
Bootstrap Aggregating and Random Forest

Tae-Hwy Lee, Aman Ullah and Ran Wang

Abstract Bootstrap Aggregating (Bagging) is an ensemble technique for improving
the robustness of forecasts. Random Forest is a successful method based on Bagging
and Decision Trees. In this chapter, we explore Bagging, Random Forest, and their
variants in various aspects of theory and practice. We also discuss applications based
on these methods in economic forecasting and inference.

1 Introduction

The last 30 years witnessed the dramatic developments and applications of Bag-
ging and Random Forests. The core idea of Bagging is model averaging. Instead of
choosing one estimator, Bagging considers a set of estimators trained on the boot-
strap samples and then takes the average output of them, which is helpful in improv-
ing the robustness of an estimator. In Random Forest, we grow a set of Decision
Trees to construct a ‘forest’ to balance the accuracy and robustness for forecasting.

This chapter is organized as follows. First, we introduce Bagging and some vari-
ants. Second, we discuss Decision Trees in details. Then, we move to Random Forest
which is one of the most attractive machine learning algorithms combining Decision
Trees and Bagging. Finally, several economic applications of Bagging and Random
Forest are discussed. As we mainly focus on the regression problems rather than
classification problems, the response y is a real number, unless otherwise mentioned.

Tae-Hwy Lee
Department of Economics, University of California, Riverside, e-mail: tae.lee@ucr.edu

Aman Ullah
Department of Economics, University of California, Riverside, e-mail: aman.ullah@ucr.edu

Ran Wang
Department of Economics, University of California, Riverside, e-mail: ran.wang@email.
ucr.edu

1

2 Tae-Hwy Lee, Aman Ullah and Ran Wang

2 Bootstrap Aggregating and Its Variants

Since the Bagging method combines many base functions in an additive form, there
are more than one strategies to construct the aggregating function. In this section,
we introduce the Bagging and its two variants, Subbaging and Bragging. We also
discuss the Out-of-Bag Error as an important way to measure the out-of-sample
error for Bagging methods.

2.1 Bootstrap aggregating (Bagging)

The first Bagging algorithm was proposed in Breiman (1996). Given a sample and an
estimating method, he showed that Bagging can decrease the variance of an estima-
tor compared to the estimator running on the original sample only, which provides
a way to improve the robustness of a forecast.

Let us consider a sample {(y1,x1), ...,(yN ,xN)}, where yi ∈ R is the dependent
variable and xi ∈ Rp are p independent variables. Suppose the data generating pro-
cess is y = E(y|x)+u = f (x)+u where E(u|x) = 0 and Var(u|x) = σ2. To estimate
the unknown conditional mean function of y given x, E(y|x) = f (x), we choose a
function f̂ (x) as an approximator, such as linear regression, polynomial regression
or spline, via minimizing the L2 loss function

min
f̂

N

∑
i=1

(
yi− f̂ (xi)

)2
.

A drawback of this method is that, if f̂ (x) is a nonlinear function, the estimated
function f̂ (x) may suffer from the over-fitting risk.

Consider the Bias-Variance decomposition of Mean Square Error (MSE)

MSE = E(y− f̂ (x))2

=
(
E f̂ (x)− f (x)

)2
+Var(f̂ (x))+Var(u)

= Bias2 +Variance+σ
2.

There are three components included in the MSE: the bias of f̂ (x), the variance
of f̂ (x), and σ2 = Var(u) is the variance of the irreducible error. The bias and the
variance are determined by f̂ (x). The more complex the forecast f̂ (x) is, the lower
its bias will be. But a more complex f̂ (x) may suffer from a larger variance. By
minimizing the L2 loss function, we often decrease the bias to get the ‘optimal’ f̂ (x).
As a result, f̂ (x) may not be robust as it may result in much larger variance and thus
a larger MSE. This is the over-fitting risk. To resolve this problem, the variance of
f̂ (x) needs to be controlled. There are several ways to control the variance, such as

Bootstrap Aggregating and Random Forest 3

adding regularization term or adding random noise. Bagging is an alternative way
to control the variance of f̂ (x) via model averaging.

The procedure of Bagging is as follows:

• Based on the sample, we generate bootstrap sample {(yb
1,x

b
1), ...,(x

b
N ,y

b
N)} via

randomly drawing with replacement, with b = 1, ...,B.
• To each bootstrap sample, estimate f̂b(x) via minimizing the L2 loss function

min
f̂b(x)

N

∑
i=1

(
yb

i − f̂b(xb
i)
)2

.

• Combine all the estimated forecasts f̂1(x), ..., f̂B(x) to construct a Bagging esti-
mate

f̂ (x)bagging =
1
B

B

∑
b=1

f̂b(x).

Breiman (1996) proved that Bagging can make prediction more robust. Sev-
eral other papers have studied why/how Bagging works. Friedman and Hall (2007)
showed that Bagging could reduce the variance of the higher order terms but have no
effect on the linear term when a smooth estimator is decomposed. Buja and Stuetzle
(2000a) showed that Bagging could potentially improve the MSE based on second
and higher order asymptotic terms but do not have any effects on the first order linear
term. At the same time, Buja and Stuetzle (2000b) also showed that Bagging could
even increase the second order MSE terms. Bühlmann and Yu (2002) studied in the
Tree-based Bagging, which is a non-smooth and non-differentiable estimator, and
found that Bagging does improve the first order dominant variance term in the MSE
asymptotic terms. In summary, Bagging works with its main effects on variance and
it can make prediction more robust by decreasing the variance term.

2.2 Sub-sampling aggregating (Subagging)

The effectiveness of Bagging method is rooted in the Bootstrap method, the re-
sampling with replacement. Sub-sampling, as another resampling method without
replacement, can also be introduced to the same aggregating idea. Compared to the
Bootstrap method, the Sub-sampling method often provides a similar outcome with-
out relatively heavy computations and random sampling in Bootstrap. Theoretically,
Sub-sampling needs weaker assumptions than the Bootstrap method.

Comparing to the Bootstrap, Sub-sampling method needs extra parameters. Let d
be the number of sample points contained in each sub-sample. Since Sub-sampling
method draws samples without replacement from the original sample, the number
of sub-sample is M =

(N
d

)
. Thus, instead of aggregating the base predictors based

on Bootstrap, we consider Sub-sampling Aggregating, or Subagging, which com-
bines predictors trained on samples from Sub-sampling.

4 Tae-Hwy Lee, Aman Ullah and Ran Wang

The procedure of Subagging is as follows:

• Based on the sample, construct M =
(N

d

)
different sub-samples {(ym

1 ,x
m
1), ...,(y

m
d ,x

m
d)}

via randomly drawing M times without replacement, where m = 1, ...,M.
• To each sub-sample, estimate f̂m(x) via minimizing the L2 loss function

min
f̂m(x)

d

∑
i=1

(
ym

i − f̂m(xm
i)
)2
.

• Combine all the estimated models f̂1(x), ..., f̂M(x) to construct a Subagging esti-
mate

f̂ (x)subagging =
1
M

M

∑
m=1

f̂m(x).

Practically, we choose d = α ×N where 0 < α < 1. There are several related
research papers considered the similar settings for d (Buja and Stuetzle (2000a),
Buja and Stuetzle (2000b)). Since the d is related to the computational cost, d =N/2
is widely used in practice.

2.3 Bootstrap robust aggregating (Bragging)

In Sections 2.1 and 2.2, we have discussed Bagging and Subagging that are based on
bootstrap samples and sub-sampling samples respectively. Although they are shown
to improve the robustness of a predictor, both of them are based on the mean for
aggregation, which may suffer from the problem of outliers. A common way to
resolve the problem of outliers is to use median instead of the mean. To construct
an outlier-robust model averaging estimator, a median-based Bagging method is
discussed by Bühlmann (2004), which is called Bootstrap Robust Aggregating or
Bragging.

The procedure of Bragging is the following:

• Based on the sample, we generate bootstrap samples {(yb
1,x

b
1), ...,(y

b
N ,x

b
N)} via

random draws with replacement, with b = 1, ...,B.
• With each bootstrap sample, estimate f̂b(x) via minimizing the L2 loss function

min
f̂b(x)

N

∑
i=1

(
yb

i − f̂b(xb
i)
)2

.

• Combine all the estimated models f̂1(x), ..., f̂B(x) to construct a Bragging esti-
mate

f̂ (x)bragging = median
(

f̂b(x); b = 1, ...,B
)
.

Bootstrap Aggregating and Random Forest 5

To sum up, instead of taking the mean (average) on the base predictors in Bag-
ging, Bragging takes the median of the base predictors. According to Bühlmann
(2004), there are some other robust estimators, like estimating f̂b(x) based on Hu-
ber’s estimator, but Bragging works slightly better in practice.

2.4 Out-of-Bag Error for Bagging

In Sections 2.1 to 2.3, we have discussed Bagging and its two variants. In the
Bootstrap-based methods like Bagging and Bragging, when we train f̂b(x) on the
bootstrap sample, there are many data points not selected by resampling with re-
placement with the probability

P((xi,yi) /∈ Bootb) =
(

1− 1
N

)N

→ e−1 ≈ 37%,

where Bootb is the bth bootstrap sample. There are roughly 37% of the original sam-
ple points not included in the bth bootstrap sample. Actually, this is very useful since
it can be treated as a ‘test’ sample for checking the out-of-sample error for f̂b(x).
The sample group containing all the samples not included in the bth bootstrap sam-
ple is called the Out-of-Bag sample or OOB sample. The error that the f̂b(x) has
on the bth out-of-bag sample is called the Out-of-Bag Error, which is equivalent
to the error generated from the real test set. This is discussed in Breiman (1996) in
detail. The bth Out-of-Bag error is calculated by

êrrOOB,b =
∑

N
i=1 I ((yi,xi) /∈ Bootb)×Loss(yi, f̂b(xi))

∑
N
i=1 I ((yi,xi) /∈ Bootb)

=
1

Nb

Nb

∑
i=1

Loss
(

yb
i,OOB, f̂b(xb

i,OOB)
)
.

The procedure of implementing the Out-of-Bag Error is the following:

• Based on the sample, we generate B different bootstrap samples {(yb
1,x

b
1), ...,(y

b
N ,x

b
N)}

via randomly drawing with replacement.
• To each bootstrap sample, estimate f̂b(x) via minimizing the Loss function

min
f̂b(x)

N

∑
i=1

Loss
(

yb
i − f̂b(xb

i)
)
.

• Compare the bth bootstrap sample to the original sample to get the the bth Out-
of-Bag sample {(yb

1,OOB,x
b
1,OOB), ...,(y

b
Nb,OOB,x

b
Nb,OOB)}, where Nb is the number

of data points for the bth Out-of-Bag sample.
• Calculate the Out-of-Bag error of f̂b(x) among all the Out-of-Bag samples

6 Tae-Hwy Lee, Aman Ullah and Ran Wang

êrrOOB =
1
B

B

∑
b=1

1
Nb

Nb

∑
i=1

Loss
(

yb
i,OOB, f̂b(xb

i,OOB)
)

=
1
B

B

∑
b=1

êrrOOB,b.

3 Decision Trees

Although many machine learning methods, like spline and neural networks, are in-
troduced as the base predictors in Bagging method, the most popular Bagging-based
method is the so-called Random Forest proposed by Breiman (2001). Random For-
est has been applied to many studies and becomes an indispensable tool for data
mining and knowledge discovery. Intuitively, the main idea behind Random For-
est is combining a large number of decision trees into a big forest via Bagging. In
this section, we concentrate on how to construct the base learner, Decision Tree,
for Random Forest. In Section 4, we discuss the Random Forest in detail. Several
effective variants of Random Forest are discussed in detail in Section 5.

3.1 The structure of a decision tree

The basic idea of the decision tree has a long history and has been used in many areas
including biology, computer science, and business. Biologists usually introduce a
very large tree chart to describe the structure of classes containing animals or plants;
in computer science, tree structure is a widely used data type or data structure with a
root value and sub-trees of children with a parent node, represented as a set of linked
nodes; in business, the decision tree is a usual structure choice for a flowchart that
each internal node has a series of questions based on input variables.

Figure 13.1 gives an example of book data with the tree structure. Firstly, in all
kinds of books, we have economic books. Then, economic books contain books
about macroeconomics, microeconomics, and others. If we concentrate on macroe-
conomic books, it contains books about Real Business Cycle (RBC) theory, New
Keynesian theory, etc.

First of all, let us explore the structure of the decision tree and clarify the names
of components in the decision tree. Figure 13.2 illustrates a decision tree with three
layers. We can see that there are 4 components in a decision tree: root nodes, internal
nodes, leaf nodes, and branches between every two layers. The root node is the
beginning of a decision tree. From the only one root node, there could be two or
more branches connecting to the internal nodes in the next layer. Each internal node
is also called the parent node to the connected nodes in the next layer. The nodes in
the next layer are called child nodes or sub-nodes. Also, every internal node contains
a decision rule to decide how to connect to its sub-nodes in the next layer. At the

Bootstrap Aggregating and Random Forest 7

Fig. 1 A Tree of Structured Data about Economic Books

bottom, there are several leaf nodes. They are the end of one decision tree and they
represent different outputs for prediction. For example, to a regression problem,
each leaf node contains a continuous output. To a classification problem, each leaf
node contains a discrete output corresponding to the labels of classes.

Intuitively, all the tree structure methods share the same intuition: the recursive
splitting. Given a node, we split it into several branches connecting to its sub-nodes
in the next layer. Then, to each sub-node, we split it again to get more sub-nodes in
the next layer until the end of the decision tree.

In data mining and machine learning, the decision tree is widely used as a learn-
ing algorithm called Decision Tree Learning. We first construct the structure of a
decision tree structure. Each node contains a decision rule. To calculate the predic-
tion of a decision tree, we feed the input to the root node and then propagate through
all the layers to a leaf node, which outputs the final prediction of the decision tree.
We discuss this procedure in detail via the following two examples.

Example 1: People’s health
Let us consider a classification problem about people’s health. Suppose a peo-

ple’s health Heal depends on two explanatory variables, weight W and height H.
Health is a binary variable with two potential outcomes: Heal = 1 means healthy
and Heal = 0 means not healthy. The function of Heal given H and W is

8 Tae-Hwy Lee, Aman Ullah and Ran Wang

Fig. 2 The Components in a Decision Tree

Heal = h(W,H).

Now suppose we can represent this function via several decision rules. Based on
our experience, to a people with a large height, it is not healthy if this people have
a relatively small weight; to a people with a small height, it is not healthy if this
people have a large weight. We can write down these rules:

Heal = 1 i f H > 180 cm and W > 60 kg
Heal = 0 i f H > 180 cm and W < 60 kg
Heal = 1 i f H < 180 cm and W < 80 kg
Heal = 0 i f H < 180 cm and W > 80 kg.

We first consider height H. Based on the outcome of H, there are different decision
rules for weight W . Thus, it is straightforward to construct a tree to encode this
procedure.

In Figure 13.3, the node containing H is the root node, which is the beginning of
the decision procedure. The node containing W is the internal node in the first layer.
In the second layer, there are four leaf nodes that give the final prediction of health.
For example, to a sample (H = 179cm, W = 60kg), according to the decision rule
in the root node, we choose the lower part of branches since 179 < 180. Then, since
60 < 80 based on the decision rule in the internal node, we go to the third leaf node

Bootstrap Aggregating and Random Forest 9

Fig. 3 A Tree of People’s Health

and output Heal = 1 as the prediction. This decision tree encodes the four decision
rules into a hierarchical decision procedure.

Example 2: Women’s wage
Another example is about the classic economic research: women’s wage. Sup-

pose women’s wage depends on two factors: education level Edu and working expe-
rience Expr. Thus, this is a regression problem. The nonlinear function of women’s
wage is

Wage = g(Edu,Expr).

If a woman has higher education level or a longer working experience, it is much
possible that woman have higher wage rate. As in Example 1, we suppose the non-
linear function g can be represented by the following rules:

Wage = 50 i f Expr > 10 years and Edu = college
Wage = 20 i f Expr > 10 years and Edu 6= college
Wage = 10 i f Expr < 10 years and Edu = college
Wage = 0 i f Expr < 10 years and Edu 6= college.

In this case, we first consider the experience Expr. Based on it, we use different
decision rules for education Edu. This procedure can also be encoded into a decision
tree.

10 Tae-Hwy Lee, Aman Ullah and Ran Wang

Fig. 4 A Tree of Woman’s Wage

Figure 13.4 illustrates the decision tree for predicting women’s wage. To a
woman who has 11 years of working experience with a college degree, it is more
likely that she has a higher wage rate. Thus the decision tree outcomes 50; if a
woman has 3 years of working experience without a college degree, we expect the
woman could have a hard time in searching for her job. Thus, the decision tree re-
ports 0.

3.2 Growing a decision tree for classification: ID3 and C4.5

In Section 3.1, we have discussed how a decision tree works. Given the correct
decision rules in the root and internal nodes and the outputs in the leaf nodes, the
decision tree can output the prediction we need. The next question is how to decide
the decision rules and values for all the nodes in a decision tree. This is related
to the learning or growing of a decision tree. There are more than 20 methods to
grow a decision tree. In this chapter, we only consider two very important methods.
In this section, we discuss ID3 and C4.5 methods for the classification problem.
In the subsections 3.3 and 3.4, we will introduce the Classification and Regression
Tree (CART) method for the classification problem and the regression problem,
respectively.

Let us go back to the weight, height and health example. Since there are two
explanatory variables, H and W , we can visualize the input space in a 2D plot. Figure

Bootstrap Aggregating and Random Forest 11

13.5 illustrates all the data points {(Heal1,W1,H1), ...,(HealN ,WN ,HN)} in a 2D
plot. The horizontal axis is the weight W and the vertical axis represents the height
H. The red minus symbol means Heal = 0 and the blue plus symbol represents
Heal = 1.

Fig. 5 Health Data in 2D Plot

Figure 13.6 illustrates the implementation of a decision tree in a 2D plot to predict
a person’s health. First of all, in level 1, the decision rule at the root node is Height >
180 or not. In the 2D plot, this rule could be represented as a decision stump which
is a horizontal line at H = 180cm. The decision stump splits the sample space into
two sub-spaces that are corresponding to the two sub-nodes in level 1. The upper
space is corresponding to H > 180cm and the lower space represents H < 180cm.

Next, we have two sub-spaces in level two. To the upper spaces, we check the
rule at the right internal node, W > 60kg or not. This can be represented as another
vertical decision stump at W = 60kg to separate upper space to two sub-spaces.
Similarly, to the lower space, we also draw another vertical decision stump, which
is corresponding to the decision rule at the left internal node.

Finally, we designate the final output for each of the four sub-spaces that repre-
sent the four leaf nodes. In classification problems, given a sub-space corresponding
to a leaf node, we consider the number of samples for each class and then choose the
class with the most number of samples as the output at this leaf node. For example,
the upper left space should predict Heal = 0, the upper right space is corresponding
to Heal = 1. For the regression problems, we often choose the average of all the
samples at one sub-space as the output of this leaf node.

12 Tae-Hwy Lee, Aman Ullah and Ran Wang

Fig. 6 Grow a Tree for Health Data

To sum up, each node in a decision tree is corresponding to space or a sub-space.
The decision rule in each node is corresponding to a decision stump in this space.
Then, every leaf node calculates its output based on the average outputs belonging
to this leaf. To grow a decision tree, there are two kinds of ‘parameters’ need to be

Bootstrap Aggregating and Random Forest 13

figured out: the positions of all the decision stumps corresponding to the non-leaf
nodes and the outputs of all the leaf nodes.

In decision tree learning, we often grow a decision tree from the root node to
leaf nodes. Also in each node, we usually choose only one variable for the decision
stump. Thus, the decision stump should be orthogonal to the axis corresponding to
the variable we choose. At first, we decide that the optimal decision stump for the
root node. Then, to two internal nodes in layer 1, we figure out two optimal decision
stumps. Then, we estimate the outputs to four leaf nodes. In other words, decision
tree learning is to hierarchically split input space into sub-spaces. Comparing the
two plots at the bottom of Figure 13.6, we can see the procedure of hierarchical
splitting for a decision tree learning.

Thus, the core question is how to measure the goodness of a decision stump to
a node. An important measure of this problem is called impurity. To understand it,
we consider two decision stumps for one sample set.

Fig. 7 Sub-spaces Generated by Decision Stumps

Figure 13.7 shows the different cases of the sub-spaces split by two decision
stumps. To the left panel, H is selected for the decision stump. In two sub-spaces,
the samples have two labels. To the right panel, W is selected. The left sub-space
only contains samples with label Heal = 0 and the right sub-space only contains
samples with label Heal = 1. Intuitively, we can say that the two sub-spaces in the
left panel are impure compared to the sub-spaces in the right panel. The sub-spaces
in the right panel should have lower impurity. Obviously, the decision stump in the
right panel is better than the left panel since it generates more pure sub-spaces.

14 Tae-Hwy Lee, Aman Ullah and Ran Wang

Mathematically, the information entropy is a great measure of impurity. The
more labels of samples are contained in one sub-space, the higher entropy of the
sub-space has. To discuss the entropy-based tree growing clearly, we introduce a
new definition: information gain. The information or entropy for an input space S
is

In f o(S) =−
C

∑
c=1

pclog2(pc), (1)

where C is the total number of classes or labels contained in space S. pc is the
frequency of samples for one class in the space S. It can be estimated by

pc =
1

NS
∑

xi∈S
I(yi = c), (2)

where NS is the total number of samples in space S. I(yi = c) is an indicator function
measuring the label yi is the cth class or not.

Suppose we choose D as a decision stump and it separates the space S into two
sub-spaces. For example, if we choose D as x = 5, the two sub-spaces are cor-
responding to x < 5 and x > 5. Then, we calculate the distinct entropies for two
sub-spaces. Thus, if the space S is separated into v different sub-spaces, the average
entropy of S after splitting is

In f oD(S) =
v

∑
j=1

NS j

NS
× In f o(S j), (3)

where v is the number of sub-spaces generated by D. To binary splitting, v = 2. S j
is the jth sub-space and it satisfies: Si∩S j = ø if i 6= j and

⋃
i Si = S. NS j and NS are

the number of samples contained in S j and S.
Obviously, the information or entropy for space S changes before and after split-

ting based on decision stump D. Thus, we define the information gain of D as

Gain(D) = In f o(S)− In f oD(S). (4)

Example 3: Predicting economic growth
Consider an example of predicting economic growth G based on two factors:

Inflation Rate I and Net Export NX . Suppose G is a binary variable where G = 1 for
expansion and G = 0 for recession. Then, the growth G is an unknown function of
the inflation rate I and the Net Export NX

G = G(I,NX).

From the left panel in Figure 13.8, we can see the sample distribution of eco-
nomic growth G. For example, if there is high inflation rate I and high net export

Bootstrap Aggregating and Random Forest 15

NX , we observe the economic expansion where G = 1; if there are high inflation
rate I but low net export NX , the economy will be in recession with G = 0.

Let us consider a decision tree with only the root node and two leaf nodes to fit
the samples. In the right panel, we choose D : I = 10% as the decision stump in the
root node. Thus, the space S is splitted into two sub-spaces S1 and S2. According to
Equation (13.1), the information to the original space S is

In f o(S) =−
2

∑
c=1

pclog2(pc)

=−(p1log2(p1)+ p2log2(p2))

=−
(

4
8

log2

(
4
8

)
+

4
8

log2

(
4
8

))
= 1,

where class 1 is corresponding to G = 0 and class 2 to G = 1. And p1 =
4
8 means

that there are 4 samples with G = 0 out of 8 samples.
After splitting, the information to the sub-space S1 is

In f o(S1) =−
2

∑
c=1

pclog2(pc)

=−p1log2(p1)+0

=−
(

2
2

)
log2

(
2
2

)
= 0.

The information to the sub-space S2 is

In f o(S2) =−
2

∑
c=1

pclog2(pc)

=−(p1log2(p1)+ p1log2(p1))

=−
(

2
6

log2

(
2
6

)
+

4
6

log2

(
4
6

))
= 0.92.

Based on Equation (13.3), the average entropy of S after splitting is

16 Tae-Hwy Lee, Aman Ullah and Ran Wang

In f oD(S) =
v

∑
j=1

NS j

NS
× In f o(S j)

=
NS1

NS
× In f o(S1)+

NS2

NS
× In f o(S2)

=
2
8
×0+

6
8
×0.92

= 0.69.

After splitting, the information decreases from 1 to 0.69. According to Equation
(13.3), the information gain of D is

Gain(D) = In f o(S)− In f oD(S) = 0.31.

Fig. 8 Plots for Economic Growth Data

To sum up, we can find the best decision stump to maximizing the information
gain such that the optimal decision stump can be found. From the root node, we
repeat finding the best decision stump to each internal node until stopped at the leaf
nodes. This method for tree growing is called ID3 introduced by Quinlan (1986).

Practically, the procedure of implementing the decision tree for classification
based on ID3 is the following:

• Suppose the sample is {(y1,x1), ...,(yN ,xN)} where yi ∈ (0,1) and xi ∈ Rp. To
the first dimension, gather all the data orderly as x1,(i), ...,x1,(N).

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

Bootstrap Aggregating and Random Forest 17

max
D1

Gain(D1) = max
D1

(In f o(S)− In f oD1(S)) .

• Find the best D2 : x2 = d2, ...,Dp : xp = dp and then choose the optimal D such
that

max
D

Gain(D) = max
D

(In f o(S)− In f oD(S)) .

• Repeatedly run the splitting procedure until every node containing one label of
y. Finally, take the label of y from one leaf node as its output.

One problem this method suffer from is related to over-fitting. Suppose we have
N data points in space S. According to the rule that maximizing the information
gain, we can find that the optimal result is separating one sample into one sub-space
such that the entropy is zero in each sub-space. This is not a reasonable choice since
it is not robust to noise in the samples. To prevent that, we can introduce a revised
version of information gain from C4.5 method.

C4.5 introduces a measure for information represented via splitting, which is
called Splitting Information

Split In f oD(S) =−
v

∑
j=1

NS j

NS
× log2

NS j

NS
, (5)

where v = 2 for the binary splitting.
Obviously, this is an entropy based on the number of splitting or the number of

sub-spaces. The more the sub-spaces are, the higher the splitting information we
will get. To show this conclusion, let us go back to the economic growth case.

To the left case, the splitting information is calculated based on Equation (13.5)
as

Split In f oD(S) =−
v

∑
j=1

NS j

NS
× log2

NS j

NS

=−
(

NS1

NS
× log2

NS1

NS
+

NS2

NS
× log2

NS2

NS

)
=−

(
2
8
× log2

2
8
+

6
8
× log2

6
8

)
= 0.81.

To the right case, the splitting information is

18 Tae-Hwy Lee, Aman Ullah and Ran Wang

Fig. 9 Grow a Tree for Economic Growth Prediction

Split In f oD(S) =−
v

∑
j=1

NS j

NS
× log2

NS j

NS

=−
(

NS1

NS
× log2

NS1

NS
+

NS2

NS
× log2

NS2

NS
+

NS3

NS
× log2

NS3

NS

)
=−

(
2
8
× log2

2
8
+

4
8
× log2

4
8
+

2
8
× log2

2
8

)
= 1.5.

Thus, when there are more sub-spaces, the splitting information increases. In
other words, splitting information is the ‘cost’ for generating sub-spaces. Now, in-
stead of information gain, we can use a new measure called Gain Ratio(D)

Gain Ratio(D) =
Gain(D)

Split In f o(D)
. (6)

When we generate more sub-spaces, the information gain increases but splitting
information is higher at the same time. Thus, to maximize the Gain Ratio of D, we
can make great trade-offs. This is the main idea of C4.5, an improved version of
ID3 introduced by Quinlan (1994).

Summarizing, the procedure of implementing the decision tree for classification
based on C4.5 is the following:

• Suppose the sample is {(y1,x1), ...,(yN ,xN)} where yi ∈ (0,1) and xi ∈ Rp. To
the first dimension, gather all the data orderly as x1,(i), ...,x1,(N).

Bootstrap Aggregating and Random Forest 19

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain Ratio(D1) = max
D1

(
Gain(D1)

Split In f o(D1)

)
.

• Find the best D2 : x2 = d2, ...,Dp : xp = dp and then choose the optimal D such
that

max
D

Gain Ratio(D) = max
D

(
Gain(D)

Split In f o(D)

)
.

• Repeatedly run the splitting procedure until the Gain Ratio is less than 1. Finally,
take the most frequency label of y from one leaf node as its output.

3.3 Growing a decision tree for classification: CART

In Section 3.2, we have discussed related methods about how to grow a tree based
on ID3 and C4.5 methods. In this section, we introduce another way to construct
a decision tree, the Classification and Regression Tree (CART), which not only
features great performance but very easy to implement in practice for both classifi-
cation and regression tasks.

Fig. 10 Entropy (blue) and Gini Impurity (red)

20 Tae-Hwy Lee, Aman Ullah and Ran Wang

The main difference between ID3, C4.5, and CART is the measure of informa-
tion. ID3 and C4.5 choose the entropy to construct the Information Gain and Gain
Ratio. In CART, we introduce a new measure for deciding the best decision stump
called the Gini Index or Gini Impurity. The definition of Gini Impurity is

Gini(S) =
M

∑
j=1

p j(1− p j) = 1−
M

∑
j=1

p2
j , (7)

where M is the number of classes in node spaces S and p j is the frequency of class
j in node space S. Intuitively, this is the variance of the binary distribution. That is,
CART chooses the variance as the impurity measure.

Figure 13.10 illustrates the difference between Entropy and Gini Impurity. Given
x-axis as the proportion of sample belonging to one class, we can see that two curves
are very similar. Then, we have the new Gini Impurity after binary splitting

GiniD(S) =
NS1

NS
Gini(S1)+

NS2

NS
Gini(S2). (8)

where the NS,NS1 ,NS2 are the numbers of sample points in space S,S1,S2 respec-
tively. Similarly to the information gain in ID3, we consider the difference of Gini
impurity as the measure of goodness of decision stump

∆GiniD(S) = Gini(S)−GiniD(S). (9)

As we discuss in ID3 method, if we grow a decision tree via maximizing the in-
formation gain in each node, it is the best choice that we split all the data points in
one space such that each subspace contains one sample point. ID3 and CART may
suffer from this risk. C4.5 should be a better choice than ID3 and CART, but it has
a fixed rule to prevent over-fitting which cannot be adaptive to data.

To solve this problem, let us consider the total cost of growing a decision tree

Total Cost = Measure o f Fit +Measure o f Complexity. (10)

The total cost contains two main parts: the measure of fit is related to the goodness
of the model, as the error rate in classification problem; the measure of complexity
describes the power of the model. To balance the two measures in growing a decision
tree, we often choose the following function as the objective:

L = Loss(yi,xi; tree)+λΩ(numbers o f lea f nodes).

The first term is related to the loss of the decision tree. To classification problem,
we can use the error rate on the samples as the loss. The second term is a measure
of complexity based on the number of leaf nodes. Ω is an arbitrary function like the
absolute function. λ is a tuning parameter balancing the loss and the complexity.
Many machine learning and regressions like Lasso and Ridge Regression follow
this framework. Also, since the second term penalizes on the number of leaf nodes,
this is also called pruning a decision tree.

Bootstrap Aggregating and Random Forest 21

The procedure of implementing the decision tree for classification based on
CART is the following:

• Suppose the sample is {(y1,x1), ...,(yN ,xN)} where yi ∈ {0,1} and xi ∈ Rp. To
the first dimension, gather all the data orderly as x1,(i), ...,x1,(N).

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

∆GiniD1(S) = max
D1

(Gini(S)−GiniD1(S)) .

• Find the best D2 : x2 = d2, ...,Dp : xp = dp and then choose the optimal D such
that

max
D

∆GiniD(S) = max
D

(Gini(S)−GiniD(S)) .

• Based on the new decision stump, calculate the error rate for the decision tree
and the total loss function

L = error rate(yi,xi; tree)+λΩ(numbers o f lea f nodes).

• Repeatedly run the splitting procedure until the total loss function starting to
increase. Finally, take the most frequency label of y from one leaf node as its
output.

3.4 Growing a decision tree for regression: CART

The Information Gain and Gini Impurity are a very important measures when we
are implementing a classification problem. In economic research, we often consider
more regression problems with the continuous response. Thus, instead of the infor-
mation gain, we choose the variation to measure the goodness of a decision stump

Variation(S) =
N

∑
i=1

(yi− ȳ)2, (11)

where N is the number of data points belong to the space S. After several split-
ting, the space S is separated into v sub-spaces S1, ...,Sv, we can define the average
variance after splitting the space S

VariationD(S) =
1
v

v

∑
j=1

Variation j(S), (12)

where v is the number of the sub-spaces separated by D. Again, to binary splitting,
we have v = 2. Thus, we have a new information gain for regression method

22 Tae-Hwy Lee, Aman Ullah and Ran Wang

Gain(D) =Variation(S)−VariationD(S). (13)

Based on the total cost in Equation (13.10), we choose the same formula for
regression

L = Loss(yi,xi; tree)+λΩ(numbers o f lea f nodes),

where Loss(yi,xi; tree) is the L2 loss function.

Thus, the procedure of implementing the decision tree for regression based on
CART is the following:

• Suppose the sample is {(y1,x1), ...,(yN ,xN)} where yi ∈ R and xi ∈ Rp. To the
first dimension, gather all the data orderly as x1,(i), ...,x1,(N).

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain(D) = max
D1

(Variation(S)−VariationD1(S)) .

• Find the best D2 : x2 = d2, ...,Dp : xp = dp and then choose the optimal D such
that

max
D

Gain(D) = max
D

(Variation(S)−VariationD(S)) .

• Based on the new decision stump, calculate the loss for the decision tree and the
total loss function

L = Loss(yi,xi; tree)+λΩ(numbers o f lea f nodes).

• Repeatedly run the splitting procedure until the total loss function starting to
increase. Finally, take an average of y from one leaf node as its output.

3.5 Variable importance in a decision tree

In Sections 3.2 to 3.4, we discussed how to grow a decision tree. In this section, we
consider another problem: how to measure the importance of the variable.

In the procedure of growing a decision tree, each time we split one internal node
into two child nodes, one variable should be selected based on the information gain
or variation gain. Thus, for an important variable, the decision tree should choose it
frequently among all the internal nodes. Conversely, the variables may be selected
just a few times if the variables are not very important. To the jth variable, Breiman
et al (1984) defined a relative importance as

Bootstrap Aggregating and Random Forest 23

I2
j =

T−1

∑
t=1

e2
t I(v(t) = j), (14)

where T is the number of internal nodes (non-leaf nodes) in a decision tree, v(t)
is the variable selected by node t. et is the error improvement based on before and
after splitting the space via variable v(t). To regression task, it can be a gain of
variation. To classification problem, it is related to information gain of entropy or
the difference of Gini Impurity.

For example, let us consider a CART tree to a regression problem. Suppose
we split the tth node into two nodes based on variable j selected by the decision
stump D. Then, we can calculate the value of the information gain Gain(D) =
Variation(S)−VariationD(S). This is the error improvement et . Thus, considering
all the internal nodes, we calculate all the e2

t to get I2
j .

If variable j is very important, the error improvement should be very large and
I(v(t) = j) often equals to 1 since variable j is usually selected. As a result, the
measure I2

j is relatively large; conversely, it a variable is not very important, the
error improvement based on this variable cannot be so large, which leads to a small
I2

j . After we growing a decision tree on a training set, we often calculate it on the
test set.

4 Random Forests

Random Forest is a combination of many decision trees based on Bagging. In the
first paper about Random Forest, Breiman (2001) discussed the theories behind the
Random Forest and compared Random Forest with other ensemble methods. From
this section, we start to discuss Random Forests in detail.

4.1 Constructing a random forest

As we discussed in Section 2, Bagging method can generate a lot of base learners
trained on bootstrap samples and then combine them to predict. If we consider com-
bining a set of unbiased estimators or predictors, Bagging works by decreasing the
variances of the predictors but keeping the means unaffected.

For example, let us consider B numbers of unbiased estimators f1, f2, ..., fB with
same variance σ2. If they are i.i.d, it is easy to show that the variance of average
estimator is

Var(g) =Var

(
1
B

B

∑
b=1

fb

)
=

1
B

σ
2. (15)

But if the unbiased estimators are correlated, the variance of the average estimator
is

24 Tae-Hwy Lee, Aman Ullah and Ran Wang

Var(g) =
1

B2 Var

(
B

∑
b=1

fb

)

=
1

B2

(
B

∑
b=1

Var(fb)+2 ∑
b6=c

cov(fb, fc)

)

=
1

B2 (Bσ
2 +(B2−B)ρσ

2)

= ρσ
2 +

(1−ρ)

B
σ

2,

(16)

where ρ is the correlation coefficient between two estimators.
The variance of average estimator depends on the number of base estimators

and the correlation between estimators. Even if we can decrease the second term to
zero via adding increasingly large numbers of estimators, the first term remains at
the same level if the estimators are not independent. Similarly, in Bagging, even if
we can combine a lot of predictors based on Bootstrap, the variance cannot keep
decreasing if the predictors are dependent with each other.

In practice, since most of the bootstrap sample are very similar, the decision trees
trained on these sample sets are often similar and highly correlated with others.
Thus, average estimators of similar decision trees can be more robust but do not
perform much better than a single decision tree. That is the reason why Bagging
decision trees or other base learners may not work so well in prediction.

Compare to Bagging decision trees, which only combines many trees based on
Bootstrap to decrease the second term (1−ρ)

B σ2, Random Forest also considers con-
trolling the first term ρσ2. To decrease the correlation between decision trees, Ran-
dom Forest introduces the so-called random subset projection or random feature
projection during growing a decision tree. That is, instead of applying all the vari-
ables in one tree, each decision tree chooses only a subset of variables at each poten-
tial split in Random Forest. Also, comparing to the classic decision tree, in Random
Forest, decision trees are not necessarily pruned by penalizing the number of leaf
nodes but grow all the way to the end. Random subset projection can significantly
decrease the correlations between trees since different trees grow on different sets of
attributes, which leads to a smaller ρσ2. But it could affect the second term (1−ρ)

B σ2

and the unbiasedness of decision trees since they cannot predict dependent variables
based on all the attributes. Thus, we need to select the number of variables to select
in each split to balance the first and the second term.

The procedure of constructing a Random Forest is the following:

• Generate B number of bootstrap sample sets.
• On each sample set, grow a decision tree all the way to the end.
• During growing a tree, randomly select m variables at each potential split (ran-

dom feature projection).

Bootstrap Aggregating and Random Forest 25

• Combine the B decision trees to a Random Forest. To regression, take the average
output among all the trees; to classification, consider the vote of all the trees.

We can choose the hyper-parameter m based on cross-validation but this is very
time-consuming when B is very large. Thus, to the classification task, m is often
chosen as 1 ≤ m ≤√p; to regression task, we choose m as 1 ≤ m ≤ p/3, where p
is the number of variables. To the node size, for every decision tree, we grow it all
the way to the end for the classification task, while we grow to that every leaf node
has no more than nmin = 5 sample inside for regression task.

4.2 Variable importance in a random forest

In Section 3.5, we discussed the relative importance I2
j to measure the importance

of a variable in a decision tree. Since Random Forest is a linear combination of
decision trees, we can introduce an average relative importance

I2
j =

1
B

B

∑
b=1

I2
j (b), (17)

where I2
j (b) is the relative importance for the bth decision tree

I2
j (b) =

Tb−1

∑
t=1

e2
t I(v(t)b = j). (18)

A drawback for this measure is that we need to check every node in a decision
tree. This is not very efficient if there is too many samples or large numbers of the
decision tree in a Random Forest.

Surprisingly, Random Forest provides a much simpler but very effective way to
measure the importance of variables via random permuting. That is, for one vari-
able, we perturb the samples by random permuting. For example, after constructing
a Random Forest, to the jth variable along all the samples x j = (x j,1,x j,2, ...,x j,i, ...,
x j,N), we randomly rearrange all the x to generate a new series of samples x∗j =
(x∗j,1,x

∗
j,2, ...,x

∗
j,i, ...,x

∗
j,N) = (x j,2,x j,10, ...,x j,N−4, ...,x j,i+5), which is the original x j

with random sample order. Then, we test the Random Forest on that to get the error
rate or mean square error under random permuting. Intuitively, if one variable is
not important, comparing the test error on the original test sample, the test error on
permuting test samples should not change a lot since this variable may not usually
be selected by the nodes in a decision tree. Given a test set with Nt samples, the
variable importance under random permuting is

26 Tae-Hwy Lee, Aman Ullah and Ran Wang

V I j =
1
B

B

∑
b=1

1
Nt

Nt

∑
i=1

Loss(yi, treeb(x1,i,,x∗j,i, ...))−Loss(yi, treeb(x1,i,,x j,i, ...))

=
1
B

B

∑
b=1

1
Nt

Nt

∑
i=1

∆Loss(yi, treeb(x1,i,,x∗j,i, ...)).

(19)

In practice, one way to estimate the test error is sample splitting. We split one
data set into a training set and a validation set and then estimate the test error on
the validation set. But this is not efficient because of the loss of samples. When we
discussed in Bagging in Section 2.4, in terms of Bootstrap sampling, all the Bagging
methods could leave about one third sample points untouched, that are the Out-of-
Bag samples. Since Random Forest is a Bagging method, we can use the OOB error
as the test error. This is a very efficient way to implement since each time we add a
decision tree based on a new bootstrap sample, we can test the variable importance
on the new OOB samples.

Based on the OOB error, we redefine the measure of variable importance as

V IOOB
j =

1
B

B

∑
b=1

1
Nb

Nb

∑
i=1

(Loss(yi,OOB, treeb(x1,i,OOB,,x∗j,i,OOB, ...))

−Loss(yi,OOB, treeb(x1,i,OOB,,x j,i,OOB, ...; treeb)))

=
1
B

B

∑
b=1

(
êrr∗OOB,b− êrrOOB,b

)
=

1
B

B

∑
b=1

∆ êrrOOB,b

(20)

where Nb is the sample size of the bth OOB sample.

The implementing procedure is the following:

• To bth bootstrap sample set, grow a decision tree.
• Find the sample point not contained in the sample set and construct the bth Out-

of-Bag sample set.
• Calculate OOB error for the bth decision tree based on the OOB sample with and

without random permuting.
• Calculate V IOOB

j to measure the jth variable importance.

One related topic is about the variable selection in Random Forest. Based on
the variable importance, we can compare the importance between two variables.
Thus, could we select relevant variables based on this measure? A simple way to
implement is designating a threshold value for variable importance and select the
variables with high importance only. But there is no theory about how to decide
the threshold value such that we can select relevant variables correctly. Recently,

Bootstrap Aggregating and Random Forest 27

Strobl et al (2008) and Janitza et al (2016) considered the hypothesis testing to
select variables in Random Forest.

4.3 Random forest as the adaptive kernel functions

Now we start to discuss some related theories behind Random Forest to uncover why
Random Forest works. Basically, Random Forest or decision tree ensemble methods
can be seen as a local method. For example, it is easy to find that the predicted value
of a given data totally depends on the average of yi in one of the leaf node. In other
words, the predicted value only depends on a ‘neighborhood’ samples belong to the
leaf node. Similarly, Breiman (2000) showed that Random Forest which is grown
using i.i.d random vectors in the tree construction are equivalent to a kernel acting
on the true margin.

Without loss of generality, let us consider a Random Forest with B decision trees
for a binary classification task. To one decision tree, suppose R as the area of one
of leaf node with the responses as R =+1 or R =−1. We have the labeling rule for
R =+1 to this leaf node∫

R
P(+1|z)P(dz)≥

∫
R

P(−1|z)P(dz), (21)

where z represents all the possible inputs inculded in the leaf node. Intuitively, by
considering all the samples in R, if more samples with the label as +1, the response
of R is +1. Otherwise, we label the response of R as −1.

Based on Equation (13.21), we have the output +1 from a decision tree given an
input x when Equation (13.22) holds∫

Rx(θ)
P(1|z)P(dz)≥

∫
Rx(θ)

P(−1|z)P(dz), (22)

where Rx(θ) is the area of the leaf node containing x and θ is the parameter of the
decision tree. Let D(z) = P(1|z)−P(−1|z), then Equation (13.22) can be written as∫

Rx(θ)
D(z)P(dz)≥ 0. (23)

According to Equation (13.23), the prediction of the bth decision tree is

ŷ =

{
1 i f

∫
Rx(θb)

D(z)P(dz)≥ 0
−1 i f

∫
Rx(θb)

D(z)P(dz)≤ 0.

Now let us introduce an indicator function I(x,z ∈ R(θb)) to represent the event
z ∈ Rx(θb), we have

ŷ =

{
1 i f

∫
I(x,z ∈ R(θb))D(z)P(dz)≥ 0

−1 i f
∫

I(x,z ∈ R(θb))D(z)P(dz)≤ 0.

28 Tae-Hwy Lee, Aman Ullah and Ran Wang

Obviously, the indicator function I(x,z ∈ R(θb)) can be seen as a kernel weighted
function K(x,z). Also, this kernel function is not smooth since it only considers the
sample in the leaf node R(θb). Intuitively, it means that one decision tree can learn
to construct a distribution plot and then works via the ‘hard’ kernel weighting.

Let us consider a Random Forest. Compare to a single decision tree, Random
Forest contains B decision trees. Assume in bth decision tree, the number of leaf
nodes is Tb. Thus, we can derive a kernel function for Random Forest

KRF(x,z) =
1
B

B

∑
b=1

Tb

∑
t=1

I(x,z ∈ Rt(θb)). (24)

This is a discrete kernel combining all the leaf nodes from B decision trees. Ad-
ditionally, when B→ ∞, we have

KRF(x,z) =
1
B

B

∑
b=1

Tb

∑
t=1

I(x,z ∈ Rt(θb))

→ Pθ (x,z ∈ A(θ)),

(25)

where A(θ) is the area based on the Random Forest and it contains infinite number
of leaf nodes from infinite decision trees. When B→ ∞, we can see that the kernel
function will converge to a probability measure. That is, the hard kernel function
will be a smoother kernel function when we have increasingly number of decision
trees. Thus, the final output for Random Forest in this case should be

ŷRF =

{
1 i f

∫
KRF(x,z)D(z)P(dz)≥ 0

−1 i f
∫

KRF(x,z)D(z)P(dz)≤ 0.

From another perspective, Lin and Jeon (2006) discussed Random Forest from
a point of view of K-Nearest Neighbor (KNN). To show the connection between
Random Forest and KNN, they proposed a new method called Potential Nearest
Neighbor (PNN). They also showed that Random Forest could be converted to an
adaptive kernel smooth method described by PNN.

To sum up, Random Forest not only combines a large number of decision trees
to reduce the variance of prediction like bagging, but also decreases the dependence
among decision trees via random feature projection to get a much lower prediction
error than Bagging Decision Tree. Theoretically, Random Forest makes prediction
via constructing an adaptive kernel function. That is very similar to other local meth-
ods such as non-parametric kernel method and KNN. Figure 13.11 illustrates the
difference between Decision Tree and KNN.

Bootstrap Aggregating and Random Forest 29

Fig. 11 2D Plot of Decision Tree and KNN

5 Recent Developments of Random Forest

As one of the most effective ensemble method in solving real-world issues, the
random forest also has many variants for different modeling tasks in statistics, data
mining, and econometrics literature. In this section, we introduce several attractive
variants of Random Forest.

5.1 Extremely randomized trees

For Bagging method, we discussed its effectiveness related to the variance of en-
semble model. According to Equation (13.16)

Var(g) = ρσ
2 +

(1−ρ)

B
σ

2,

the variance is decomposed into two parts: the first term ρσ2 depends on the corre-
lation among base models and the second term (1−ρ)

B σ2 is related to the number of
base models.

Since we often combine a large number of base models, we can assume B goes
to infinity and the main part of the variance converges to ρσ2. Thus, bagging can
largely decrease the second term.

30 Tae-Hwy Lee, Aman Ullah and Ran Wang

Random Forest, besides controlling the second term via Bagging, also controls
the first term by decreasing the ρ via random feature projection simultaneously.
Because of the random feature projection, the decision tree suffers from a higher
bias. It means that we need to focus on decreasing correlations among decision
trees such that the ensemble model becomes more effective.

Random feature projection is not the only way to decrease the correlations.
Geurts et al (2006) introduced another way to achieve the goal and derived a new
technique called the Extremely Randomized Trees (Extra-Trees). Compare to Ran-
dom Forest, Extra-Trees works on the original samples instead of bootstrap samples.
More importantly, Extra-Trees method generates the base decision tree via a more
random way to split sample space than the random feature projection in Random
Forest.

The Extra-Trees splitting algorithm is the following:

• To a node space in decision tree, first choose K variables (x1,x2, ...,xK) among
all the p variables.

• To all K attributes, randomly choose a splitting point to each one of them via
choosing a uniform number from (xmin,xmax) belong to this node.

• Compare the criteria among all the random splitting point and choose the attribute
xk giving the best splitting outcome.

• Choose variable xk and the random splitting point as the final decision stump in
this node.

• Stop splitting when the number of sample points = nmin.

Practically, we set K =
√

p and nmin = 5 by default. But we can tune them based on
the cross-validation.

The key difference of constructing base decision trees between Random Forest
and Extra-Trees is the splitting rule for each node. In Random Forest, we choose m
variables and then find the optimal decision stump directly. But in Extra-Trees, we
choose K variables to randomly generate decision stump and then choose the ‘opti-
mal’ decision stump. As a consequence, randomly growing decision trees in extra-
trees will be less dependent than the trees in Random Forest, which leads to lower
correlations ρ . Thus, even though Extra-Trees do not introduce Bootstrap, it works
well in many data mining and predicting tasks. This idea about being ‘random’ is
also used in many other machine learning algorithms such as Extreme Learning Ma-
chine proposed by Huang et al (2006) and Echo State Networks designed by Jaeger
(2001)

We summarize Bagging Decision Trees, Random Forest and Extremely Random-
ized Trees in Table 1.

5.2 Soft decision tree and forest

Based on the previous discussion, we find that Random Forest and its variants are
based on the decision tree. The decision tree is growing via splitting the space into

Bootstrap Aggregating and Random Forest 31

Table 1 A Summary of Three Ensemble Methods

Names Main Part of Variance Bootstrap Hyper-parameters

Bagging Decision Trees ρσ2 Yes B, nmin
Random Forest ρσ2 Yes B, m, nmin

Extremely Randomized Trees (1−ρ)
B σ2 No B, K, nmin

optimal sub-spaces recursively and the function defined by a decision tree is a non-
smooth step function. The decision tree is naturally suitable for implementing the
classification problem because of the discrete outputs. Since most economic prob-
lems are related to the regression problems, we could expect that the decision tree
should be so large that it can handle a smooth function ‘non-smoothly’.

To resolve this problem, we can consider a ‘soft’ decision tree instead of the
‘hard’ decision tree. Given a decision tree with only one root node and two leaf
nodes, it can have two possible outcomes

f (x) =

{
µ1 i f g(x)> 0
µ2 i f g(x)< 0,

where µ1 and µ2 are correspond to the first and second leaf nodes. g(x) is called
gate function. It decides which leaf node should be selected. We can also rewrite the
formula based on an indicator function

f (x) = µ1× I(g(x)> 0)+µ2× (1− I(g(x)> 0)) .

For example, in women wage case we have discussed, the decision stump is D :
Expr = 10. Given that, we can use a gate function g(Expr) =Expr−10 to represent
the decision stump

f (Expr) = µ1× I(g(Expr)> 0)+µ2× (1− I(g(Expr)> 0)) . (26)

That is, if Expr > 10, we choose the first leaf node and Expr < 10 choose the second
one.

Generally, to the mth node, we can use a similar function to represent its output

Fm(x) = FL
m(x)× I(gm(x)> 0)+FR

m (x)× (1− I(gm(x)> 0)). (27)

If FL
m(x) and FR

m (x) are leaf nodes, we have FL
m(x) = µL and FR

m (x) = µR . If not, they
are corresponding to the child-nodes in the next layer FL

m(x) = FL
m+1(x). Because of

the indicator function, the Fm(x) is a step function with two outcomes, FL
m(x) or

FR
m (x). It is a hard decision tree.

In Equation (13.27), we can use a smooth gate function instead of the identity
function such that the decision tree is ‘soft’ and Fm(x) is a smooth function. Let us
change the indicator function I(h) to a logistic function L(h), we have

32 Tae-Hwy Lee, Aman Ullah and Ran Wang

Fig. 12 Hard Decision Tree and Soft Decision Tree

Fm(x) = FL
m(x)×L(gm(x))+FR

m (x)× (1−L(gm(x))), (28)

where L(h) = 1
1+e−h is a logistic function and gm(x) = β T x is a linear single index

function of input variables. In the soft decision tree, instead of selecting one from
two child nodes, a smooth Fm(x) is taking weighed average between FL

m(x) and
FR

m (x). In Figure 13.12, we compare the hard decision tree with the soft decision
tree.

Back to the women’s wage example, we choose L(g(Expr)) = 1
1+e−(Expr−10) . That

is, if Expr > 10, we consider the left node more and consider the right node more
when Expr < 10.

Compared to the hard decision tree, the soft decision tree has many advantages:

• Since soft decision tree can represent any smooth function, it is more suitable
to handle the regression problem than the original decision tree. That may be
the most important advantage since economic research often cares more about
the regression problem, such as economic growth rate prediction and derivative
estimation for partial effect analysis.

• Soft decision tree contains a bunch of differentiable gate functions, which means
we can train all the parameters via the Expectation Maximization (EM) method
very quickly.

• In all the leaf nodes of a soft decision tree, we could not only choose a constant
µ , but consider more flexible methods, like the linear formula or even the neural
networks.

Bootstrap Aggregating and Random Forest 33

• Because of its hierarchical structure, the soft decision tree is a local method as
the hard decision tree. Thus, it has similar theories and properties as other local
methods like kernel regression.

There are many research papers related to the soft version of the decision tree.
This first soft decision tree model is called Hierarchical Mixtures of Experts (HME)
discussed by Jordan and Jacob (1994). Instead of growing a decision tree via split-
ting recursively, in the HME method, we first designate the structure of a soft deci-
sion tree, like the number of layers, then optimize all the parameters in this tree.

Fig. 13 Hierarchical Mixtures of Experts

Consider a soft decision tree with S layers and one split in each node. Thus, the
number of total leaf nodes is 2S and the function of this soft decision tree is

fHME(x) =
2S

∑
lea f=1

Plea f (x)µlea f

=
2S

∑
lea f=1

∏
p→lea f

Gp(x)µlea f ,

where p→ lea f means all the gate functions contained in the nodes located on the
path to the sth leaf node. According to Equation (13.28), we have

Gp(x) = I(p = le f t)×L(gp(x))+ I(p = right)× (1−L(gp(x)))

34 Tae-Hwy Lee, Aman Ullah and Ran Wang

It decides the gate function for each node on the path. µlea f represents the function
in each leaf, which could be a constant, a simple linear function or other nonlinear
models.

For example, Figure 13.13 shows the structure of an HME with two layers. Let us
consider the path to the first leaf node p→ 1. The path starts from the root node in
layer 0. Since the path chooses the left node, the node0, I(p = le f t) = 1 and G0(x)
should be

G0(x) = I(0 = le f t)×L(g0(x))+(1− I(0 = le f t))× (1−L(g0(x)))

= L(g0(x)).

Then, the path contains the node1 at layer 1 and then choose the left node, the leaf1.
Thus, G1(x) should be

G1(x) = I(1 = le f t)×L(g00(x))+(1− I(1 = le f t))× (1−L(g00(x)))

= L(g00(x)).

Thus, to Plea f=1(x), we have

P1(x) = ∏
p→1

Gp(x) = G0(x)×G1(x)

= L(g0(x))×L(g00(x)).
(29)

Similarly, to the path to leaf 2, we have

P2(x) = ∏
p→2

Gp(x) = G0(x)×G1(x)

= L(g0(x))× (1−L(g00(x))).
(30)

Now we find that HME is similar to a mixture model since ∑lea f Plea f (x) = 1.
Suppose the µlea f is a parameter, like mean, of a distribution Plea f (y|x). Then we
have the conditional probability of y given x

P(y|x) =
2S

∑
lea f=1

∏
p→lea f

Gp(x)Plea f (y|x)

=
2S

∑
lea f=1

Plea f (x)Plea f (y|x).

Thus, we can have the log likelihood function of HME with unknown parameter β

Bootstrap Aggregating and Random Forest 35

L(y|x;β) =
N

∑
i=1

logP(yi|xi;β)

=
N

∑
i=1

log
2S

∑
lea f=1

Plea f (xi;β)Plea f (yi|xi;β).

To optimize the likelihood function, Jordan and Jacob (1994) considered a the
Expectation-Maximization (EM) to optimize it. The main idea behind EM is based
on the so-called complete log likelihood function

Lc(y|x;β) =
N

∑
i=1

2S

∑
lea f=1

zlea f ∏
p→lea f

Gp(xi;β)Plea f (yi|xi;β),

where zlea f are implicit variables that represent the indicators of leaf nodes. Take
the expectation of Lc(y|x;β), we have

Q(y|x;β) = Ez(Lc(y|x;β)) =
N

∑
i=1

2S

∑
lea f=1

E(zlea f) ∏
p→lea f

Gp(xi;β)Plea f (yi|xi;β).

To E(zlea f), we have

E(zlea f) = P(zlea f = 1|y,x,β)

=
P(y|zlea f = 1,x,β)P(zlea f = 1|x,β)

P(y|x,β)

=
∏p→lea f gp(x;β)P(y|x,β)

∑
S2
lea f=1 ∏→lea f gp(x;β)P(y|x,β)

.

We can see that Q(y|x;β) is the lower bound of L(y|x;β) because of Jensen’s In-
equality. The log-likelihood function L(y|x) is optimized if we can optimize the
lower bound Q(y|x;β). This is the key to the EM method.

To sum up, the training procedure for HME is as follows:

• Randomly initializes all the parameters β , then propagate forward the input to
get the distribution of xi.

• To each mini-batch, propagate forward all the x to the leaves to get the predicted
outputs. Then calculate all the E(zi,lea f) (E-step).

• Optimize the expectation likelihood function Q(x,y;β) (M-step).
• Redo E-step and M-Step until that all the parameters converge.

One possible drawback to the soft decision tree method is that the HME could
lead to a long-time training process. More importantly, since HME needs a pre-
determined structure of a soft decision tree, it is not adaptive to data. To resolve
this issue, another way to implement soft decision trees was discussed by Irsoy et al
(2012). The authors introduced a new way to grow a soft decision tree. In each

36 Tae-Hwy Lee, Aman Ullah and Ran Wang

node, they used gradient descent to find the optimal splitting line then compare
the predicting outcome between the two trees with and without the new splitting
line to decide that this new node should be added or not. Thus, this method can
adaptively learn the structure of soft decision tree and could be faster. Similarly to
Random Forest, Yıldız et al (2016) constructed an ensemble of soft decision trees
via Bagging to explore the ensemble of soft decision trees.

Basically, the soft decision tree method is not so popular as the decision tree
since the training process is slower than growing a decision tree. But in many re-
cent research papers, the soft decision tree shows the power for learning hierarchical
features adaptively. Kontschieder et al (2015) proposed deep neural decision forest
that combines the Convolutional Neural Network (CNN) feature extractor and tree
structure into one differential hierarchical CNN and implements it into the tasks of
computer vision. Frosst and Hinton (2017) explored the soft decision tree in distill-
ing the knowledge or features extracted by a neural network based on its hierarchical
structure. They found that the soft decision tree method can definitely learn hierar-
chical features via training.

6 Applications of Bagging and Random Forest in Economics

6.1 Bagging in economics

Recently, Bootstrap Aggregating is widely used in macroeconomic analysis and
forecasting. Panagiotelis et al (2019) explored the performance of the ensemble a
large number of predictors in predicting macroeconomic series data in Australia.
Precisely, they compared Bagging LARS with Dynamic Factor Model, Ridge Re-
gression, LARS, and Bayesian VAR respectively on GDP growth, CPI inflation and
IBR (the interbank overnight cash rate equivalent to the Federal funds rate in the
US). They found that Bagging method can help in more accurate forecasting.

As discussed in this chapter, Bagging has been proved to be effective to im-
prove on unstable forecast. Theoretical and empirical works using classification,
regression trees, variable selection in linear and non-linear regression have shown
that bagging can generate substantial prediction gain. However, most of the exist-
ing literature on bagging has been limited to the cross sectional circumstances with
symmetric cost functions. Lee and Yang (2006) extend the application of bagging to
time series settings with asymmetric cost functions, particularly for predicting signs
and quantiles. They use quantile predictions to construct a binary predictor and the
majority-voted bagging binary prediction, and show that bagging may improve the
binary prediction. For empirical application, they presented results using monthly
S&P500 and NASDAQ stock index returns.

Inoue and Kilian (2008) considered the Bagging method in forecasting economic
time series of US CPI data. They explored how the Bagging may be adapted to
application involving dynamic linear multiple regression for the inflation forecast-

Bootstrap Aggregating and Random Forest 37

ing. And then they compare several models’ performances, including correlated re-
gressor models, factor models and shrinkage estimation of regressor models (with
LASSO) with or without Bagging. Their empirical evidence showed that Bagging
can achieve large reductions in prediction mean squared error, even in challenging
applications such as inflation forecasting.

Lee et al (2014), Lee et al (2015) and Hillebrand et al (2014) consider paramet-
ric, nonparametric, and semiparametric predictive regression models for financial
returns subject to various hard-thresholding constraints using indicator functions.
The purpose is to incorporate various economic constraints that are implied from
economic theory or common priors such as monotonicity or positivity of the re-
gression functions. They use bagging to smooth the hard-thresholding constraints
to reduce the variance of the estimators. They show the usefulness of bagging when
such economic constraints are imposed in estimation and forecasting, by deriving
asymptotic properties of the bagging constrained estimators and forecasts. The ad-
vantages of the bagging constrained estimators and forecasts are also demonstrated
by extensive Monte Carlo simulations. Applications to predicting financial equity
premium are taken for empirical illustrations, which show imposing constraints and
bagging can mitigate the chance of making large size forecast errors and bagging
can make these constrained forecasts even more robust.

Jin et al (2014) propose a revised version of bagging as a forecast combination
method for the out-of-sample forecasts in time series models. The revised version
explicitly takes into account the dependence in time series data and can be used to
justify the validity of bagging in the reduction of mean squared forecast error when
compared with the unbagged forecasts. Their Monte Carlo simulations show that
their method works quite well and outperforms the traditional one-step-ahead linear
forecast as well as the nonparametric forecast in general, especially when the in-
sample estimation period is small. They also find that the bagging forecasts based
on misspecified linear models may work as effectively as those based on nonpara-
metric models, suggesting the robustification property of bagging method in terms
of out-of-sample forecasts. They then re-examine forecasting powers of predictive
variables suggested in the literature to forecast the excess returns or equity premium
and find that, consistent with Welch and Goyal (2008), the historical average excess
stock return forecasts may beat other predictor variables in the literature when they
apply traditional one-step linear forecast and the nonparametric forecasting meth-
ods. However, when using the bagging method or the revised version, which help
to improve the mean squared forecast error for unstable predictors, the predictive
variables have a better forecasting power than the historical average excess stock
return forecasts.

Audrino and Medeiros (2011) proposed a new method called smooth transition
tree. They found that the leading indicators for inflation and real activity are the
most relevant predictors in characterizing the multiple regimes’ structure. They also
provided empirical evidence of the model in forecasting the first two conditional
moments when it is used in connection with Bagging.

Hirano and Wright (2017) considered forecasting with uncertainty about the
choice of predictor variables and compare the performances of model selection

38 Tae-Hwy Lee, Aman Ullah and Ran Wang

methods under Rao-Blackwell theorem and Bagging respectively. They investigated
the distributional properties of a number of different schemes for model choice and
parameter estimation: in-sample model selection using the Akaike Information Cri-
terion, out-of-sample model selection, and splitting the data into sub-samples for
model selection and parameter estimation. They examined how Bagging affected the
local asymptotic risk of the estimators and their associated forecasts. In their numer-
ical study, they found that for many values of the local parameter, the out-of-sample
and split-sample schemes performed poorly if implemented in a conventional way.
But they performed well if implemented in conjunction with model selection meth-
ods under Rao-Blackwell theorem or Bagging.

6.2 Random forest in economics

To introduce Random Forest into economic research, many economic and statistic
researchers studied in extending the theory of random forest not only for forecasting
but for inference.

In the literature of economic inference, Strobl et al (2008) discussed the consis-
tency of Random Forest in the context of additive regression models, which sheds
light on the forest-based statistical inference. Wager and Athey (2018) studied in the
application of random forest in economic research. They proposed the Causal For-
est, an unbiased random forest method for estimating and testing the heterogeneous
treatment effect. They first showed that classic Random Forest cannot have unbi-
asedness because of Bagging. Then, they proposed the Causal Forest which com-
bines a bunch of unbiased Honest Tree based on Sub-sampling aggregating. They
also showed that Causal Forest is unbiased and has asymptotic normality under
some assumptions. Finally, they discussed the importance and advantage of Causal
Forest in applications to economic causal inference.

To the application of economic forecasting, Hothorn and Zeileis (2017) discussed
a new Random Forest method, the Transformation Forest. Based on a parametric
family of distributions characterized by their transformation function, they proposed
a dedicated novel transformation tree and transformation forest as an adaptive local
likelihood estimator of conditional distribution functions, which are available for
inference procedures. In macroeconomic forecasting, Random Forest is applied in
Euro area GDP forecasting (Biau and D’Elia (2011)) and financial volatility fore-
casting (Luong and Dokuchaev (2018)). Finally, Fischer et al (2018) assess and
compare the time series forecasting performance of several machine learning algo-
rithms such as Gradient Boosting Decision Trees, Neural Networks, Logistic Re-
gression, Random Forest and so on in a simulation study. Nyman and Ormerod
(2016) explore the potential of Random Forest for forecasting the economic reces-
sion on the quarterly data over 1970Q2 to 1990Q2.

Bootstrap Aggregating and Random Forest 39

7 Summary

In this chapter, we discuss the Bagging method and Random Forest. At first, we
begin with introducing Bagging and its variants, the Subbaging and Bragging. Next,
we introduce Decision Tree, which provides the foundation of the Random For-
est. Also, we introduce the related theories about Random Forest and its important
variants like Extreme Random Trees and Soft Decision Tree. At last, we discussed
many applications of Bagging and Random Forest in macroeconomic forecasting
and economic causal inference.

References

Audrino F, Medeiros MC (2011) Modeling and forecasting short-term interest rates:
the benefits of smooth regimes, macroeconomic variables, and Bagging. Journal
of Applied Econometrics 26(6):999–1022

Biau O, D’Elia A (2011) Euro area GDP forecasting using large survey datasets. A
Random Forest approach

Breiman L (1996) Bagging predictors. Machine Learning 26(2):123–140
Breiman L (2000) Some infinity theory for predictor ensembles. Tech. rep.
Breiman L (2001) Random Forests. In: Machine Learning, pp 5–32
Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and regression

trees. The Wadsworth and Brooks-Cole statistics-probability series, Taylor &
Francis

Bühlmann P (2004) Bagging, Boosting and ensemble methods, Springer, pp 877–
907. Handbook of Computational Statistics: Concepts and Methods

Bühlmann P, Yu B (2002) Analyzing Bagging. Annals of Statistics 30(4):927–961
Buja A, Stuetzle W (2000a) Bagging does not always decrease mean squared error

definitions. Tech. rep.
Buja A, Stuetzle W (2000b) Smoothing effects of Bagging. Preprint AT&T Labs-

Research
Fischer T, Krauss C, Treichel A (2018) Machine learning for time series forecasting

- a simulation study
Friedman JH, Hall P (2007) On Bagging and nonlinear estimation. Journal of Sta-

tistical Planning and Inference 137(3):669–683
Frosst N, Hinton G (2017) Distilling a Neural Network into a Soft Decision Tree.

In: CEUR Workshop Proceedings
Geurts P, Ernst D, Wehenkel L (2006) Extremely Randomized Trees. Machine

Learning 63(1):3–42
Hillebrand E, Lee TH, Medeiros M (2014) Bagging constrained equity premium

predictors, Oxford University Press, chap 14, pp 330–356. Essays in Nonlinear
Time Series Econometrics, Festschrift in Honor of Timo Tersvirta

Hirano K, Wright JH (2017) Forecasting with model uncertainty: representations
and risk reduction. Econometrica 85(2):617–643

40 Tae-Hwy Lee, Aman Ullah and Ran Wang

Hothorn T, Zeileis A (2017) Transformation Forests.
Huang GB, Zhu QY, Siew CK (2006) Extreme Learning Machine: algorithm, theory

and applications. Neurocomputing 70:489–501
Inoue A, Kilian L (2008) How useful is Bagging in forecasting economic time.

Journal of the American Statistical Association 103(482):511–522
Irsoy O, Yldz OT, Alpaydn E (2012) A Soft Decision Tree. In: 21st International

Conference on Pattern Recognition (ICPR 2012)
Jaeger H (2001) The echo state approach to analysing and training Recurrent Neural

Networks-with an erratum note. Tech. rep.
Janitza S, Celik E, Boulesteix AL (2016) A computationally fast variable impor-

tance test for Random Forests for high-dimensional data. Advances in Data Anal-
ysis and Classification (185):1–31

Jin S, Su L, Ullah A (2014) Robustify financial time series forecasting with Bagging.
Econometric Reviews 33(5-6):575–605

Jordan M, Jacob R (1994) Hierarchical Mixtures of Experts and the EM algorithm.
Neural Computation 6:181–214

Kontschieder P, Fiterau M, Criminisi A, Bul SR, Kessler FB, Bulo’ SR (2015) Deep
Neural Decision Forests. In: The IEEE International Conference on Computer
Vision (ICCV), pp 1467–1475

Lee TH, Yang Y (2006) Bagging binary and quantile predictors for time series.
Journal of Econometrics 135(1):465–497

Lee TH, Tu Y, Ullah A (2014) Nonparametric and semiparametric regressions sub-
ject to monotonicity constraints: estimation and forecasting. Journal of Econo-
metrics 182(1):196–210

Lee TH, Tu Y, Ullah A (2015) Forecasting equity premium: global historical average
versus local historical average and constraints. Journal of Business and Economic
Statistics 33(3):393–402

Lin Y, Jeon Y (2006) Random Forests and Adaptive Nearest Neighbors. Journal of
the American Statistical Association 101(474):578–590

Luong C, Dokuchaev N (2018) Forecasting of realised volatility with the Random
Forests algorithm. Journal of Risk and Financial Management 11(4):61

Nyman R, Ormerod P (2016) Predicting economic recessions using machine learn-
ing

Panagiotelis A, Athanasopoulos G, Hyndman RJ, Jiang B, Vahid F (2019) Macroe-
conomic forecasting for Australia using a large number of predictors. Interan-
tional Journal of Forecasting 35(2):616–633

Quinlan J (1986) Induction of Decision Trees. Machine Learning 1:81–106
Quinlan JR (1994) C4.5: programs for machine learning. Machine Learning

16(3):235–240
Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A (2008) Conditional variable

importance for Random Forests. BMC Bioinformatics 9:1–11
Wager S, Athey S (2018) Estimation and inference of heterogeneous treatment

effects using Random Forests. Journal of the American Statistical Association
113(523):1228–1242

Bootstrap Aggregating and Random Forest 41

Welch I, Goyal A (2008) A comprehensive look at the empirical performance of
equity premium prediction. Review of Financial Studies 21-4:1455–1508

Yıldız OT, Írsoy O, Alpaydın E (2016) Bagging Soft Decision Trees. In: Machine
Learning for Health Informatics, vol 9605, pp 25–36

