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Abstract. We consider a B-spline regression approach towards nonparametric modelling of a
random effects (error component) model. We focus our attention on the estimation of marginal
effects (derivatives) and their asymptotic properties. Theoretical underpinnings are provided, finite-
sample performance is evaluated via Monte Carlo simulation, and an application that examines the
contribution of different types of public infrastructure on private production is investigated using
panel data comprising the 48 contiguous states in the US over the period 1970-1986.
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1. Introduction

This paper is concerned with nonparametric estimation of marginal effects in so-called ‘random

effects’ panel data settings. There exists an extensive literature on nonparametric estimation of

conditional mean functions using regression spline methods, and a principal focus of this literature

is on estimation of spline coefficients in particular. However, applied econometricians are primarily

interested in ‘marginal effects’, or equivalently, derivatives of the conditional mean function, and

this has received nowhere near the attention that estimation of the conditional mean function itself

has garnered. Second, in empirical work econometricians often find the covariance matrix of errors

in their regression spline models to be a non-scalar identity matrix whereas the existing literature on

this tends to assume a scalar covariance matrix. Third, nonparametric regression splines have often

been considered with only a single-predictor instead of multiple-predictors. In view of all these, an

objective of this paper is to develop the estimation of marginal effects for the nonparametric spline

regression model under a non-scalar covariance error matrix and with multiple-predictors. While

this is done in the context of panel random effect models, the results we develop are general and
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applicable to a class of econometric models including cross sectional model with heteroscedasticity,

regression models with serial correlation, and seemingly unrelated regression models, among others.

The parametric random effects model has been extensively studied from a theoretical perspective,

and is widely used by practitioners; see Baltagi (2013) and Hsiao (2003) by way of illustration. It

is well known that the generalized least squares (GLS) estimator of a random effects model is

asymptotically efficient. Practitioners often find themselves in need of nonparametric methods

for estimating the regression function flexibly; see Wang (2003), Wang, Carroll & Lin (2005),

Henderson, Carroll & Li (2008) and Henderson et al. (2008) for nonparametric kernel regression

methods with panel data or longitudinal data. Moreover, Lin, Wang, Welsh & Carroll (2004)

compared smoothing splines with kernels in univariate nonparametric regression.

It is worth noting that regression splines as another popular nonparametric smoothing tool are

also well-suited to the estimation of random effects models because they involve simple least squares

procedures (i.e., maximum likelihood presuming normality), are simple to interpret, and are widely

embraced by practitioners. For excellent reviews of regression spline methods see Stone (1985, 1994),

Wang & Yang (2007, 2009), Schumaker (2007), Prautzsch, Boehm & Paluszny (2002), Ma & Yang

(2011), and Haupt, Kagerer & Steiner (2014). In econometrics, there exists an extensive related

literature on semiparametric and nonparametric series (‘sieve’) estimation; see Newey (1991, 1994,

1999), Andrews (1991), Shen & Wong (1994), Chen (2007), Horowitz (2009), and Phillips & Liao

(2014) by way of illustration.

Regression splines are often restricted to settings which involve univariate unknown smooth

functions, see Huang, Zhang & Zhou, Wang, Song & Wang and Ma, Huang & Tsai for their

applications in analysis of longitudinal data. However, in many econometrics applications, multiple

predictors are present. One such case is the multivariate panel data model with random effects,

which is the focus of this paper. To this end, we propose to estimate the multivariate unknown

regression function via tensor-product B-splines. We also provide a simple expression for the spline

estimator of its partial derivatives, which are often required to investigate by economic applications.

The results presented here are also applicable to regression splines with a general class of error

covariance matrices. The theoretical properties of the proposed estimators are provided. Finite-

sample performance is assessed via simulation, while an empirical application of the proposed
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estimator is presented for a panel data random effects econometric model with four explanatory

variables.

Related work has considered the efficient nonparametric estimation of conditional mean functions

with panel data and within-group correlations via kernel smoothing. These include Wang (2003)

who considered nonparametric kernel-based marginal estimation for longitudinal/clustered data,

Wang et al. (2005) who studied marginal generalized semiparametric partially linear models for

clustered data, Lin et al. (2004) who showed that a smoothing spline estimator is asymptotically

equivalent to a recently proposed seemingly unrelated kernel estimator of the univariate unknown

function in Wang (2003) for any working covariance matrix, and Henderson et al. (2008) who

proposed an iterative nonparametric kernel estimator for estimating nonparametric panel data

models with fixed effects, by way of illustration.

The rest of the paper proceeds as follows. Section 2 introduces the proposed procedure and

outlines theoretical underpinnings; proofs are relegated to Appendix A. Section 3 assesses the

finite-sample performance of the proposed approach via Monte Carlo simulation and compares it

with popular parametric approaches. Section 4 considers an illustrative application, while Section

5 presents some concluding remarks.

2. Methodology

In this section, we provide the theoretical foundations of the proposed approach. Four main

theorems are developed. Theorem 2.1 presents the asymptotic variance of the spline regression

function along with the order of its bias term, which is asymptotically negligible. We then establish

the asymptotic normal distribution for the spline regression function in Theorem 2.2. Theorem 2.3

presents the asymptotic variance for the estimator of the derivative of the regression spline along

with the order of its bias, while Theorem 2.4 establishes the spline derivative estimator’s asymptotic

normality. In what follows, we assume that T is fixed, but that n goes to infinity.

We consider a nonparametric one-way error component model written as

(1) Yit = m (Xit) + εit,
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where i = 1, . . . , n, t = 1, . . . , T , Yit is the endogenous variable, Xit = (Xit1, . . . , Xitd)
> is a vector

of d exogenous variables, and m (·) is an unknown smooth function. Assume for 1 ≤ s ≤ d, each

Xits is distributed on a compact interval [as, bs], and without loss of generality, we take all intervals

[as, bs] = [0, 1]. Moreover, Xi = (Xi1, ...,XiT )>, for i = 1, . . . , n, are independent and have the

same distribution. We allow εit to follow the random effects specification

(2) εit = ui + vit,

where ui is i.i.d.
(
0, σ2

u

)
, vit is i.i.d.

(
0, σ2

v

)
, ui and vit are uncorrelated for all i and t, and σ2

u and

σ2
v satisfy 0 < σ2

u < ∞ and 0 < σ2
v < ∞. Let εi = (εi1, . . . , εiT )> be a T × 1 vector, and εi, for

i = 1, . . . , n, are independent. Then V ≡ E
(
εiε
>
i

)
takes the form

(3) V =σ2
vIT + σ2

u1T 1>T ,

where IT is an identity matrix of dimension T and 1T is a T × 1 column vector of ones. The

covariance matrix for ε =
(
ε>1 , . . . , ε

>
n

)>
is

(4) Ω = E
(
εε>

)
= IN ⊗V,Ω−1 = IN ⊗V−1,

where A ⊗ B is the Kronecker product of two matrices A and B. By simple linear algebra,

V−1 = (Vtt′)
>
t,t′=1 = V1IT + V21T 1>T with V1 = σ−2

v and V2 = −
(
σ2
v + σ2

uT
)−1

σ2
uσ
−2
v .

We use regression B-splines to estimate the mean function m (·) and its first derivative. Let

N = Nn be the number of interior knots and let q be the spline order. Divide [0, 1] into (N + 1)

subintervals Ij = [χj , χj+1), j = 0, . . . , N −1, IN = [χN , 1], where {χj}Nj=1 is a sequence of interior

knots, given as

χ−(q−1) = · · · = χ0 = 0 < χ1 < · · · < χN < 1 = χN+1 = · · · = χN+q.

Equally-spaced knots are used in order to simplify the proof, but our asymptotic results can be

extended to cover alternative regular knot sequences. Define the q-th order B-spline basis as

Bs,q = {Bj (xs) : 1− q ≤ j ≤ N}> (de Boor (2001, p. 89)). Let Gs,q = G
(q−2)
s,q be the space spanned

by Bs,q, and let Gq be the tensor product of G1,q, . . . , Gd,q, which is the space of functions spanned
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by

Bq (x) = B1,q ⊗ · · · ⊗Bd,q

=

{ d∏
s=1

Bjs,q (xs) : 1− q ≤ js ≤ N, 1 ≤ s ≤ d

}>
Kn×1

=
[
{Bj1,...,jd,q (x) : 1− q ≤ js ≤ N, 1 ≤ s ≤ d}>

]
Kn×1

,

where x = (x1, . . . xd)
> and Kn = (N + q)d. Let Bq=

[
{Bq (X11) , . . . ,Bq (XnT )}>

]
nT×Kn

, where

Xit= (Xit1, . . . , Xitd)
>. Then m (x) can be approximated by Bq (x)> β, where β is a Kn×1 vector.

Letting Y =

[{
(Yit)1≤t≤T,1≤i≤n

}>]
nT×1

, we estimate β by minimizing the weighted least squares

criterion,

{Y −Bqβ}>Ω−1 {Y −Bqβ} .

Then the estimator β̂ of β solves the estimating equations B>q Ω−1 {Y −Bqβ} = 0 , which gives

the GLS estimator

(5) β̂ =
(
B>q Ω−1Bq

)−1
B>q Ω−1Y.

The estimator of m (x) is then given by m̂ (x) = Bq (x)> β̂. In de Boor (2001, p. 116), it is shown

that the first derivative of a spline function can be expressed in terms of a spline of one order lower.

For any function s (x) ∈ Gq that can be expressed by s (x) =
∑

j1,...,jd
aj1,...,jdBj1,q (x1) · · ·Bjd,q (xd),

the first derivative of s (x) with respect to xs is

∂s

∂xs
(x) =

∑N

js=2−q

∑
1−q≤js′≤N,1≤s′ 6=s≤d

a
(1s)
j1,...,jd

Bjs,q−1 (xs)
∏
s′ 6=s

Bjs′ ,q (xs′) ,

in which a
(1s)
j1,...,jd

= (q − 1) (aj1,...,js,...,jd − aj1,...,js−1,...,jd) / (χjs+q−1 − χjs), for 2 − q ≤ js ≤ N and

1 ≤ s′ 6= s ≤ d, 1− q ≤ js′ ≤ N . Let Ln = (N + q)d−1 (N + q − 1) , and

Bs,q−1 (x) =
[
{Bj1,q (x1) · · ·Bjs,q−1 (xs) · · ·Bjd,q (xd)}>1−q≤js′≤N,s′ 6=s,2−q≤js≤N

]
Ln×1

.

For 1 ≤ s ≤ d, ∂m
∂xs

(x), which is the first derivative of m (x) with respect to xs, is estimated as

∂̂m

∂xs
(x) = Bs,q−1 (x)>Ds

(
B>q Ω−1Bq

)−1
B>q Ω−1Y,
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in which Ds =
{

I(N+q)s−1 ⊗M1 ⊗ I(N+q)d−s

}
Ln×Kn

, and

M1 = (q − 1)



−1
χ1−χ2−q

1
χ1−χ2−q

0 · · · 0

0 −1
χ2−χ3−q

1
χ2−χ3−q

· · · 0
...

...
. . .

. . .
...

0 0 · · · −1
χN+q−1−χN

1
χN+q−1−χN


(N+q−1)×(N+q)

.

Let ∇m (x) be the gradient vector of m (x). The estimator of ∇m (x) is

∇̂m (x) =

{
∂̂m

∂x1
(x) , . . . ,

∂̂m

∂xd
(x)

}>
= B∗q−1 (x)>

(
B>q Ω−1Bq

)−1
B>q Ω−1Y,(6)

in which B∗q−1 (x) =
[{
D>1,1Bq−1,1 (x) , . . . , D>1,dBq−1,d (x)

}]
Kn×d

. For any µ ∈ (0, 1], we denote by

C0,µ [0, 1]d the space of order µ Hölder continuous functions on [0, 1]d, i.e.,

C0,µ [0, 1]d =

{
φ : ‖φ‖0,µ = sup

x 6=x′,x,x′∈[0,1]d

|φ(x)− φ (x′)|
‖x− x′‖µ2

< +∞

}

in which ‖x‖2 =
(∑d

s=1 x
2
s

)1/2
is the Euclidean norm of x, and ‖φ‖0,µ is the C0,µ-norm of φ.

Given a d-tuple α = (α1, . . . , αd) of non-negative integers, let [α] =α1 + · · ·+αd and let Dα denote

the differential operator defined by Dα = ∂[α]

∂x
α1
1 ···∂x

αd
d

. The assumptions needed for the asymptotic

results are listed below:

(A1) The regression function Dαm ∈ C0,1 [0, 1]d for all α with [α] = p−1 and for a given integer

p ≥ d/2, the spline order satisfies q ≥ p.

(A2) The marginal density f (x) of X satisfies f (x) ∈ C [0, 1]d and f(x) ∈ [cf , Cf ] for constants

0 < cf ≤ Cf <∞.

(A3) There exists a positive value η > 0 and a finite positive Mη such that E(εit)
2(2+η) < Mη for

all i and t.

(A4) As n → ∞, the number of interior knots N satisfies N−1 = o
{
n−1/(2p+d)

}
and Nd =

o
{
n1/2 (log n)−1

}
.
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Define

Σ = E
(
B>q Ω−1Bq

)
, σ2

n (x) = Bq (x)>Σ−1Bq (x) ,(7)

Φn (x) =
{
B∗q−1 (x)>Σ−1B∗q−1 (x)

}
d×d

.(8)

Assumption (A1) is a smoothness condition placed on the regression function, Assumption (A2)

is a condition for the design density function, and Assumption (A3) is a moment condition on the

error terms. These assumptions are commonly invoked in the nonparametric smoothing literature.

The number of interior knots N increases with the sample size n and Assumption (A4) presents the

order requirement for N . Theorem 2.1 provides the asymptotic variance of the spline estimator of

the regression function, and the order of its bias term. Based on Assumption (A4), the asymptotic

bias is negligible. Hence, as a further step, we establish in Theorem 2.2 the asymptotic normal

distribution of the regression function estimator.

Theorem 2.1. Under Assumptions (A1)-(A4), as n→∞ ,

(i) Var {m̂ (x)} = σ2
n (x) + o

(
n−1Nd

)
for σ2

n (x) given in (7), and there exist constants 0 <

cσ < Cσ <∞ such that

cσn
−1Nd ≤ inf

x∈[0,1]d
σ2
n (x) ≤ sup

x∈[0,1]d
σ2
n (x) ≤ Cσn−1Nd,

(ii) supx∈[0,1]d |E {m̂ (x)} −m (x)| = O (N−p) .

Theorem 2.2. Under Assumptions (A1)-(A4), as n→∞,

σ−1
n (x) {m̂ (x)−m (x)} −→ N (0, 1) .

Similarly, Theorem 2.3 gives the asymptotic variance of the spline estimator of the derivative of

m (x), ∇̂m (x), and the order of its bias. Theorem 2.4 further establishes the asymptotic normality

of ∇̂m (x).

Theorem 2.3. Under Assumptions (A1)-(A4), as n→∞,

(i) Var
{
∇̂m (x)

}
= Φn (x) + o

(
n−1N2+d

)
for Φn (x) given in (8), and there exist constants

0 < cΦ < CΦ <∞ such that cΦId ≤ n (N + 1)−2−d Φn (x) ≤ CΦId, and
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(ii) supx∈[0,1]d

∥∥∥E {∇̂m (x)
}
−∇m (x)

∥∥∥
2

= O
{
N−(p−1)

}
.

Theorem 2.4. Under Assumptions (A1)-(A4), as n→∞,

Φ−1/2
n (x)

{
∇̂m (x)−∇m (x)

}
−→ N(0d, Id),

in which 0d is a d× 1 vector of 0’s.

Proofs of these theorems are presented in Appendix A. It is worth mentioning that although we

assume that the true variance-covariance matrix of the error terms has the exchangeable structure

given in (3), our GLS estimation method indeed can be applied to settings with any given variance-

covariance matrix satisfying a mild condition.

2.1. Efficiency of the Proposed Approach: GLS versus OLS. The proposed GLS estimator

has smaller asymptotic variance than the ordinary least squares (OLS) estimator. To see this, using

the Cholesky decomposition, we have Ω = CC>. Then the GLS estimator is the same as the OLS

estimator by using Y∗= C−1Y, B∗q= C−1Bq and ε∗= C−1ε, where Var(ε∗) = I, which is

β̂ = (B∗>q B∗q)
−1B∗>q Y∗.

The OLS estimator is

β̃ = (B∗>q ΩB∗q)
−1B∗>q ΩY∗ = {(B∗>q B∗q)

−1B∗>q + D}Y∗,

where

D =(B∗>q ΩB∗q)
−1B∗>q Ω− (B∗>q B∗q)

−1B∗>q .

Then DB∗q = 0. Moreover, Var(β̂|X) = (B∗>q B∗q)
−1, and

Var(β̃|X) = (B∗>q B∗q)
−1 + (B∗>q B∗q)

−1(DB∗q)
> + (DB∗q)(B

∗>
q B∗q)

−1 + DD>

= (B∗>q B∗q)
−1 + DD>.

Therefore,

Bq (x)>Var(β̃|X)Bq (x)−Bq (x)>Var(β̂|X)Bq (x) = Bq (x)>DD>Bq (x)≥0.
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2.2. GLS estimator with unknown covariance. In practice, β̂ is infeasible as it depends on

V given in (3) which involves unknown parameters σ2
v and σ2

u. We estimate σ2
v and σ2

u by the

following way. Let ε̃it = Yit − m̃ (Xit), where m̃ (Xit) = Bq (Xit)
> β̃ and β̃ is the OLS estimator:

β̃ =
(
B>q Bq

)−1
B>q Y. Thus, σ2

u is estimated by

σ̂2
u = {T (T − 1)}−1n−1

∑
t6=t′

∑n

i=1
ε̃itε̃it′ ,

and σ2
v is estimated by

σ̂2
v = (nT )−1

∑T

t=1

∑n

i=1
ε̃2
it − σ̂2

u.

Based on the estimated σ̂2
u and σ̂2

v , we obtain the feasible GLS estimator

β̂
F

=
(
B>q Ω̂

−1
Bq

)−1
B>q Ω̂

−1
Y,

where Ω̂ = IN ⊗ V̂ and V̂=σ̂2
vIT + σ̂2

u1T 1>T . The estimator of m (x) is then given by m̂F (x) =

Bq (x)> β̂
F
, and the estimator of ∇m (x) is

∇̂m
F

(x) = B∗q−1 (x)>
(
B>q Ω̂

−1
Bq

)−1
B>q Ω̂

−1
Y.

Theorem 2.5. Under the same assumptions as given in Theorem 2.1, as n→∞,

1 (i) supx∈[0,1]d Var
{
m̂F (x)

}
= O

(
n−1Nd

)
and supx∈[0,1]d

∣∣E {m̂F (x)
}
−m (x)

∣∣ = O (N−p);

(ii) σ−1
n (x)

{
m̂F (x)−m (x)

}
−→ N (0, 1), where σ2

n (x) is given in (7).

2 (i) supx∈[0,1]d

∥∥∥Var{∇̂m
F

(x)}
∥∥∥

2
= O

(
n−1N2+d

)
and supx∈[0,1]d

∥∥∥E {∇̂mF
(x)
}
−∇m (x)

∥∥∥
2

=

O
{
N−(p−1)

}
; (ii) Φ

−1/2
n (x)

{
∇̂m

F
(x)−∇m (x)

}
−→ N(0d, Id), where Φn (x) is given in

(8).

Let Σ̂n = B>q Ω̂
−1

Bq, σ̂
2
n (x) = Bq (x)> Σ̂

−1

n Bq (x) and Φ̂n (x) =
{
B∗q−1 (x)> Σ̂

−1

n B∗q−1 (x)
}
d×d

.

Then we have the following results.

Theorem 2.6. Under the same assumptions as given in Theorem 2.1, as n → ∞, (i)

σ̂−1
n (x)

{
m̂F (x)−m (x)

}
−→ N (0, 1); (ii) Φ̂

−1/2
n (x)

{
∇̂m

F
(x)−∇m (x)

}
−→ N(0d, Id).

Based on the results given in Theorem 2.6, we can construct pointwise confidence intervals for

m (x) and ∇m (x) .
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3. Finite-Sample Performance

In this section, we undertake Monte Carlo simulations designed to assess the finite-sample perfor-

mance of the proposed approach. We consider both nonlinear and linear data generating processes

(DGPs), and include parametric linear pooled and random effects models by way of comparison.

When the simulated DGP is linear, the linear parametric model that uses this information will

naturally be more efficient than the nonparametric B-spline approach, so we can quantify the effi-

ciency loss arising from ignorance of the underlying DGP. When the simulated DGP is nonlinear,

the misspecified linear model will be inconsistent while the proposed approach remains consistent,

so we can quantify the impact of incorrect parametric specification and highlight potential benefits

associated with adopting the proposed approach.

3.1. Nonlinear DGP. We simulate data according to

Yit = m (Xit) + εit

= 1 + 2 cos(2πXit) + ui + vit,

where X ∼ U [0, 1], ui ∼ N(0, σ2
u) and vit ∼ N(0, σ2

v). We let σu = (0, 1), σv = 1, n = (10, 20, 30)

and T = (10, 20, 30), so the panel size nT ranges from 100 to 900.

For each of the M = 10, 000 Monte Carlo replications, we estimate a parametric linear pooled

model (‘Linear Pooled’), a parametric linear random effects model (‘Linear RE’), a nonparametric

B-spline pooled model (‘B-spline Pooled’), the proposed nonparametric B-spline random effects

model (‘B-spline RE’). For the B-spline model, the spline degree and number of interior knots are

selected via cross-validation. For each replication, we compute the root mean square error (RMSE)

for m̂ (x) as

RMSE =

√√√√(nT )−1

n∑
i=1

T∑
t=1

(m̂ (Xit)−m (Xit))
2.

and RMSE for ∇̂m (x) as

RMSE =

√√√√(nT )−1

n∑
i=1

T∑
t=1

(
∇̂m (Xit)−∇m (Xit)

)2
.
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We summarize the nonlinear DGP Monte Carlo results in tables 1 and 2. Table 1 reports median

RMSE from the M Monte Carlo replications for each model. Table 2 reports median RMSE over

all M Monte Carlo replications relative to that for the proposed random effects B-spline approach.

In the latter table, numbers greater than one indicate that the method specified in each column

heading is less efficient than the proposed method. When σ2
u = 0, there are no random effects

present, so we can gauge any loss arising from the presumption of random effects when in fact there

are none (note that the random effects models are estimated as if random effects were present).

Given that the underlying DGP used here is nonlinear, we can assess how the proposed method

performs as n and T increase, thereby contrasting the consistency of the proposed method with

the inconsistency of its misspecified parametric counterpart.

Table 1. Nonlinear DGP RMSE (median taken over all M Monte Carlo replica-

tions). Columns 1-6 present RMSE for m̂ (x), Columns 7-12 RMSE for ∇̂m (x).

B-spline B-spline Linear Linear
n T Pooled RE Pooled RE

σu = 0
10 10 0.270 0.271 1.406 1.406
10 20 0.193 0.194 1.410 1.410
10 30 0.156 0.157 1.411 1.411
20 10 0.193 0.193 1.410 1.410
20 20 0.133 0.133 1.413 1.413
20 30 0.110 0.110 1.413 1.413
30 10 0.156 0.157 1.411 1.411
30 20 0.110 0.110 1.413 1.413
30 30 0.090 0.091 1.413 1.413

σu = 1
10 10 0.451 0.392 1.436 1.433
10 20 0.362 0.311 1.437 1.436
10 30 0.324 0.282 1.437 1.436
20 10 0.320 0.274 1.426 1.425
20 20 0.262 0.226 1.428 1.427
20 30 0.231 0.201 1.427 1.426
30 10 0.263 0.225 1.423 1.422
30 20 0.215 0.184 1.423 1.423
30 30 0.187 0.162 1.423 1.422

B-spline B-spline Linear Linear
n T Pooled RE Pooled RE

σu = 0
10 10 4.372 4.375 8.894 8.893
10 20 2.868 2.878 8.890 8.890
10 30 2.223 2.229 8.889 8.889
20 10 2.868 2.886 8.890 8.889
20 20 1.958 1.963 8.889 8.889
20 30 1.661 1.660 8.888 8.888
30 10 2.223 2.218 8.889 8.889
30 20 1.661 1.666 8.888 8.888
30 30 1.416 1.418 8.887 8.887

σu = 1
10 10 5.039 4.649 8.894 8.890
10 20 4.211 3.847 8.892 8.891
10 30 3.437 2.663 8.890 8.888
20 10 4.258 3.946 8.892 8.890
20 20 2.861 2.225 8.890 8.889
20 30 2.179 1.829 8.888 8.887
30 10 3.661 2.802 8.889 8.887
30 20 2.199 1.847 8.889 8.888
30 30 1.834 1.546 8.886 8.885
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Table 2. Nonlinear DGP Relative Median RMSE (relative to the proposed B-spline
random effects estimator). Numbers greater than one indicate that the estimator
listed in the column heading is less efficient than the proposed estimator. Columns

1-5 present RMSE for m̂ (x), Columns 6-10 RMSE for ∇̂m (x).

B-spline Linear Linear
n T Pooled Pooled RE

σu = 0
10 10 0.996 5.192 5.194
10 20 0.998 7.282 7.283
10 30 0.998 9.002 9.002
20 10 0.999 7.291 7.291
20 20 1.000 10.584 10.584
20 30 0.999 12.856 12.856
30 10 0.999 9.010 9.011
30 20 0.999 12.853 12.853
30 30 0.999 15.607 15.607

σu = 1
10 10 1.149 3.660 3.653
10 20 1.162 4.616 4.612
10 30 1.147 5.093 5.090
20 10 1.168 5.200 5.195
20 20 1.161 6.318 6.316
20 30 1.149 7.083 7.081
30 10 1.170 6.328 6.326
30 20 1.170 7.753 7.750
30 30 1.150 8.763 8.761

B-spline Linear Linear
n T Pooled Pooled RE

σu = 0
10 10 0.999 2.033 2.033
10 20 0.997 3.089 3.089
10 30 0.997 3.988 3.988
20 10 0.994 3.081 3.080
20 20 0.998 4.529 4.529
20 30 1.000 5.354 5.354
30 10 1.002 4.007 4.007
30 20 0.997 5.336 5.336
30 30 0.999 6.267 6.267

σu = 1
10 10 1.084 1.913 1.912
10 20 1.095 2.312 2.311
10 30 1.291 3.339 3.338
20 10 1.079 2.254 2.253
20 20 1.286 3.995 3.994
20 30 1.192 4.860 4.859
30 10 1.306 3.172 3.172
30 20 1.191 4.813 4.813
30 30 1.186 5.748 5.748

3.2. Linear DGP. We simulate data according to

Yit = m (Xit) + εit

= 1 + 2Xit + ui + vit,

where X ∼ U [−1, 1], ui ∼ N(0, σ2
u) and vit ∼ N(0, σ2

v). We let n = (10, 20, 30), T = (10, 20, 30),

σu = (0, 1), and σv = 1.

We summarize the linear DGP Monte Carlo results in tables 3 and 4. Given that the underlying

DGP for this simulation is linear, we can gauge the loss arising from not knowing the true functional

form of the DGP.

3.3. Discussion. Perhaps surprisingly, there is virtually no loss in efficiency for either the para-

metric or the proposed nonparametric approach when one falsely presumes that random effects
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Table 3. Linear DGP RMSE (median taken over all M Monte Carlo replications).

Columns 1-6 present RMSE for m̂ (x), Columns 7-12 RMSE for ∇̂m (x).

B-spline B-spline Linear Linear
n T Pooled RE Pooled RE

σu = 0
10 10 0.176 0.177 0.118 0.118
10 20 0.122 0.122 0.083 0.084
10 30 0.098 0.098 0.068 0.069
20 10 0.122 0.122 0.083 0.084
20 20 0.085 0.085 0.059 0.059
20 30 0.069 0.069 0.049 0.049
30 10 0.098 0.098 0.068 0.069
30 20 0.069 0.069 0.049 0.049
30 30 0.057 0.057 0.039 0.039

σu = 1
10 10 0.369 0.315 0.268 0.251
10 20 0.310 0.266 0.242 0.229
10 30 0.288 0.252 0.233 0.227
20 10 0.259 0.219 0.193 0.176
20 20 0.226 0.193 0.178 0.168
20 30 0.203 0.179 0.168 0.162
30 10 0.209 0.176 0.155 0.144
30 20 0.183 0.157 0.144 0.136
30 30 0.165 0.143 0.134 0.129

B-spline B-spline Linear Linear
n T Pooled RE Pooled RE

σu = 0
10 10 0.226 0.228 0.117 0.119
10 20 0.157 0.157 0.082 0.084
10 30 0.120 0.121 0.066 0.067
20 10 0.157 0.158 0.082 0.083
20 20 0.106 0.106 0.057 0.057
20 30 0.088 0.088 0.047 0.047
30 10 0.120 0.120 0.066 0.066
30 20 0.088 0.088 0.047 0.047
30 30 0.071 0.071 0.038 0.038

σu = 1
10 10 0.336 0.244 0.160 0.125
10 20 0.212 0.157 0.112 0.084
10 30 0.170 0.124 0.092 0.068
20 10 0.224 0.161 0.111 0.086
20 20 0.149 0.106 0.082 0.060
20 30 0.121 0.085 0.066 0.048
30 10 0.181 0.132 0.093 0.070
30 20 0.120 0.084 0.066 0.049
30 30 0.099 0.071 0.054 0.039

are present; see e.g. the column with heading ‘B-spline Pooled’, σu = 0, in tables 2 and 4. When

random effects are present, however, all random effects approaches are more efficient than their

pooled counterparts.

When the DGP is linear (tables 3 and 4), the loss in efficiency arising from not knowing the

true DGP diminishes with the panel size (nT ). All approaches are consistent in this case (the

parametric model is correctly specified). But when the DGP is nonlinear (tables 1 and 2), the

proposed approach is consistent while the parametric approach is inconsistent (RMSE does not fall

as either n or T increases).

4. Application to Public Capital Productivity

We now consider a popular panel dataset that covers all 48 states in the continental U.S. over the

period 1970-1986 and revisit a previously-examined relationship between public capital and private

sector output. The questions of whether public sector capital is productive and whether there is
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Table 4. Linear DGP Relative Median RMSE (relative to the proposed B-spline
random effects estimator). Numbers greater than one indicate that the estimator
listed in the column heading is less efficient than the proposed estimator. Columns

1-5 present RMSE for m̂ (x), Columns 6-10 RMSE for ∇̂m (x).

B-spline Linear Linear
n T Pooled Pooled RE

σu = 0
10 10 0.995 0.664 0.669
10 20 0.998 0.683 0.685
10 30 1.003 0.697 0.701
20 10 0.998 0.683 0.686
20 20 1.000 0.691 0.693
20 30 0.999 0.701 0.701
30 10 1.000 0.695 0.697
30 20 0.998 0.700 0.701
30 30 1.000 0.689 0.690

σu = 1
10 10 1.171 0.850 0.796
10 20 1.168 0.909 0.862
10 30 1.141 0.924 0.899
20 10 1.180 0.882 0.805
20 20 1.170 0.921 0.872
20 30 1.138 0.939 0.905
30 10 1.189 0.882 0.820
30 20 1.168 0.920 0.871
30 30 1.152 0.933 0.898

B-spline Linear Linear
n T Pooled Pooled RE

σu = 0
10 10 0.990 0.513 0.520
10 20 0.998 0.524 0.534
10 30 0.992 0.542 0.548
20 10 0.994 0.522 0.526
20 20 0.998 0.540 0.540
20 30 1.000 0.538 0.539
30 10 1.000 0.546 0.549
30 20 0.999 0.537 0.541
30 30 0.998 0.535 0.532

σu = 1
10 10 1.375 0.656 0.511
10 20 1.354 0.712 0.535
10 30 1.377 0.743 0.550
20 10 1.395 0.691 0.533
20 20 1.397 0.770 0.563
20 30 1.431 0.781 0.568
30 10 1.378 0.710 0.535
30 20 1.420 0.785 0.578
30 30 1.392 0.757 0.554

a role for the public sector in encouraging private economic performance have been the subject

of much debate and have received extensive attention from economists. Some claim that public

capital has played a significant role in boosting private sector output, while others hold the opposite

view that public capital has been detrimental to private sector productivity. Notwithstanding

these contradictory conclusions, much of this work has been conducted within a narrow parametric

framework that assumes a Cobb-Douglas specification of the underlying production function. A

crucial shortcoming of the Cobb-Douglas functional form is its reliance on the dubious assumption

of constant elasticities across all states and years. We follow Baltagi & Pinnoi (1995) in what

follows.

The astute reader may note that, theoretically, we treat the case of increasing n and fixed T ,

while this is the case where n, the number of states, is fixed. However, in any analysis, for a given
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sample the number of cross-sectional units is naturally pre-determined, so we beg the reader’s

forgiveness and trust they will indulge us on this issue.

We estimate the B-spline random effects analogue of the model that appears in Baltagi & Pinnoi

(1995),

(9) log(gsp)it = m(log(pcap)it, log(pc)it, log(emp)it,unempit) + εit,

where εit = ui+vit follows a one-way error components (random effects) specification, E(vit|xi, ui) =

0 (here the xi are the state-level predictors listed in (9)), E(ui|xi) = E(ui) = 0, and m(·) is an

unknown function to be estimated along with its partial derivatives (i.e., ‘elasticities’ for predictors

appearing in log form). The variables in the model are ‘gsp’ (gross state product), ‘pcap’ (private

capital stock), ‘pc’ (public capital stock), ‘emp’ (employment) and ‘unemp’ (state unemployment

rate). The B-spline degree and knots are selected via the cross-validation procedure that is outlined

in Ma, Racine & Yang (2015). By spline theory, any continuous function satisfying a mild condition

can be well approximated by a combination of a sufficient number of spline basis functions. However,

using more spline functions may over fit the data while choosing less spline functions may under

fit the data. Thus, selecting the right number of spline functions by a data-driven method is

necessary. We apply the cross-validation method which shows a good numerical performance, but

deriving the corresponding theory such as selection consistency is very challenging as the variance

and bias of the spline estimate involve the number of basis functions in a complicated fashion.

Note that Ma & Racine (2013) used the cross-validation to select variables, but here we include all

the covariates in our analysis without variable selection. We use a tensor B-spline basis and least

squares cross-validation (we also present as results for Hurvich, Simonoff & Tsai’s (1998) AICc

approach). Mean and median elasticity values are reported for the B-spline models, and for the

sake of comparison, we also present results from the pooled linear and linear random effects models

that assume constant elasticities across all states and years.

Figure B.1 in Appendix B presents mean elasticities by year along with 95% asymptotic confi-

dence intervals when the least-squares cross-validation method is used to select the B-spline degree

and number of knots. Figure B.3 presents mean elasticities by year along with 95% asymptotic

confidence intervals when the least-squares cross-validation procedure imposes the restriction that
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all variables must be included (minimum degree ≥ 1). Figures B.5 and B.7 presents the same

mean elasticities as figures B.1 and B.3 but in this instance the AICc approach is used instead of

least-squares cross-validation. Note that all figures are relegated to Appendix B.

We also present boxplots in figures B.2, B.4, B.6 and B.8 which are comparable to figures B.1,

B.3, B.5 and B.7. These figures present robust pictures of the heterogeneity of elasticity measures

among states. Table 5 presents a summary of elasticity estimates (constant over year and state)

from the linear OLS and linear random effects models, and also presents the mean and median

elasticity estimates over state and year from the B-spline model. Table 6 presents the same results

but forcing all variables to be included (minimum spline degree allowed is 1). Both tables 5 and 6

use least squares cross-validation to determine the spline order and degree. Tables 7 and 8 present

similar results, but using AICc to determine the spline order and degree.

4.1. Discussion. The search for an optimal spline degree and number of interior knots is com-

putationally challenging. Search is conducted over integer space and the objective function is

non-differentiable and non-convex. We have four predictors, so if we conduct a search allowing the

spline degree to range from 0-15, and the number of interior knots to range from 0-15, then there

are over 4 billion possibilities (168 = 4, 294, 967, 296), rendering an exhaustive search infeasible (we

allow the degree and the number of interior knots to differ for each predictor). We therefore make

use of the NOMAD solver (‘non smooth optimization via mesh adaptive direct search’, Le Digabel

(2011)), which allows one to conduct a search over high-dimensional constrained integer spaces.

We re-run the NOMAD solver starting from a large number of initial values, which produced the

results that are reported below.

Some general patterns emerge, regardless of whether one forces all predictors to be included in

the model, or whether one uses least-squares as opposed to AICc-based cross-validation methods.

(1) There is substantial heterogeneity across states in the year-by-year elasticity estimates.

(2) The mean and median elasticity with respect to public capital (log(pc)) is uniformly lower

than in the linear random effects model that assumes constant elasticities across states and

year.
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(3) The mean and median elasticity with respect to private capital (log(pcap)) is, on balance,

higher than in the linear random effects model that assumes constant elasticities across

states and year.

(4) The mean and median elasticity with respect to employment (log(emp)) is, on balance,

higher than in the linear random effects model that assumes constant elasticities across

states and year.

(5) Some states display negative elasticities with respect to both public and private capital.

These are consistent with the empirical (i.e., raw or non-model based estimates given by,

e.g., (log(gspit)− log(gspit−1))/(log(pcit)− log(pcit−1)), but not reported here).

(6) The robust summaries (medians, boxplots) of the nonparametric elasticity estimates by

year are very similar, regardless of whether degree ≥ 0 or ≥ 1, or whether least-squares

versus AICc cross-validation is used.

Table 5. Comparison of elasticity estimates when least-squares cross-validation is
used. Models are pooled linear OLS (‘Linear OLS’), linear random effects model
(‘Linear RE’), and B-spline random effects model (‘B-spline RE’, mean and median
values).

Linear Linear B-spline B-spline
OLS RE Mean RE Median RE

log(pcap) 0.1550 0.0044 0.0230 0.0118
log(pc) 0.3092 0.3106 0.2243 0.2651

log(emp) 0.5939 0.7297 0.8438 0.8348
unemp -0.0067 -0.0062 NA NA

CV-score 0.002576108
CV-degree 1 3 1 0

CV-segments 1 1 14 1

5. Concluding Remarks

Applied econometricians typically focus on the estimation of ‘marginal effects’ or derivatives of

the conditional mean function. Though the parametric random effects model has been extensively

studied, many practical problems require nonparametric estimates. It is well known that the

generalized least squares (GLS) estimator of a random effects model is asymptotically efficient. In

this paper, we propose an approach based on regression splines that allows us to directly implement

the GLS estimator of the model’s parameters. In addition, the estimators are computationally
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Table 6. Comparison of elasticity estimates when least-squares cross-validation is
used. Models are pooled linear OLS (‘Linear OLS’), linear random effects model
(‘Linear RE’), and B-spline random effects model (‘B-spline RE’, mean and median
values). Model is constrained to include all variables (minimum degree is 1).

Linear Linear B-spline B-spline
OLS RE Mean RE Median RE

log(pcap) 0.1550 0.0044 0.0117 0.0439
log(pc) 0.3092 0.3106 0.2836 0.2720

log(emp) 0.5939 0.7297 0.7706 0.7623
unemp -0.0067 -0.0062 -0.0068 -0.0051

CV-score 0.002812414
CV-degree 1 2 1 1

CV-segments 1 1 11 1

Table 7. Comparison of elasticity estimates when AICc cross-validation is used.
Models are pooled linear OLS (‘Linear OLS’), linear random effects model (‘Linear
RE’), and B-spline random effects model (‘B-spline RE’, mean and median values).

Linear Linear B-spline B-spline
OLS RE Mean RE Median RE

log(pcap) 0.1550 0.0044 -0.0980 0.0350
log(pc) 0.3092 0.3106 0.2335 0.2396

log(emp) 0.5939 0.7297 0.8061 0.8120
unemp -0.0067 -0.0062 NA NA

AICc-score -4.919433
AICc-degree 2 2 2 0

AICc-segments 1 1 12 1

Table 8. Comparison of elasticity estimates when AICc cross-validation is used.
Models are pooled linear OLS (‘Linear OLS’), linear random effects model (‘Linear
RE’), and B-spline random effects model (‘B-spline RE’, mean and median values).
Model is constrained to include all variables (minimum degree is 1).

Linear Linear B-spline B-spline
OLS RE Mean RE Median RE

log(pcap) 0.1550 0.0044 0.0570 0.0784
log(pc) 0.3092 0.3106 0.2916 0.2627

log(emp) 0.5939 0.7297 0.6931 0.7397
unemp -0.0067 -0.0062 -0.0078 -0.0057

AICc-score -4.820016
AICc-degree 2 2 1 1

AICc-segments 1 1 8 1

attractive and simple both to implement and to interpret. We establish theoretical properties of

the proposed estimators, assess their finite-sample performance via simulation, and illustrate their
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application via a widely-studied dataset. The results presented here are also applicable to regression

splines with a general class of error covariance matrices.
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Appendix A. Proofs of Main Propositions

For any vector ζ = (ζ1, . . . , ζs) ∈ Rs, denote the norm by ‖ζ‖r = (|ζ1|r + · · ·+ |ζs|r)1/r , 1 ≤

r < +∞, ‖ζ‖∞ = max (|ζ1| , . . . , |ζs|). For any matrix A = (Aij)
s,s′

i=1,j=1, denote ||A||∞ =

maxi
∑s′

j=1 |Aij | and ||A|| = sup{||Ax||/||x||2: x ∈ Rs
′
with ||x||2 6= 0}. For any functions

φ, ϕ, define the empirical inner product and norm as 〈φ, ϕ〉n,tt′ = n−1
∑n

i=1 φ (Xit)ϕ (Xit′)Vtt′ ,

‖φ‖2n,tt′ = 〈φ, φ〉n,tt′ . If the functions φ, ϕ are L2 -integrable, we define the theoretical inner prod-

uct and the corresponding norm as 〈φ, ϕ〉tt′ = E
(
〈φ, ϕ〉n,tt′

)
, ‖φ‖2tt′ = E

(
‖φ‖2n,tt′

)
. We denote

by the same letters c, C, any positive constants without distinction. For positive numbers an and

bn, n ≥ 1, let an � bn denote that limn→∞ an/bn = c, where c is some nonzero constant. Let

h = 1/ (N + 1) be the distance between neighboring knots. Denote by [a] the largest integer not

greater than the real number a. For any xs ∈ [0, 1], its location and relative position indices

j (xs) , δ (xs) are defined as

(A.1) j (xs) = jn (xs) = min {[xs/h] , N} , δs (x) =
{
xs − χj(xs)

}
/h.

It is clear that χjn(xs) ≤ xs < χjn(xs)+1, 0 ≤ δ (xs) < 1,∀xs ∈ [0, 1) , and δ (1) = 1.

β̂ in (5) can be decomposed into β̂m and β̂ε, such that β̂ = β̂m + β̂ε, where

(A.2) β̂m = Σ−1
n B>q Ω−1m, β̂ε = Σ−1

n B>q Ω−1 (u + v) ,

for Σn = B>q Ω−1Bq, in which m = {m (X11) , . . . ,m (XnT )}>, u = {u1, . . . , un}> ⊗ 1T , and

v = {v11, . . . , vnT }>. Then m̂ (x) = m̂m (x) + m̂ε (x), in which

(A.3) m̂m (x) = Bq (x)> β̂m, m̂ε (x) = Bq (x) > β̂ε.

Define

β̃ε = Σ−1B>q Ω−1 (u + v) = Σ−1B>q Ω−1ε, m̃ε (x) = Bq (x)> β̃ε.

We first present a Bernstein’s inequality in Lemma A.1, which will be used throughout the proofs.

Lemma A.1. (Bosq 1998, Theorem 1.2). Let ξi, 1 ≤ i ≤ n, be independent random variables with

E(ξi) = 0 and E(ξ2
i ) = σ2

i , and let Sn =
∑n

i=1 ξi. Suppose E|ξi|k ≤ ck−2k!Eξ2
i for some c > 0, for
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i = 1, ..., n, k = 3, 4, ...(Cramer’s conditions), then

P (|Sn| ≥ t) ≤ 2 exp{− t2

4
∑n

i=1 σ
2
i + 2ct

}.

Lemma A.2. Under Assumptions (A2) and (A4), as n→∞,

max
1≤t≤T

max
j1,...,jd,j

′
1,...j

′
d

∣∣∣∣〈Bj1,...,jd,q,Bj′1,...,j′d,q〉n,tt − 〈Bj1,...,jd,q,Bj′1,...,j′d,q〉tt
∣∣∣∣

= Oa.s.

{(
n−1hd log n

)1/2
}
,

max
1≤t6=t′≤T

max
j1,...,jd,j

′
1,...j

′
d

∣∣∣∣〈Bj1,...,jd,q,Bj′1,...,j′d,q〉n,tt′ − 〈Bj1,...,jd,q,Bj′1,...,j′d,q〉tt′
∣∣∣∣

= Oa.s.

{(
n−1h2d log n

)1/2
}
,

Proof of Lemma A.2. Let

ζj1,...,jd,j′1,...,j′d,itt′ = Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)− E
{
Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)

}
.

For t = t′, when |js − j′s| > q−1 for some 1 ≤ s ≤ d, ζj1,...,jd,j′1,...,j′d,itt = 0, when |js − j′s| ≤ q−1 for

all 1 ≤ s ≤ d, by the properties of the B-spline basis, there exist constants 0 < cB,k < CB,k < ∞

and 0 < c′B < C ′B < ∞, such that cB,kh
d ≤ E

∣∣∣Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit)
∣∣∣k ≤ CB,kh

d and

c′Bh
dk ≤

∣∣∣E {Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit)
}∣∣∣k ≤ C ′Bhdk, thus

Eζ2
j1,...,jd,j

′
1,...,j

′
d,itt
≥ cB,khd − C ′Bhdk ≥ cζ2hd,

for some constant 0 < cζ2 <∞, and Eζ2
j1,...,jd,j

′
1,...,j

′
d,itt
≤ CB,khd.

E
∣∣∣ζj1,...,jd,j′1,...,j′d,itt∣∣∣k ≤ 2k−1

[
E
∣∣∣ Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit)

∣∣∣k
+
∣∣∣E {Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit)

}∣∣∣k]
≤ 2k−1

(
CB,kh

d + C ′Bh
dk
)
≤ cζkhd,

for some constant 0 < cζk < ∞. For t 6= t′, there exist constants 0 < c′B,k < C ′B,k < ∞ and

0 < c′B < C ′B < ∞, such that c′B,kh
2d ≤ E

∣∣∣Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)
∣∣∣k ≤ C ′B,kh

2d and
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c′′Bh
2dk ≤

∣∣∣E{Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)}
∣∣∣k ≤ C ′′Bh

2dk. Following the same reasoning as above,

one can prove that there exist constants 0 < c′ζ2 and c′
ζk
<∞ such that Eζ2

j1,...,jd,j
′
1,...,j

′
d,itt

′ ≥ c′ζ2h
2d,

and E
∣∣∣ζj1,...,jd,j′1,...,j′d,itt′∣∣∣k ≤ c′

ζk
h2d. Thus, there exists a constant c = max

(
cζkc

−1
ζ2
, c′
ζk
c′−1
ζ2

)
, such

that E
∣∣∣ζj1,...,jd,j′1,...,j′d,itt′∣∣∣k ≤ ck!Eζ2

j1,...,jd,j
′
1,...,j

′
d,itt

′ < ∞, for k ≥ 3. Then by Bernstein’s inequality

given in Lemma A.1,

P

(
n−1

∣∣∣∑n

i=1
ζj1,...,jq ,j′1,...,j′q ,itt

∣∣∣ ≥ {c′n−1hd log n
}1/2

)
≤ 2 exp

{
− c′nhd log n

4CB,2nhd + 2c {c′nhd log n}1/2

}

= 2n−c
′(4CB,2)

−1

≤ 2n−4, for any c′ ≥ 16CB,2,

which implies

∞∑
n=1

P

[
max

1≤t≤T
max

j1,...,jd,j
′
1,...,j

′
d

∣∣∣n−1
∑n

i=1
ζj1,...,jq ,j′1,...,j′q ,itt

∣∣∣ ≥ {c′n−1hd log n
}1/2

]
≤ 2T

∞∑
n=1

K2
nn
−4 <∞,

where the last inequality holds because T is fixed and Kn = o(n). Thus, the Borel-Cantelli Lemma

implies that

(A.4) max
1≤t≤T

max
j1,...,jd,j

′
1,...,j

′
d

∣∣∣n−1
∑n

i=1
ζj1,...,jq ,j′1,...,j′q ,itt

∣∣∣ = Oa.s.{(n−1hd log n)1/2}.

Following the same reasoning, one can prove that for

max
1≤t6=t′≤T

max
j1,...,jd,j

′
1,...,j

′
d

∣∣∣n−1
∑n

i=1
ζj1,...,jq ,j′1,...,j′q ,itt′

∣∣∣ = Oa.s.{(n−1h2d log n)1/2}.

�

Lemma A.3. Under Assumptions (A2) and (A4), for σ2
n (x) defined in (7), σ2

n (x) = Var {m̃ε (x)},

and there exist constants 0 < cσ < Cσ <∞ such that as n→∞,

cσn
−1h−d ≤ inf

x∈[0,1]d
σ2
n (x) ≤ sup

x∈[0,1]d
σ2
n (x) ≤ Cσn−1h−d.
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Proof of Lemma A.3. For any vector an = {aj1,...,jd : 1− q ≤ js ≤ N, 1 ≤ s ≤ d}> ∈ RKn and

||an||2 6= 0,

n−1a>nΣan =
∑T

t,t′=1

∑
j1,...,jd,j

′
1,...,j

′
d

aj1,...,jdaj′1,...,j′dE
{
Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)Vtt′

}
=

T∑
t=1

∑
j1,...,jd,|js−j′s|≤q−1

aj1,...,jdaj′1,...,j′dE
{
Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit)

}
(V1 + V2)

+
∑
t6=t′

∑
j1,...,jd,j

′
1,...,j

′
d

aj1,...,jdaj′1,...,j′dE
{
Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)

}
V2.

Moreover, E
{
Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit)

}
� hd and E

{
Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)

}
� h2d

for t 6= t′. Thus,

n−1a>nΣan

� Thd
∑

j1,...,jd,|js−j′s|≤q−1
aj1,...,jdaj′1,...,j′d (V1 + V2)

+T (T − 1)h2d
∑

j1,...,jd,j
′
1,...,j

′
d

aj1,...,jdaj′1,...,j′dV2 = ∆n.

Then ∆n ≤ Thd (V1 + V2) (2q − 1)d a>n an + T (T − 1)h2dV2Kna
>
n an � hda>n an, and ∆n ≥

Thd (V1 + V2) (2q − 1)d a>n an � hda>n an. Therefore, for large enough n, there exist constants

0 < cB < CB <∞ such that

(A.5) cBh
da>n an ≤ n−1a>nΣan ≤ CBhda>n an.

This leads to

(A.6) C−1
B h−da>n an ≤ na>nΣ−1an ≤ c−1

B h−da>n an,

for any vector an ∈ RKn and an 6= 0Kn . As a result, we have for any x ∈ [0, 1]d,

C−1
B h−dBq (x)> Bq (x) ≤ nBq (x)>Σ−1Bq (x) ≤ c−1

B h−dBq (x)> Bq (x) ,
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and by B-spline properties, for large enough n, there exist constants 0 < cσ < Cσ <∞ such that

inf
x∈[0,1]d

Bq (x)>Σ−1Bq (x) ≥ c−1
B n−1h−d inf

x∈[0,1]d
Bq (x)> Bq (x) ≥ cσn−1h−d

sup
x∈[0,1]d

Bq (x)>Σ−1Bq (x) ≤ c−1
B n−1h−d sup

x∈[0,1]d
Bq (x)> Bq (x) ≤ Cσn−1h−d.

�

Lemma A.4. Under Assumptions (A2)-(A4), as n → ∞ , σ−1
n (x) m̃ε (x) −→ N (0, 1), and

supx∈[0,1]d
∣∣σ−1
n (x) {m̂ε (x)− m̃ε (x)}

∣∣ = Oa.s.
(
n−1/2h−d log n

)
= oa.s.(1).

Proof of Lemma A.4.

σ−1
n (x) m̃ε (x)

= σ−1
n (x)Bq (x)> β̃ε

= σ−1
n (x)

∑n

i=1
V1Bq (x)>Σ−1

∑T

t=1
Bq (Xit) (ui + vit)

+ σ−1
n (x)

∑n

i=1
V2Bq (x)>Σ−1

∑T

t=1

∑T

t′=1
Bq (Xit) (vit′ + ui)

=
∑n

i=1
σ−1
n (x)Bq (x)>Σ−1

∑T

t=1
Bq (Xit)

[{
V1 (ui + vit) + V2

∑T

t′=1
(vit′ + ui)

}]
=
∑n

i=1
εi,

and {εi}ni=1 are i.i.d. random variables with E(εi) = 0. Moreover, E{σ−1
n (x) m̃ε (x)}2 = 1.

By a central limit theorem we have that as n → ∞, σ−1
n (x) m̃ε (x) −→ N (0, 1). Denote

ςit = T−1
∑T

t′=1 νit,it′εit′ , ϑi,j1,...,jd = T−1
∑T

t Bj1,...,jd (Xit) ςit and ϑi = {ϑi,j1,...,jd}>. Then ϑi

for i = 1, ..., n are independent. Since

n−1T−2B>q Ω−1ε = n−1T−2
∑n

i=1

∑T

t,t′=1
Bq (Xit) νit,it′εit′

= n−1T−2
∑n

i=1

∑T

t
Bq (Xit)

∑T

t′=1
νit,it′εit′

= n−1
∑n

i=1
T−1

∑T

t
Bq (Xit) ςit = n−1

∑n

i=1
ϑi,(A.7)
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where νit,it′ is the (it, it′)th component in Ω−1 given in (4). Note that νit,i′t′ = 0 for i 6= i′. Moreover,

E(ςit) = 0, E(ϑi,j1,...,jd) = 0 and

E(ϑi,j1,...,jd)
2 = E(T−2

∑T

t,t′=1
Bj1,...,jd (Xit) νit,it′εit′)

2

≤ [T−2
∑T

t,t′=1
[E{Bj1,...,jd (Xit) νit,it′εit′}2]1/2]2 ≤ chd

for some constant 0 < c <∞. Let Dn = nαhd/2 with α satisfying α < 1/2, 1/2 + (2 + η)−1 < 2α,

and 1/2η + 1 < (3 + 2η)α, which are satisfied by any η > 0 given in Assumption (A3). By

Assumption (A4), Dn → ∞ as n → ∞. Write ςit = ςDnit,1 + ςDnit,2, where ςDnit,1 = ςit{|ςit| > Dn} and

ςDnit,2 = ςit{|ςit| ≤ Dn}. Then

(A.8) ϑi,j1,...,jd = ϑi,j1,...,jd,1 + ϑi,j1,...,jd,2 + ϑi,j1,...,jd,3,

where ϑi,j1,...,jd,1 = T−1
∑T

t Bj1,...,jd (Xit) ς
Dn
it,1,

ϑi,j1,...,jd,2 = T−1
∑T

t
Bj1,...,jd (Xit) ς

Dn
it,2 − E(T−1

∑T

t
Bj1,...,jd (Xit) ς

Dn
it,2),

and ϑi,j1,...,jd,3 = E(T−1
∑T

t Bj1,...,jd (Xit) ς
Dn
it,2). Since supi,t,t′ |νit,it′ | ≤ (V1 +V2) <∞, this together

with Assumption (A3) implies that

(E|ςit|2(2+η))1/2(2+η) ≤ T−1
∑T

t′=1
(E|νit,it′εit′ |2(2+η))1/2(2+η) ≤ (V1 + V2)M1/2(2+η)

η .

Thus E|ςit|2(2+η) ≤ (V1 + V2)2(2+η)Mη. Let An = {maxj1,...,jd |n−1
∑n

i=1 ϑi,j1,...,jd,1| > n−m} for any

m > 0. Since |ςit| ≤ Dn implies ςDnit,1 = 0 and thus implies ACn , then

∞∑
n=1

P (An) ≤
∞∑
n=1

P (|ςit| > Dn) ≤
∞∑
n=1

E|ςit|2(2+η)

D
2(2+η)
n

≤ (V1 + V2)2(2+η)Mη

∞∑
n=1

n−2α(2+η)h−d(2+η)

≤ (V1 + V2)2(2+η)Mη

∞∑
n=1

(n−1/2h−d)2+ηn−1−δ′ <∞,
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by the constraint 1/2 + (2 + η)−1 < 2α and Assumption (A4), for some finite constant δ′ > 0. By

Borel-Cantelli Lemma, we have that for any m > 0,

(A.9) max
j1,...,jd

|n−1
∑n

i=1
ϑi,j1,...,jd,1| = Oa.s.(n

−m).

Moreover,

ϑi,j1,...,jd,3 = E(ϑi,j1,...,jd)− E{T
−1
∑T

t
Bj1,...,jd (Xit) ς

Dn
it,1}

= −E{T−1
∑T

t
Bj1,...,jd (Xit) ς

Dn
it,1}.

By B-spline properties, we have maxj1,...,jd E|Bj1,...,jd (Xit) | ≤ c′hd for some constant 0 < c′ < ∞.

Since

E|ςDnit,1| = |E[ςit{|ςit| > Dn}]| ≤ (E|ςit|2(2+η))1/2(2+η){P (|ςit| > Dn)}(3+2η)/2(2+η)

≤ (E|ςit|2(2+η))1/2(2+η)(E|ςit|2(2+η)D−2(2+η)
n )(3+2η)/2(2+η)

≤ E|ςit|2(2+η)D−(3+2η)
n ≤ (V1 + V2)2(2+η)Mηn

−α(3+2η)h−(3+2η)d/2.

Then

max
j1,...,jd

∣∣∣∣E{T−1
∑T

t
Bj1,...,jd (Xit) ς

Dn
it,1}

∣∣∣∣ ≤ T−1
∑T

t
max
j1,...,jd

E|Bj1,...,jd (Xit) ς
Dn
it,1|

≤ c′(V1 + V2)2(2+η)n−α(3+2η)h−(1/2+η)d

= o

{(
n−1hd log n

)1/2
}
.

by the constraint 1/2η + 1 < (3 + 2η)α and Assumption (A4). Therefore,

max
j1,...,jd

|n−1
∑n

i=1
ϑi,j1,...,jd,3|

≤ n−1
∑n

i=1
max
j1,...,jd

∣∣∣∣E{T−1
∑T

t
Bj1,...,jd (Xit) ς

Dn
it,1}

∣∣∣∣ = o

{(
n−1hd log n

)1/2
}
.(A.10)

Moreover, there exists a constant 0 < c′′ <∞ such that E|Bj1,...,jd (Xit) |2 ≤ c′′hd, and thus

E(ϑ2
i,j1,...,jd

) ≤ c′′hdE(ςit)
2 ≤ c′′hd(V1 + V2)2E|εit′ |2

≤ c′′(V1 + V2)2M1/(2+η)
η hd = c′′′hd,
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where c′′′ = c′′(V1 + V2)2M
1/(2+η)
η . Also,

E(ϑ2
i,j1,...,jd,1

) ≤ c′′hdE(ςit)
2 ≤ c′′hd(E|ςit|2(2+η))2/2(2+η)P (|ςit| > Dn)(1+η)/(2+η)

≤ c′′hd(E|ςit|2(2+η))2/2(2+η)(E|ςit|2(2+η)/D2(2+η)
n )(1+η)/(2+η)

= E|ςit|2(2+η)D−2(1+η)
n ≤ (V1 + V2)2(2+η)Mη(n

αhd/2)−2(1+η) = o(hd),

and

E(ϑ2
i,j1,...,jd,3

) ≤
∣∣∣∣E{T−1

∑T

t
Bq (Xit) ς

Dn
it,1}

∣∣∣∣2 = o(n−1hd log n) = o(hd).

Thus, for sufficiently large n,

E(ϑ2
i,j1,...,jd,2

) ≤ 3{E(ϑ2
i,j1,...,jd

) + E(ϑ2
i,j1,...,jd,1

) + E(ϑ2
i,j1,...,jd,3

)}

≤ 4c′′′hd.

Moreover, by the definition of ϑi,j1,...,jd,2, we have |ϑi,j1,...,jd,2| ≤ 2Dn|T−1
∑T

t Bj1,...,jd (Xit) | ≤ 2Dn,

and thus E|ϑi,j1,...,jd,2|k ≤ (2Dn)k−2k!E|ϑi,j1,...,jd,2|2. Therefore, by Bernstein’s inequality given in

Lemma A.1, we have for a given finite constant C > 0,

P (|
∑n

i=1
ϑi,j1,...,jd,2| ≥ C

(
nhd log n

)1/2
) ≤ 2 exp{− C2nhd log n

16c′′′nhd + 4CDn(nhd log n)1/2
}.

Since Dn(nhd log n)1/2 = o(nhd), then for sufficiently large n, we have

P (|
∑n

i=1
ϑi,j1,...,jd,2| ≥ C

(
nhd log n

)1/2
) ≤ 2 exp{−C

2nhd log n

17c′′′nhd
} = 2n−C

2/(17c′′′) < 2n−4,

for C > 2
√

17c′′′. Then

∑∞

n=1
P

(
max
j1,...,jd

|n−1
∑n

i=1
ϑi,j1,...,jd,2| ≥ C

(
n−1hd log n

)1/2
)

≤ 2
∑∞

n=1
Knn

−4 <∞.

Thus, the Borel-Cantelli Lemma implies that

(A.11) max
j1,...,jd

|n−1
∑n

i=1
ϑi,j1,...,jd,2| = Oa.s.{(n−1hd log n)1/2}.
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Therefore, by (A.7), (A.9), (A.10) and (A.11), we have
∥∥n−1B>Ω−1ε

∥∥
∞ = Oa.s.

{
T 2
(
n−1hd log n

)1/2}
.

Since T is fixed, then ∥∥∥n−1B>Ω−1 ( u + v)
∥∥∥
∞

=
∥∥∥n−1B>Ω−1ε

∥∥∥
∞

= Oa.s.

{
T 2
(
n−1hd log n

)1/2
}

= Oa.s.

{(
n−1hd log n

)1/2
}
.(A.12)

For any vector an = {aj1,...,jd : 1− q ≤ js ≤ N, 1 ≤ s ≤ d}> ∈ RKn with ||an||2 = 1, we have

|a>nn−1(Σn −Σ)an|

= |
∑

j1,...,jd,j
′
1,...j

′
d

aj1,...,jdaj′1,...,j′d

T∑
t,t′=1

(〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
n,tt′
−
〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
tt′

)
Vtt′ |

≤ |
∑

j1,...,jd,|js−j′s|≤q−1

aj1,...,jdaj′1,...,j′d

T∑
t=1

(〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
n,tt
−
〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
tt

)
|

× (V1 + V2)

+|
∑

j1,...,jd,j
′
1,...j

′
d

aj1,...,jdaj′1,...,j′d

∑
t6=t′

(〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
n,tt′
−
〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
tt′

)
|V2

≤ T (2q − 1)d a>n an max
1≤t≤T

max
j1,...,jd,j

′
1,...j

′
d

|
(〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
n,tt
−
〈
Bj1,...,jd,q,Bj′1,...,j′d,q

〉
tt

)
|

× (V1 + V2)

+T 2Kna
>
n an max

t6=t′
max

j1,...,jd,j
′
1,...j

′
d

∣∣∣∣〈Bj1,...,jd,q,Bj′1,...,j′d,q〉n,tt′ − 〈Bj1,...,jd,q,Bj′1,...,j′d,q〉tt′
∣∣∣∣V2.

The above result together with Lemma A.2 and Assumption (A4) imply that

|a>nn−1(Σn −Σ)an| = Oa.s.

{(
n−1hd log n

)1/2
}

+O(h−d)Oa.s.

{(
n−1h2d log n

)1/2
}

= Oa.s.

{(
n−1 log n

)1/2}
= oa.s.(h

d).(A.13)

By the above result and (A.5), we have with probability 1, as n→∞, cBh
da>n an ≤ n−1a>nΣnan ≤

CBh
da>n an, and thus for any vector an ∈ RKn and an 6= 0,

(A.14) C−1
B h−da>n an ≤ a>n (n−1Σn)−1an ≤ c−1

B h−da>n an.
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Therefore, by the result in Demko (1986) together with (A.6) and (A.14), we have

(A.15) ||(n−1Σ)−1||∞ = O(h−d), ||(n−1Σn)−1||∞ = Oa.s.(h
−d).

Following the same reasoning as the proof for (A.13), we have ||n−1(Σn − Σ)||∞ =

Oa.s.

{(
n−1 log n

)1/2}
. Therefore,

sup
x∈[0,1]d

|m̂ε (x)− m̃ε (x)|

= sup
x∈[0,1]d

∣∣∣Bq (x)T (Σ−1
n −Σ−1

)
B>q Ω−1 (u + v)

∣∣∣
≤ sup

x∈[0,1]d
||Bq (x) ||1||n−1(Σn −Σ)||∞||(n−1Σn)−1||∞||(n

−1Σ)−1||∞
∥∥∥n−1B>q Ω−1 (u + v)

∥∥∥
∞

= Oa.s.

{(
n−1 log n

)1/2}
Oa.s.(h

−2d)Oa.s.

{(
n−1hd log n

)1/2
}

= Oa.s.

(
n−1h−3d/2 log n

)
.

By the above result and Lemma A.3, one has supx∈[0,1]d
∣∣σ−1
n (x) {m̂ε (x)− m̃ε (x)}

∣∣ =

Oa.s.
(
n−1/2h−d log n

)
= oa.s.(1) by Assumption (A4). Therefore, by Slutsky’s theorem, one has

as n→∞, σ−1
n (x) m̂ε (x) −→ N (0, 1) . �

Lemma A.5. Under Assumptions (A1), (A2) and (A4), as n→∞ , supx∈[0,1]d |m̂m (x)−m (x)| =

Oa.s. (h
p) .

Proof of Lemma A.5. By Theorem 12.8 and (13.69) of de Boor (2001), there exists β ∈ RKn

such that supx∈[0,1]d

∣∣∣Bq (x)> β −m (x)
∣∣∣ = O (hp). Moreover, by B-spline properties, we have

supx∈[0,1]d ‖Bq (x)‖1 = O(1) and max1≤i≤n,1≤t≤T ‖E{Bq (Xit)}‖∞ = O(hd). Following the same

reasoning as the proof for Lemma A.2, we have

max
1≤t≤T

∥∥∥n−1
∑n

i=1
[Bq (Xit)− E{Bq (Xit)}]

∥∥∥
∞

= Oa.s.

{(
n−1hd log n

)1/2
}
.
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Thus ∥∥∥∥n−1
∑n

i=1

∑T

t=1
Bq (Xit)

∥∥∥∥ ≤ T max
1≤t≤T

∥∥∥n−1
∑n

i=1
Bq (Xit)

∥∥∥
∞

≤ T max
1≤t≤T

∥∥∥n−1
∑n

i=1
[Bq (Xit)− E{Bq (Xit)}]

∥∥∥
∞

+ T max
1≤i≤n,1≤t≤T

‖E{Bq (Xit)}‖∞

= Oa.s.

{
T
(
n−1hd log n

)1/2
}

+O(Thd) = O(Thd) = O(hd),

by Assumption (A4) and the condition that T is fixed. Then, supx∈[0,1]d |m̂m (x)−m (x)| equals to

supx∈[0,1]d

∣∣∣Bq (x)>Σ−1
n

(
B>q Ω−1m

)
−m (x)

∣∣∣
≤ supx∈[0,1]d |Bq (x)>Σ−1

n (B>q Ω−1m)− Bq (x)>Σ−1
n (B>q Ω−1Bqβ)|

+ supx∈[0,1]d

∣∣∣Bq (x)>Σ−1
n

(
B>q Ω−1Bqβ

)
−m (x)

∣∣∣
= sup

x∈[0,1]d

∣∣∣Bq (x)>Σ−1
n

{
B>q Ω−1

(
m−B>q β

)}∣∣∣+ sup
x∈[0,1]d

∣∣∣Bq (x)> β −m (x)
∣∣∣ .(A.16)

Thus, by the above results together with (A.15), we have that with probability 1, there exist

constants C1, C2 ∈ (0,∞) such that

supx∈[0,1]d |m̂m (x)−m (x)|

≤ C1 supx∈[0,1]d ‖Bq (x)‖1 ||(n
−1Σn)−1||∞

∥∥∥∥n−1
∑n

i=1

∑T

t=1
Bq (Xit)

∥∥∥∥
∞
hp + C2h

p

= O(1)O(h−d)O(hd)O(hp) +O(hp) = O(hp).

�

Proof of Theorems 2.1 and 2.2. Theorems 2.1 and 2.2 follow from Lemmas A.3, A.4, and A.5. �

Proof of Theorems 2.3 and 2.4. The proofs of Theorems 2.3 and 2.4 follow reasoning that is similar

to the proofs of Theorems 2.1 and 2.2, and are omitted here. �

Proof of Theorem 2.5. We will show the results in given in 1. Proving the results in 2 will fol-

low the same strategy and thus is omitted. By the definition of σ2
u, we have σ2

u = {T (T −

1)}−1n−1
∑

t6=t′
∑n

i=1E(εitεit′). Define

σ̃2
u = {T (T − 1)}−1n−1

∑
t6=t′

∑n

i=1
εitεit′ .
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Then σ̃2
u − σ2

u can be written as

σ̃2
u − σ2

u = n−1
∑n

i=1
{T (T − 1)}−1

∑
t6=t′
{εitεit′ − E(εitεit′)}.

Let ξi = {T (T − 1)}−1
∑

t6=t′{εitεit′ − E(εitεit′)}. Then

(A.17) σ̃2
u − σ2

u = n−1
∑n

i=1
ξi.

It is clear that E(ξi) = 0. Moreover, ξi is a function of εi, and εi for 1 ≤ i ≤ n are independent, so

that ξi for 1 ≤ i ≤ n are independent. Let Dn = nα with α < 1/2, α(2+η) > 1 and α(1+η) > 1/2,

which are satisfied by any η > 0 given in Assumption (A3). Write

(A.18) ξi = ξDni,1 + ξDni,2 + ξDni,3 ,

where ξDni,1 = ξi{|ξi| > Dn}, ξDni,2 = ξi{|ξi| ≤ Dn} − ξDni,3 , ξDni,3 = E[ξi{|ξi| ≤ Dn}]. Since

(E|ξi|2+η)1/(2+η) = [E|{T (T − 1)}−1
∑

t6=t′
εitεit′ − σ2

u|2+η]1/(2+η)

≤ {T (T − 1)}−1(E|
∑

t6=t′
εitεit′ |2+η)1/(2+η) + σ2

u

≤ {T (T − 1)}−1
∑

t6=t′
(E|εitεit′ |2+η)1/(2+η) + σ2

u

≤ {T (T − 1)}−1
∑

t6=t′
(E|εit|2(2+η))1/2(E|εit′ |2(2+η))1/2 + σ2

u(A.19)

≤ {T (T − 1)}−1{T (T − 1)}M1/2
η M1/2

η + σ2
u,

where the last inequality follows from Assumption (A3), then

E|ξi|2+η ≤ (Mη + σ2
u)(2+η).

let An = {|n−1
∑n

i=1 ξ
Dn
i,1 | > n−m} for any given m > 0. Since |ξi| ≤ Dn implies that ξDni,1 = 0 and

thus ACn , then

∞∑
n=1

P (An) ≤
∞∑
n=1

P (|ξi| > Dn)

≤
∞∑
n=1

E|ξi|2+η

D2+η
n

≤ (Mη + σ2
u)(2+η)

∞∑
n=1

n−α(2+η) <∞.
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Therefore, by Borel-Cantelli Lemma, we have that for any m > 0,

(A.20) |n−1
∑n

i=1
ξDni,1 | = Oa.s.(n

−m).

Moreover, ξDni,3 = E(ξi)− E[ξi{|ξi| > Dn}] = −E[ξi{|ξi| > Dn}]. Since

|E[ξi{|ξi| > Dn}]| ≤ {E|ξi|(2+η)}1/(2+η){P (|ξi| > Dn)}(1+η)/(2+η)

≤ {E|ξi|(2+η)}1/(2+η)(E|ξi|(2+η)D−(2+η)
n )(1+η)/(2+η)

≤ E|ξi|(2+η)D−(1+η)
n ≤ (Mη + σ2

u)(2+η)n−α(1+η),(A.21)

then

|n−1
∑n

i=1
ξDni,3 | ≤ n−1

∑n

i=1
|ξDni,3 | = n−1

∑n

i=1
|E[ξi{|ξi| > Dn}]|

≤ (Mη + σ2
u)(2+η)n−α(1+η) = o(n−1/2).(A.22)

Following the same reasoning as the proof for (A.19), we have

(Eξi
2)1/2 ≤ {T (T − 1)}−1

∑
t6=t′

(E|εitεit′ |2)1/2 + σ2
u

≤ {T (T − 1)}−1
∑

t6=t′
[{E(ε2

it)
2+η}1/(2+η){E(ε2

it′)
2+η}1/(2+η)]1/2 + σ2

u

≤ M1/2(2+η)
η M1/2(2+η)

η + σ2
u = M1/(2+η)

η + σ2
u,

so that Eξi
2 ≤ (M

1/(2+η)
η + σ2

u)2 <∞. Also,

E(ξDni,1 )2 ≤ (E|ξi|2+η)2/(2+η)P (|ξi| > Dn)η/(2+η)

≤ (E|ξi|2+η)2/(2+η)(E|ξi|2+η/D2+η
n )η/(2+η)

= E|ξi|2+ηD−ηn ≤ (Mη + σ2
u)(2+η)n−αη,

and by (A.21),

E(ξDni,3 )2 ≤ |E[ξi{|ξi| > Dn}]|2 ≤ (Mη + σ2
u)2(2+η)n−2α(1+η).

Hence, for sufficiently large n,

E(ξDni,2 )2 ≤ 3{Eξi2 + E(ξDni,1 )2 + E(ξDni,3 )2} ≤ 4(M1/(2+η)
η + σ2

u)2.
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Moreover, by definition of ξDni,2 , we have E|ξDni,2 |k ≤ (2Dn)k−2E(ξDni,2 )2 ≤ (2Dn)k−2k!E(ξDni,2 )2. Thus,

by Bernstein’s inequality given in Lemma A.1, we have for a given finite constant C > 0,

P (|
∑n

i=1
ξDni,2 | ≥ C(n log n)1/2) ≤ 2 exp{− C2n log n

16n(M
1/(2+η)
η + σ2

u)2 + 4CDn(n log n)1/2
}.

Since Dn(n log n)1/2 = nα+1/2{log(n)}1/2 = o(n), then for sufficiently large n, we have

P
(
|
∑n

i=1
ξDni,2 | ≥ C(n log n)1/2

)
≤ 2 exp{− C2n log n

17n(M
1/(2+η)
η + σ2

u)2
} = 2n−C

2/{17(M
1/(2+η)
η +σ2

u)2}.

Choose a C satisfying C > 171/2(M
1/(2+η)
η + σ2

u). Then

∑∞

n=1
P
(
|
∑n

i=1
ξDni,2 | ≥ C(n log n)1/2

)
<∞,

so that

(A.23) n−1|
∑n

i=1
ξDni,2 | = Oa.s.{n−1/2(log n)1/2}.

Therefore, the results (A.17), (A.18), (A.20), (A.22) and (A.23) immediately imply that

|σ̃2
u − σ2

u| = Oa.s.{n−1/2(log n)1/2}.

Moreover,

|σ̃2
u − σ̂2

u| ≤ {T (T − 1)}−1n−1
∑n

i=1

∑T

t=1
|2m (Xit) {m̃ (Xit)−m (Xit)}|

+ {T (T − 1)}−1n−1
∑n

i=1

∑T

t=1
{m̃ (Xit)−m (Xit)}2.

It is clear that the results in Lemmas A.3, A.4 and A.5 still hold by letting Ω = I, and

we have supx∈[0,1]d |m̃ (x) − m (x) | = Oa.s.
(
n−1/2Nd/2(log n)1/2 +N−p

)
. Thus |σ̃2

u − σ̂2
u| =

Oa.s.
(
n−1/2Nd/2(log n)1/2 +N−p

)
, and

(A.24) |σ̂2
u − σ2

u| ≤ |σ̂2
u − σ̃2

u|+ |σ̃2
u − σ2

u| = Oa.s.

(
n−1/2Nd/2(log n)1/2 +N−p

)
.
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Similarly, we have

(A.25) |σ̂2
v − σ2

v | = Oa.s.

(
n−1/2Nd/2(log n)1/2 +N−p

)
.

By the same strategy as given in A.3, we decompose as m̂F (x) = m̂F
m (x) + m̂F

ε (x), where

m̂F
m (x) = Bq (x)> β̂

F

m, m̂
F
ε (x) = Bq (x)> β̂

F

ε ,

and

β̂
F

m = Σ̂
−1

n B>q Ω̂
−1

m, β̂
F

ε = Σ̂
−1

n B>q Ω̂
−1
ε,

in which Σ̂n = B>q Ω̂
−1

Bq. By the definitions of m̂F
ε (x) and m̂ε (x), we have

m̂F
ε (x)− m̂ε (x) = ω1 (x) + ω2 (x) ,

where

ω1 (x) = Bq (x)>Σ−1
n B>q (Ω̂

−1
−Ω−1)ε,

ω2 (x) = Bq (x)> (Σ̂
−1

n −Σ−1
n )B>q Ω̂

−1
ε.

Denote ∆ = {∆it,i′t′} = Ω̂
−1
−Ω−1. Then

n−1B>q (Ω̂
−1
−Ω−1)ε = n−1

∑
i,t,t′
Bq (Xit′) ∆it,it′εit

= (σ̂2
u + σ̂2

v − σ2
u − σ2

v)n
−1
∑

i

∑
t
Bq (Xit) εit + (σ̂2

u − σ2
u)n−1

∑
i

∑
t6=t′
Bq (Xit′) εit.

By following the same arguments as the proof for (A.12) with Ω−1 replaced by INT or IN ⊗ 1T 1>T ,

we have ∥∥∥n−1
∑

i

∑
t
Bq (Xit) εit

∥∥∥
∞

= Oa.s.

{(
n−1hd log n

)1/2
}
,∥∥∥n−1

∑
i

∑
t6=t′
Bq (Xit′) εit

∥∥∥
∞

= Oa.s.

{(
n−1hd log n

)1/2
}
.
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Thus, by the above results together with (A.24) and (A.25 ), we have

||n−1B>q (Ω̂
−1
−Ω−1)ε||∞ = O

(
n−1/2Nd/2(log n)1/2 +N−p

)
Oa.s.

{(
n−1hd log n

)1/2
}

= Oa.s.(n
−1 log n).

The above result and (A.15) lead to

supx∈[0,1]d |ω1 (x) | ≤ supx∈[0,1]d ‖Bq (x)‖1 ||nΣ−1
n ||∞||n−1B>q (Ω̂

−1
−Ω−1)ε||∞

= Oa.s.(n
−1h−d log n) = oa.s.(n

−1/2h−d/2),(A.26)

and

||n−1B>q Ω̂
−1
ε||∞ ≤ ||n

−1B>q (Ω̂
−1
−Ω−1)ε||∞ + ||n−1B>q Ω−1ε||∞

= Oa.s.(n
−1 log n) +Oa.s.

{(
n−1hd log n

)1/2
}

= Oa.s.

{(
n−1hd log n

)1/2
}
.

Moreover,

||n−1(Σ̂n −Σn)||∞

≤ (|σ̂2
u − σ2

u|+ |σ̂2
v − σ2

v |){T (2q − 1)d max
1≤t≤T

max
j1,...,jd,j

′
1,...j

′
d

|n−1
n∑
i=1

Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit) |

+T 2Kn max
t6=t′

max
j1,...,jd,j

′
1,...j

′
d

|n−1
n∑
i=1

Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′) |}.

Since E{Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit)} = O(hd) and E{Bj1,...,jd,q (Xit)Bj′1,...,j′d,q (Xit′)} = O(h2d)

for t 6= t′, this result together with Lemma A.2 implies that there exists a constant C ∈ (0,∞)

such that with probability 1,

||n−1(Σ̂n −Σn)||∞ ≤ C(|σ̂2
u − σ2

u|+ |σ̂2
v − σ2

v |){T (2q − 1)d hd + T 2Knh
2d}

= O
(
n−1/2Nd/2(log n)1/2 +N−p

)
O
(
N−d

)
.
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Hence,

supx∈[0,1]d |ω2 (x) |

≤ supx∈[0,1]d ‖Bq (x)‖1 ||(n
−1Σ̂n)−1||∞||(n−1Σn)−1||∞||n−1(Σ̂n −Σn)||∞||n−1B>q Ω̂

−1
ε||∞

= Oa.s.

(
Nd
)
Oa.s.

(
Nd
)
Oa.s.

(
n−1/2Nd/2(log n)1/2 +N−p

)
Oa.s.

(
N−d

)
Oa.s.

{(
n−1hd log n

)1/2
}

= Oa.s.

(
n−1/2Nd/2

)
Oa.s.

{
n−1/2Nd/2 log(n)

}
= oa.s.

(
n−1/2Nd/2

)
.

(A.27)

Therefore, the above results imply that

supx∈[0,1]d |m̂
F
ε (x)− m̂ε (x) | ≤ supx∈[0,1]d |ω1 (x) |+ supx∈[0,1]d |ω2 (x) |

= oa.s.

(
n−1/2Nd/2

)
.

Next, by the definitions of m̂F
m (x) and m̂m (x) and the same decomposition as given in (A.16), we

have

supx∈[0,1]d |{m̂
F
m (x)−m (x)} − {m̂m (x)−m (x)}|

≤ supx∈[0,1]d |Bq (x)> Σ̂
−1

n

{
B>q Ω̂

−1
(
m−B>q β

)}
− Bq (x)>Σ−1

n

{
B>q Ω−1

(
m−BT

q β
)}
|

+ 2 supx∈[0,1]d

∣∣∣Bq (x)> β −m (x)
∣∣∣ .

Following the same reasoning as the proofs for (A.26) and (A.27), we have

supx∈[0,1]d |Bq (x)>Σ−1
n B>q (Ω̂

−1
−Ω−1)

(
m−B>q β

)
|

= Oa.s.(h
−d)Oa.s.(h

d)Oa.s.

(
n−1/2Nd/2(log n)1/2 +N−p

)
Oa.s.(N

−p) = oa.s.(N
−p),

supx∈[0,1]d |Bq (x) > (Σ̂
−1

n −Σ−1
n )B>q Ω̂

−1
(
m−B>q β

)
|

= Oa.s.

(
Nd
)
Oa.s.

(
n−1/2Nd/2(log n)1/2 +N−p

)
Oa.s.

(
N−d

)
Oa.s.

(
Nd
)
Oa.s.

(
N−d

)
Oa.s.(N

−p)

= oa.s.(N
−p).
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Thus, the above results imply that

supx∈[0,1]d |m̂
F
m (x)− m̂m (x) |

= supx∈[0,1]d |{m̂
F
m (x)−m (x)} − {m̂m (x)−m (x)}|

= oa.s.(N
−p) +Oa.s.(N

−p) = oa.s.

(
n−1/2Nd/2

)
.

Therefore,

supx∈[0,1]d |m̂
F (x)− m̂ (x) |

≤ supx∈[0,1]d |m̂
F
ε (x)− m̂ε (x) |+ supx∈[0,1]d |m̂

F
m (x)− m̂m (x) | = oa.s.

(
n−1/2Nd/2

)
.

Hence, the result 1 of Theorem 2.5 follows directly from the above result and Theorem (2.1). �

Proof of Theorem 2.6. By the result given in Theorem 2.5, there exists a constant C ∈ (0,∞) such

that

sup
x∈[0,1]d

E|σ̂−1
n (x) {m̂ (x)−m (x)} − σ−1

n (x) {m̂ (x)−m (x)} |

≤ supx∈[0,1]d{E|σ̂
−1
n (x)− σ−1

n (x) |2}1/2{E|m̂ (x)−m (x) |2}1/2

≤ C∗n−1/2Nd/2 supx∈[0,1]d{E|σ̂
−1
n (x)− σ−1

n (x) |2}1/2.

Moreover, by the result in Lemma A.3, we have

supx∈[0,1]d |σ̂n (x)− σn (x) | ≤ supx∈[0,1]d σ
−1
n (x) |σ̂2

n (x)− σ2
n (x) |

≤ c−1/2
σ n1/2Nd/2 supx∈[0,1]d |σ̂

2
n (x)− σ2

n (x) |,

and by (A.24) and (A.25), we have sup x∈[0,1]d |σ̂
2
n (x)−σ2

n (x) | = oa.s.(1). The above results imply

that

sup
x∈[0,1]d

E|σ̂−1
n (x) {m̂ (x)−m (x)} − σ−1

n (x) {m̂ (x)−m (x)} | = o(1).

Then (i) in Theorem 2.6 follows from Slutsky’s theorem. The proof of (ii) follows the same procedure

and thus is omitted. �
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Appendix B. Figures and Tables

B.1. Least Squares Cross Validation (degree ≥ 0). Figures B.1 and B.2 present results for

for the case where least-squares cross-validation is used and where the degree of the polynomial

can be zero, thereby allowing for the removal of variables from the resulting estimate. Figure B.1

presents the mean elasticities along with asymptotic 95% confidence intervals, while Figure B.2

presents boxplot summaries which highlight the median and interquartile ranges.
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Figure B.1. Heterogeneity in B-spline RE elasticity estimates by year (solid line
with dots is the average taken over state elasticities by year, vertical bars show 95%
confidence intervals). Horizontal lines represent Linear RE estimates and average of
mean B-spline RE estimates taken over both year and state.
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Figure B.2. Heterogeneity in B-spline RE elasticity estimates by year (boxplots).
Horizontal lines represent Linear RE estimates and average of mean B-spline RE
estimates taken over both year and state.
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B.2. Least Squares Cross Validation, All Variables Forced to Be Relevant (degree ≥ 1).

Figures B.3 and B.4 present results for the case where least-squares cross-validation is used and

where the degree of the polynomial is ≥ 1, thereby forcing all variables to be included in the

resulting estimate. Figure B.3 presents the mean elasticities along with asymptotic 95% confidence

intervals, while Figure B.4 presents boxplot summaries which highlight the median and interquartile

ranges.
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Figure B.3. Heterogeneity in B-spline RE elasticity estimates by year (solid line
with dots is the average taken over state elasticities by year, vertical bars show 95%
confidence intervals). Horizontal lines represent Linear RE estimates and average of
mean B-spline RE estimates taken over both year and state.
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Figure B.4. Heterogeneity in B-spline RE elasticity estimates by year (boxplots).
Horizontal lines represent Linear RE estimates and average of mean B-spline RE
estimates taken over both year and state.
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B.3. AICc Cross Validation (degree ≥ 0). Figures B.5 and B.6 present results for the case

where AICc cross-validation is used and where the degree of the polynomial can be zero, thereby

allowing for the removal of variables from the resulting estimate. Figure B.5 presents the mean

elasticities along with asymptotic 95% confidence intervals, while Figure B.6 presents boxplot sum-

maries which highlight the median and interquartile ranges.
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Figure B.5. Heterogeneity in B-spline RE elasticity estimates by year (solid line
with dots is the average taken over state elasticities by year, vertical bars show 95%
confidence intervals). Horizontal lines represent Linear RE estimates and average of
mean B-spline RE estimates taken over both year and state.
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Figure B.6. Heterogeneity in B-spline RE elasticity estimates by year (boxplots).
Horizontal lines represent Linear RE estimates and average of mean B-spline RE
estimates taken over both year and state.
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B.4. AICc Cross Validation, All Variables Forced to Be Relevant (degree ≥ 1). Figures

B.7 and B.8 present results for for the case where AICc cross-validation is used and where the

degree of the polynomial is >= 1, thereby forcing all variables to be included in the resulting

estimate. Figure B.7 presents the mean elasticities along with asymptotic 95% confidence intervals,

while Figure B.8 presents boxplot summaries which highlight the median and interquartile ranges.
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Figure B.7. Heterogeneity in B-spline RE elasticity estimates by year (solid line
with dots is the average taken over state elasticities by year, vertical bars show 95%
confidence intervals). Horizontal lines represent Linear RE estimates and average of
mean B-spline RE estimates taken over both year and state.
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Figure B.8. Heterogeneity in B-spline RE elasticity estimates by year (boxplots).
Horizontal lines represent Linear RE estimates and average of mean B-spline RE
estimates taken over both year and state.
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B.5. Individual Model Summaries. Tables B.9 and B.10 present results for the pooled and

random effects linear parametric specifications.

Table B.9. Linear Parametric Pooled OLS Model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6433 0.0576 28.54 0.0000

log(pcap) 0.1550 0.0172 9.04 0.0000
log(pc) 0.3092 0.0103 30.10 0.0000

log(emp) 0.5939 0.0137 43.20 0.0000
unemp -0.0067 0.0014 -4.75 0.0000

Table B.10. Linear Parametric Random Effects Model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1354 0.1335 16.00 0.0000

log(pcap) 0.0044 0.0234 0.19 0.8497
log(pc) 0.3106 0.0198 15.68 0.0000

log(emp) 0.7297 0.0249 29.28 0.0000
unemp -0.0062 0.0009 -6.80 0.0000
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