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1. Introduction

In this paper we present a new information-theoretic approach for forecasting interval-

valued time series data. Rather than observing a single value for each data point, we

observe an interval where the observed values are the bounds of these intervals. Such data

may be a result of simple aggregation or emerging from some natural process. Examples

include intraday stock prices and returns, which are routinely aggregated to obtain daily

intervals within the upper and lower bounds. Similarly, daily closing prices of stocks can

be aggregated to form an interval with bounds of the lowest and highest weekly prices.

At times, however, the observed intervals may be simply due to the intrinsic nature of

the observable information. For example, due to the difficulty in precise measurement

of an individual’s blood pressure, it must be measured as an interval of systolic and

diastolic pressures. In other cases, the interval nature of the data emerges from necessary

transformations of the original detailed data. This is commonly observed in risk analysis,

high-frequency financial data, weekly oil prices, and weather patterns.

In the above cases, the observed values are the bounds of the interval. There are

also cases where more information about the within-interval distribution is observed or

known. Examples include data on the minute by minute temperature within one day,

or data coming from the survey of professional forecasters that consist of both point

forecasts and a more refined frequency, or even a histogram of frequencies. In that case,

much more information is available. In this paper we concentrate on the case where the

observed information is in terms of the bounds of the interval. Nothing else is observed.

Our objective is to forecast these intervals (or the bounds of the intervals) with minimal

distributional and structural assumptions.

Unlike the more traditional point-data, interval data have some additional features.

One such feature is that the within interval distribution of the different observations need

not be the same. When the observed information is only about the bounds of the interval,

these distributions are unobserved. Therefore, in most estimation and forecasting models

these distributions are assumed to be uniform. We avoid that assumption. Another
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feature is that the relationship among these intervals (say independent and dependent,

or lag interval and current time interval) may not be unique. For example, the bottom

part of the X interval may be associated with the bottom part of the Y interval in one

way, while the middle and upper parts of X may be associated with the middle and upper

parts of Y in a different way (multiple models). Consequently, methods developed for

estimation and inference of classical (point) data are often not directly applicable for

estimation and inference of interval data unless strong assumptions are imposed on the

estimation model.

In this paper we develop an estimation method for interval-valued data, and apply it

to forecast the daily returns (up to five days into the future) of the SP500 over 13 years

of data. We concentrate here on the case where the observed information is in terms

of a minimum and maximum values of an interval. No other information is observed.

Our method is different than other methods in two fundamental ways. First, it is based

on minimal structural assumptions. For example, we do not assume that every point in

the interval emerged from the same underlying process; there may be multiple models

behind the process. Second, our approach uses minimal statistical assumptions. It is a

semiparametric, information-theoretic approach. It is statistically and computationally

efficient.

Using interval-valued data within economic, econometric and finance is a relatively

new phenomenon. Most of the interval-data studies, however, focus on cross-sectional

data. The development of estimators for studying Interval Time Series (ITS) data is

still in its infancy. Examples include Xu et al. (2008), Han et al. (2008) and Maia et al.

(2008) who extended the traditional time series analysis to interval data. These stud-

ies are extensions of Interval Least-Squares (ILS), autoregressive (AR), autoregressive

integrated moving average (ARIMA) models, artificial neural network (ANN), and a

hybrid methodology combining both ARIMA and ANN approaches. Each one of these

approaches fits two independent models of the interval data, such as the mid-point and

range of the interval. These methods were used to study the stock market indices and
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the sterling-dollar exchange rate. Han et al. (2011) used their estimator for forecasting

interval-valued crude oil prices with autoregressive conditional interval (ACI) models that

are based on a minimum DK-distance method (or K-th order interval distance) devel-

oped in Han et al. (2012). Depending on the kernel chosen, their DK-distance estimator

utilizes both center and range information of the interval sample. Arroyo et al. (2010),

González-Rivera and Arroyo (2012), and Arroyo et al. (2011) developed forecasting meth-

ods for interval and histogram time series, which are adapted from classical algorithms

such as smoothing filters and non-parametric k nearest neighbors (k-NN) methods. An-

other approach that builds on classical time series methods includes the work of He et al.

(2010). They use a Vector Error Correction Model (VECM) with cointegrating vector

constrained to (1,-1) for studying the daily highs and lows of West Texas intermediate

crude oil prices. A new and different approach, proposed by Lin and González-Rivera

(2016), builds on the concept of order statistic. It is based on the assumptions that the

densities of the underlying stochastic process, and the number of draws, are conditional

normal and negative binomial, respectively. It also assumes that the same stochastic

process generates both bounds of the intervals. They applied their model to study the

behavior of beef prices and the number of trades. These papers demonstrate that the

different forecasting techniques used can be quite successful with financial, and other,

data. We show here that our approach provides improved forecasts under all criteria

In this paper we develop an iterative, Information-Theoretic (IT) method for infer-

ence of interval-valued time series data to forecast the daily interval of the SP500 index

returns. Unlike all other methods, our estimation approach (i) uses the entire sample

information (rather than just the sample’s moments), (ii) imposes minimal assumptions

on the underlying statistical process, and (iii) allows for multiple associations (models)

among the independent and dependent interval data. Our method simultaneously selects

the model (or models) and infers the models’ parameters. For example, in a two-variable

interval regression, we allow for multiple models (relationships) between the right and

left-hand-side intervals. In that case, the relationship between the lower quartile of the
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independent interval may be associated with the lower quartile of the dependent interval

(variable) in one way, and with the middle/upper quartile in another way.

Our inferential IT method has its roots at the intersection of information theory and

statistical inference. It is based on the premise that the basic estimation problem is in-

herently under-determined, unless we are willing to impose a certain structure, or certain

statistical assumptions, that cannot be verified. To solve this underdetermined, inverse

problem, we convert the problem to a constrained optimization one where we use Shan-

non’s entropy as the criterion to choose the solution out of the many possible solutions

that satisfy the observed interval information. See Golan (2018) for the foundations of

this framework, more background and numerous applications.

The rest of the paper is structured as follows. In Section 2 we provide a brief discussion

on interval estimation and describe in more details some of the competing approaches.

In Section 3 we discuss our approach. We start by motivating it and summarizing the

different mechanisms that may produce the observed interval data. We then describe

our iterative approach and our IT method. In Section 4 we provide the statistics used to

evaluate the forecasts. Section 5 presents the empirical results using the SP500 returns.

We conclude in Section 6. Additional summary statistics, tables, plots, our data and a

computer code are provided in the supplementary materials.

2. Interval Estimation: The Basic Problem

2.1. Variability vs. Uncertainty

Suppose a set of known variables X is associated with (or may even have a causal effect

on) the dependent variable y, and both the y’s and the X’s are observed as intervals.

Specifically, the only values observed are the minimum and maximum of the intervals. No

other information on the distribution is known or assumed. Let
(
Y L, Y U

)
denote a pair

of real-valued random variables such that Y L < Y U with probability one, where L and U

stand for the lower and upper bounds respectively. Then
[
Y L, Y U

]
is an interval-valued

random variable. Suppose a random sample on
[
Y L, Y U

]
is available and is denoted
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as
{[
Y L, Y U

]
i

}n
i=1

. Such data are referred to as interval data which may represent

uncertainty or variability of the observed information. In the former case (uncertainty),

there is a random (latent) variable of interest denoted as Y ∗ satisfying Y ∗ ∈
[
Y L, Y U

]
with probability one, but the researcher does not observe Y ∗. For further discussion

see Manski and Tamer (2002), Manski (2003), Beresteanu and Molinari (2008), and

Beresteanu et al. (2011). In the latter case (variability), the variable of interest is the

interval-valued random variable
[
Y L, Y U

]
and the parameters of interest are functions

of
[
Y L, Y U

]
.

In this paper, we focus on modeling variability and our main objective is to predict the

lower and upper end points Y L, Y U , or more accurately, the complete interval between

Y L and Y U . The commonly used approaches assume the existence of a single underlying

model that captures the relationship among variables in the independent intervals and

the dependent one (see previous references). We relax that assumption.

2.2. Discussion of Other Methods

In this section, we summarize some of the currently used methods for predicting end

points of the interval-valued random variable. See Xu (2010) and Ahn et al. (2012) for

a more detailed discussion.

Using the same notations as Ahn et al. (2012), let X1, ..., XK be K explanatory

variables and Y be the response variable. Assume that Xik = [XL
ik, X

U
ik] with XL

ik ≤ XU
ik

and Yi = [Y Li , Y
U
i ] with Y Li ≤ Y Ui , for i = 1, ..., N and k = 1, ...,K. Consider the

following linear regression model:

Y = Xβ + ε (1)

where Y = (Y1, ..., YN )′,X = (X1, ..., XN )′, Xi = (1, Xi1, ..., XiK)′ for i = 1, ..., N, β =

(β0, β1, ..., βK)′, ε = (ε1, ..., εN )′, εi ∼ N(0, σ2). Model (1) assumes that the effect

of every covariate variable in the observed interval on every variable in
[
Y L, Y U

]
is the

same facilitating the estimation of β via classical linear regressions for real-valued random
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variables. Now, we briefly review the major commonly used approaches.

Billard and Diday (2000) proposed the center method (CM), which is one of the first

estimators developed for analyzing interval-valued data. The CM fits a linear regression

line to the center points of the intervals. Let Xc
1 , ..., X

c
K be the center points of the

intervals of explanatory variables X1, ..., XK and Y c be the center point of a response

variable Y . The CM essentially transforms the interval linear regression model of (1)

into a center-points model

Yc = Xcβc + εc (2)

where Yc = (Y c1 , ..., Y
c
N )′,Xc = (Xc

1 , ..., X
c
N )′, Xc

i = (1, Xc
i1, ..., X

c
iK)′ for i = 1, ..., N, βc =

(βc0, β
c
1, ..., β

c
K)′, and εc = (εc1, ..., ε

c
N )′.

The estimator β̂c is the usual least squares

min
β̂c

∑
i

ε̂ci
2

=
∑
i

(Y ci − β̂c
′
Xc
i )2 (3)

so β̂c = (Xc′Xc)−1Xc′Yc and the standard statistical properties are readily adopted.

Prediction of Ŷ = [Ŷ L, Ŷ U ] is given as:

Ŷ q = xq0β̂
c, q = L,U (4)

for a new observation (xL0 , x
U
0 ). Xu (2010) and Xu and Billard (2012) point out that a

lower bound predicted response variable can be higher than an upper bound, and suggest

the following modified prediction:

Ŷ L = min(xL0 β̂
c, xU0 β̂

c) ; Ŷ U = max(xL0 β̂
c, xU0 β̂

c). (5)

Although the CM uses the ranges of predictors for predicting of the lower and upper

bounds, these bounds are ignored in estimating the parameters. That is, the variations

within observations are not utilized.
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In an attempt to capture the internal variations as well as variations across observa-

tions, Lima Neto et al. (2004, 2008) propose the center and range method (CRM) that

transforms the interval-valued data into two quantities: center and range. Then, they

regress the center points and ranges separately. The CRM keeps the same model as in (2)

for the center points regression. The range regression model is based on Xr
ik = (XU

ik−XL
k )

and Y ri = (Y Ui − Y Li ). Specifically, let Xr
1 , ..., X

r
K be the K ranges of the intervals of

X1, ..., XK and Y r be the range of Y. The range regression is then

Yr = Xrβr + εr (6)

where Yr = (Y r1 , ..., Y
r
N )′,Xr = (Xr

1 , ..., X
r
N )′, Xr

i = (1, Xr
i1, ..., X

r
iK)′ for i = 1, ..., N, βr =

(βr0 , β
r
1 , ..., β

r
K)′, and εr = (εr1, ..., ε

r
N )′. Both β̂c and β̂r are estimated simultaneously by

minimizing the following objective function:

min
β̂c,β̂r

∑
i

(ε̂ci
2

+ ε̂ri
2
). (7)

They essentially performed two separate minimizations, one for the centers and an-

other for the ranges, assuming that mid-points and ranges are independent. However,

Ahn et al. (2012) asserts that such assumption may not be true in general. Although

CRM captures the interval variations through the ranges, Ahn et al. (2012) also point

out that it is not clear how these variations are transferred to the estimated coefficients.

Prediction of Ŷ = [ŶL, ŶU ] is given as

Ŷ L = Ŷ c − Ŷ r

2
; Ŷ U = Ŷ c +

Ŷ r

2
(8)

where Ŷ c and Ŷ r are predicted values from (2) and (6).

Similar to CRM, Billard and Diday (2007) proposed a bivariate center and range

method (BCRM) which simultaneously utilizes both the centers and the ranges as pre-

dictors in the models. So far all the approaches summarized build directly on the least
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squares. Note that when all the explanatory and response intervals have the same centers

and ranges, the previous methods will not work.

In contrast to the previous approaches, Xu (2010) and Xu and Billard (2012) proposed

a symbolic covariance method (SCM). Their model builds on the symbolic covariance

function of Billard (2007, 2008) and the symbolic sample mean of Bertrand and Goupil

(2000). Ahn et al. (2012), on the other hand, proposed a Monte-Carlo method that

generates a large number of samples by randomly selecting, uniformly, a single-valued

data point for each observed interval, fit a classical linear regression model on each single-

valued sample, and then calculates the mean estimated coefficients over the fitted models.

Then, they use the means of the estimated coefficients to predict the response variable.

Among all of the above mentioned existing methods, we contrast our forecasts only

with the two commonly used methods for time series data: Center and Range Method

(CRM) and Constrained Center and Range Method (CCRM). Since the analysis of in-

terval data is very much in line with the study of volatility measures, we also compare

our approach with forecasts based on the classical conditional mean and variance model

of AR(1) - GARCH(1,1). See Bollerslev (1986).

For a time series interval variable Rt = [RLt , R
U
t ], we define the time series of the

centers and ranges as RCt = (RLt + RUt )/2 and RRt = RUt − RLt , respectively. The CRM

method estimates the following system:

RCt = βC0 + βC1 R
C
t−1 + ...+ βCp R

C
t−p + εCt

RRt = βR0 + βR1 R
R
t−1 + ...+ βRp R

R
t−p + εRt .

(9)

As is shown in (9), the CRM estimates two separate regressions; one for each transformed

quantities of the intervals. The CCRM imposes the additional restriction βRj ≥ 0, j =

0, ..., p. That ensures that R̂Rt ≥ 0, so R̂Lt ≤ R̂Ut .

The conditional mean and variance model applied to the time series data of the centers
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is basically an AR(1) - GARCH(1,1) of the centers:

RCt = ϕ1R
C
t−1 + σtζt

σ2
t = ω + γε2t−1 + βσ2

t−1

(10)

where ζt follows a standard normal (GARCH-Normal) or Student-t (GARCH-T) density

with v degrees of freedom, and ϕ1, σt, ω, γ and β are parameters to be estimated. In

this model, as was shown in González-Rivera and Lin (2013), (1-α) probability intervals

can be constructed based on ζt. Therefore, the predicted intervals are: [R̂Lt , R̂
U
t ]α =

[R̂Ct −zα2 σ̂t, R̂
C
t +zα

2
σ̂t] for GARCH-Normal and [R̂Lt , R̂

U
t ]α = [R̂Ct − tv̂,α2 σ̂t, R̂

C
t + tv̂,α2 σ̂t]

for GARCH-T. Since the original data [RLt , R
U
t ] are the observed extreme values of the

process at t, one can stretch the estimated interval [R̂Lt , R̂
U
t ]α to cover as much as 99%

or 99.5% probability, so that R̂Lt and R̂Ut are far away into the tails of the distribution.

3. An Information-Theoretic Model Selection and Estimation Method

In this section, we propose an information based iterative procedure for modeling in-

terval data. We then explore its application for predicting the interval of the dependent

variable. Our proposed iterative framework has several advantages. First, it is simple

and easy to implement. Second, it relaxes distributional assumptions on the within-

interval behavior. Third, rather than forcing a unique relationship (model) between

the (independent and dependent) intervals, we allow for multiple models, and provide a

statistic to choose the optimal model (or models). Fourth, we do not impose distribu-

tional assumptions. We now discuss our iterative framework. Then, we summarize our

IT estimator.

3.1. The Iterative Framework

Our interval model is formulated in its most general terms where both the dependent

and independent variables are intervals. This includes the simpler case where the exoge-

nous variables (or just some of the variables) are point-valued. In that case, the interval
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of that exogenous variable reduces to a point, and therefore, the number of possible

models decreases.

To introduce the idea, consider first the simplest case. Suppose that there is only

one explanatory variable Xi = [XL
i , X

U
i ] and one response variable Yi = [Y Li , Y

U
i ] for

i = 1, ..., N observations. We divide each observation of Xi and Yi into some finite

and discrete number of equal size sub-intervals (or points) indexed by m = 1, 2, ...,M ,

to get Xm
i = [X1

i , X
2
i , ..., X

M
i ] and Ym

i = [Y 1
i , Y

2
i , ..., Y

M
i ], where each Xm and Ym

are N vectors of point-valued data generated from each sub-interval. Simply stated, M

represents the number of sub-intervals within each X and Y, or we can view it for now

as M observed points within each observation (Xi,Yi). For example, for observation

i = 1 with one interval-valued regressor Xi, suppose we observed X1 = [2, 10] and

Y1 = [6, 22]. We can divide them into M = 5 equally spread points so that we have X1 ≡

[X1
1 , X

2
1 , X

3
1 , X

4
1 , X

5
1 ] = [2, 4, 6, 8, 10] and Y1 ≡ [Y 1

1 , Y
2
1 , Y

3
1 , Y

4
1 , Y

5
1 ] = [6, 10, 14, 18, 22].

Alternatively, we can divide the original intervals into M − 1 sub-intervals so that X1 ≡

[[2, 4], [4, 6], [6, 8], [8, 10]] and Y1 ≡ [[6, 10], [10, 14], [14, 18], [18, 22]], and then using only

endpoints of the sub-intervals would yields X1 ≡ [2, 4, 6, 8, 10] and Y1 ≡ [6, 10, 14, 18, 22].

Both approaches would correspond to Y mi = 2 + 2Xm
i . In this example we assume that

each sub-interval m of X causes linearly the mth sub-interval of Y and the impacts are

the same across different points within the intervals.

But now, to be more realistic, assume that we know X causes Y linearly but we do

not know the correct model or models. We do not know if each point within the interval

of X affects Y in the same way. Maybe, for example, points on the lower part of X

affect Y in a different way than points around the mean or the upper portion of the

interval. Therefore, each sub-interval m may have a different coefficient resulting in mul-

tiple models. More precisely, we do not know which combination of intervals (or points)

m(= m1,m2, ...,mK) of the K explanatory variables X correspond to which interval (or

point) m of Y m. Given this complex setting, we want to infer the relationship between

each one of the X sub-intervals and the Y sub-intervals. We allow for multiple a-priori
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models. To do so with minimal assumptions on the underlying distribution, we apply

our IT estimator for all possible combination of sub-intervals within the interval-valued

random variables X and Y. Figure 1 presents our iterative approach for one and two

independent variables.

[Insert Figure 1 here]

Consider, for example, M = 5 and K = 1 as shown in Figure 1. Then, us-

ing M ×MK combinations of pairs such as (X1
1,Y

1), (X1
1,Y

2),...,(X1
1,Y

5), (X2
1,Y

1),

(X2
1,Y

2),...,(X5
1,Y

5), where Xm1
1 ≡ Xm1

i1 and Ym ≡ Y mi for i = 1, ..., N and m,m1 =

1, ...,M , we obtain 25 sets of estimated coefficients via a linear estimator, while K = 2

produces 125 sets of estimated coefficients. Since each pair of (Xm1
1 ,Ym) or (Xm1

1 ,Xm2
2 ,Ym)

becomes our classical points-based sample, the estimated coefficients for each iteration

are point identified.

Using these estimated regression coefficients, together with the empirical distribution

of the estimator’s objective values (discussed below) for each one of the models, we can

determine the best model (or models). It is the model (models) with the highest value

(values). Thus, we identify the best models (or model), and simultaneously obtain the

inferred parameters of these models.

Finally, we provide two comments on the choice of M . First, theoretically, the larger

the M , the more possible models one can capture. Assuming, however, that the only

observed information is the lower and upper bounds of the interval, and that the within-

interval is not too different than uniform, the estimates are not sensitive to that choice

as long as M is ‘large’ enough. For all practical purposes, based on a large number

sampling experiments, we find M = 5 to be large enough. These experiments are not

presented here. Second, from computational point of view, the larger the M , the larger

the number of iterations and possible models. Empirically, we find M = 5 to be sufficient.

Our qualitative results and forecasts do not change for larger values of M . To sum, the
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basic choice of M depends on the trade-off between the amount of variations obtained

by increasing M and the increase in iterations required. If we expect a non-uniform

distribution within the interval, we should increase M accordingly. In future work we

plan to investigate M and related properties. In this paper, we use M = 5.

3.2. An IT Estimator: A Concise Summary

Before discussing the IT estimator we employ here, we note that any other estimator

can be used within our iterative (model selection) framework. The choice of the estimator

is independent of the choice of our model selection, iterative, framework. We choose to

use a special IT estimator due to its superior performance and because it is based on

minimal assumptions and structure. The IT approach we employ here is a member of

the IT family of estimators, which is encompassed within the info-metrics framework

(Golan, 2018). The estimator itself is based on the work of Golan et al. (1996) and the

recent developments in Golan (2018). We use this method to estimate each one of the

linear models (regressions) in our iterative framework. We now formulate that method

for estimating a single regression.

Consider a linear regression model y = Xβ + ε where y is a N -dimensional vector

of observed random variable, X is a N × K matrix of exogenous variables; β is K-

dimensional vector of unknown coefficients; and ε is a N -dimensional vector of unobserved

error terms with mean zero. Rather than search for the point estimates β, each βk is

viewed as the mean value of some well defined random variable z. The unobserved error

vector ε is also viewed as another set of unknowns where each εi is constructed as the

mean value of some random variable v. Our objective here is to estimate the unknown β

with minimal distributional assumptions. Under the info-metrics framework, however, we

estimate simultaneously the full distribution of each βk and each εi (within their support

spaces) with minimal distributional assumptions. For a comprehensive discussion of info-

metrics see Golan (2018). For an overview of the class of IT methods see also Judge and

Mittelhammer (2011).
13



Without loss of generality, let each (k) element of β be bounded below by zk and

above by z̄k:

B = {β ∈ <K |βk ∈ (zk, z̄k), k = 1, ...,K}. (11)

Let zk be an S-dimensional vector, so, zk ≡ (zk, z̄k)′ = (zk1, ..., zkS)′ for all k =

1, ...,K, and Z is a K × S matrix consisting of the individual S-dimensional vectors zk

and the elements zkm. Let pk be an S-dimensional normalized probability distribution

defined on the set zk such that

βk =
∑
s

pkszks ≡ Epk [zk] or β = EP [Z] (12)

and E is the expectation operator. In this formulation, the observed data, y, are viewed

as the mean process Z with a probability distribution P that is defined on zk and is

conditional on X. (Note that β can be constructed as the median or any other quantity

of interest, within this framework.)

Similarly, assume that ε ∈ V where V is a convex set that is symmetric around zero.

As done with the β’s above, each error term is formulated as

εi =
∑
j

wijvj ≡ Ewi [v] or ε = EW [V ]. (13)

That is, the observed errors are viewed as elements taken as random draws from a certain

distribution with probability weights {wij}. The dimension of the matrices V and W

is N × J . For simplicity, the above random variables are constructed as discrete and

bounded. For unbounded and continuous supports see, for example, Golan and Gzyl

(2002, 2012).

Having reformulated β and ε, the linear model is specified as

yi =

K∑
k=1

S∑
s=1

zkspksxik +
∑
j

vjwij , or y = XEP [Z] + EW [V ]. (14)
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The IT estimation method is

IT =



p̂ = argmax
{p,w}

{
{H(p) +H(w)} ≡ −

∑
k,s

pkslog(pks)−
∑
i,j

wij log(wij)

}
s.t.

yi =
∑
k,s

zkspksxik +
∑
j

vjwij ,

∑
s
pks = 1 ,

∑
j

wij = 1

(15)

where H(p) = −
∑
k,s

pkslog(pks) and H(w) = −
∑
i,j

wij log(wij) are the entropies of p and

w, respectively.

Constructing the Lagrangian and solving yields the estimated probabilities for the

vector β:

p̂ks =
exp(−zks

∑
i λ̂ixik)∑

s exp(−zks
∑
i λ̂ixik)

≡
exp(−zks

∑
i λ̂ixik)

Ωk(λ̂i)
, (16)

the estimated probabilities for the ε:

ŵij =
exp(−λ̂ivj)∑
j exp(−λ̂ivj)

≡ exp(−λ̂ivj)
Ψi(λ̂i)

(17)

and where λ̂ is the vector of estimated Lagrange multipliers associated with the data

constraints yi. The estimated values of β and ε are

β̂k =
∑
s

zksp̂ks (18)

ε̂i =
∑
j

vjŵij . (19)

Ωk(λ̂i) =
∑
s exp(−zks

∑
i λ̂ixk) and Ψi(λ̂i) =

∑
j exp(−λ̂ivj) are the partition (normal-

ization) functions of (16) and (17) respectively.
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As with other methods, it is possible to transform the constrained optimization (pri-

mal) model to a dual, concentrated model which is a function of the Lagrange multipliers

λ (Golan et al., 1996; Golan, 2018):

max
{p∈P,w∈W}

H(P,W ) = min
λ∈D

{∑
i

yiλi +
∑
k

logΩk(λi) +
∑
i

logΨi(λi)

}

= min
λ∈D

∑
i

yiλi +
∑
k

log

[∑
s

exp(−zks
∑
i

λixik)

]
+
∑
i

log

∑
j

exp(−λivj)

 .

(20)

The concentrated model is solved by minimizing with respect to λ. The optimal set of

λ’s is then used to obtain the P ’s via Equation (16), with which the set of β’s is inferred

via Equation (18). The Hessian matrix is negative definite for P,W ≥ 0 and thus satis-

fies the sufficient condition for a unique global minimum. This IT estimator minimizes

the joint entropy distance between the data and the state of complete uncertainty (the

uniform distribution). It is a dual-loss function that assigns equal weights to prediction

and precision. Equivalently, it can be viewed as a shrinkage estimator that shrinks the

data to the priors (uniform distributions) and towards the center of their supports (the

midpoint between zk and z̄k for each βk, and zero for each εi).

The estimated probabilities provide the full distribution (within the boundaries of the

supports) of each one of the parameters of interest (β and ε). The β’s are direct functions

of the Lagrange multipliers (λ). These multipliers reflect the marginal information of

each observation. Like the empirical (or generalized) likelihood methods they capture

the natural weight of each observation and convey that information in the estimated

exponential distributions ˆpks and ŵij . (For the basics of the empirical and generalized

empirical likelihood methods, see for example Smith (2005), Owen (2001), Judge and

Mittelhammer (2011).) For more recent development, basic properties, inference and

diagnostics see Golan (2018).
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4. Evaluating the Forecast Accuracy

To evaluate forecasts among the different methods, we use multi-step out-of-sample

forecasts via a rolling (moving) window with RWE as the dimension of estimation window

and RWT as the number of future periods we forecast. Thus, the entire sample size

is the sum of RWE and RWT . We are interested in forecasting up to a week ahead

(h = 1, 2, 3, 4, 5). After we obtain h-step out-of-sample forecasts, we move to the next

window and repeat the h-step forecasts. The estimation window is rolled until we reach

the last window.

Let Ŷt+h|t denote the h-step ahead forecast of Yt+h based on the information available

at time t. For each one of the h-step ahead forecasts over RWT periods, we use the

following (common) forecast evaluation measures.

RMSE.q =

√√√√√ 1

RWT

RWE+RWT∑
j=RWE+1

(Y qj+h − Ŷ
q
j+h|j)

2

numCR =
1

RWT

∑
j

w(Yj+h ∩ Ŷj+h|j)/w(Yj+h)

numIn =
1

RWT

∑
j

1(Ŷ Lj+h < Y Cj+h & Y Cj+h < Ŷ Uj+h)

numHCov =
1

RWT

∑
j

1(Y Uj+h < Ŷ Uj+h)

MAE.q =
1

RWT

RWE+RWT∑
j=RWE+1

|(Y qj+h − Ŷ
q
j+h|j)|

numER =
1

RWT

∑
j

w(Yj+h ∩ Ŷj+h|j)/w(Ŷj+h|j)

numCov =
1

RWT

∑
j

1(Ŷ Lj+h < Y Lj+h & Y Uj+h < Ŷ Uj+h)

numLCov =
1

RWT

∑
j

1(Ŷ Lj+h < Y Lj+h)

numOverLap =
1

RWT

∑
j

|min(Ŷ Uj+h, Y
U
j+h)−max(Ŷ Lj+h, Y

L
j+h)|

|max(Ŷ Uj+h, Y
U
j+h)−min(Ŷ Lj+h, Y

L
j+h)|

where q = L,U ; Yj+h ∩ Ŷj+h|j is the intersection of actual and fitted intervals; and w(.)

is the width of the interval. Less technically, these statistics include the (i) Root Mean

Square Error (RMSE), and the Mean Absolute Error (MAE) for the upper and lower

bounds, (ii) coverage (numCR) and efficiency rates (numER) of the estimated intervals
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(Rodrigues and Salish, 2015), and the (iii) coverage statistics proposed in Buansing et al.

(2017). Rodrigues and Salish (2015)’s coverage and efficiency rates (numCR, numER)

measure the average proportion of the actual interval covered by the fitted interval and

the fitted interval covered by the actual interval, respectively. Although not exactly

the same, they are similar in spirit with the overall coverage (numCov) and overlap

measure (numOverLap). All the coverage measures are between zero and one, and a

higher number suggests a better fit. In addition, they all are implemented here to reflect

the recognition that potential trade-off exists between coverage and efficiency or overlap

measures. In addition to the above, we also use the Diebold-Mariano test, discussed in

Section 5.3.

Last, we note that our test is different than the classic test for evaluating interval

forecasts developed by Christoffersen (1998), and then modified by Clements and Taylor

(2003) to accommodate for the presence of periodic heteroskedasticity. In these tests the

basic idea is to test whether a point forecast falls within some interval. The test builds

on an indicator variable for an interval forecast: the indicator equals one if the observed

data point is within the forecasted interval. In our work, we are interested in coverage

and efficiency of forecasts that are naturally coming from interval data (Rodrigues and

Salish, 2015), and therefore are different than the diagnostics developed for forecasting

intervals resulting from point time-series data. We are not only interested in overall

coverage, but rather in efficiency as well.

5. Forecasting the SP500 Returns Interval

In this section, we discuss the data and our forecasts. We use our iterative, IT

method to forecast the SP500 up to five days ahead. We contrast the forecasts of our

approach with that of other competing methods. We also contrast it with the well-

known conditional mean and variance model of AR(1) - GARCH(1,1) which serves as a

benchmark in many forecasting studies.
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5.1. The Data

Following González-Rivera and Lin (2013), the interval time series of the daily low/high

of SP500 index returns are defined as

RHt =
Phigh,t − Pclose,t−1

Pclose,t−1
× 100

RLt =
Plow,t − Pclose,t−1

Pclose,t−1
× 100

(21)

where Phigh,t and Plow,t are the highest and lowest price during trading day t while

Pclose,t−1 is the closing price of the previous day (t − 1). Our sample consists of data

from January 1st, 2004 to January 1st, 2016. As in González-Rivera and Lin (2013)

that used similar data but their end date is April 29, 2011, the sample is split into two

periods: stable and unstable periods. The stable period has 754 trading days that goes

from January 1st, 2004 to January 1st, 2007 just like González-Rivera and Lin (2013),

while the unstable period (2265 days) goes from January 1st, 2007 to January 1st, 2016.

Figure 2 presents the time series of the daily low and high returns, where the returns

are defined according to Eq. (21). In the stable period, both low and high returns have

an overall low volatilities (σ2
l = 0.173 and σ2

u = 0.161), varying roughly within a range

of [−2%, 2%]. The unstable period exhibits a much higher volatility level of σ2
l = 1.06

and σ2
u = 0.84 respectively for the lower and upper levels, that ranges from −10% to

12%. The volatility in the unstable period is quite high and the correlation between low

and high returns is 0.295. In the stable period, however, the correlation is much higher

(0.581) while the volatility is lower. A detailed descriptive statistics for both stable and

unstable periods are provided in the supplementary material.

Figure 2 also shows that both the low and high index returns exhibit volatility

clustering. Furthermore, such data are also characterized by fat tails and nonlinear de-

pendence. For example, the magnitudes of volatility are low during the first one-third of

the sample, large and persistence between 2007 - 2011, and relatively low in the last part
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of the sample period (2012 - 2016). In addition, both low and high returns are occasion-

ally very large (positive/negative) and the correlation between them are high during the

stable period while relatively low during the unstable period. This observation is in line

with the literature (González-Rivera and Lin (2013)).

[insert Figure 2 here]

5.2. Estimation

First, we study the sample autocorrelation function (ACF) and sample partial auto-

correlation function (PACF) of the centers of SP500 index returns, RCt , for stable and

unstable periods. During the stable period, the autorrelation seems to disappear after

the first lag. However, autocorrelation at longer lags are observed for the unstable pe-

riod. Second, we run an unrestricted AR(p) model using RCt and select the optimal lags

by minimizing the Bayesian information criterion (BIC). The number of optimal lags is

1 for the stable period and 5 for the unstable period . These optimal number of lags are

used in the iterative IT approach and two of the existing methods: CRM and CCRM.

Similar trends, properties, and number of lags are chosen when we use the lower and up-

per bounds of the index return intervals (RLt and RUt ). Given the above, we use p = 1 lag

for the stable period and p = 5 lags for the unstable period in our interval autoregressive

(AR) system:

Rt = β0 + β1Rt−1 + ...+ βpRt−p + εt

[RLt , R
U
t ] = β0 + β1[RLt−1, R

U
t−1] + ...+ βp[R

L
t−p, R

U
t−p] + [εLt , ε

U
t ].

(22)

In our iterative, IT framework we estimate a large number of models. The chosen

(best) model (or models) is the one that maximizes the entropy objective function. Fig-

ure 3 demonstrates the unique relationship between the entropy value (of each model)

and the estimated parameters of that model. That relationship is shown as a scatter
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plot between one of the estimated slope coefficients (β̂4) and the objective value, total

entropy, for the first estimation window from the unstable period. (Scatter plots for

other estimated coefficients are provided in the supplementary materials.) For each esti-

mation window, the regression model uses one lag for the stable period and five lags for

the unstable period. As discussed in Section 3, under our IT estimation approach, we

maximize the joint entropy of the signal and the noise subject to the observed data and

normalization. Keeping in mind that the estimated errors are minimized and simultane-

ously, the estimated coefficients converge to their true values, when the entropy objective

function is maximized, the natural statistic used for identifying the best possible (or “cor-

rect”) model is the value of the total entropy (objective function (15), or similarly (20)).

Figure 3 presents this relationship. Out of all the possible models, the one with the

highest entropy corresponds to the chosen model (dashed line). In this specific example

and estimation window, there is no evidence of multiple “correct” models. The same

is true for all other windows in the sample we studied. In addition, our comprehensive

analysis shows that the fundamental market structure seems to be stable throughout the

13 years sample. These conclusions are based on all estimation windows in both stable

and unstable periods which are omitted here for brevity.

Since the main purpose of this paper is forecasting extreme intervals of the daily

returns, we use the modified version of intercept parameters. We shift the predicted lower

and upper bounds by using the minimum and maximum of the empirical distribution

of the intercepts, while keeping the slope parameters chosen by the entropy criterion.

Therefore, the predicted lower and upper bounds are:

R̂q = Rq0β̂
q∗
, q = L,U (23)

where β̂
L∗

= [min(β̂0), β̂∗1 , β̂
∗
2 , ..., β̂

∗
p ] and β̂

U∗
= [max(β̂0), β̂∗1 , β̂

∗
2 , ..., β̂

∗
p ]. In the sup-

plementary materials, we provide figures with the estimated coefficients chosen by our

entropy criterion for all rolling windows of both periods. From these, we learn that the
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estimated slope parameters are not much different from their averages and seem to be

relatively stable over the rolling windows. Here, the estimation window size is 20 days

with M = 5 and we predict up to five-day ahead for each rolling window. Although re-

sults from different window sizes such as 25, 30, or 50 give different quantitative results,

the conclusions provided are qualitatively similar to those just described. These results

are omitted here.

[insert Figure 3 here]

5.3. Forecasting Results

We concentrate here on multi-period ahead forecast. Further details of the one-period

ahead forecasts are provided in the supplementary material. Figures 4 - 6 provide fore-

cast evaluations for all forecast horizons (up to 5-day ahead). In the stable period, the

iterative IT approach out-performs all other approaches across the forecast horizons in

RMSEL and RMSEH (see Panels in Figure 4). MAEL and MAEH plots show similar

results and are omitted here for brevity. As the forecast horizon increases, the RMSEs

and MAEs of CRM and CCRM deteriorate while the iterative IT’s lower and upper

forecast errors remain stable. CRM and CCRM still perform well in numCR across the

forecast horizon while iterative IT out-performs them in numER (see Panels in Figure

5) and numOverLap (see Panels in the supplement). As the forecast horizon increases,

our iterative IT gets relatively better in numCRER while CRM and CCRM deteriorate

a little bit. Overall, our iterative IT out-performs the other methods under the majority

of the measures used and its performance remains stable or better for longer forecast

horizons. In the unstable period, our iterative IT also out-performs in terms of RMSEL,

RMSEH, MAEL and MAEH while competing methods become worse across the forecast

horizons (see Panels in Figure 6 for the RMSEs). CRM and CCRM perform well in

numCR across the forecast horizon while our iterative IT out-performs them in numER

and numOverLap (see Panels in the supplement). As the forecast horizon increases, our
22



iterative IT is getting better relative to the other methods in numCRER. We do not

show this here.

[insert Figures 4 - 6 here]

In term of forecast errors such as RMSEs, MAEs, efficiency rates (numER) and

percentage of overlap between actual predicted interval (numOverLap), our iterative

IT dominates the CRM and CCRM in forecasting the lower and upper bounds of the

intervals of the SP500 daily return. This outperformance is getting more pronounced

as the forecast horizon increases. However, most coverage statistics proposed seem to

favor the CRM and CCRM. This is due to their emphasis on a complete coverage of the

observed intervals at the expense of the much more informative efficiency rates statistics.

In addition to the simple autoregressive process we used to forecast the SP500, we

also ran a more comprehensive scenarios where we included additional macro variables

(including logrithimic transformation of these variables). Such macro variables include

the Aruoba-Diebold-Scotti Business Conditions Index (Aruoba et al., 2009) and daily oil

prices. Since our forecast results were not significantly improved and our iterative IT

method still dominates, we do not present these results. They are available upon request.

To confirm the superiority of our forecasts over the other methods, we also used

the modified Diebold-Mariano (MDM) test (Diebold and Mariano, 1995; Diebold, 2015;

Harvey et al., 1997) for each pair of forecasts. The test results are quite impressive and

statistically significant. It shows that our forecasts are superior to the other methods.

These tests test the null hypothesis of no difference between the errors produced by

the forecasts made with two different methods. Table 1 shows the MDM test results

in terms of the MSE of the forecasts errors. A negative MDM statistic for Method 1/

Method 2 implies that Method 1 yields a smaller forecast MSE than Method 2, and

vice versa. The statistical significance of the difference is indicated by the number of

asterisks attached to the statistics. The left panel of Table 1 shows the MSE forecasts
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superiority of our iterative IT method over CRM and CCRM forecasts for the stable

period. It is statistically significant at the 1% level in all cases (lower and upper bounds

for all one-day to five-day ahead forecast horizons). The unstable period test results are

shown in the right panel. The results are similar; our approach is significantly superior

to the CRM and CCRM, except for the single case of a five-day ahead forecast. Overall,

the modified Diebold-Mariano tests confirm that our iterative IT has a significant edge

over the CRM and CCRM for forecasting both the lower and upper bounds across the

five-day ahead forecast horizons.

5.4. Economic Structure

Under our approach we can identify the best possible model, or models, for forecasting

each period and horizon. It provides us with a way to identify certain structural changes,

or other major changes across time. To do so, we compare the inferred estimates across

times. This joint model selection and estimation capability is one of the advantages of

our approach. To do this under the other approaches is much more complicated or, even

impossible.

Having analyzed our results, we can say the following. The basic model of each one

of the two periods (stable and unstable) is practically unchanged, though the values of

the inferred intercepts are changing across periods. The slope parameters, on the other

hand, do not vary much over time. From an economic point of view, it means that the

changes in the basic structure of the system over time (within each one of the basic two

periods we analyze) are all due to the intercept; there are no other fundamental changes.

With this in mind, we must emphasize that this analysis is based on the forecasting

results and not on a fundamental and causal study of the interval data.

6. Conclusion

In this paper we use an iterative, information-theoretic estimator for forecasting

interval-valued data. We contrast our forecasts with those resulting from competing
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approaches. These include the CRM and CCRM methods, as well as the familiar condi-

tional mean and variance model of AR(1)-GARCH(1,1). We use our method to forecast

the SP500 returns. We use a 13-year sample of SP500 interval returns data. We forecast

up to five days ahead based on moving windows. Following on González-Rivera and Lin

(2013), we divide our data into two distinct periods: stable and unstable. The forecasts

results show that for both periods our IT approach has the lowest prediction errors,

defined as RMSE and MAE, for the lower and upper bounds of the intervals. However,

CRM and CCRM perform well in terms of most coverage statistics by over-emphasizing

complete-coverage of the intervals at the expense of efficiency rates. These methods em-

phasize a complete coverage of the interval, rather than a more accurate forecasting of

the upper and lower bounds; coverage on account of accuracy. Such a trade-off between

coverage and efficiency rates is natural in interval forecasting models. Naturally, the rel-

ative importance of the two depends on the objective of the forecasting exercise. In this

paper, our objective is to accurately forecast the lower and upper bounds of the SP500

daily returns. This is in line with the overall objectives of most forecasting models. We

are not interested here in forecasting a complete-coverage of the interval. Such a forecast

objective will not allow us to do more accurate predictions of the market. With this

in mind, our method allows us to accurately and efficiently forecast the returns. Our

forecasts dominate the other methods for all periods and up to five days into the future.

In fact, the further the forecast horizon, the better our method behaves relative to the

other approaches.
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Figure 1: A graphical representation of our iterative approach. It estimates all possible combinations
of the sub-intervals. For example, for M = 5 and K = 1, it iterates through 25 models: (X1

1,Y
1),

(X1
1,Y

2),..., (X1
1,Y

5), (X2
1,Y

1), (X2
1,Y

2),...,(X5
1,Y

5). For M = 5 and K = 2, it requires 125 iterations
since the number of all possible combination is M ×MK .
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Figure 2: Low (R.Low) and high (R.High) returns of daily SP500 index from 01/01/2004 - 01/01/2016.
The stable period is defined as the trading days period between 01/01/2004 and 01/01/2007. The
unstable period is from 01/01/2007 through 01/01/2016.
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Figure 3: Scatter plots of the estimated β̂4 coefficient vs. the estimator’s objective values for the first
rolling window of the iterative, IT method for the unstable period. The estimation window size is 20
days with M = 5 sub-intervals, z = (−500, 250, 0, 250, 500) and v = (−3σ̂Y , 0, 3σ̂Y ). See Section 3 for
more details. Dashed lines show the coefficients chosen by the entropy criterion. It suggests that the
iterative IT can consistently pick the most probable model. That same behavior is observed for all the
periods analyzed.
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(a)

(b)

Figure 4: Five-day ahead forecast evaluations (RMSEL, RMSEH) over all rolling windows (RWE = 20
days) for the iterative IT, CRM and CCRM during the stable period. Panel (4a) presents the RMSEL
(Root Mean Squared Errors of the lower bound) while Panel (4b) presents the RMSEH (Root Mean
Squared Errors of the upper bound). RWE = 500 days for GARCH(1,1)-Normal and GARCH(1,1)-T.
For iterative IT estimator, we choose the model with the highest entropy (objective) values for the slope

parameters; β̂L
0 and β̂U

0 are obtained from minimum and maximum of the empirical distribution of β̂0,
respectively (Eq. (23)). The iterative IT uses M = 5 sub-intervals, z = (−500, 250, 0, 250, 500) and
v = (−3σY , 0, 3σY ). Evaluation statistics are defined in Section (4). Our IT method outperforms the
other methods under these measures.
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(a)

(b)

(c)

Figure 5: Five-day ahead forecast evaluations (numCR -Panel a, numER -Panel b, numCRER -Panel c)
over all rolling windows (RWE = 20 days) for iterative IT, CRM and CCRM during the stable period.
RWE = 500 days for GARCH(1,1)-Normal and GARCH(1,1)-T. Evaluation statistics are defined in
Section (4). Existing methods over-emphasize coverage and hence perform better under the numCR and
numCRER statistics. However, that advantage deteriorates as forecast horizon increases. In terms of
the efficiency rate (numER) our IT method dominates.
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(a)

(b)

Figure 6: Five-day ahead forecast evaluations (RMSEL -Panel a and RMSEH -Panel b) over all the rolling
windows (RWE = 20 days) for iterative IT, CRM and CCRM during the unstable period. RWE = 500
days for GARCH(1,1)-Normal and GARCH(1,1)-T. Evaluation statistics are defined in Section (4).
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Stable Period Unstable Period
IT/CRM IT/CCRM IT/CRM IT/CCRM

Low High Low High Low High Low High
h=1 -14.54** -14.98** -14.62** -15.00** h=1 -8.24** -8.27** -7.71** -8.44**

h=2 -9.44** -10.35** -12.99** -15.61** h=2 -5.30** -5.25** -5.81** -5.97**

h=3 -9.13** -9.90** -10.31** -11.44** h=3 -4.75** -5.28** -4.25** -4.44**

h=4 -6.12** -5.86** -7.72** -7.61** h=4 -3.34** -3.58** -2.48** -2.48**

h=5 -5.18** -4.95** -5.80** -5.57** h=5 -2.27* -2.32* -1.47 -1.46

Table 1: Modified Diebold-Mariano Test Results for Stable and Unstable Periods. Negative values
correspond to superiority of the IT approach. The asterisks correspond to the level of signifcance: * and
** indicate, respectively, significance at the 5%, and 1% levels.
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