∗ = O(T−1h−1) a.s., h̃ = O(T−1h−1) a.s.,

and then given Assumption 9, we have

h∗ → 0 and h̃→ 0, a.s.. (A.16)

Let Qm be a T × T diagonal matrix with the (t, t)-th element
hmtt

1−hmtt
. Then it is easy to

obtain that P̃m = Pm −QmAm, and Ãm = Am + QmAm. Denote Q(w) =
∑MT

m=1w
mQm,

Tm = QmPm and T(w) =
∑MT

m=1w
mTm. To prove Theorem 2, we only need to verify the

following results:

sup
w∈HT

∣∣∣∣Lt,T (w)

Rt,T (w)
− 1

∣∣∣∣ p→ 0, (A.17)

sup
w∈HT

∣∣∣∣∣R̃t,T (w)

Rt,T (w)
− 1

∣∣∣∣∣ p→ 0, (A.18)

sup
w∈HT

∣∣∣∣∣ L̃t,T (w)

R̃t,T (w)
− 1

∣∣∣∣∣ p→ 0, (A.19)

sup
w∈HT

∣∣∣∣∣µ′Ã(w)Ktε

R̃t,T (w)

∣∣∣∣∣ p→ 0, (A.20)

sup
w∈HT

∣∣∣∣∣ε′P̃(w)Ktε

R̃t,T (w)

∣∣∣∣∣ p→ 0. (A.21)

Intuitively, (A.17), (A.19) and (A.20) are similar to (A.5), (A.4) and (A.2) in proof of

Theorem 1. To prove (A.17), we have:

sup
w∈HT

|Lt,T (w)−Rt,T (w)|
Rt,T (w)

≤ sup
w∈HT

|ε′P′(w)KtP(w)ε|
Rt,T (w)

+ sup
w∈HT

|µ′A′(w)KtP(w)ε|
Rt,T (w)

+ sup
w∈HT

tr (P′(w)KtP(w)Ω)

Rt,T (w)

≡ ∆11 + ∆12 + ∆13.

We next show that ∆11 = op(1), ∆12 = op(1) and ∆13 = op(1). For ∆11, we have

|ε′P′(w)KtP(w)ε| ≤ kmaxε
′P′(w)P(w)ε. (A.22)

For ∆12, we have

|µ′A′(w)KtP(w)ε|
Rt,T (w)
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≤
[
kmax

ε′P′(w)P(w)ε

Rt,T (w)

µ′A′(w)KtA(w)µ

Rt,T (w)

] 1
2

≤
[
kmax

ε′P′(w)P(w)ε

Rt,T (w)

] 1
2

. (A.23)

Moreover, it is straightforward to obtain that

Pr

(
sup

w∈HT

∣∣∣∣ε′P′(w)P(w)ε− tr(P′(w)P(w)Ω)

Rt,T (w)

∣∣∣∣ > δ

)
≤ Pr( sup

w∈HT

|ε′P′(w)P(w)ε− tr(P′(w)P(w)Ω)| > δξt,T )

≤ Pr

(
sup

w∈HT

MT∑
k=1

MT∑
m=1

wkwm|ε′P′kPmε− tr(P′kPmΩ)| > δξt,T

)

≤ Pr

(
max

1≤k≤MT

max
1≤m≤MT

|ε′P′kPmε− tr(P′kPm)Ω)| > δξt,T

)
= Pr {(|ε′P′1P1ε− tr(P′1P1Ω)| > δξt,T ) ∪

(|ε′P′1P2ε− tr(P′1P2Ω)| > δξt,T ) ∪ · · · ∪

(|ε′P′1PMT
ε− tr(P′1PMT

Ω)| > δξt,T ) ∪

(|ε′P′2P1ε− tr(P′2P1Ω)| > δξt,T ) ∪ · · · ∪(
|ε′P′MT

PMT
ε− tr(P′MT

PMT
Ω)| > δξt,T

)}
≤

MT∑
k=1

MT∑
m=1

Pr (|ε′P′kPmε− tr(P′kPmΩ)| > δξt,T )

≤
MT∑
k=1

MT∑
m=1

E

[
(ε′P′kPmε− tr(P′kPmΩ))2

δ2ξ2Gt,T

]

≤ Cδ−2ξ−2t,T

MT∑
k=1

MT∑
m=1

tr
(

(P′kPmΩ)
2
)

≤ C ′δ−2ξ−2t,TMT

MT∑
m=1

(
Rt,T

(
w0
m

))
, (A.24)

where C and C ′ are some constants. Then given Assumptions 2 and 10, we have

Pr

(
sup

w∈HT

tr(P′(w)P(w)Ω)

Rt,T (w)
≥ δ

)
≤ Pr

(
sup

w∈HT

tr(P′(w)P(w)Ω) ≥ ξt,T δ

)
≤ Pr

(
ζ(Ω) sup

w∈HT

tr(P′(w)P(w))ξ−1t,T ≥ δ

)
→ 0.

Combining this result with (A.22), (A.23) and (A.24), we have ∆11 = op(1) and ∆12 = op(1).
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For ∆13, we have:

tr(P′(w)KtP(w)Ω)

≤ kmaxtr[P(w)ΩP′(w)]

≤ kmaxζ(Ω)tr(P′(w)P(w)).

Then given Assumptions 2 and 10, we have

Pr

(
sup

w∈HT

tr(P′(w)KtP(w)Ω)

Rt,T (w)
≥ δ

)
≤ Pr

(
sup

w∈HT

tr(P′(w)KtP(w)Ω) ≥ ξt,T δ

)
≤ Pr

(
kmaxζ(Ω) sup

w∈HT

tr(P′(w)P(w))ξ−1t,T ≥ δ

)
→ 0,

then ∆13 = op(1). Thus, the proof of (A.17) is completed.

To prove (A.18), we have:

sup
w∈HT

∣∣∣R̃t,T (w)−Rt,T (w)
∣∣∣

Rt,T (w)
≤ sup

w∈HT

∣∣∣µ′Ã′(w)KtÃ(w)µ− µ′A′(w)KtA(w)µ
∣∣∣

Rt,T (w)

+ sup
w∈HT

∣∣∣tr(P̃(w)KtP̃
′(w)Ω)

∣∣∣
Rt,T (w)

+ sup
w∈HT

|tr(P(w)KtP
′(w)Ω)|

Rt,T (w)

≡ ∆21 + ∆22 + ∆23.

Because the matrix P′(w)ΩP(w) is symmetric, ∆23 = ∆13 = op(1). Then we only need to

verify ∆21 = op(1) and ∆22 = op(1). For ∆22,

tr
(
P̃(w)KtP̃

′(w)Ω
)

≤ tr (P(w)KtP
′(w)Ω) + tr (Q(w)KtQ

′(w)Ω)

+tr (T(w)KtT
′(w)Ω) + 2|tr (Q(w)KtP

′(w)Ω) |

+2 |tr (Q(w)KtT
′(w)Ω)|+ 2|tr (T(w)KtP

′(w)Ω) |. (A.25)

Given rank(Pm) ≤ T , h∗ = O(T−1h−1) a.s. and h̃ = O(T−1h−1) a.s., terms on the right side

of (A.25) follow that

|tr(Q(w)KtQ
′(w)Ω)| ≤ ζ(Q(w))kmax|tr (Q(w)Ω) |

≤ h̃kmax|tr (Q(w)Ω) |

≤ h̃

1− h∗
ζ(Ω)kmax

MT∑
m=1

wm|tr(Pm)|
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≤ h̃

1− h∗
ζ(Ω)kmax max

1≤m≤MT

rank(Pm) max
1≤m≤MT

ζ(Pm)

= O

(
h−1ζ(Ω)kmax max

1≤m≤MT

ζ(Pm)

)
and

|tr(Q(w)KtP
′(w)Ω)| ≤ rank(P(w))ζ(Q(w)KtP

′(w)Ω)

≤ rank(P(w))h̃kmaxζ(Ω) max
1≤m≤MT

ζ(Pm)

= O

(
h−1ζ(Ω)kmax max

1≤m≤MT

ζ(Pm)

)
.

Similarly, for T(w) we have

|tr(T(w)KtP
′(w)Ω)| ≤ rank(P(w))ζ (T(w)KtP

′(w)Ω)

≤ rank(P(w))kmaxζ(T(w))ζ(P′(w))ζ(Ω)

≤ rank(P(w))kmaxζ(

MT∑
m=1

wmPmQm)ζ(P′(w))ζ(Ω)

≤ h̃kmaxζ(Ω)rank(P(w)) max
1≤m≤MT

ζ2(Pm),

= O

(
h−1ζ(Ω)kmax max

1≤m≤MT

ζ2(Pm)

)
,

|tr(T(w)KtQ
′(w)Ω)| ≤ ζ(Ω)h̃2kmaxrank(P(w)) max

1≤m≤MT

ζ(Pm),

= O

(
T−1h−2ζ(Ω)kmax max

1≤m≤MT

ζ(Pm)

)
,

and

|tr(T(w)KtT
′(w)Ω)| ≤ ζ(Ω)h̃2kmaxrank(P(w)) max

1≤m,k≤MT

ζ2(Pm)

= O

(
T−1h−2ζ(Ω)kmax max

1≤m≤MT

ζ2(Pm)

)
.

Then given Assumption 12, we have Pr
{

supw∈HT

∣∣∣tr(P̃(w)KtP̃(w)Ω)
Rt,T (w)

∣∣∣ > δ
}
→ 0. Thus, ∆22 =

op(1).

For ∆21, we have∣∣∣µ′Ã′(w)KtÃ(w)µ− µ′A′(w)KtA(w)µ
∣∣∣ /Rt,T (w)

=

∣∣∣∣∣
MT∑
k=1

MT∑
m=1

{
wkwm

(
µ′Ã′kKtÃmµ− µ′A′kKtAmµ

)}∣∣∣∣∣ /Rt,T (w)
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=

∣∣∣∣∣
MT∑
k=1

MT∑
m=1

{
wkwm [µ′(Ak + QkAk)

′Kt(Am + QmAm)µ− µ′A′kKtAmµ]
}∣∣∣∣∣ /Rt,T (w)

=

∣∣∣∣∣
MT∑
k=1

MT∑
m=1

wkwm [µ′A′kQ
′
kKtQ

′
mµ] + 2

MT∑
k=1

MT∑
m=1

wkwmµ′A′kQ
′
kKtAmµ

∣∣∣∣∣ /Rt,T (w),

∣∣∣∣∣
MT∑
k=1

MT∑
m=1

wkwmµ′A′kQ
′
kKtAmµ

∣∣∣∣∣ /Rt,T (w)

=

∣∣∣∣∣
MT∑
k=1

wkµ′A′kQ
′
kKtA(w)µ

∣∣∣∣∣ /Rt,T (w)

≤

[
µ′

MT∑
m=1

wmAmQm

MT∑
k=1

wkQkAkµµ
′A(w)K2

tA(w)µ/R2
t,T (w)

] 1
2

≤

[
kmax

MT∑
k=1

MT∑
m=1

wkwmµ′AkQkQmAmµ
′/Rt,T (w)

] 1
2

,

and

MT∑
k=1

MT∑
m=1

wkwmµ′AkQkKtQmAmµ/Rt,T (w)

≤ 2kmaxξ
−1
t,T

MT∑
k=1

MT∑
m=1

wkwmµ′(AkQkQmAm + AmQmQkAk)µ

≤ kmaxξ
−1
t,Tµ

′µ max
1≤k≤MT

max
1≤m≤MT

ζ(AkQkQmAm)

≤ kmaxξ
−1
t,T h̃

2µ′µ→ 0.

Then ∆21 = op(1) and thus (A.18) is proved.

For (A.19),

L̃t,T (w)− R̃t,T (w) = ε′P̃′(w)KtP̃(w)ε− 2µ′Ã′(w)KtP̃(w)ε− tr
(
P̃(w)′KtP̃(w)Ω

)
≡ ∆31 + ∆32 + ∆33.

Firstly, for ∆32, ∣∣∣∣∣µ′Ã′(w)KtP̃(w)ε

R̃t,T (w)

∣∣∣∣∣
≤

[
ε′P̃(w)′KtP̃(w)ε(µ′Ã(w)′KtÃ(w)µ)

R̃2
t,T (w)

] 1
2

≤

[
ε′P̃′(w)KtP̃(w)ε

R̃t,T (w)

] 1
2

.
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Besides, we can obtain that

ε′P̃′(w)KtP̃(w)ε

≤ ε′P′(w)KtP(w)ε+ ε′Q′(w)KtQ(w)ε

+ε′T′(w)KtT(w)ε+ 2|ε′P(w)KtT(w)ε|

+2|ε′P(w)KtQ(w)ε|+ 2|ε′Q(w)KtT(w)ε|. (A.26)

Terms on the right side of (A.26) follow that:

2|ε′P(w)KtT(w)ε| ≤ [ε′P′(w)KtP(w)εε′T′(w)KtT(w)ε]
1
2 ,

2|ε′P(w)KtQ(w)ε| ≤ [ε′P′(w)KtP(w)εε′Q′(w)KtQ(w)ε]
1
2 ,

2|ε′Q(w)KtT(w)ε| ≤ [ε′T′(w)KtT(w)εε′Q(w)KtQ(w)ε]
1
2 .

Furthermore,

ε′Q′(w)KtQ(w)ε =

MT∑
k=1

MT∑
m=1

wkwmε′QkKtQmε

≤
MT∑
m=1

MT∑
m=1

wkwmε′εζ(QkKtQm) ≤ kmaxh̃
2ε′ε.

Similarly, ε′T′(w)KtT(w)ε ≤ kmax max1≤m≤MT
ζ(Pm)h̃2ε′ε. Combining the proof of ∆11 in

(A.17), we obtain ∆31 and ∆32 are both op(1). The proof of ∆33 is similar to that of (A.18)

and is omitted here. Thus, (A.19) is proved.

For (A.20), given Assumption 6′ and (A.15), we have

Pr

{
sup

w∈HT

∣∣∣∣∣µ′Ã(w)Ktε

R̃t,T (w)

∣∣∣∣∣ > δ

}

≤ Pr

{
sup

w∈HT

∣∣∣µ′Ã(w)Ktε
∣∣∣ > δξ̃t,T

}
≤

MT∑
m=1

Pr
{∣∣∣µ′Ã′t(w0

m)Ktε
∣∣∣ > δξ̃t,T

}
≤ δ−2ξ̃−2t,T

MT∑
m=1

E
(
µ′Ã′(w0

m)Ktε
)2

= δ−2ξ̃−2t,T

MT∑
m=1

tr
(
µ′Ã′(w0

m)KtΩKtÃ
′(w0

m)µ
)

≤ kmaxδ
−2ξ̃−2t,T ζ(Ω)

MT∑
m=1

R̃T (w0
m)→ 0.

Thus, (A.20) is proved. And the proof of (A.21) is similar and is omitted here. Given

(A.17)-(A.21), Theorem 2 is valid.

�
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3 Appendix A.3

Proof of Theorem 2′. First recall that the normality assumption in the proof of Theorem

1 is to make Ω−1/2ε be a vector of independent variables. Now, we directly assume that ε is a

vector of independent variables. From the proof steps in Appendix A.1, it is straightforward

to know that when the normality assumption in Theorem 1 is replaced by the assumption that

ε is a vector of independent variables, the conclusion of Theorem 1 still holds. In addition,

when ε is a vector of independent variables, Ω is a diagonal matrix and so Assumption 7

holds automatically. Hence, to prove Theorem 2′, we need only to verify Assumption 5.

It is seen that

sup
w∈HT

∣∣∣R̃t,T (w)−Rt,T (w)
∣∣∣

Rt,T (w)
≤ sup

w∈HT

∣∣∣µ′Ã′(w)KtÃ(w)µ− µ′A′(w)KtA(w)µ
∣∣∣

Rt,T (w)

+ sup
w∈HT

∣∣∣tr(P̃(w)KtP̃
′(w)Ω)− tr(P(w)KtP

′(w)Ω)
∣∣∣

Rt,T (w)

≡ ∆5 + ∆6. (A.27)

From the proof of ∆21 = op(1) in Appendix A.2, we have

∆5 = o(1), a.s.. (A.28)

In addition,

tr(P̃(w)KtP̃
′(w)Ω)− tr(P(w)KtP

′(w)Ω)

= tr((P(w)−Q(w) + T(w))Kt(P(w)−Q(w) + T(w))′Ω)− tr(P(w)KtP
′(w)Ω),

which, along with Assumptions 6′, 8 and 12, implies

∆6 = o(1), a.s.. (A.29)

From (A.27)-(A.29), we can verify Assumption 5. This completes the proof.

�

4 Appendix A.4

Proof of Theorem 3. For TVJMA, we have D ≡
∑MT

m=1w
mDm = Q(w)+IT . Denote Xmc

as a matrix consisting of columns of X except for Xm, i.e, Xmc = XΠ′mc with a selection

matrix Πmc , βmt = Πmβt, and βmc
t = Πmcβt. Then, let Ξ be an MT ×MT matrix with the

(i, j)-th element:

Ξij = (ε+ Xicβ
ic
t )′(IT −Pi)(QiKt + KtQj + QiKtQj)(IT −Pj)(ε+ Xjcβ

jc
t ),
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and thus

CVt,T (w) = (Y −P(w)Y)′Kt(Y −P(w)Y) + w′Ξw

≡ CMt,T (w) + w′Ξw,

where CMt,T (w) ≡ (Y−P(w)Y)′Kt(Y−P(w)Y). Based on (A.14)-(A.15) and Assumptions

3, 12-14, we have

(ε+ Xicβ
ic
t )′(IT −Pi)(QiKt + KtQj + QmKtQj)(IT −Pj)(ε+ Xjcβ

jc
t )

≤
∣∣∣∣(ε+ Xicβ

ic
t )
∣∣∣∣ ∣∣∣∣ε+ Xjcβ

jc
t

∣∣∣∣× ζ {(IT −Pi)(QiKt + KtQj + QmKtQj)(IT −Pj)}

≤
∣∣∣∣(ε+ Xicβ

ic
t )
∣∣∣∣ ∣∣∣∣ε+ Xjcβ

jc
t

∣∣∣∣ kmax

{
2h∗ + (h∗)2

}
(1 + max

1≤m≤MT

ζ(Pm))2

= Op(1).

Thus, for any w, w′Ξw = Op(1).

Next, we will show that ||
√
Th(β̂t(ŵt)− βt)|| = Op(1). It is seen that

CMt,T (w) = (Y −P(w)Y)′Kt(Y −P(w)Y)

= (µ+ ε−Xβ̂t(w))′Kt(µ+ ε−Xβ̂t(w))

= ε′Ktε+ (β̂t(w)− βt)′X′KtX(β̂t(w)− βt)− 2ε′KtX(β̂t(w)− βt).

When wj = 1 (j /∈ U) for any fixed time point t, we have CMt,T (w) = ε′Ktε + ηjt,T , where

U is a set of under-fitted models and ηjt,T ≡ (β̂
j

t − βt)′X′KtX(β̂
j

t − βt)− 2ε′KtX(β̂
j

t − βt).
With Assumptions 8, 13-14 and Proposition A.1 of Chen & Hong (2012), it is shown that

β̂
j

t − βt = Π′j(X
j′KtX

j)−1Xj′KtY − βt

= Π′j(X
j′KtX

j)−1Xj′Kt

(
X

(
βt +

s− t
T
β

(1)
t +O(h2)

)
+ ε

)
− βt

= Π′j(X
j′KtX

j)−1Xj′Ktε+ h

∫ 1

−1
k(u)uduOp(ζ(ΠjEXtX

′
t)) +O(h2)

= Op(1/
√
Th) +O(h2), t ∈ [Th, T − Th],

where β
(1)
t is the first derivative of βt. Then, we have

ηjt,T = ((Xj′KtX
j)−1Xj′Ktε+O(h2))′ΠjX

′KtXΠ′j((X
j′KtX

j)−1Xj′Ktε+O(h2))

−2ε′KtXΠ′j((X
j′KtX

j)−1Xj′Ktε+O(h2))

= −ε′KtX
j(Xj′KtX

j)−1Xj′Ktε+Op(h
4ζ(Xj′KtX

j))

= Op(1) +Op(Th
5) = Op(1),

based on h = cT−λ for 1
5
≤ λ < 1, where 0 < c < ∞. If t in the interior region [Th, T −

Th],
∫ 1

−1 k(u)udu = 0 with Assumption 8. If t in the right boundary region [T − Th, T ],
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∫ c
−1 k(u)udu 6= 0 with Assumption 8, and thus we have β̂

j

t − βt = Π′j(X
j′KtX

j)−1Xj′Ktε+

h
∫ c
−1 k(u)uduOp(ζ(ΠjEXtX

′
t))+O(h2) = Op(1/

√
Th)+O(h), and ηjt,T = Op(1)+Op(Th

3) =

Op(1), which is based on h = cT−λ for 1
3
≤ λ < 1, where 0 < c <∞. The similar result holds

for the left boundary region [1, Th]. Thus, CMt,T (ŵt) ≤ ε′Ktε+ηjt,T +Op(1) for t/T ∈ [0, 1].

This implies that

ηjt,T ≥ CMt,T (ŵt)− ε′Ktε

= (β̂t(ŵt)− βt)′X′KtX(β̂t(ŵt)− βt)− 2ε′KtX(β̂t(ŵt)− βt). (A.30)

From (A.30), we have

ζmin(Ψt,T )||
√
Th(β̂t(ŵt)− βt)||2

≤ (β̂t(ŵt)− βt)′X′KtX(β̂t(ŵt)− βt)

≤ ηjt,T + 2ε′KtX(β̂t(ŵt)− βt)

≤ ηjt,T + 2
∣∣∣∣T−1/2h−1/2ε′KtX

∣∣∣∣ ∣∣∣∣∣∣√Th(β̂t(ŵt)− βt)
∣∣∣∣∣∣ ,

and thus

ζmin(Ψt,T )
[∣∣∣∣∣∣√Th(β̂t(ŵt)− βt)

∣∣∣∣∣∣− ζ−1min(Ψt,T )
∣∣∣∣T−1/2h−1/2ε′KtX

∣∣∣∣]2
≤ ηjt,T + ζ−1min(Ψt,T )

∣∣∣∣T−1/2h−1/2ε′KtX
∣∣∣∣2 . (A.31)

From (A.31), we have

√
Th||β̂t(ŵt)− βt|| ≤

{
ζ−1min(Ψt,T )

[
ηjt,T + ζ−1min(Ψt,T )||T−1/2h−1/2ε′KtX||2

]}1/2
+ζ−1min(Ψt,T )||T−1/2h−1/2ε′KtX||,

and

√
Th||β̂t(ŵt)− βt|| ≥ −

{
ζ−1min(Ψt,T )

[
ηjt,T + ζ−1min(Ψt,T )||T−1/2h−1/2ε′KtX||2

]}1/2
+ζ−1min(Ψt,T )||T−1/2h−1/2ε′KtX||.

Therefore, we have
√
Th||β̂t(ŵt)− βt|| = Op(1), with Assumption 14. �

5 Appendix A.5

Following Vogt (2012), the process {Yt} is locally stationary if for each rescaled time point

τ ∈ [0, 1] there exists an associated strictly stationary process Yt(τ) with ||Yt − Yt(τ)|| =

Op(h + 1
T

). Thus, for every time t, we can replace YL, in the neighbourhood of t (i.e.,

[t − Th, t + Th]), by a strictly stationary process Yt(τ) with a small cost Op(h + 1
T

), where

τ = t/T . We replace Yt(τ) with xt to simplify the notation. Denote λmin(A) and λmax(A) as

the minimum and maximum eigenvalues of matrix A, respectively.

Before proving Theorem 4, we need to prove the following four lemmas:
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Lemma 1. Under Assumptions 18 and 20, for any q > 0 and all θ > 0,

Eλ−qmin

(
R̂t,T (r1)

)
= O(r

(2+θ)q
1 ), (A.32)

where R̂t,T (r1) = 1
(T−r1)h

∑T−1
j=r1

x
(r1)
j kjtx

(r1)′

j and x
(r1)
j ≡ (xj, · · · , xj−r1+1)

′ in the augmented

regression model.

Proof of Lemma 1. For notational simplicity, define xj = x
(r1)
j and A =


1 a1 · · · ar1−1

0 1
...

...
. . . a1

0 · · · 0 1

 .

Following the spirit of Lemma 1 in Ing and Wei (2003), we consider the following trans-

formation of xj, φj = Ak
1/2
jt xj = Btxj = %j + ςj for any fixed time point t, where

%j = (%j, · · · , %j−r1+1)
′, and ςj = (ςj1 , · · · , ςjr1 )′ with ςji , 1 ≤ i ≤ r1, being a linear combina-

tion of %l, l ≤ j − r1. It is easy to obtain the following results:

(F1) %j is independent of {ς l1 ,%l2} for l1 ≤ j and l2 ≤ j − r1,
(F2) λ−1min(

∑T−1
j=r1

xjkjtx
′
j) ≤ λmax(B

′
tBt)λ

−1
min(

∑T−1
j=r1

φjφ
′
j),

(F3) λmax(B
′
tBt) = O(1) for any fixed time point t.

In view of (F2) and (F3), (A.32) follows from

E

(
(T − r1)q hqλ−qmin

(
T−1∑
j=r1

φjφ
′
j

))
≤ C

(
r
(2+θ)
1

)q
, (A.33)

which is the same as Eq (2.6) in Ing and Wei (2003). With (F1), the proof of (A.33) is similar

to Eq (2.6) in Ing and Wei (2003). To save the space, we omit the proof of (A.33). �

Denote Rt(r1) = Extx
′
t and ||C||2 = λmax(C

′C) as the maximum eigenvalue of the matrix

C′C.

Lemma 2. Under Assumptions 20 and 21, and sup−∞<t<∞ E|εt|2q <∞ for some q ≥ 2, we

have

E||R̂t,T (r1)−Rt(r1)||q ≤ C

(
r21

(T − r1)h

)q/2
, (A.34)

where C is some positive constant.

Proof of Lemma 2. Note that

E||R̂t,T (r1)−Rt(r1)||q ≤
rq1
r21

r1∑
i=1

r1∑
j=1

E|γ̂i,j,t − γi−j,t|q, (A.35)
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where γ̂i,j,t and γi−j,t denote the (i, j) components of R̂t,T (r1) and Rt(r1), respectively. With

Proposition 1 in Mathematical Appendix of Chen and Hong (2012), we obtain that

E|γ̂i,j,t − γi−j,t| = E

∣∣∣∣∣
T−1∑
s=r1

xs−i+1kstxs−j+1 −
T−1∑
s=r1

Exs−i+1kstxs−j+1

∣∣∣∣∣ = O(((T − r1)h)−1/2).

Then E||R̂t,T (r1) − Rt(r1)||q ≤ C
rq1
r21
r21O(((T − r1)h)−q/2) = C

(
r21

(T−r1)h

)q/2
. This proof is

completed. �

Lemma 3. Under Assumption 20, if sup−∞<t<∞ E(|εt|q) <∞ for q ≥ 2, then for 1 ≤ pm ≤
r1 with r1 ≤ T − 1,

E

∥∥∥∥∥ 1√
(T − r1)h

T−1∑
j=r1

kjtx
(m)
j εj+1

∥∥∥∥∥
q

≤ C(pm)q/2,

where C is some positive constant, and pm is the lag order of dependent variables in mth

candidate model.

Proof of Lemma 3. Following the spirit of Eq (3.8) in Ing and Wei (2003), it is shown

that

E

∥∥∥∥∥ 1√
T − r1

T−1∑
j=r1

kjtx
(m)
j εj+1

∥∥∥∥∥
q

≤ pq/2m p−1m

k−1∑
l=0

E

{
((T − r1)h)−

q
2

∣∣∣∣∣
T−1∑
j=r1

kjtxj−1εj+1

∣∣∣∣∣
q}

.

With Assumption 12 and the convexity of xq/2, x > 0, there exists some constant C satisfying

E

(
1

(T − r1)h

T−1∑
j=r1

x2
j−l

)q/2

≤ 1

T − r1

T−1∑
j=r1

E{|xj−l|q} ≤ C.

Thus, this lemma is proved. �

Lemma 4. If Assumptions 15, 18 and 19 hold, r6+δ1 = O(T ) for some δ > 0, and

sup−∞<t<∞ E(|εt|2q1) < ∞ for some q1 ≥ 2, then for any 0 < q < q1, E
∥∥∥R̂−1t,T (r1)

∥∥∥q ≤ C,

and E
∥∥∥R̂−1t,T (r1)−R−1t (r1)

∥∥∥q/2 ≤ C
(

r21
(T−r1)h

)q/4
, where C is some positive constant.

Proof of Lemma 4. Given Lemma 1, we obtain that∥∥∥R̂−1t,T (r1)−R−1t (r1)
∥∥∥q ≤ ∥∥∥R̂−1t,T (r1)

∥∥∥q ∥∥∥R̂t,T (r1)−Rt(r1)
∥∥∥q ∥∥R−1t (r1)

∥∥q ,
almost surely for large T . Based on the Holder’s inequality and Lemma 2, we have

E
∥∥∥R̂−1t,T (r1)−R−1t (r1)

∥∥∥q ≤ C
(
E
∥∥∥R̂t,T (r1)−Rt(r1)

∥∥∥q1)q/q1 (r2+θ1 )q ≤ C

(
r6+2θ
1

(T − r1)h

)q/2
,
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for sufficiently large T . Set 2θ ≤ δ, and with the assumption that r6+δ1 = O(T ), E||R̂−1t,T (r1)|| ≤
C is obtained. Moreover, since the Cauchy-Schwarz inequality gives

E||R̂−1t,T (r1)−R−1t (r1)||q/2 ≤ C(E||R̂−1t,T (r1)||q)1/2(E||R̂t,T (r1)−Rt(r1)||q)1/2,

Lemma 4 is proved. �

Proof of Theorem 4. The proof of Theorem 4 is similar to the proof of Theorem 3.1 in

Zhang et al. (2013). First, substitute Vt,T (w), Ṽt,T (w), ξ∗t,T , ξ̃∗t,T , σ2IT and “in probability”,

for Rt,T (w), R̃t,T (w), ξt,T , ξ̃t,T , Ω and “a.s.”, respectively in Theorem 2 and its proof. To

prove Theorem 4, we need to verify that

ξ∗−1t,T h̃ε
′ε = op(1), (A.36)

sup
w∈HT

ξ∗−1t,T ε
′KtP(w)′P(w)Ktε = op(1), (A.37)

sup
w∈HT

ξ∗−1t,T ε
′KtP(w)ε = op(1), (A.38)

and

sup
w∈HT

∣∣∣∣∣µ′Ã(w)Ktε

Ṽt,T (w)

∣∣∣∣∣ = op(1). (A.39)

Since µ′Ktε is unrelated to w, we can equally prove

sup
w∈HT

∣∣∣∣∣µ′P̃(w)Ktε

Ṽt,T (w)

∣∣∣∣∣ = op(1), (A.40)

instead of (A.39). According to (A.19), for proving (A.40), we only need to verify

ξ∗−1t,T sup
w∈HT

∣∣∣µ′P̃(w)Ktε
∣∣∣ = op(1). (A.41)

Considering that {ε1, . . . , εT} is i.i.d and Eε4i < ∞, we have that ε′ε = Op(T ). Then

given (A.16) and Assumption 16, (A.36) is proved.

Before the proof of (A.37), we verify some equations first. With Lemma 3 and Assump-

tions 18-19, we have

T−1h−1E(ε′KtYLY′LKtε)

= T−1h−1E
[
ε′Kt

(
YL(τ) +Op(h+

1

T
)

)(
YL(τ) +Op

(
h+

1

T

))′
Ktε

]
= T−1h−1E (ε′KtYL(τ)Y′L(τ)Ktε) +O

(
h+

1

T

)
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= O(r1) +O

(
h+

1

T

)
= O(r1). (A.42)

Uniformly for m = 1, · · · ,MT , (A.42) is valid in mth candidate model at any given time

point t. Thus by Markov’s inequality,

T−1h−1r−11 ε
′KtYLY′LKtε

′ = Op(1). (A.43)

Also, by Assumption 17, we have

T−1h−1ε′KtX
∗X∗

′
Ktε = Op(1). (A.44)

Thus we have

T−1h−1γ−1ε′KtXX′Ktε = Op(1). (A.45)

By Lemma 4 and Assumptions 18-19, we have

ThE(ζ
(
(Y′LKtYL)−1)

)
= ThE

[
ζ

((
Y′L(τ)KtYL(τ) +O

(
h+

1

T

))−1)]
= O(1).

(A.46)

By Markov’s equality, we have

Thζ
(

(Y′LKtYL)
−1
)

= Op(1). (A.47)

Let Jt = (Y′LKtYL)−1Y′LKtX
∗(X∗

′
MtX

∗)−1/2. By Rao (1973), it can be shown that

(X′KtX)−1 =

(
(Y′LKtYL)−1 + JtJ

′
t −Jt(X

∗′MtX
∗)−1/2

−(X∗
′
MtX

∗)−1/2Jt (X∗
′
MtX

∗)−1

)

=

(
(Y′LKtYL)−1 0

0 0

)
+ 2

(
JtJ

′
t 0

0 (X∗
′
MtX

∗)−1

)

−

(
JtJ

′
t Jt(X

∗′MtX
∗)−1/2

(X∗
′
MtX

∗)−1/2Jt (X∗
′
MtX

∗)−1

)
. (A.48)

Thus

ζ
(

(X′KtX)
−1
)
≤ ζ

(
(Y′LKtYL)

−1
)

+ 2 max

{
ζJtJ

′
t, ζ

((
X∗
′
MtX

∗
)−1)}

≤ ζ
(

(Y′LKtYL)
−1
)

+ 2 max
{
ζ
(

(Y′LKtYL)
−1
)
ζ
(
T−1(X∗

′
KtX

∗)
)
ζ(T−1(X∗

′
MtX

∗)−1),

T−1ζ

(
T−1

(
X∗
′
MtX

∗
)−1)}

. (A.49)

Combining (A.47) and (A.49), we have

Thζ
(

(X′KtX)
−1
)

= Op(1). (A.50)

56



Getting back to the proof of (A.37), we notice that KtP
′PKt = {zij}1≤i,j≤T , where

zij ≡ kitkjtXi

T∑
s=1

(X′KsX)−1X′skiskjsXs(X
′KsX)−1X′j.

Notice that for any (i, j) such that |i− t| > 2Th or |j − t| > 2Th, we obtain that zij = 0.

Since 1
Th

X′KsX
p→ Rs ≡ EX′sXs, we have

zij
p→ kitkjt
T 2h2

Xi

(
T∑
s=1

R−1s X′skiskjsXsR
−1
s

)
X′j ≡ z∗ij.

By Assumption 21, it is straightforward to obtain that Rs = Rt + O(|t− s|/T ) and kit = 0

for |i− t| > Th. With the fact that kis = ksi, we have

z∗ij = kitkjtXiR
−1
t

1

T 2h2

T∑
s=1

X′skiskjsXsR
−1
t X′j +Op

(
1

T 2h

)

≤ kmaxkitkjtXiR
−1
t

1

T 2h2

T∑
s=1

X′sksiXsR
−1
t X′j

p→ kmaxkitkjtXiR
−1
t

1

Th
RiR

−1
t X′j

= kmaxkitkjtXiR
−1
t

1

Th
RtR

−1
t X′j +Op

(
1

T 2h

)
=

kmax

Th
kitXiR

−1
t X′jkjt, if i, j ∈ [t− Th, t+ Th],

and then as T →∞,

ε′KtP
′PKtε ≤

k2max

Th
ε′KtXR−1t X′Ktε ≤

k2maxζ(R−1t )

Th
ε′KtXX′Ktε.

For R−1t , since 1
Th

X′KtX
p→ Rt, and combining this with (A.49), we have that

Thζ(R−1t ) = Op(1). (A.51)

Then given (A.45), we have

1

Thγ
ε′KtXR−1t X′Ktε = Op(1). (A.52)

Therefore,

γ−1ε′KtP
′PKtε = Op(1). (A.53)

Given Assumption 16 that γξ∗−1t,T = op(1), we have ξ∗−1t,T ε
′KtP

′PKtε = op(1). Similarly, we

can obtain

γ−1ε′KtP
′
mPmKtε = Op(1), (A.54)
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and ξ∗−1t,T ε
′KtP

′
mPmKtε = op(1). Then if m 6= j, we have

γ−1ε′KtP
′
mPjKtε ≤ γ−1ε′Kt(P

′
mPm + P′jPj)Ktε/2 = Op(1), (A.55)

and ξ∗−1t,T ε
′KtP

′
mPjKtε = op(1). Given (A.54) and (A.55), we have

sup
w∈HT

γ−1ε′KtP
′(w)P(w)Ktε = sup

w∈HT

γ−1ε′Kt

MT∑
m=1

MT∑
j=1

wmwjP′mPjKtε

≤ max
1≤j≤MT

max
1≤m≤MT

γ−1ε′KtP
′
mPjKtε = Op(1). (A.56)

This completes the proof of (A.37). Similarly, we obtain (A.38).

For (A.41), we obtain that

sup
w∈HT

∣∣∣µ′Ã(w)Ktε
∣∣∣

≤ sup
w∈HT

|µ′P(w)Ktε|+ sup
w∈HT

|µ′Q(w)Ktε|+ sup
w∈HT

|µ′T(w)Ktε|

= sup
w∈HT

|ε′KtP
′(w)µ|+ sup

w∈HT

|ε′KtQ(w)µ|+ sup
w∈HT

|ε′KtT
′(w)µ|

≤ sup
w∈HT

(ε′KtP
′(w)P(w)Ktεµ

′µ)1/2 + sup
w∈HT

(ε′Ktεµ
′Q′(w)KtQ(w)µ)1/2

+ sup
w∈HT

(ε′Ktεµ
′T(w)KtT

′(w)µ)1/2

≤ sup
w∈HT

(ε′KtP
′(w)P(w)Ktεµ

′µ)1/2 + (k2maxh̃
2ε′εµ′µ)1/2 + max

1≤m≤MT

ζ(Pm)(k2maxh̃
2ε′εµ′µ)1/2

= sup
w∈HT

ξ∗t,T ((γξ∗−2t,T µ
′µ)γ−1ε′KtP(w)P(w)Ktε)

1/2 +

(
1 + max

1≤m≤MT

ζ(Pm)

)
(k2maxh̃

2ε′εµ′µ)1/2

=
(
ξ∗t,T

(
(γξ∗−2t,T µ

′µ)×Op(1)
)1/2)

+

(
1 + max

1≤m≤MT

ζ(Pm)

)
ξ∗t,T

(
(Tγ−1h̃)(k2maxγξ

∗−1
t,T )(ξ∗−1t,T h̃ε

′ε)(T−1µ′µ)
)1/2

, (A.57)

where the last step is based on (A.56). Given Assumption 3, Assumption 16, (A.16), (A.36),

and (A.37), we obtain (A.41). This completes the proof.

�
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