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1 Introduction

In the literature of estimation, specification, and testing of econometric models, many parametric

assumptions have been made. Firstly, parametric functional forms of the relationship between

independent and dependent variables are usually assumed to be known. For example, a regression

function is often considered to be linear. Secondly, the variance of the error terms conditional on

the independent variables is specified to have a parametric form. Thirdly, the joint distribution of

the independent and dependent variables are conventionally assumed to be normal. Last but not

least, in many econometric studies, the independent variables are considered to be non-stochastic.

However, parametric econometrics has drawbacks since particular specifications may not capture

the true data generating process. As a matter of fact, the true functional forms of econometric

models are hardly known. Misspecification of parametric econometric models may therefore result

in invalid conclusions and implications. Alternatively, data-based econometric methods can be

adopted to avoid the disadvantages of parametric econometrics and implemented into practice. One

widely-used approach is the nonparametric kernel technique, see Ullah (1988), Pagan and Ullah

(1999), Li and Racine (2007) and Henderson and Parmeter (2015). However, nonparametric kernel

procedures have some deficiencies, such as the “curse of dimensionality” and a lack of efficiency due

to a slower rate of convergence of the variance to zero. In view of this, we propose a new information

theoretic (IT) procedure for econometric model specification by using classical maximum entropy

formulation. This is consistent, efficient, and based on minimal distributional assumptions.

Shannon (1948) derived the entropy (information) measure which is similar to that of Boltzmann

(1872) and Gibbs (1902) . Using Shannon’s entropy measure Jaynes (1957a, 1957b) developed the

maximum entropy principle to infer probability distribution. Entropy is a measure of a variable’s

average information content, and its maximization subject to some moments and normalization

provides a probability distribution of the variable. The resulting distribution is known as the

maximum entropy distribution; see more on this in Zellner and Highfield (1988), Ryu (1993),

Golan et al. (1996), Harte et al. (2008), Judge and Mittelhammer (2011) and Golan (2018). We

note that the joint probability distribution based on the maximum entropy approach is a purely

data-driven distribution where parametric assumptions are avoided, and this distribution can be

used to determine the regression function (conditional mean) and its response function (derivative
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function) which are of interest to empirical researchers. This is the main goal of this chapter.

We organize this chapter in the following order. In Section 2, we present the IT based regression

and response functions using a bivariate maximum entropy distribution. A recursive integration

process is developed for their implementations. In Section 3 we carry out simulation examples to

illustrate the small sample efficiency of our methods, and then present an empirical example of the

Canadian high school graduate earnings. In Section 4, we present asymptotic theory on our IT

based regression and response function estimators. In Section 5, we draw conclusions and provide

potential future extensions. The mathematical details of the algorithm used in Section 2, and the

proofs of asymptotic properties of the IT based estimators, are shown in the Appendix.

2 Estimation of Distribution, Regression, and Response Functions

We consider {yi, xi} , i = 1, . . . , n independent and identically distributed observations from an

absolutely continuous bivariate distribution f (y, x). Suppose the conditional mean of y given x

exists and it provides a formulation for the regression model as

y = E(y|x) + u (1)

= m (x) + u,

where the error term u is such that E(u|x) = 0, and the regression function (conditional mean) is

E(y|x) = m(x) =

∫
y
y
f(y, x)

f(x)
dy. (2)

When the joint distribution of y and x is not known, which is often the case, we propose the IT

based maximum entropy method to estimate the densities of the random variables and introduce

a recursive integration method to solve the conditional mean of y given x.

2.1 Maximum Entropy Distribution Estimation: Bivariate and Marginal

Suppose x is a scalar and the marginal density of it is unknown. Our objective is to approximate

the marginal density f(x) by maximizing the information measure (Shannon’s entropy) subject to

some constraints. That is

Max
f

H(f) = −
∫
x
f(x) log f(x)dx,
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subject to ∫
x
φm(x)f(x)dx = µm = Eφm(x), m = 0, 1, ...,M,

where φm(x) are known functions of x. φ0(x) = µ0 = 1. See, for example, Jaynes (1957a, 1957b)

and Golan (2018). The total number of constraints is M + 1. In particular, φm(x) can be moment

functions of x. We construct the Lagrangian

L (λ0, λ1, . . . , λM ) = −
∫
x
f(x) log f(x)dx+

∑M

m=0
λm

(
µm −

∫
x
φm(x)f(x)dx

)
,

where λ0, λ1, . . . , λM represent Lagrange multipliers. The solution has the form

f (x) = exp

[
−
∑M

m=0
λmφm(x)

]
=

exp
[
−
∑M

m=1 λmφm(x)
]

∫
x exp

[
−
∑M

m=1 λmφm(x)
]
dx
≡

exp
[
−
∑M

m=1 λmφm(x)
]

Ω (λm)
,

where λm is the Lagrange multiplier corresponding to constraint
∫
x φm(x)f(x)dx = µm, and λ0

(with m = 0) is the multiplier associated with the normalization constraint. With some simple

algebra, it can be easily shown that λ0 = log Ω (λm) is a function of other multipliers. Replacing

f (x) and λ0 into L (λ0, λ1, . . . , λM ) = L (λ), we get

L (λ) =
∑M

m=1
λmEφm(x) + λ0.

The Lagrange multipliers are solved by maximizing L (λ) with respect to λm’s. The above inferred

density is based on minimal information and assumptions. It is the flattest density according

to the constraints. In this case, the Lagrange multipliers are not only the inferred parameters

characterizing the density function, but also capture the amount of information conveyed in each

one of the constraints relative to rest of the constraints used. They measure strength of the

constraints.

In particular, when M = 0, f (x) is a constant and hence x follows a uniform distribution.

When the first moment of x is known, f (x) has the form of an exponential distribution. When

the first two moments of x are known, f (x) has the form of a normal distribution. Furthermore,

if more moment information is given, i.e. M ≥ 3, to estimate the Lagrange multipliers, we use the

Newton method considered in the literature. See Mead and Papanicolaou (1984) and Wu (2003).

In the bivariate case, the joint density of y and x is obtained from maximizing the information

criterion H (f) subject to some constraints. Here, we assume the moment conditions up to 4th
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order are known. Then

Max
f

H(f) = −
∫
x

∫
y
f(y, x) log f(y, x)dydx (3)

subject to ∫
x

∫
y
ym1xm2f(y, x)dydx = µm1m2 = E (ym1xm2) , 0 ≤ m1 +m2 ≤ 4. (4)

We construct the Lagrangian

L (λ, λ00) = −
∫
x

∫
y
f(y, x) log f(y, x)dydx+

∑4

m1=0

∑4

m2=0
λm1m2

(
µm1m2 −

∫
x

∫
y
ym1xm2f(y, x)dydx

)
,

(5)

where λ = (λm1m2)14×1 for all 1 ≤ m1 + m2 ≤ 4. The solution of the joint density distribution

yields the form

f (y, x) = exp
[
−
∑4

m1+m2=0
λm1m2y

m1xm2

]
(6)

=
exp

[
−
∑4

m1+m2=1 λm1m2y
m1xm2

]
∫
x

∫
y exp

[
−
∑4

m1+m2=1 λm1m2y
m1xm2

]
dydx

≡
exp

[
−
∑4

m1+m2=1 λm1m2y
m1xm2

]
Ω (λm1m2)

,

where λm1m2 is the Lagrange multiplier that corresponds to the constraint
∫
x

∫
y y

m1xm2f(y, x)dydx =

µm1m2 , and λ00 = log Ω (λm1m2) (with m1 +m2 = 0) is the multiplier associated with the normal-

ization constraint which is a function of other multipliers. See, e.g., Golan (1988, 2018) and Ryu

(1993).

For deriving our results in Section 2, we rearrange the terms in f(y, x) and write

f(y, x) = exp
[
−
(
λ04x

4 + λ03x
3 + λ02x

2 + λ01x+ λ00
)]

(7)

× exp
{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)
]}
y

where

λ30(x) = λ30 + λ31x, λ20(x) = λ20 + λ21x+ λ22x
2,

λ10(x) = λ10 + λ11x+ λ12x
2 + λ13x

3.

Replacing f(y, x) and λ00 into L (λ, λ00) = L (λ), we obtain the Lagrange multipliers by maximizing

L (λ) =
∑4

m1+m2=1
λm1m2µm1m2 + λ00. (8)
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The marginal density of x is computed by integrating f(y, x) over the support of y,

f(x) =

∫
y
f(y, x)dy (9)

= exp
[
−
(
λ04x

4 + λ03x
3 + λ02x

2 + λ01x+ λ00
)]

×
∫
y

exp
{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)
]}
y.

We note that f(x) = f(x,λ) and f(y, x) = f(y, x,λ). When the Lagrange multipliers λ are

estimated as λ̂ from (8), we get f̂(x) = f(x, λ̂) and f̂(y, x) = f(y, x, λ̂).

Although the above results are written under fourth order moment conditions in (4), they can

be easily written when 0 ≤ m1 + m2 ≤ M . We have considered fourth order moment conditions

without any loss of generality since they capture data information on skewness and kurtosis.

2.2 Regression and Response Functions

Based on the bivariate maximum entropy joint distribution (7) and the marginal density (9), the

conditional mean (regression function) of y given x is represented as

m(x) = E(y | x) =

∫
y
y
f(y, x)

f(x)
dy (10)

=

∫
y y exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy∫

y exp {− [λ40y4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]} dy
.

Given the values of the Lagrange multipliers, we define

Fr (x) ≡
∫
y
yr exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy. (11)

where r = 0, 1, 2, . . .. The regression function m(x) thus takes the form

m(x) = m (x,λ∗) =
F1(x)

F0(x)
=
F1 (x,λ∗)

F0 (x,λ∗)
, (12)

where λ∗ = (λm1m2)10×1 for all 1 ≤ m1+m2 ≤ 4 except λ0m2 for m2 = 1, . . . , 4. When the Lagrange

multipliers are estimated from (8) by Newton method,

m̂(x) = m
(
x, λ̂

∗)
=
F1

(
x, λ̂

∗)
F0

(
x, λ̂

∗) . (13)
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This is the IT nonparametric regression function estimator. Furthermore, the response function

β (x) = dm(x)
dx (derivative) can be written as

β (x) = β (x,λ∗) =
F ′1 (x,λ∗)F0 (x,λ∗)− F1 (x,λ∗)F ′0 (x,λ∗)

F 2
0 (x,λ∗)

, (14)

and its estimator is given by

β̂ (x) = β
(
x, λ̂

∗)
(15)

We note that F ′r (x) represents the first derivative of Fr (x) with respect to x, r = 0, 1, 2, . . ..

2.3 Recursive Integration

It is unlikely to solve out the exponential polynomial integrals in the numerator and denominator

from (10) in explicit forms. Numerical methods can be used to solve the problem by integrating

the exponential polynomial function at each value of x. However, for large sample size, numerical

methods are quite computationally expensive and hence are not satisfactory. We develop a recur-

sive integration method which can not only solve the conditional mean m(x) but also reduce the

computational cost significantly.

According to the definition of Fr (x) in (11), the changes in F0, F1 and F2 are given by

F ′0 = −λ′30(x)F3 − λ′20(x)F2 − λ′10(x)F1 (16)

F ′1 = −λ′30(x)F4 − λ′20(x)F3 − λ′10(x)F2

F ′2 = −λ′30(x)F5 − λ′20(x)F4 − λ′10(x)F3,

where λ′ (x) denotes the first derivative of λ (x) with respect to x. Due to the special properties

of (11), integrals of higher order exponential polynomial functions can be represented by those of

lower orders. Based on this fact, F3, F4 and F5 in (16) are replaced by the linear combinations of

F0, F1 and F2, resulting in a system of linear equations

F ′0(x) = Λ00(x)F0(x) + Λ01(x)F1(x) + Λ02(x)F2(x) (17)

F ′1(x) = Λ10(x)F0(x) + Λ11(x)F1(x) + Λ12(x)F2(x)

F ′2(x) = Λ20(x)F0(x) + Λ21(x)F1(x) + Λ22(x)F2(x).

The derivations of (16) and (17) are provided in the Appendix A.1. Starting from an initial value
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x0, for a very small increment h, we trace out F0(x), F1(x) and F2(x) over the entire range of x

F0(x0 + h) ≈ F0(x0) + F ′0(x0)h (18)

F1(x0 + h) ≈ F1(x0) + F ′1(x0)h

F2(x0 + h) ≈ F2(x0) + F ′2(x0)h

The IT estimators m̂(x) in (13) and β̂(x) in (15) are thus evaluated using (17) and (18) with λ∗

replaced by λ̂
∗
. The results for the finite domain integration are similar to the above, which are

provided in Appendix A.2.

3 Simulation and Empirical Examples

Here we first consider two data generating processes (DGP) to evaluate the performance of our

proposed IT estimator of response function in Sections 3.1 and 3.2. Then we present our illustrative

empirical example to study regression and response functions in Section 3.3.

3.1 Data Generating Process 1: Nonlinear Function

The true model considered is a nonlinear function1

yi = −1

5
log
(
e−2.5 + 2e−5xi

)
+ ui (19)

where i = 1, 2, . . . , n, the variables yi and xi are in log values, and xi are independent and identi-

cally drawn from uniform distribution with mean 0.5 and variance 1
12 . The error term ui follows

independent and identical normal distribution with mean 0 and variance 0.01.

The goal is to estimate the response coefficient β(x) = ∂y
∂x . Two parametric approximations

considered are

Linear : yi = β0 + β1xi + ui

Quadratic : yi = β0 + β1xi + β2x
2
i + ui.

These two parametric models are not correctly specified. Thus, one can expect that the estimation

of the response coefficients may be biased. Besides these two parametric models, local constant

nonparametric estimation of the response coefficient is also of our interest as a comparison with

1This simulation example is similar to Rilstone and Ullah (1989).
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our IT method estimator. The local constant (Nadaraya-Watson) nonparametric kernel estimator

is m̃ (x) =
∑
yiwi (x), where wi (x) = K((xi−x)/b)∑

K((xi−x)/b) in which K (·) is a kernel function and b is

the bandwidth, for example, see Pagan and Ullah (1999). We have used normal kernel and cross-

validated bandwidth. The bias and root mean square error (RMSE) results from linear function,

quadratic approximation, local constant nonparametric method and IT method are reported in

Table 1, averaged over 1000 replications of sample size 200. The values of the response coefficients

shown are evaluated at the population mean of x, which is 0.5. Standard errors are given in the

parentheses. True value of the response coefficient β(x = 0.5) = 0.6667.

Table 1
Linear Quadratic Nonparametric IT

β(x) = ∂y
∂x 0.6288 0.6296 0.6468 0.6550

(0.0276) (0.0263) (0.0904) (0.0268)
Bias 0.0379 0.0371 0.0199 0.0117

RMSE 0.0469 0.0455 0.0926 0.0292

The biases for nonparametric kernel and IT estimators are smaller than those under linear and

quadratic approximations. However, nonparametric estimation yields a larger RMSE compared

with the three other methods. Even though nonparametric and IT estimations both have the

advantage of avoiding the difficulties associated with the functional forms, results have indicated

that the IT method outperforms the nonparametric method. This may be because the rate of

convergence for MSE to zero for the IT estimator is n−1 whereas that of nonparametric kernel

estimator is known to be (nb)−1 where b is small (Li and Racine (2007)).

3.2 Data Generating Process 2: Linear Function

Now the true data generating process is a linear function:

yi = 2 + xi + ui (20)

where i = 1, 2, . . . , n, xi and ui follow the same distributions as in DGP 1. Comparisons are made

with linear, quadratic approximations and nonparametric estimation. Results on bias and RMSE

are averaged over 1000 replications of sample size 200. The values of the response coefficients shown
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are evaluated at x = 0.5.

Table 2
Linear Quadratic Nonparametric IT

β(x) = ∂y
∂x 1.0009 1.0009 1.0105 1.0014

(0.0250) (0.0251) (0.1133) (0.0284)
Bias 0.0009 0.0009 0.0105 0.0014

RMSE 0.0250 0.0251 0.1138 0.0284

When the true DGP is linear in x, it is not surprising that linear approximation has the smallest bias

and RMSE. The IT method has much smaller bias and RMSE than that under the nonparametric

kernel estimation. Even though the true relationship between x and y is linear, considering IT

estimator based on first four moments is still successful in capturing the linearity. For example,

β (x) based on IT, compared to nonparametric kernel, is closer to β (x) based on the true linear

DGP. This is similar to the result in DGP 1. Since true DGP in practice is not known, IT provides

a better option to be used.

3.3 Empirical Study: Canadian High School Graduate Earnings

To further illustrate the superiority of maximum entropy method, we conduct the study of the

average logwage conditional on the age using the 1971 dataset of 205 Canadian high school graduate

earnings. According to (10), the variable y denotes the logwage of high school graduates and x

denotes the age. As a comparison, local constant and local linear nonparametric estimations, as

well as quadratic and quartic approximations are considered

Quadratic : y = β0 + β1x+ β2x
2 + u

Quartic : y = β0 + β1x+ β2x
2 + β3x

3 + β4x
4 + u.

The local linear nonparametric kernel estimators m∗ (x) and β∗ (x) are obtained by minimiz-

ing the local linear weighted squared losses
∑

(yi −m (x)− (xi − x)β (x))2K ((xi − x) /b) with

respect to m (x) and β (x). We note that minimizing local constant weighted squared losses∑
(yi −m (x))2K ((xi − x) /b) with respect to m (x) provides local constant nonparametric ker-

nel estimator m̃ (x) used in Section 3.1 and 3.2. We use our IT method to show the plot of the

estimated m̂ (x) of logwage in Figure 1. An illustration of numerical calculations based on the IT

method is given in Appendix A.3.
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Figure 1: Logwage and Age Maximum Entropy Conditional Mean
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From Figure 1, log earning grows rapidly from age 21 to age 25. Before around age 45, the

growth speed of logwage is slowed down. A depth at age 47 is displayed. From age 47 to age 65,

log earning rises and then declines smoothly. It is shown that the IT estimation captures the tail

observations very well, see Appendix A.3 for numerical calculations in tails. The average response

coefficient β̂ over the range of age is approximately 0.0434. The average response coefficients under

local constant and local linear nonparametric kernel methods are 0.0315 and 0.0421 respectively.

Under quadratic approximation, the average response coefficient is 0.0195. We use the average

response coefficient under quartic approximation as a benchmark, which is 0.0461. Average β̂

under IT method is large than that under quadratic approximation, local constant and local linear

estimations, which shows that IT method is advantageous over the rest considered.

4 Asymptotic Properties of IT Estimators and Test for Normality

4.1 Asymptotic Normality

First, we define

Zi
14×1

=
(
yi, xi, y

2
i , x

2
i , y

3
i , x

3
i , y

4
i , x

4
i , yixi, yix

2
i , y

2
i xi, yix

3
i , y

3
i xi, y

2
i x

2
i

)T
, (21)

µ̂
14×1

= (µ̂10, µ̂01, µ̂20, µ̂02, µ̂30, µ̂03, µ̂40, µ̂04, µ̂11, µ̂12, µ̂21, µ̂13, µ̂31, µ̂22)
T ,

µ
14×1

= (µ10, µ01, µ20, µ02, µ30, µ03, µ40, µ04, µ11, µ12, µ21, µ13, µ31, µ22)
T ,
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where µ̂m1m2
= 1

n

n∑
i=1

ym1
i xm2

i , µm1m2 = E (ym1
i xm2

i ), m1,m2 = 0, 1, 2, 3, 4 and 1 ≤ m1 + m2 ≤ 4,

and all the bold letters represent vectors. Suppose the following assumptions hold.

1. Zi, i = 1, . . . ,n are independent and identically distributed from (µ,Σ) .

2. Σ = COV(Zi) is assumed to be positive semi-definite, where the diagonals of Σ are

Var (ym1
i xm2

i ) = µ(2m1)(2m2) − µ
2
m1m2

,

and the off-diagonals of Σ are

Cov
(
ym1
i xm2

i , y
m∗1
i x

m∗2
i

)
= µ(m1+m∗1)(m2+m∗2)

− µm1m2µm∗1m∗2 .

3. µ(m1+m∗1)(m2+m∗2)
<∞, ∀m1,m2,m

∗
1,m

∗
2 = 0, 1, 2, 3, 4, m1 +m2 ≤ 4,m∗1 +m∗2 ≤ 4.

Now we present the following proposition.

Proposition 1. Under assumptions 1 to 3, as n goes to ∞,

√
n (µ̂− µ) ∼ N (0,Σ) . (22)

The proof of this proposition is given in Appendix B.1.

Now, suppose the unique solution for each Lagrange multiplier exists. Then from (8), the vector

λ = (λ10, λ01, λ20, λ02, λ30, λ03, λ40, λ04, λ11, λ12, λ21, λ13, λ31, λ22)
T can be expressed as a function

of µ, i.e.

λ = g (µ) and λ̂ = g (µ̂) . (23)

Since from Proposition 1,
√
n (µ̂− µ) ∼ N (0,Σ) as n→∞, it follows that

√
n
(
λ̂− λ

)
∼ N

(
0, g(1) (µ) Σg(1) (µ)T

)
as n −→∞, (24)

where g(1) (µ) = ∂g(µ)
∂µT is the first derivative of g (µ) with respect to µ. See Appendix B.1.

Using the results in Proposition 1 and (24),
√
n
(
λ̂
∗−λ∗

)
∼ N

(
0, g∗(1) (µ) Σg∗(1) (µ)T

)
as

n −→∞, where λ∗ = g∗ (µ) and g∗(1) (µ) = ∂g∗(µ)
∂µT . We get the following proposition for m̂ (x) and

β̂ (x) .

Proposition 2. Under assumptions 1 to 3 and (24), the asymptotic distributions of m̂ (x) =
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m
(
x, λ̂

∗)
and β̂ (x) = β

(
x, λ̂

∗)
are given as n→∞,

√
n
(
m
(
x, λ̂

∗)−m (x,λ∗)
)
∼ N

(
0,m(1) (x,λ∗) g∗(1) (µ) Σg∗(1) (µ)T m(1) (x,λ∗)T

)
, (25)

where m(1) (x,λ∗) = ∂m(x,λ∗)

∂λ∗T
is the first derivative of m (x,λ∗) with respect to λ∗. And

√
n
(
β
(
x, λ̂

∗)− β (x,λ∗)
)
∼ N

(
0, β(1) (x,λ∗) g∗(1) (µ) Σg∗(1) (µ)T β(1) (x,λ∗)T

)
, (26)

where β(1) (x,λ∗) = ∂β(x,λ∗)

∂λ∗T
is the first derivative of β (x,λ∗) with respect to λ∗.

The proof of Proposition 2 is given in Appendix B.1. Also, we note that the convergence rates

of m
(
x, λ̂

∗)
and β

(
x, λ̂

∗)
are each

√
n.

4.2 Testing for Normality

When the true distribution f (x, y) is normal, the Lagrange multipliers for moments with orders

higher than two are equal to zero, i.e. λij = 0, ∀ i + j > 2. λ contains 9 elements with orders

higher than two. Testing whether (x, y) are jointly normal is equivalent to testing the null

H0 : Rλ = 0,

where R is a 9× 14 matrix with elements R (1, 6) , R (2, 7) , · · · , R (9, 14) = 1 and the rest elements

= 0. We develop a Wald test statistic

W =
(
Rλ̂
)′ (

V
(
Rλ̂
))−1 (

Rλ̂
)
,

where V
(
Rλ̂
)

= RV
(
λ̂
)
R′ in which V

(
λ̂
)

is the asymptotic variance. SinceRλ̂ is asymptotically

normal from (24), it follows that W is χ2
9 asymptotically. Conclusion is drawn based on the

comparison between calculated value of W and tabulated Chi-square distribution critical value.

When the true distribution f (x, y) is normal, the relationship between x and y is linear. Therefore,

it is also a test for linearity. In our empirical example in Section 3.3, we compute the Wald statistic

W ≈ 13548. At 1% significance level, we reject the null hypothesis. Thus, we conclude that the

relationship between age and logwage is nonlinear. Alternatively, one can test the null hypothesis

using entropy-ratio test.
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5 Conclusions

In this chapter, we have estimated the econometric functions through an IT method, which is non-

parametric. Two basic econometric functions, regression and response, have been analyzed. The

advantages of using IT method over parametric specifications and nonparametric kernel approaches

have been explained by the simulation and empirical examples. It can be a useful tool for practi-

tioners due to its simplicity and efficiency. Asymptotic properties are established. The IT based

estimators are shown to be
√
n consistent and normal. Thus, it has a faster rate of convergence

compared to the nonparametric kernel procedures.

Based on what has been developed in this chapter, further work can be done in the future; for

example, the bivariate regression approach introduced in this chapter can be potentially extended

to the multivariate case. Next, we can extend our chapter’s IT analysis for conditional variance and

conditional covariance functions, among other econometric functions. Furthermore, the IT method

may be carried over from Shannon’s information theory to Kullback and Leibler (1951) divergence

which has been discussed in the literature by Golan et al. (1996), Judge and Mittelhammer (2011),

Golan (2018), Ullah (1996), etc. Chakrabarty et al. (2015), Maasoumi and Racine (2016), and

Racine and Li (2017) have approached quantile estimation problems using nonparametric kernel

methods. Similarly, the maximum entropy based probability distributions derived in our chapter

may be adopted for nonparametric quantile estimation problems. In addition, our IT-based estima-

tor of conditional mean can be applied to the nonparametric component in semiparametric models,

such as the partial linear model. Along with all these, other future work may be to explore links

between IT-based density and the log-spline density considered in Stone (1990). Moreover, it would

be useful to establish connections of our asymptotically χ2 distributed Wald’s type normality test

in Section 4.2 with those of Neyman’s smooth test considered in Ledwina (1994) and Inglot and

Ledwina (1996) and the entropy-ratio test on the lambdas which is 2-times the difference of the

objective functions (with/without imposing the null hypothesis) and asymptotically distributed as

χ2, see for example Golan (2018, p.96). We feel the IT approach for specifying regression and

response functions considered here may open a new path to address specification and other related

issues in econometrics with many applications.
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Appendix A: Calculations

A.1: Recursive Integration

When the range for y is from −∞ to +∞, define the following integrals as functions of x.

Fr (x) ≡ Fr ≡
∫ +∞

−∞
yr exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy,

where r = 0, 1, 2, . . .. In particular,

F0 (x) ≡ F0 ≡
∫ +∞

−∞
exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy

F1 (x) ≡ F1 ≡
∫ +∞

−∞
y exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy

F2 (x) ≡ F2 ≡
∫ +∞

−∞
y2 exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy.

Suppose that λ40 is positive. Firstly, solve for F3.

0 =

∫ +∞

−∞
d exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}

=

∫ +∞

−∞

(
−4λ40y

3 − 3λ30(x)y2 − 2λ20(x)y − λ10(x)
)
e−[λ40y

4+λ30(x)y3+λ20(x)y2+λ10(x)y]dy

= −4λ40F3 − 3λ30(x)F2 − 2λ20(x)F1 − λ10(x)F0

F3 = − 1

4λ40
(3λ30(x)F2 + 2λ20(x)F1 + λ10(x)F0)

Secondly, solve for F4.

F0 =

∫ +∞

−∞
exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]d
}
y

= ye−[λ40y
4+λ30(x)y3+λ20(x)y2+λ10(x)y]|+∞−∞ −

∫ +∞

−∞
yde−[λ40y

4+λ30(x)y3+λ20(x)y2+λ10(x)y]

=

∫ +∞

−∞
(4λ40y

4 + 3λ30(x)y3 + 2λ20(x)y2 + λ10(x)y)e−[λ40y
4+λ30(x)y3+λ20(x)y2+λ10(x)y]dy

= 4λ40F4 + 3λ30(x)F3 + 2λ20(x)F2 + λ10(x)F1

F4 =
1

4λ40
(−3λ30(x)F3 − 2λ20(x)F2 − λ10(x)F1 + F0)

= −3λ30(x)

4λ40
F3 −

λ20(x)

2λ40
F2 −

λ10(x)

4λ40
F1 +

1

4λ40
F0.
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Replace F3 with − 1
4λ40

(3λ30(x)F2 + 2λ20(x)F1 + λ10(x)F0).

F4 =

(
9λ230(x)

16λ240
− λ20(x)

2λ40

)
F2 +(

3λ30(x)λ20(x)

8λ240
− λ10(x)

4λ40

)
F1 +(

3λ30(x)λ10(x)

16λ240
+

1

4λ40

)
F0

Thirdly, solve for F5.

F1 =

∫ +∞

−∞
y exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

=

∫ +∞

−∞
exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
d

(
1

2
y2
)

=
1

2
y2e−[λ40y

4+λ30(x)y3+λ20(x)y2+λ10(x)y]|+∞−∞ −
∫ +∞

−∞

1

2
y2de−[λ40y

4+λ30(x)y3+λ20(x)y2+λ10(x)y]

=

∫ +∞

−∞

1

2
y2(4λ40y

3 + 3λ30(x)y2 + 2λ20(x)y + λ10(x))e−[λ40y
4+λ30(x)y3+λ20(x)y2+λ10(x)y]dy

= 2λ40F5 +
3

2
λ30(x)F4 + λ20(x)F3 +

1

2
λ10(x)F2

F5 = − 1

2λ40

(
3

2
λ30(x)F4 + λ20(x)F3 +

1

2
λ10(x)F2 − F1

)
= −3λ30(x)

4λ40
F4 −

λ20(x)

2λ40
F3 −

λ10(x)

4λ40
F2 +

1

2λ40
F1.

Replace F3 and F4.

F5 =

(
−27λ330(x)

64λ340
+

3λ30(x)λ20(x)

4λ240
− λ10(x)

4λ40

)
F2 +(

−9λ230(x)λ20(x)

32λ340
+

3λ30(x)λ10(x)

16λ240
+
λ220(x)

4λ240
+

1

2λ40

)
F1 +(

−9λ230(x)λ10(x)

64λ340
− 3λ30(x)

16λ240
+
λ20(x)λ10(x)

8λ240

)
F0

Define
F ′0 ≡

dF0(x)
dx , F ′1 ≡

dF1(x)
dx , F ′2 ≡

dF2(x)
dx

λ′30(x) ≡ dλ30(x)
dx , λ′20(x) ≡ dλ20(x)

dx , λ′10(x) ≡ dλ10(x)
dx

15



Firstly, solve for F ′0.

F ′0 ≡ d

dx

∫ +∞

−∞
exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

=

∫ +∞

−∞

d

dx
exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

=

∫ +∞

−∞
(−λ′30(x)y3 − λ′20(x)y2 − λ′10(x)y)e−[λ40y

4+λ30(x)y3+λ20(x)y2+λ10(x)y]dy

= −λ′30(x)F3 − λ′20(x)F2 − λ′10(x)F1

Replace F3 with − 1
4λ40

(3λ30(x)F2 + 2λ20(x)F1 + λ10(x)F0).

F ′0 =

(
3λ′30(x)λ30(x)

4λ40
− λ′20(x)

)
F2 +

(
λ′30(x)λ20(x)

2λ40
− λ′10(x)

)
F1 +

λ′30(x)λ10(x)

4λ40
F0

Secondly, solve for F ′1.

F ′1 ≡ d

dx

∫ +∞

−∞
y exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

=

∫ +∞

−∞

d

dx
y exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

=

∫ +∞

−∞
(−λ′30(x)y4 − λ′20(x)y3 − λ′10(x)y2)e−[λ40y

4+λ30(x)y3+λ20(x)y2+λ10(x)y]dy

= −λ′30(x)F4 − λ′20(x)F3 − λ′10(x)F2

Replace F3 and F4.

F ′1 =

(
−9λ′30(x)λ230(x)

16λ240
+
λ′30(x)λ20(x)

2λ40
+

3λ′20(x)λ30(x)

4λ40
− λ′10(x)

)
F2 +(

−3λ′30(x)λ30(x)λ20(x)

8λ240
+
λ′30(x)λ10(x)

4λ40
+
λ′20(x)λ20(x)

2λ40

)
F1 +(

−3λ′30(x)λ30(x)λ10(x)

16λ240
− λ′30(x)

4λ40
+
λ′20(x)λ10(x)

4λ40

)
F0

Thirdly, solve for F ′2.

F ′2 ≡ d

dx

∫ +∞

−∞
y2 exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

=

∫ +∞

−∞

d

dx
y2 exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

=

∫ +∞

−∞
(−λ′30(x)y5 − λ′20(x)y4 − λ′10(x)y3)e−[λ40y

4+λ30(x)y3+λ20(x)y2+λ10(x)y]dy

= −λ′30(x)F5 − λ′20(x)F4 − λ′10(x)F3
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Replace F5, F4 and F3.

F ′2 =

 27λ′30(x)λ
3
30(x)

64λ340
− 3λ′30(x)λ30(x)λ20(x)

4λ240
+

λ′30(x)λ10(x)
4λ40

−9λ′20(x)λ
2
30(x)

16λ240
+

λ′20(x)λ20(x)
2λ40

+
3λ′10(x)λ30(x)

4λ40

F2 +

 9λ′30(x)λ
2
30(x)λ20(x)

32λ340
− 3λ′30(x)λ30(x)λ10(x)

16λ240
− λ′30(x)λ

2
20(x)

4λ240

−λ′30(x)
2λ40

− 3λ′20(x)λ30(x)λ20(x)

8λ240
+

λ′20(x)λ10(x)
4λ40

+
λ′10(x)λ20(x)

2λ40

F1 +

 9λ′30(x)λ
2
30(x)λ10(x)

64λ340
+

3λ′30(x)λ30(x)

16λ240
− λ′30(x)λ20(x)λ10(x)

8λ240

−3λ′20(x)λ30(x)λ10(x)

16λ240
− λ′20(x)

4λ40
+

λ′10(x)λ10(x)
4λ40

F0

Equations (16) and (17) are thus obtained.

A.2: Finite Integral Range

When the range for y [a (x) , b (x)] is varying based on x, define the following functions.

Fr (x) ≡ Fr ≡
∫ b(x)

a(x)
yr exp

{
−[λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]
}
dy

where r = 0, 1, 2, . . . Define the following functions of x.

A0 (x) ≡ A0 ≡ exp
{
−[λ40a (x)4 + λ30(x)a (x)3 + λ20(x)a (x)2 + λ10(x)a (x)]

}
B0 (x) ≡ B0 ≡ exp

{
−[λ40b (x)4 + λ30(x)b (x)3 + λ20(x)b (x)2 + λ10(x)b (x)]

}
A1 (x) ≡ A1 ≡ a (x) exp

{
−[λ40a (x)4 + λ30(x)a (x)3 + λ20(x)a (x)2 + λ10(x)a (x)]

}
B1 (x) ≡ B1 ≡ b (x) exp

{
−[λ40b (x)4 + λ30(x)b (x)3 + λ20(x)b (x)2 + λ10(x)b (x)]

}
A2 (x) ≡ A2 ≡ a (x)2 exp

{
−[λ40a (x)4 + λ30(x)a (x)3 + λ20(x)a (x)2 + λ10(x)a (x)]

}
B2 (x) ≡ B2 ≡ b (x)2 exp

{
−[λ40b (x)4 + λ30(x)b (x)3 + λ20(x)b (x)2 + λ10(x)b (x)]

}
L0,a(x) ≡ a′(x) exp

{
−[λ40a(x)4 + λ30(x)a(x)3 + λ20(x)a(x)2 + λ10(x)a(x)]

}
L0,b(x) ≡ b′(x) exp

{
−[λ40b(x)4 + λ30(x)b(x)3 + λ20(x)b(x)2 + λ10(x)b(x)]

}
L1,a(x) ≡ a′(x)a(x) exp

{
−[λ40a(x)4 + λ30(x)a(x)3 + λ20(x)a(x)2 + λ10(x)a(x)]

}
L1,b(x) ≡ b′(x)b(x) exp

{
−[λ40b(x)4 + λ30(x)b(x)3 + λ20(x)b(x)2 + λ10(x)b(x)]

}
L2,a(x) ≡ a′(x)a(x)2 exp

{
−[λ40a(x)4 + λ30(x)a(x)3 + λ20(x)a(x)2 + λ10(x)a(x)]

}
L2,b(x) ≡ b′(x)b(x)2 exp

{
−[λ40b(x)4 + λ30(x)b(x)3 + λ20(x)b(x)2 + λ10(x)b(x)]

}
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The expressions for F ′0(x), F ′1(x), and F ′2 (x) are modified as

F ′0(x) = Λ00(x)F0(x) + Λ01(x)F1(x) + Λ02(x)F2(x) + C0(x)

F ′1(x) = Λ10(x)F0(x) + Λ11(x)F1(x) + Λ12(x)F2(x) + C1(x)

F ′2(x) = Λ20(x)F0(x) + Λ21(x)F1(x) + Λ22(x)F2(x) + C2(x)

where Λ′s denote the corresponding coefficients. C ′s are defined as follows, which contain the age

x and its logwage range [a (x) , b (x)] .

C0(x) = −λ
′
30(x)

4λ40
(A0 −B0) + L0,b(x)− L0,a(x)

C1(x) = −λ
′
30(x)

4λ40
(A1 −B1) +

(
3λ′30(x)λ30(x)

16λ240
− λ′20(x)

4λ40

)
(A0 −B0) + L1,b(x)− L1,a(x)

C2(x) = −λ
′
30(x)

4λ40
(A2 −B2) +

(
3λ′30(x)λ30(x)

16λ240
− λ′20(x)

4λ40

)
(A1 −B1)

+

 −9λ′30(x)λ
2
30(x)

64λ340
+

λ′30(x)λ20(x)

8λ240

+
3λ′20(x)λ30(x)

16λ240
− λ′10(x)

4λ40

 (A0 −B0) + L2,b(x)− L2,a(x)

Since

F0(x0 + h) ≈ F0(x0) + F ′0(x)h

F1(x0 + h) ≈ F1(x0) + F ′1(x)h

F2(x0 + h) ≈ F2(x0) + F ′2(x)h

for a given initial value x0 and a small increment h, the functions of x, F0(x), F1(x) and F2(x) can

be traced out. At each x value, the logwage(y) limits a(x), b(x) can be obtained through Taylor

expansion in the neighborhood of a certain data point x∗,

a(x) ≈ a(x∗) + a′(x∗) (x− x∗) +
1

2!
a′′(x∗) (x− x∗)2 +

1

3!
a
′′′

(x∗) (x− x∗)3 + · · ·

b(x) ≈ b(x∗) + b′(x∗) (x− x∗) +
1

2!
b′′(x∗) (x− x∗)2 +

1

3!
b
′′′

(x∗) (x− x∗)3 + · · · .

Derivatives of a(x), b(x) can be approximated by

a′(x) =
a(x+ 1)− a(x− 1)

2

a′′(x) =
a(x+ 2)− 2a(x) + a(x− 2)

4

a′′′(x) =
a(x+ 3)− 3a(x+ 1) + 3a(x− 1)− a(x− 3)

8
.

It is similar for the upper limit b (x) .
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A.3: Empirical Study: An Illustration of Calculations

The logwage range is approximated by Taylor expansion. For example, at age 30, logwage range

[a(30), b(30)] is estimated twice in the neighborhood of age 29 and 31,

a(30) ≈ a(29) + a′(29) (30− 29) +
1

2!
a′′(29) (30− 29)2

a(30) ≈ a(31) + a′(31) (30− 31) +
1

2!
a′′(31) (30− 31)2

a(30) is the average of these two estimates. b (30) is calculated in the same way. For ages x at the

two tails, range [a(x), b(x)] is averaged by Taylor expansions in the neighborhood of several data

points. For example, the starting age is 21 in the data set. Logwage range [a(21), b(21)] is estimated

by averaging Taylor expansions in the neighborhood of age 22, 23 and 24. The initial values

F0 (21) , F1 (21) and F2 (21) are computed by integration with the approximated range [a(21), b(21)],

i.e. x0 = 21 in the algorithm above. For small enough value h, sequences of F0 (x) , F1 (x) and

F2 (x) are obtained by the recursive algorithm. Thus, m (x) is computed by taking ratios of F1 (x)

and F0 (x) at every age x. Integration is needed only once, at the initial age 21.

Appendix B: Asymptotic Properties of IT Estimators

B.1: Proof of Proposition 1 and (24)

From (21),

√
n (µ̂− µ) =

√
n

(
1

n

n∑
i=1

Zi − µ

)
=

1√
n

(
n∑
i=1

Zi − µ

)
.

The multivariate characteristic function is

ϕ√n(µ̂−µ) (t) = ϕ
1√
n

(
n∑

i=1
Zi−µ

) (t)

= ϕZ1−µ

(
t√
n

)
ϕZ2−µ

(
t√
n

)
· · ·ϕZn−µ

(
t√
n

)
=

[
ϕZ1−µ

(
t√
n

)]n
= E

[
e
i
(

t√
n

)′
(Z1−µ)

]
,

where t is a column vector. By Taylor’s Theorem,

ϕZ1−µ

(
t√
n

)
= 1− 1

2n
t′Σt+O

(
t3
)
, t −→ 0.
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Since ex = lim
n−→∞

(
1 + x

n

)n
,

ϕ√n(µ̂−µ) (t) =

[
1− 1

2n
t′Σt+O

(
t3
)]n
−→ exp

(
−1

2
t′Σt

)
as n −→∞.

Thus,
√
n (µ̂− µ) ∼ N (0,Σ) as given in Proposition 1.

Now to obtain the result in (24), we write the first-order approximation of λ̂ as

λ̂ = g (µ̂)

' g (µ) +
∂g (µ̂)

∂µ̂T
|µ̂=µ (µ̂− µ)

= g (µ) + g(1) (µ) (µ̂− µ) .

√
n
(
λ̂− λ

)
=
√
n ((g (µ̂)− g (µ)))

'
√
n
(
g(1) (µ) (µ̂− µ)

)
.

Since
√
n (µ̂− µ) ∼ N (0,Σ) as n −→∞,

√
n
(
λ̂− λ

)
∼ N

(
0, g(1) (µ) Σg(1) (µ)T

)
.

The convergence rate of λ̂ is n1/2. This is the result in (24).

B.2: Asymptotic Normality of Maximum Entropy Joint Density,
Regression Function and Response Function

Using first-order approximation of the estimated maximum entropy joint density,

f
(
y, x, λ̂

)
' f (y, x,λ) +

∂f
(
y, x, λ̂

)
∂λ̂

T
|λ̂=λ

(
λ̂− λ

)
= f (y, x,λ) + f (1) (y, x,λ)

(
λ̂− λ

)
.

√
n
(
f
(
y, x, λ̂

)
− f (y, x,λ)

)
=
√
n
(
f (1) (y, x,λ)

(
λ̂− λ

))
=
√
n
(
f (1) (y, x,λ) g(1) (µ) (µ̂− µ)

)
.

Since
√
n (µ̂− µ) ∼ N (0,Σ) as n −→∞,

√
n
(
f
(
y, x, λ̂

)
− f (y, x,λ)

)
∼ N

(
0, f (1) (y, x,λ) g(1) (µ) Σg(1) (µ)T f (1) (y, x,λ)T

)
.

The convergence rate of f
(
y, x, λ̂

)
is n1/2.
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The maximum entropy regression function of x and λ̂
∗

is approximated by

m
(
x, λ̂

∗) ' m (x,λ∗) +
∂m

(
x, λ̂

∗)
∂λ̂
∗T |

λ̂
∗
=λ∗

(
λ̂
∗−λ∗

)
= m (x,λ∗) +m(1) (x,λ∗)

(
λ̂
∗−λ∗

)
.

√
n
(
m
(
x, λ̂

∗)−m (x,λ∗)
)

=
√
n
(
m(1) (x,λ∗)

(
λ̂
∗−λ∗

))
=
√
n
(
m(1) (x,λ∗) g∗(1) (µ) (µ̂− µ)

)
.

Since
√
n (µ̂− µ) ∼ N (0,Σ) as n −→∞,

√
n
(
m
(
x, λ̂

∗)−m (x,λ∗)
)
∼ N

(
0,m(1) (x,λ∗) g∗(1) (µ) Σg∗(1) (µ)T m(1) (x,λ∗)T

)
.

The convergence rate of m
(
x, λ̂

∗)
is n1/2.

Similarly, it can be shown that

√
n
(
β
(
x, λ̂

∗)− β (x,λ∗)
)
∼ N

(
0, β(1) (x,λ∗) g∗(1) (µ) Σg∗(1) (µ)T β(1) (x,λ∗)T

)
.
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