
Boosting

Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

Abstract In the era of Big Data, selecting relevant variables from a po-
tentially large pool of candidate variables becomes a newly emerged con-
cern in macroeconomic researches, especially when the data available is high-
dimensional, i.e. the number of explanatory variables (p) is greater than the
length of the sample size (n). Common approaches include factor models,
the principal component analysis and regularized regressions. However, these
methods require additional assumptions that are hard to verify and/or in-
troduce biases or aggregated factors which complicate the interpretation of
the estimated outputs. This chapter reviews an alternative solution, namely
Boosting, which is able to estimate the variables of interest consistently under
fairly general conditions given a large set of explanatory variables. Boosting is
fast and easy to implement which makes it one of the most popular machine
learning algorithms in academia and industry.

1 Introduction

The term Boosting originates from the so-called hypothesis boosting problem
in the distribution-free or probably approximately correct model of learning.

Jianghao Chu

Department of Economics, University of California, Riverside, e-mail: jiang-
hao.chu@email.ucr.edu

Tae-Hwy Lee

Department of Economics, University of California, Riverside, e-mail: tae.lee@ucr.edu

Aman Ullah
Department of Economics, University of California, Riverside, e-mail: aman.ullah@ucr.edu

Ran Wang

Department of Economics, University of California, Riverside, e-mail:

ran.wang@email.ucr.edu

1

2 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

In this model, the learner produces a classifier based on random samples from
an unknown data generating process. Samples are chosen according to a fixed
but unknown and arbitrary distribution on the population. The learner’s
task is to find a classifier that correctly classifies new samples from the data
generating process as positive or negative examples. A weak learner produces
classifiers that perform only slightly better than random guessing. A strong
learner, on the other hand, produces classifiers that can achieve arbitrarily
high accuracy given enough samples from the data generating process.

In a seminal paper, Schapire (1990) addresses the problem of improving
the accuracy of a class of classifiers that perform only slightly better than
random guessing. The paper shows the existence of a weak learner implies
the existence of a strong learner and vice versa. A boosting algorithm is
then proposed to convert a weak learner into a strong learner. The algorithm
uses filtering to modify the distribution of samples in such a way as to force
the weak learning algorithm to focus on the harder-to-learn parts of the
distribution.

Not long after the relation between weak learners and strong learners
are revealed, Freund and Schapire (1997) propose the Adaptive Boost (Ad-
aBoost) for binary classification. AdaBoost performs incredibly well in prac-
tice and stimulates the invention of boosting algorithms for multi-class clas-
sifications. On the other hand, researchers try to explain the success of Ad-
aBoost in a more theoretical way, e.g. Friedman et al (2000), Bartlett et al
(2006) and Bartlett and Traskin (2007). Further understanding of the the-
ory behind the success of boosting algorithms in turn triggers a bloom of
Boosting algorithm with better statistical properties, e.g. Friedman (2001),
Bühlmann and Yu (2003) and Mease et al (2007).

Boosting is undoubtedly the most popular machine learning algorithm in
the on-line data science platform such as Kaggle. It is efficient and easy to
implement. There are numerous packages in Python and R which implement
Boosting algorithms in one way or another, e.g. XBoost. In the following
sections, we will introduce the AdaBoost as well as other Boosting algorithms
in detail together with examples to help the readers better understand the
algorithms and statistical properties of the Boosting methods.

This chapter is organized as follows. Section 1 provides an overview on the
origination and development of Boosting. Sections 2 and 3 are an introduction
of AdaBoost which is the first practically feasible Boosting algorithm with
its variants. Section 4 introduces a Boosting algorithm for linear regressions,
namely L2Boosting. Section 5 gives a generalization of the above mentioned
algorithms which is called Gradient Boosting Machine. Section 6 gives more
variants of Boosting, e.g. Boosting for nonlinear models. Section 7 provides
applications of the Boosting algorithms in macroeconomic studies. In section
8 we summarize.

Boosting 3

2 AdaBoost

The first widely used Boosting algorithm is AdaBoost which solves binary
classification problems with great success. A large number of important vari-
ables in economics are binary. For example, whether the economy is going
into expansion or recession, whether an individual is participating in the labor
force, whether a bond is going to default, and etc. Let

π (x) ≡ Pr (y = 1|x) ,

so that y takes value 1 with probability π (x) and −1 with probability 1 −
π (x). The goal of the researchers is to predict the unknown value of y given
known information on x.

2.1 AdaBoost algorithm

This section introduces the AdaBoost algorithm of Freund and Schapire
(1997). The algorithm of AdaBoost is shown in Algorithm 1.

Let y be the binary class taking a value in {−1, 1} that we wish to predict.
Let fm (x) be the weak learner (weak classifier) for the binary target y that
we fit to predict using the high-dimensional covariates x in the mth iteration.
Let errm denote the error rate of the weak learner fm (x), and Ew (·) denote
the weighted expectation (to be defined below) of the variable in the paren-
thesis with weight w. Note that the error rate Ew

[
1(y 6=fm(x))

]
is estimated by

errm =
∑n
i=1 wi1(yi 6=fm(xi)) with the weight wi given by step 2(d) from the

previous iteration. n is the number of observations. The symbol 1(·) is the in-
dicator function which takes the value 1 if a logical condition inside the paren-
thesis is satisfied and takes the value 0 otherwise. The symbol sign(z) = 1 if
z > 0, sign(z) = −1 if z < 0, and hence sign(z) = 1(z>0) − 1(z<0).

Remark 1 Note that the presented version of Discrete AdaBoost in Algo-
rithm 1 as well as Real AdaBoost (RAB), LogitBoost (LB) and Gentle Ad-
aBoost (GAB) which will be introduced later in the next section are different
from their original version when they were first introduced. The original ver-
sion of these algorithms only output the class label. In this paper, we follow
the idea of Mease et al (2007) and modified the algorithms to output both the
class label and the probability prediction. The probability prediction is attained
using

π̂(x) =
eFM (x)

eFM (x) + e−FM (x)
,

where FM (x) is the sum of weak learners in the algorithms.

Remark 2 The only hyperparameter, i.e. the user specified parameter, in the
AdaBoost as well as other Boosting algorithms is the number of iterations,

4 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

Algorithm 1 Discrete AdaBoost (DAB, Freund and Schapire, 1997)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

a. For j = 1 to k (for each variable)
i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi on the training data.

ii. Compute errmj =
∑n
i=1 wi1(yi 6=fmj(xji))

.

b. Find ĵm = arg minj errmj

c. Compute cm = log

(
1−err

m,ĵm
err

m,ĵm

)
.

d. Set wi ← wi exp[cm1(yi 6=fm,ĵm
(x

ĵm,i
))], i = 1, . . . , n, and normalize so that∑n

i=1 wi = 1.

3. Output the binary classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M
m=1 cmfm,ĵm (xĵm).

M . It is also known as the stopping rule and is commonly chosen by cross-
validation as well as information criterion such as AICc (Bühlmann and Yu,
2003). The choice of the stopping rule is embedded in most implementation
of AdaBoost and should not be a concern for most users. Interesting readers
could check Hastie et al (2009) for more details of cross-validation.

The most widely used weak learner is the classification tree. The simplest
classification tree, the stump, takes the following functional form

f (xj , a) =

{
1 xj > a

−1 xj < a,

where the parameter a is found by minimizing the error rate

min
a

n∑
i=1

wi1 (yi 6= f (xji, a)) .

The other functional form of the stump can be shown as exchanging the
greater and smaller sign in the previous from

f (xj , a) =

{
1 xj < a

−1 xj > a,

where the parameter a is found by minimizing the same error rate.

Boosting 5

2.2 An example

Now we present an example given by Ng (2014) for predicting the business
cycles to help the readers understand the AdaBoost algorithm. Consider clas-
sifying whether the 12 months in 2001 is in expansion or recession using three-
month lagged data of the help-wanted index (HWI), new orders (NAPM),
and the 10yr-FF spread (SPREAD). The data are listed in Columns 2-4 of
Table 1. The NBER expansion and recession months are listed in Column 5,
where 1 indicates a recession month and −1 indicates a expansion month. We
use a stump as the weak learner (f). The stump uses an optimally chosen
threshold to split the data into two partitions. This requires setting up a
finite number of grid points for HWI, NAPM , and SPREAD, respectively,
and evaluating the goodness of fit in each partition.

Table 1: An Example

Data: Lagged 3 Months f1(x) f2(x) f3(x) f4(x) f5(x)

HWI NAPM SPREAD y HWI NAPM HWI SPREAD NAPM
Date −0.066 48.550 0.244 < −0.044 < 49.834 < −0.100 > −0.622 < 47.062

2001.1 0.014 51.100 −0.770 −1 −1 −1 −1 −1 −1

2001.2 −0.091 50.300 −0.790 −1 1 −1 −1 −1 −1
2001.3 0.082 52.800 −1.160 −1 −1 −1 −1 −1 −1

2001.4 −0.129 49.800 −0.820 1 1 1 1 1 1

2001.5 −0.131 50.200 −0.390 1 1 −1 1 1 1
2001.6 −0.111 47.700 −0.420 1 1 1 1 1 1

2001.7 −0.056 47.200 0.340 1 1 1 1 1 1

2001.8 −0.103 45.400 1.180 1 1 1 1 1 1
2001.9 −0.093 47.100 1.310 1 1 1 1 1 1

2001.10 −0.004 46.800 1.470 1 −1 1 −1 1 1

2001.11 −0.174 46.700 1.320 1 1 1 1 1 1
2001.12 −0.007 47.500 1.660 −1 −1 1 −1 1 −1

c 0.804 1.098 0.710 0.783 0.575
Error rate 0.167 0.100 0.138 0.155 0

Ng (2014)

The algorithm begins by assigning an equal weight of w
(1)
i = 1

n where
n = 12 to each observation. For each of the grid points chosen for HWI,
the sample of y values is partitioned into parts depending on whether HWIi
exceeds the grid point or not. The grid point that minimizes classification
error is found to be −0.044. The procedure is repeated with NAPM as
a splitting variable, and then again with SPREAD. A comparison of the
three sets of residuals reveals that splitting on the basis of HWI gives the
smallest weighted error. The first weak learner thus labels Yi to 1 if HWIi <
−0.044. The outcome of the decision is given in Column 6. Compared with
the NBER dates in Column 5, we see that months 2 and 10 are mislabeled,
giving a misclassification rate of 2

12 = 0.167. This is err1 of step 2(b). Direct

6 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

calculations give c1 = log(1−err1
err1

) of 0.804. The weights w
(2)
i are updated to

complete step 2(d). Months 2 and 10 now each have a weight of 0.25, while
the remaining 10 observations each have a weight of 0.05. Three thresholds
are again computed using weights w(2). Of the three, the NAPM split gives
the smallest weighted residuals. The weak learner for step 2 is identified. The
classification based on the sign of

F2(x) = 0.804 · 1(HWI<−0.044) + 1.098 · 1(NAPM<49.834)

is given in Column 7. Compared with Column 5, we see that months 5 and
12 are mislabeled. The weighted misclassification rate is decreased to 0.100.

The new weights w
(3)
t are 0.25 for months 5 and 12, 0.138 for months 2 and

10, and 0.027 for the remaining months. Three sets of weighted residuals are
again determined using new thresholds. The best predictor is again HWI
with a threshold of −0.100. Classification based on the sign of F3(x) is given
in Column 8, where

F3(x) = 0.804 ·1(HWI<0.044) +1.098 ·1(NAPM<48.834) +0.710 ·1(HWI<−0.100).

The error rate after three steps actually increases to 0.138. The weak learner
in round four is 1(SPREAD>−0.622). After NAPM is selected for one more
round, all recession dates are correctly classified. The strong learner is an
ensemble of five weak learners defined by sign(F5(x)), where

F5(x) = 0.804 · 1(HWI<−0.044) + 1.098 · 1(NAPM<49.834) + 0.710 · 1(HWI<−0.100)

+0.783 · 1(SPREAD>−0.622) + 0.575 · 1(NAPM<47.062).

Note that the same variable can be chosen more than once by AdaBoost
which is the key difference from other stage-wise algorithms e.g. forward
stage-wise regression. The weights are adjusted at each step to focus more
on the misclassified observations. The final decision is based on an ensemble
of models. No single variable can yield the correct classification, which is the
premise of an ensemble decision rule.

For more complicated applications, several packages in the statistical pro-
gramming language R provide off-the-shelf implementations of AdaBoost and
its variants. For example, JOUSBoost gives an implementation of the Discrete
AdaBoost algorithm from Freund and Schapire (1997) applied to decision tree
classifiers and provides a convenient function to generate test sample of the
algorithms.

2.3 AdaBoost: statistical view

After AdaBoost is invented and shown to be successful, numerous papers
have attempted to explain the effectiveness of the AdaBoost algorithm. In

Boosting 7

an influential paper, Friedman et al (2000) show that AdaBoost builds an
additive logistic regression model

FM (x) =

M∑
m=1

cmfm (x)

via Newton-like updates for minimizing the exponential loss

J (F) = E
(
e−yF (x)

∣∣∣x) .
We hereby show the above statement using the greedy method to minimize
the exponential loss function iteratively as in Friedman et al (2000).

Afterm iterations, the current classifier is denoted as Fm (x) =
∑m
s=1 csfs (x).

In the next iteration, we are seeking an update cm+1fm+1 (x) for the function
fitted from previous iterations Fm (x). The updated classifier would take the
form

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) .

The loss for Fm+1 (x) will be

J (Fm+1 (x)) = J (Fm (x) + cm+1fm+1 (x))

= E
[
e−y(Fm(x)+cm+1fm+1(x))

]
. (1)

Expand w.r.t. fm+1 (x)

J (Fm+1 (x)) ≈ E
[
e−yFm(x)

(
1− ycm+1fm+1 (x) +

y2c2m+1f
2
m+1 (x)

2

)]
= E

[
e−yFm(x)

(
1− ycm+1fm+1 (x) +

c2m+1

2

)]
.

The last equality holds since y ∈ {−1, 1} , fm+1 (x) ∈ {−1, 1}, and y2 =
f2m+1 (x) = 1. fm+1 (x) only appears in the second term in the parenthesis,
so minimizing the loss function (1) w.r.t. fm+1 (x) is equivalent to maximizing
the second term in the parenthesis which results in the following conditional
expectation

max
f

E
[
e−yFm(x)ycm+1fm+1 (x) |x

]
.

For any c > 0 (we will prove this later), we can omit cm+1 in the above
objective function

max
f

E
[
e−yFm(x)yfm+1 (x) |x

]
.

To compare it with the Discrete AdaBoost algorithm, here we define weight
w = w (y,x) = e−yFm(x). Later we will see that this weight w is equivalent to
that shown in the Discrete AdaBoost algorithm. So the above optimization

8 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

can be seen as maximizing a weighted conditional expectation

max
f

Ew [yfm+1 (x) |x] , (2)

where Ew (y|x) := E(wy|x)
E(w|x) refers to a weighted conditional expectation. Note

that (2) can be re-written as

Ew [yfm+1 (x) |x]

= Pw (y = 1|x) fm+1 (x)− Pw (y = −1|x) fm+1 (x)

= [Pw (y = 1|x)− Pw (y = −1|x)] fm+1 (x)

= Ew (y|x) fm+1 (x) ,

where Pw (y|x) = E(w|y,x)P (y|x)
E(w|x) . Solve the maximization problem (2). Since

fm+1 (x) only takes 1 or −1, it should be positive whenever Ew (y|x) is pos-
itive and −1 whenever Ew (y|x) is negative. The solution for fm+1 (x) is

fm+1 (x) =

{
1 Ew (y|x) > 0

−1 otherwise.

Next, we minimize the loss function (1) w.r.t. cm+1

cm+1 = arg min
cm+1

Ew

(
e−cm+1yfm+1(x)

)
,

where

Ew

(
e−cm+1yfm+1(x)

)
= Pw (y = fm+1 (x)) e−cm+1 +Pw (y 6= fm+1 (x)) ecm+1 .

The first order condition is

∂Ew
(
e−cyfm+1(x)

)
∂cm+1

= −Pw (y = fm+1 (x)) e−cm+1 +Pw (y 6= fm+1 (x)) ecm+1 .

Let
∂Ew

(
e−cm+1yfm+1(x)

)
∂cm+1

= 0,

and thus we have

Pw (y = fm+1 (x)) e−cm+1 = Pw (y 6= fm+1 (x)) ecm+1 .

Solving for cm+1, we obtain

cm+1 =
1

2
log

Pw (y = fm+1 (x))

Pw (y 6= fm+1 (x))
=

1

2
log

(
1− errm+1

errm+1

)
,

Boosting 9

where errm+1 = Pw (y 6= fm+1 (x)) is the error rate of fm+1 (x). Note that
cm+1 > 0 as long as the error rate is smaller than 50%. Our assumption
cm+1 > 0 holds for any learner that is better than random guessing.

Now we have finished the steps of one iteration and can get our updated
classifier by

Fm+1 (x)← Fm (x) +

(
1

2
log

(
1− errm+1

errm+1

))
fm+1 (x) .

Note that in the next iteration, the weight we defined wm+1 will be

wm+1 = e−yFm+1(x) = e−y(Fm(x)+cm+1fm+1(x)) = wm × e−cm+1fm+1(x)y.

Since −yfm+1 (x) = 2× 1{y 6=fm+1(x)} − 1, the update is equivalent to

wm+1 = wm×e
(
log

(
1−errm+1
errm+1

)
1[y 6=fm+1(x)]

)
= wm×

(
1− errm+1

errm+1

)1[y 6=fm+1(x)]

.

Thus the function and weight update are of an identical form to those used
in AdaBoost. AdaBoost could do better than any single weak classifier since
it iteratively minimizes the loss function via a Newton-like procedure.

Interestingly, the function F (x) from minimizing the exponential loss is
the same as maximizing a logistic log-likelihood. Let

J (F (x)) = E
[
E
(
e−yF (x)

∣∣∣x)]
= E

[
P (y = 1|x) e−F (x) + P (y = −1|x) eF (x)

]
.

Taking derivative w.r.t. F (x) and making it equal to zero, we obtain

∂E
(
e−yF (x)|x

)
∂F (x)

= −P (y = 1|x) e−F (x) + P (y = −1|x) eF (x) = 0.

Therefore,

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
.

Moreover, if the true probability is

P (y = 1|x) =
e2F (x)

1 + e2F (x)
,

for Y = y+1
2 , the log-likelihood is

E (logL|x) = E
[

2Y F (x)− log
(

1 + e2F (x)
)∣∣∣x] .

10 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

The solution F ∗ (x) that maximizes the log-likelihood must equal the F (x)

in the true model P (y = 1|x) = e2F (x)

1+e2F (x) . Hence,

e2F
∗(x) = P (y = 1|x)

(
1 + e2F

∗(x)
)

e2F
∗(x) =

P (y = 1|x)

1− P (y = 1|x)

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
.

AdaBoost that minimizes the exponential loss yields the same solution as the
logistic regression that maximizes the logistic log-likelihood.

From the above, we can see that AdaBoost gives high weights to and thus,
focuses on the samples that are not correctly classified by the previous weak
learners. This is exactly what Schapire (1990) referred to as filtering in
Section 1.

3 Extensions To AdaBoost Algorithms

In this section, we introduce three extensions of (Discrete) AdaBoost (DAB)
which is shown in Algorithm 1: namely, Real AdaBoost (RAB), LogitBoost
(LB) and Gentle AdaBoost (GAB). We discuss how some aspects of the DAB
may be modified to yield RAB, LB and GAB. In the previous section, we
learned that Discrete AdaBoost minimizes an exponential loss via iteratively
adding a binary weaker learner to the pool of weak learners. The addition of
a new weak learner can be seen as taking a step on the direction that loss
function descents in the Newton method. There are two major ways to extend
the idea of Discrete AdaBoost. One focuses on making the minimization
method more efficient by adding a more flexible weak learner. The other is
to use different loss functions that may lead to better results. Next, we give
an introduction to three extensions of Discrete AdaBoost.

Boosting 11

3.1 Real AdaBoost

Algorithm 2 Real AdaBoost (RAB, Friedman et al, 2000)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

a. For j = 1 to k (for each variable)

i. Fit the classifier to obtain a class probability estimate pm(xj) = P̂w(y = 1|xj) ∈
[0, 1] using weights wi on the training data.

ii. Let fmj(xj) = 1
2

log
pm(xj)

1−pm(xj)
.

iii. Compute errmj =
∑n
i=1 wi1(yi 6=sign(fmj(xji)))

.

b. Find ĵm = arg minj errmj .

c. Set wi ← wi exp [−yifm,ĵm (xĵm,i)], i = 1, . . . , n, and normalize so that
∑n
i=1 wi =

1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M
m=1 fm(x).

Real AdaBoost that Friedman et al (2000) propose focuses solely on improv-
ing the minimization procedure of Discrete AdaBoost. In Real AdaBoost,
the weak learners are continuous comparing to Discrete AdaBoost where the
weak learners are binary (discrete). Real AdaBoost is minimizing the expo-
nential loss with continuous updates where Discrete AdaBoost minimizes the
exponential loss with discrete updates. Hence, Real AdaBoost is more flex-
ible with the step size and direction of the minimization and minimizes the
exponential loss faster and more accurately. However, Real AdaBoost also
imposes restriction that the classifier must produces a probability prediction
which reduces the flexibility of the model. As pointed out in the numerical
examples by Chu et al (2018), Real AdaBoost may achieve a larger in-sample
training error due to the flexibility of its model. On the other hand, this also
reduces the chance of over-fitting and would in the end achieve a smaller
out-of-sample test error.

3.2 LogitBoost

Friedman et al (2000) also propose LogitBoost by minimizing the Bernoulli
log-likelihood via an adaptive Newton algorithm for fitting an additive logistic
regression model. LogitBoost extends Discrete AdaBoost in two ways. First,
it uses the Bernoulli log-likelihood instead of the exponential loss function
as a loss function. Furthermore, it updates the classifier by adding a linear
model instead of a binary weak learner.

12 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

Algorithm 3 LogitBoost (LB, Friedman et al, 2000)

1. Start with weights wi = 1
n
, i = 1, . . . , n, F (x) = 0 and probability estimates p(xi) = 1

2
.

2. For m = 1 to M

a. Compute the working response and weights

zi =
y∗i − p(xi)

p(xi)(1− p(xi))
wi = p(xi)(1− p(xi))

b. For j = 1 to k (for each variable)
i. Fit the function fmj(xji) by a weighted least-squares regression of zi to xji using

weights wi on the training data.

ii. Compute errmj = 1 − R2
mj where R2

mj is the coefficient of determination from
the weighted least-squares regression.

c. Find ĵm = arg minj errmj

d. Update F (x)← F (x) + 1
2
fm,ĵ(xĵ) and p(x)← eF (x)

eF (x)+e−F (x) .

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M
m=1 fm,ĵm (xĵm).

In LogitBoost, continuous weak learner is used similarly to Real AdaBoost.
However, LogitBoost specifies the use of a linear weak learner while Real Ad-
aBoost allows any weak learner that returns a probability between zero and
one. A more fundamental difference here is that LogitBoost uses the Bernoulli
log-likelihood as a loss function instead of the exponential loss. Hence, Logit-
Boost is more similar to logistic regression than Discrete AdaBoost and Real
AdaBoost. As pointed out in the numerical examples by Chu et al (2018),
LogitBoost has the smallest in-sample training error but the largest out-of-
sample test error. This implies that while LogitBoost is the most flexible of
the four, it suffers the most from over-fitting.

Boosting 13

3.3 Gentle AdaBoost

Algorithm 4 Gentle AdaBoost (GAB, Friedman et al, 2000)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

a. For j = 1 to k (for each variable)

i. Fit the regression function fmj(xji) by weighted least-squares of yi on xji using

weights wi on the training data.
ii. Compute errmj = 1 − R2

mj where R2
mj is the coefficient of determination from

the weighted least-squares regression.

b. Find ĵm = arg minj errmj
c. Set wi ← wi exp[−yifm,ĵm (xĵm,i)], i = 1, . . . , n, and normalize so that

∑n
i=1 wi =

1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M
m=1 fm,ĵm (xĵm).

In Friedman et al (2000), Gentle AdaBoost extends Discrete AdaBoost in the
sense that it allows each weak learner to be a linear model. This is similar to
LogitBoost and more flexible than Discrete AdaBoost and Real AdaBoost.
However, it is closer to Discrete AdaBoost and Real AdaBoost than Log-
itBoost in the sense that Gentle AdaBoost, Discrete AdaBoost and Real
AdaBoost all minimize the exponential loss while LogitBoost minimizes the
Bernoulli log-likelihood. On the other hand, Gentle AdaBoost is more similar
to Real AdaBoost than Discrete AdaBoost since the weak learners are con-
tinuous and there is no need to find an optimal step size for each iteration
because the weak learner is already optimal. As pointed out in the numerical
examples by Chu et al (2018), Gentle Boost often lies between Real AdaBoost
and LogitBoost in terms of in-sample training error and out-of-sample test
error.

4 L2Boosting

In addition to classification, the idea of boosting can also be applied to re-
gressions. Bühlmann and Yu (2003) propose L2Boosting that builds a linear
model by minimizing the L2 loss. Bühlmann (2006) further proves the con-
sistency of L2Boosting in terms of predictions. L2Boosting is the simplest
and perhaps most instructive Boosting algorithm for economists and econo-
metricians. It is very useful for regression, in particular in the presence of
high-dimensional explanatory variables.

We consider a simple linear regression

14 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

y = xβ + u,

where y is the dependent variable, x is the independent variable and u ∼
N(0, 1). Note that the number of independent variables x could be high-
dimensional, i.e. the number of independent variables in x can be larger than
the number of observations.

This model, in the low dimension case, can be estimated by the ordinary
least squares. We minimize the sum of squared errors

L =

n∑
i=1

(yi − ŷi)2,

where
ŷi = xiβ̂.

The solution to the problem is

β̂ = (X′X)−1X′y.

The residual from the previous problem is

ûi = yi − ŷi.

In the high-dimension case, the ordinary least squares method falls down
because the matrix (X′X) is not invertible. Hence, we need to use a modified
least squares method to get over the high-dimension problem.

The basic idea of L2Boosting is to use only one explanatory variable at a
time. Since the number of variables p is larger than the length of the sample
period n, the matrix X′X is not invertible. However, if we use only one vari-
able in one particular iteration, the matrix x′jxj is a scalar and thus invertible.
In order to exploit the information in the explanatory variables, in the fol-
lowing iterations, we can use other explanatory variables to fit the residuals
which are the unexplained part from previous iterations. L2Boosting can be
seen as iteratively use the least squares technique to explain the residuals
from the previous least squares regressions. In the L2Boosting algorithm, we
use the least squares technique to fit the dependent variable y with only
one independent variable xj . Then, we iteratively take the residual from the
previous regression as the new dependent variable y and fit the new depen-
dent variable with, again, only one independent variable xj . The detailed
description of L2Boosting is listed in Algorithm 5.

The stopping parameter M is the main tuning parameter which can
be selected using cross-validation or some information criterion in practice.
Bühlmann and Yu (2003) propose to use the corrected AIC to choose the stop-
ping parameter. According to Bühlmann and Yu (2003), the square of the bias
of the L2Boosting decays exponentially fast with increasing M , the variance
increases exponentially slow with increasing M , and limM→∞MSE = σ2.

Boosting 15

Algorithm 5 L2Boosting (Bühlmann and Yu, 2003)
1. Start with yi from the training data.

2. For m = 1 to M

a. For j = 1 to k (for each variable)
i. Fit the regression function yi = βm,0,j + βm,jxji + ui by least-squares of yi on

xji.

ii. Compute errmj = 1 − R2
mj where R2

mj is the coefficient of determination from
the least-squares regression.

b. Find ĵm = arg minj errmj
c. Set yi ← yi − β̂m,0,ĵm − β̂m,ĵmxĵm,i, i = 1, . . . , n.

3. Output the final regression model FM (x) =
∑M
m=1 βm,0,ĵm + β̂m,ĵmxĵm .

L2Boosting is computationally simple and successful if the learner is suf-
ficiently weak. If the learner is too strong, then there will be over-fitting
problem as in all the other boosting algorithms. Even though it is straight-
forward for econometricians to use the simple linear regression as the weak
learner, Bühlmann and Yu (2003) also suggest using smoothing splines and
classification and regression trees as the weak learner.

5 Gradient Boosting

This section discusses the Gradient Boosting Machine first introduced by
Friedman (2001). Breiman (2004) shows that the AdaBoost algorithm can
be represented as a steepest descent algorithm in function space which we
call functional gradient descent (FGD). Friedman et al (2000) and Friedman
(2001) then developed a more general, statistical framework which yields
a direct interpretation of boosting as a method for function estimation. In
their terminology, it is a ‘stage-wise, additive modeling’ approach. Gradient
Boosting is a generalization of AdaBoost and L2Boosting. AdaBoost is a
version of Gradient Boosting that uses the exponential loss and L2Boosting
is a version of Gradient Boosting that uses the L2 loss.

5.1 Functional gradient descent

Before we introduce the algorithm of Gradient Boosting, let us talk about
functional gradient descent in a general way. We consider F (x) to be the
function of interest and minimize a risk function R(F) = E(L(y, F)) with
respect to F (x). For example, in the L2Boosting, the loss function L(y, F (x))
is the L2 loss, i.e. L(y, F (x)) = (y − F (x))2. Notice that we do not impose

16 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

any parametric assumption on the functional form of F (x), and hence, the
solution F (x) is entirely nonparametric.

The Functional Gradient Descent minimizes the risk function R(F) at
each x directly with respect to F (x). In each iteration m, like in gradient
descent, we look for a pair of optimal direction fm(x) and step size cm. The
optimal direction at x is the direction that the loss function R(F) decreases
the fastest. Hence, the optimal direction

fm(x) = Ey

[
−∂L(y, F (x))

∂F (x)

∣∣∣∣x]
F (x)=Fm−1(x)

.

The optimal step size cm can be found given fm(x) by a line search

cm = arg min
cm

Ey,xL(y, Fm−1(x) + cmfm(x)).

Next, we update the estimated function F (x) by

Fm(x) = Fm−1(x) + cmfm(x).

Thus, we complete one iteration of Gradient Boosting. In practice, the stop-
ping iteration, which is the main tuning parameter, can be determined via
cross-validation or some information criteria. The choice of step size c is of
minor importance, as long as it is ‘small’, such as c = 0.1. A smaller value
of c typically requires a larger number of boosting iterations and thus more
computing time, while the predictive accuracy will be better and tend to
over-fit less likely.

5.2 Gradient boosting algorithm

The algorithm of Gradient Boosting is shown in Algorithm 6.

Algorithm 6 Gradient Boosting (GB, Friedman, 2001)

1. Start with F0(x) = arg minconst
∑n
i=1 L(yi, const).

2. For m = 1 to M

a. calculate the pseudo-residuals rmi = −
[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, i = 1, . . . , n.

b. fm(x) = arg minfm(x)

∑N
i=1(rmi − fm(xi))

2.

c. cm = arg minc
∑N
i=1 L(yi, Fm−1(xi) + cmfm(xi)).

d. Fm(x) = Fm−1(x) + cmfm(x).

3. Output FM (x) =
∑M
m=1 cmfm(x).

Boosting 17

In theory, any fitting criterion that estimates the conditional expectation
could be used to fit the negative gradient at step 1(a). In Gradient Boost-
ing, the negative gradient is also called ‘pseudo-residuals’ rmi and Gradient
Boosting fits this residuals in each iteration. The most popular choice to fit
the residuals is the Classification/Regression Tree which we will discuss in
detail in Section 14.5.3.

5.3 Gradient boosting decision tree

Gradient Boosting Decision Tree (GBDT) or Boosting Tree is one of the
most important methods for implementing nonlinear models in data mining,
statistics, and econometrics. According to the results of data mining tasks at
the data mining challenges platform, Kaggle, most of the competitors choose
Boosting Tree as their basic technique to model the data for predicting tasks.

Obviously, Gradient Boosting Decision Tree combines the decision tree
and gradient boosting method. The gradient boosting is the gradient descent
in functional space,

fm+1(x) = fm(x) + λm

(
∂L

∂f

)
m

,

where m is the number of iteration, L is the loss function we need to optimize,

λm is the learning rate. In each round, we find the best direction −
(
∂L
∂f

)
m

to minimize the loss function. In gradient boosting, we can use some simple
function to find out the best direction. That is, we use some functions to
fit the ‘pseudo-residuals’ of the loss function. In AdaBoost, we often use the
decision stump, a line or hyperplane orthogonal to only one axis, to fit the
residual. In the Boosting Tree, we choose a decision tree to handle this task.
Also, the decision stump could be seen as a decision tree with one root node
and two leaf nodes. Thus, the Boosting Tree is a natural way to generalize
Gradient Boosting.

Basically, the Boosting Tree learns an additive function, which is similar
to other aggregating methods like Random Forest. But the decision trees are
grown very differently among these methods. In the Boosting Tree, a new
decision tree is growing based on the ‘error’ from the decision tree which
grew in the last iteration. The updating rule comes from Gradient Boosting
method and we will dive into the details later.

Suppose we need to implement a regression problem given samples (yi, xi), i =
1, ..., n. If we choose the square loss function, the ‘pseudo-residual’ should be

rmi = −
(
∂L
∂f

)
m

= −
(
∂(y−f)2
∂f

)
m

= 2(y − fm).

The algorithm of Gradient Boosting Decision Tree is shown in Algorithm
7.

18 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

Algorithm 7 Gradient Boosting Decision Tree (Tree Boost, Friedman, 2001)

1. Initially, estimate the first residual via r0i = −2(yi − ȳ) = −2(yi − f1(xi)).

2. For m = 1 to M

a. Based on new samples (rmi , xi), i = 1, ..., n, fit a regression tree hm(x).

b. Let fm+1(x) = fm(x) + λmhm(x), then, λm = arg minλ L(y, fm(x) + λhm(x)).
c. Update fm+1(x) via fm+1(x) = fm(x) + λmhm(x).

d. Calculate the new residual rm+1
i = −2(yi−fm+1(xi)), then update the new samples

as (rm+1
i , xi), i = 1,

3. Output the Gradient Boosting Decision Tree FM (x) =
∑M
m=1 λmfm(x).

According to Algorithm 7, the main difference between Gradient Boost-
ing and Boosting Tree is at step 1(a). In Boosting Tree, we use a decision
tree to fit the ‘residual’ or the negative gradient. In other words, Boosting
Tree implement the Functional Gradient Descent by following the functional
gradient learned by the decision tree.

Additionally, to implement Gradient Boosting Decision Tree, we need to
choose several hyperparameters: (1) N , the number of terminal nodes in trees;
(2) M , the number of iterations in the boosting procedure.

Firstly, N , the number of terminal nodes in trees, controls the maximum
allowed level of interaction between variables in the model. With N = 2
(decision stumps), no interaction between variables is allowed. With N = 3,
the model may include effects of the interaction between up to two variables,
and so on. Hastie et al (2009) comment that typically 4 < N < 8 work well for
boosting and results are fairly insensitive to the choice of N in this range,N =
2 is insufficient for many applications, and N > 10 is unlikely to be required.
Figure 14.1 shows the test error curves corresponding to the different number
of nodes in Boosting Tree. We can see that Boosting with decision stumps
provides the best test error. When the number of nodes increases, the final
test error increases, especially in boosting with trees containing 100 nodes.
Thus, practically, we often choose 4 < N < 8.

Secondly, to the number of iterations M , we will discuss that in Section
5.4.1 in detail, which is related to the regularization method in Boosting Tree.

5.4 Regularization

By following the discussion above, the Gradient Boosting Decision Trees
method contains more trees when M is larger. A further issue is related
to over-fitting. That is, when there are increasingly large numbers of decision
trees, Boosting Tree can fit any data with zero training error, which leads to
a bad test error on new samples. To prevent the model from over-fitting, we
will introduce two ways to resolve this issue.

Boosting 19

Figure 1: Illustration of Gradient Boosting Decision Trees with Different Nodes (green:

decision stump; red line: tree with 10 leaf nodes; blue: tree with 100 leaf nodes)

5.4.1 Early stopping

A simple way to resolve this issue is to control the number of iterations M in
the Boosting Trees. Basically, we can treat M as a hyper-parameter during
the training procedure of Boosting Trees. Cross-Validation is an effective
way to select hyperparameters including M . Since Boosting Trees method is
equivalent to the steepest gradient descent in functional space, selecting the
optimal M means that this steepest gradient descent will stop at the Mth
iteration.

5.4.2 Shrinkage method

The second way to resolve the problem of over-fitting is shrinkage. That is,
we add a shrinkage parameter during the training process. Let us consider
the original formula for updating Boosting Trees:

fm+1(x) = fm(x) + λmhm(x). (3)

20 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

In the Boosting Trees, we first fit hm(x) based on a decision tree. Then,
we optimize λm for the best step size. Thus, we can shrink the step size by
adding a shrinkage parameter ν:

fm+1(x) = fm(x) + νλmhm(x). (4)

Obviously, if we set ν = 1, Equation (4) is equivalent to Equation (3). Suppose
we set 0 ≤ ν ≤ 1, it can shrink the optimal step size λm to νλm, which
leads to a slower optimization. In other words, comparing to the original
Boosting Tree, Shrinkage Boosting Tree learns the unknown function slower
but more precise in each iteration. As a consequence, to a given ν < 1, we
need more steps M to minimize the error. Figure 14.2 shows this consequence.
To a binary classification problem, we consider two measures: the test set
deviations, which is the negative binomial log-likelihood loss on the test set,
and the test set misclassification error. In the left and right panels, we can see
that, with the shrinkage parameter less than 1, Boosting Tree typically need
more iterations to converge but it can hit a better prediction result. Friedman
(2001) found that a smaller ν will lead to a larger optimal M but the test
errors in the new datasets are often better than the original Boosting Tree.
Although large M may need more computational resources, this method may
be inexpensive because of the faster computers.

Figure 2: Gradient Boosting Decision Tree (6 leaf nodes) with Different Shrinkage Param-
eters (blue: Shrinkage ν = 0.6; red: No shrinkage)

Boosting 21

5.5 Variable importance

After training Boosting Tree, the next question is to identify the variable
importance. Practically, we often train boosting tree on a dataset with a large
number of variables and we are interested in finding important variables for
analysis.

Generally, this is also an important topic in tree-based models like Random
Forest discussed in chapter 13. Since Boosting Tree method is also an additive
trees aggregating, we can use I2j to measure the importance of a variable j:

I2j =
1

M

M∑
m=1

I2j (m),

and I2j (m) is the importance of variable j for the mth decision tree:

I2j (m) =

Tm−1∑
t=1

e2t I(v(t)m = j),

where Tm is the number of internal nodes (non-leaf nodes) in the mth decision
tree, v(t)m is the variable selected by node t, and et is the error improvement
based on before and after splitting the space via variable v(t)m.

In Random Forest or Bagging Decision Tree method, we can measure the
variable importance based on the so-called Out-of-Bag errors. In Boosting
Tree, since there are no Out-of-Bag samples, we can only use I2j . In practice,

OOB-based method and I2j method often provide similar results and I2j works
very well especially when M is very large.

Let us consider an example about the relative importance of variables for
predicting spam mail via Boosting Trees. The input variable x could be a
vector of counts of the keywords or symbols in one email. The response y
is a binary variable (Spam, Not Spam). We regress y on x via Boosting
Tree and then calculate the variable importance for each word or symbol.
On one hand, the most important keywords and symbols may be ‘!’, ‘$’,
‘free’, that is related to money and free; on the other hand, the keywords like
‘3d’, ‘addresses’ and ‘labs’ are not very important since they are relatively
neutral. Practically, the variable importance measure often provides a result
consistent with common sense.

6 Recent Topics In Boosting

In this section, we will focus on four attractive contributions of Boosting in
recent years. First of all, we introduce two methods that are related to Boost-
ing in time series and volatility models respectively. They are relevant topics
in macroeconomic forecasting. The third method is called Boosting with Mo-

22 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

mentum (BOOM), which is a generalized version of Gradient Boosting and is
more robust than the Gradient Boosting. The fourth method is called Multi-
Layered Gradient Boosting Decision Tree, which is a deep learning method
via non-differentiable Boosting Tree and shed light on representation learning
in tabular data.

6.1 Boosting in nonlinear time series models

In macroeconomic forecasting, nonlinear time series models are widely used
in the last 40 years. For example, Tong and Lim (1980) discuss the Thresh-
old Autoregressive (TAR) model to describe the time dependence when the
time series is higher or lower than a threshold value. Chan and Tong (1986)
propose the Smooth Transition Autoregressive (STAR) model to catch the
nonlinear time dependence changing continuously between two states over
time. Basically, nonlinear time series models not only perform better than
linear time series models but also provide a clear way to analyze the nonlin-
ear dependence among time series data.

Although nonlinear time series models are successful in macroeconomic
time series modeling, we also need to consider their assumptions and model
settings so that they can work for time series modeling. Unfortunately, in the
era of big data, they cannot handle the large datasets since they often contain
more complicated time dependence and higher dimensional variables along
time that does not satisfy the assumptions. Essentially, the Boosting method
provides an effective and consistent way to handle the time series modeling
among big datasets especially with relatively fewer assumptions required.

Robinzonov et al (2012) discuss the details of Boosting for nonlinear
time series models. Suppose we have a bunch of time series dataset zt =
(yt−1, ..., yt−p, x1,t−1, ..., xq,t−1, ..., x1,t−p, ..., xq,t−p) = (yt−1, ..., yt−p,xt−1, ...,
xt−p) ∈ R(q+1)p, where zt is the information set at time t, y is a series of en-
dogenous variable with lags of p and (xt−1, ...,xt−p) is a q dimensional vector
series with lags of p. Consider a nonlinear time series model for the condi-
tional mean of yt:

E(yt|zt) = F (zt) = F (yt−1, ..., yt−p, x1,t−1, ..., xq,t−1, ..., x1,t−p, ..., xq,t−p),

where F (zt) is an unknown nonlinear function. Chen and Tsay (1993) discuss
an additive form of F (zt) for nonlinear time series modeling, which is called
Nonlinear Additive Auto Regressive with exogenous variables (NAARX):

Boosting 23

E(yt|zt) = F (zt)

=

p∑
i=1

fi(yt−i) +

p∑
i=1

f1,i(x1,t−i) + ...+

p∑
i=1

fq,i(xq,t−i)

=

p∑
i=1

fi(yt−i) +

q∑
j=1

p∑
i=1

fj,i(xj,t−i).

To optimize the best F (zt) given data, we need to minimize the loss function:

F̂ (zt) = arg min
F (zt)

1

T

T∑
t=1

L(yt, F (zt)).

For example, we can use L2 loss function L(yt, F (zt)) = 1
2 (yt − F (zt))

2. If
we consider a parametric function F (zt, β), we can have the following loss
function:

β̂ = arg min
β

1

T

T∑
t=1

L(yt, F (zt;β)).

Since the true function of E(y|z) has the additive form, the solution to
the optimization problem should be represented by a sum over a bunch of
estimated functions. In Boosting, we can use M different weak learner to
implement:

F (zt; β̂
M) =

M∑
m=0

νh(zt; γ̂
m),

where ν is a shrinkage parameter for preventing over-fitting. Similar to orig-
inal gradient boosting, in each iteration, we can generate a ‘pseudo residual’
term rm(zt) which is:

rm(zt) = − ∂L(yt, F)

∂F

∣∣∣∣
F=F (zt;β̂m−1)

.

Thus, we can optimize γ̂m based on the loss function:

γ̂m = arg min
γ

T∑
t=1

L(rm(zt), h(zt; γ)).

After that, we update the F (zt; β̂
m) as:

F (zt; β̂
m) = F (zt; β̂

m−1) + νh(zt; γ̂
m).

Now go back to the NAARX model. Since each function f only contains one
variable, yt−i or xj,t−i, we can construct same additive form via L2 Boosting.
That is, in each iteration, we only choose one variable from the whole vector

24 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

zt = (yt−1, ..., yt−p, ..., xq,t−1, ..., xq,t−p) and then fit a weak learner. This is
called Component-wise Boosting.

Robinzonov et al (2012) discussed two methods of component-wise boost-
ing with different weak learners: linear weak learner and P-Spline weak
learner. The first method is called component-wise linear weak learner. For
this method, we choose a linear function with one variable of zt as a weak
learner in each iteration. The algorithm of Component-wise Boosting with
linear weak learner is shown in Algorithm 8.

Algorithm 8 Component-wise Boosting with Linear Weak Learner (Robin-
zonov et al, 2012)
1. Start with yt from training data.
2. For m = 1 to M

a. For j = 1 to (1 + q)p (for each variable)

i. Fit the regression function yt = βm,0,j + βm,jzj,t + ut by least-squares of yt on

zj,t on the training data.
ii. Compute errmj = 1−R2

mj from the weighted least-squares regression.

b. Find ĵm = arg minj errmj .

c. Set yt ← yt − β̂m,0,ĵm − β̂m,ĵmzt,ĵm , t = 1, . . . , T .

3. Output the final regression model FM (z) =
∑M
m=1 βm,0,ĵm + β̂m,ĵmzĵm .

Obviously, this method only provides a linear solution like an Autoregres-
sive model with exogenous variables (ARX). We can also consider more com-
plicated weak learner such that the nonlinear components could be caught. In
the paper, P-Spline with B base learners is considered as the weak learner.
The algorithm of Component-wise Boosting with P-Spline weak learner is
shown in Algorithm 9

Algorithm 9 Component-wise Boosting with P-Spline Weak Learner
(Robinzonov et al, 2012)
1. Start with yt from training data.

2. For m = 1 to M

a. For j = 1 to (1 + q)p (for each variable)
i. Fit the P-Spline with B Base learners ŷt = Splinem(zj,t) by regressing yt on zj,t

on the training data.

ii. Compute errmj = 1−R2
mj from the P-Spline regression.

b. Find ĵm = arg minj errmj .
c. Set yi ← yt − ŷt, t = 1, . . . , T .

3. Output the final regression model FM (z) =
∑M
m=1 Splinem(zĵm).

Boosting 25

6.2 Boosting in volatility models

Similarly to Boosting in nonlinear time series models for the mean, it is
possible to consider Boosting in volatility models, like GARCH. Audrino
and Bühlmann (2016) discussed volatility estimation via functional gradient
descent for high-dimensional financial time series. Mat́ıas et al (2010) compare
Boost-GARCH with other methods, like neural networks GARCH.

Let us begin with the classic GARCH(p, q) model by Bollerslev (1986):

yt = µ+ et, t = 1, ..., T

et ∼ N(0, ht)

ht = c+

p∑
i=1

αie
2
t−i +

q∑
j=1

βjht−j .

We can implement a Maximum Likelihood Estimation (MLE) method to
estimate all the coefficients. Generally, consider a nonlinear formula of the
volatility function ht:

ht = g(e2t−1, ..., e
2
t−p, ht−1,, ht−q) = g(E2

t , Ht),

where E2
t = (e2t−1, ..., e

2
t−p) and Ht = (ht−1,, ht−q). Similarly to NAARX

model, we can consider a additive form of the function g:

ht =

M∑
m=1

gm(E2
t , Ht).

For simplicity, let p = q = 1, we have:

ht =

M∑
m=1

gm(e2t−1, ht−1).

Thus, we can use L2 Boosting to approximate the formula above. Since we
use MLE to estimate the original GARCH model, for Boost-GARCH, we can
also introduce the likelihood function for calculating the ‘pseudo residual’
rt,m instead of using the loss function. Finally, Boost-GARCH can fit an
additive nonlinear formula as the estimation of ht:

ĥt =

M∑
m=1

fm(e2t−1, ht−1)

The algorithm of Boost-GARCH (1, 1) is shown in Algorithm 10.

26 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

Algorithm 10 Boost-GARCH (1,1) (Audrino and Bühlmann, 2016)

1. Start with estimating a linear GARCH (1,1) model:

yt = µ+ et, t = 1, ..., T

et ∼ N(0, ht)

ht = c+ α1e
2
t−1 + β1ht−1

2. Getting the µ̂0, ĥt−1,0

3. For m = 1 to M

a. Calculate the residual:

e2t,m = (yt − µ̂m−1)2

r(µ)t,m = −
(
∂L

∂µ

)
m

=
yt − µ̂t,m
ĥt,m

r(h)t,m = −
(
∂L

∂ht

)
m

=
1

2

(
(yt − µ̂t,m)2

ĥ2t,m
−

1

ĥt,m

)

b. Fit a nonlinear base learner ŷt = fm(e2t−1, ht−1) by regressing r(h)t,m on

e2t−1,m, ĥt−1,m on the training data.

c. Set ĥt,m ← ĥt,m−1 + fm(e2t,m−1, ĥt,m−1).

4. Output the final regression model ĥt =
∑M
m=1 fm(e2t−1, ht−1).

6.3 Boosting with momentum (BOOM)

In Section 5 on Gradient Boosting, we show that Gradient Boosting can be
represented as a steepest gradient descent in functional space. In the opti-
mization literature, gradient descent is widely discussed on its properties.
First, gradient descent is easily revised for many optimization problems. Sec-
ond, gradient descent often finds out good solutions no matter the optimiza-
tion problem is convex or nonconvex.

But gradient descent also suffers from some drawbacks. Let us consider the
plots of loss surface in Figure 14.4. Suppose the loss surface is convex. Ob-
viously, gradient descent should converge to the global minimum eventually.
But what we can see in the plot (a) is that the gradient descent converges
very slow and the path of gradient descent is a zig-zag path. Thus, original
gradient descent may spend a long time on converging to the optimal so-
lution. Furthermore, the convergence is worse in a non-convex optimization
problem.

To resolve this issue, a very practical way is to conside ‘momentum’ term
to the gradient descent updating rule:

Boosting 27

Figure 3: Gradient Descent without and with Momentum

θm+1 = θm − λVm,

Vm = Vm−1 + ν

(
∂L

∂θ

)
m

,

where θm is the parameter we want to optimize at mth iteration, Vm is the
momentum term with another corresponding updating rule.

In the original gradient descent method, we have Vm =
(
∂L
∂θ

)
m

. In (m+1)th

iteration, the parameter θm+1 is updated by following the gradient
(
∂L
∂θ

)
m

only. But when we consider momentum term, the parameter θm is updated
by following the updating direction in previous iteration Vm−1 and the gra-
dient

(
∂L
∂θ

)
m

together. Intuitively, this is just like the effect of momentum in
physics. When a ball is rolling down from the top, even though it comes to a
flat surface, it keeps rolling for a while because of momentum.

Plot (b) in Figure 14.3 illustrates the difference between Gradient Descent
without and with Momentum. Comparing to the path of convergence in the
plot (a), if we consider momentum in gradient descent, the path becomes
better and spends less time on moving to the optimal solution which is shown
in plot (b).

As the generalized version of gradient descent in function space, gradi-
ent boosting may also suffer from the same problem when the loss surface is
complicated. Thus, a natural way to improve the gradient boosting method is
considering the momentum term in its updating rule. Mukherjee et al (2013)
discuss a general analysis of a fusion of Nesterov’s accelerated gradient with
parallel coordinate descent. The resulting algorithm is called Boosting with
Momentum (BOOM). Namely, BOOM retains the momentum and conver-
gence properties of the accelerated gradient method while taking into account
the curvature of the objective function. They also show that BOOM is es-
pecially effective in large scale learning problems. Algorithm 11 provides the
procedure of BOOM via Boosting Tree.

28 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

Algorithm 11 Gradient Boosting Decision Tree with Momentum (Mukher-
jee et al (2013),Friedman (2002))

1. Initially, estimate the first residual via r0i = −2(yi − ȳ) = −2(yi − f1(xi)).

2. For m = 1 to M

a. Based on new samples (rmi , xi), i = 1, ..., n, fit a regression tree hm(x).

b. Let Vm = Vm−1 + λmhm(x).
c. Let fm+1(x) = fm(x) + νVm, then optimize λm via λm = arg minλ L(y, fm(x) +

νVm) = arg minλ L(y, fm(x) + ν(Vm−1 + λhm(x))).

d. Update fm+1(x) via fm+1(x) = fm(x) + νVm.
e. Calculate the new residual rm+1

i = −2(yi−fm+1(xi)), then update the new samples

as (rm+1
i , xi), i = 1, ..., n.

3. Output the Gradient Boosting Decision Tree FM (x) =
∑M
m=1 νVm.

The main difference between Boosting with Momentum and ordinary
Boosting Tree is a step to update Vm. Also, we have one more hyperpa-
rameter to decide ν, which decides the fraction of gradient information saved
for next iteration updating of fm(x). Practically, we set 0.5 < ν < 0.9 but it
is more reasonable to tune ν via cross-validation.

This method can be generalized to Stochastic Gradient Boosting dis-
cussed by Friedman (2002). Algorithm 12 shows the procedure of BOOM
via Stochastic Gradient Boosting Tree.

Algorithm 12 Stochastic Gradient Boosting Decision Tree with Momentum
(Mukherjee et al (2013),Friedman (2002))

1. Initially, randomly select a subset of the samples (yi, xi), i = 1, ..., ns, where 0 < ns < n.
2. Estimate the first residual via r0i = −2(yi − ȳ) = −2(yi − f1(xi)).

3. For m = 1 to M .

a. Based on new samples (rmi , xi), i = 1, ..., ns, fit a regression tree hm(x).

b. Let Vm = Vm−1 + λmhm(x).

c. Let fm+1(x) = fm(x) + νVm, then optimize λm via λm = arg minλ L(y, fm(x) +
νVm) = arg minλ L(y, fm(x) + ν(Vm−1 + λhm(x))).

d. Update fm+1(x) via fm+1(x) = fm(x) + νVm.

e. Calculate the new residual rm+1
i = −2(yi−fm+1(xi)), then update the new samples

as (rm+1
i , xi), i = 1, ..., ns.

4. Output the Gradient Boosting Decision Tree FM (x) =
∑M
m=1 νVm.

There some differences between BOOM with Boosting Tree and Stochastic
Boosting Tree. In Boosting Tree, we use all the n samples to update the
decision tree in each iteration. But Stochastic Boosting Tree randomly selects
ns

n fraction of samples to grow a decision tree in each iteration. When the
sample size n is increasingly large, selecting a subset of samples could be a
better and more efficient way to implement the Boosting Tree algorithm.

Boosting 29

6.4 Multi-layered gradient boosting decision tree

Last 10 years witnessed the dramatic development in the fields about deep
learning, which mainly focus on distilling hierarchical features via multi-
layered neural networks automatically. From 2006 deep learning methods
have changed so many areas like computer vision and natural language pro-
cessing.

The multi-layered representation is the key ingredient of deep neural net-
works. Thus, the combination of multi-layered representation and Boosting
Tree are expected in handling very complicated tabular data analysis tasks.
But there are few research papers exploring multi-layered representation via
non-differentiable models, like Boosted Decision Tree. That is, the gradient-
based optimization method which is always used in training multi-layered
neural networks cannot be introduced in training multi-layered Boosting
methods.

Ji et al (2018) explored one way to construct Multi-Layered Gradient
Boosting Decision Tree (mGBDT) with an explicit emphasis on exploring
the ability to learn hierarchical representations by stacking several layers of
regression GBDTs. The model can be jointly trained by a variant of target
propagation across layers, without the need to derive back-propagation or to
require differentiability.

Figure 4: Illustration of Multi-Layered Gradient Boosting Decision Tree

Figure 14.4 provides the structure of a Multi-Layered Gradient Boosting
Decision Tree. Fm,m = 1, ...,M are the M layers of a mGBDT. Similar to the
multi-layered neural networks, the input o0 is transformed to o1, ..., oM via
F1, ..., FM . Then, the final output oM is the prediction of the target variable
y. But all the Fm are constructed via gradient boosting decision tree, we

30 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

cannot training them via back-propagation method used in training multi-
layered neural networks. Ji et al (2018) introduced another group of functions
Gm,m = 1, ...,M and corresponding variables zm,m = 1, ...,M .

Intuitively, the group of function Gm are introduced for achieving back-
propagation algorithm in non-differentiable Boosting Tree. To train Multi-
layered Gradient Boosting Decision Tree, firstly, we use ‘forward propaga-
tion’ method to calculate all the om,m = 1, ...,M . Secondly, to (om), Gm are
trained to reconstruct om via optimizing the loss function L(om, Gm(Fm(om))).
That is, we train Gm to learn ‘back-propagation’. Then, after training all the
Gm,m = 1, ...,M , we can do ‘back-propagation’ to generate zm,m = 1, ...,M ,
that represents the information to each layer. Next, to the pairs of (zm, zm−1),
we train Fm to optimize another loss function L(zm, Fm(zm−1)). Finally, we
can update all the Fm and Gm via Boosting Tree method. Algorithm 13
shows the procedure of Multi-Layered Gradient Boosting Decision Tree.

Algorithm 13 Multi-Layered Gradient Boosting Decision Tree (Ji et al
(2018))

1. Input: Number of layers M , layer dimension dm, samples (yi, xi), i = 1, ..., n. Loss

function L. Hyper-parameters α, γ, K1, K2, T , σ2.

2. Initially, set F 0
m = Initialize(M,dm),m = 1, ...,M ;

3. For t = 1 to T

a. Propagate the o0 to calculate om = F (om−1),m = 1, ...,M

b. ztM = oM − α ∂L(y,oM)
∂oM

c. For m = M to 2

i. Gtm = Gt−1
m

ii. onoisem−1 = om−1 + ε, ε ∼ N(0, diag(σ2))

iii. Linvm = L(onoisem , Gtm(F t−1
m (onoisem)))

iv. for k = 1 to K1

A. rk = − ∂Linv
m

∂Gt
m(F t−1

m (onoise
m))

B. Fit a decision tree hk to rk
C. Gtm = Gtm + γhk

v. zm−1 = Gtm(zm)
d. For m = 1 to M

i. F tm = F t−1
m

ii. Lm = L(ztm, F
t
m(om−1)) using gradient boosting decision tree

iii. for k = 1 to K2

A. rk = − ∂Lm
∂F t

j (om)

B. Fit a decision tree hk to rk
C. F tm = F tm + γhk

iv. om = F tm(om−1)

4. Output the trained multi-layered gradient boosting decision tree.

Ji et al (2018) suggested to optimize Linv = L(onoisem , Gtm(F t−1m (onoisem)))
instead of Linvm = L(om, G

t
m(F t−1m (om))) to make the training of Gm more

robust. Also, the authors found that the multi-layered gradient boosting de-

Boosting 31

cision tree is very robust to most hyper parameters. Without fine-tuning the
parameters, this method can achieve very attractive results.

Furthermore, consider the noisy loss function from the perspective of min-
imizing the reconstruction error, this process could be seen as an encoding-
decoding process. First, in each layer Fm encodes the input via a nonlinear
transform. Then, Gm learns how to decode the transformed output back to
the original input. This is similar to the Auto Encoder method in deep learn-
ing. Thus, we can also use the Multi-layered Gradient Boosting Decision Tree
to do encoding-decoding, which shed a light on implementing unsupervised
learning tasks in the tabular data in economics.

7 Boosting In Macroeconomics and Finance

Boosting methods are widely used in classification and regression. Gradient
Boosting implemented in the packages, like XGBoost and LightGBM, is a
very popular algorithm among data science competitions and industrial ap-
plications. In this section, we discuss four applications of boosting algorithms
in macroeconomics.

7.1 Boosting in predicting recessions

Ng (2014) uses boosting to predict recessions 3, 6, and 12 months ahead.
Boosting is used to screen as many as 1,500 potentially relevant predictors
consisting of 132 real and financial time series and their lags. The sample
period is 1961:12011:12. In this application, boosting is used to select relevant
predictors from a set of potential predictors as well as probability estimation
and prediction of the recessions. In particular, the analysis uses the Bernoulli
loss function as implemented in the GBM package of Ridgeway (2007). The
package returns the class probability instead of classifications. For recession
analysis, the probability estimate is interesting in its own right, and the
flexibility to choose a threshold other than one-half is convenient.

7.2 Boosting diffusion indices

Bai and Ng (2009) use boosting to select and estimate the predictors in
factoraugmented autoregressions. In their application, boosting is used to
make 12 months ahead of forecast on inflation, the change in Federal Funds
rate, the growth rate of industrial production, the growth rate of employment,
and the unemployment rate. A sample period from 1960:1 to 2003:12 was used

32 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

for a total of 132 times series. They use two boosting algorithms, namely
L2Boosting and Block Boosting.

7.3 Boosting with Markov-switching

Adam et al (2017) propose a novel class of flexible latent-state time series
regression models called Markov-switching generalized additive models for
location, scale, and shape. In contrast to conventional Markov-switching re-
gression models, the presented methodology allows users to model different
state-dependent parameters of the response distribution - not only the mean,
but also variance, skewness and kurtosis parameters - as potentially smooth
functions of a given set of explanatory variables. The authors also propose an
estimation approach based on the EM algorithm using the gradient boosting
framework to prevent over-fitting while simultaneously performing variable
selection. The feasibility of the suggested approach is assessed in simulation
experiments and illustrated in a real-data setting, where the authors model
the conditional distribution of the daily average price of energy in Spain over
time.

7.4 Boosting in financial modeling

Rossi and Timmermann (2015) construct a new procedure for estimating
the covariance risk measure in ICAPM model. First, one or more economic
activity indices are extracted from macroeconomic and financial variables for
estimating the covariance matrix. Second, given realized covariance matrix
as the covariance matrix measure, Boosting Regression Tree is applied in
projecting realized covariance matrix on the indices extracted in the first
step. Lastly, predictions of the covariance matrix are made based on the
nonlinear function approximated by Boosting Regression Tree and applied
into the analysis of ICAPM method.

8 Summary

In this chapter, we focus on Boosting method. We start with an introduc-
tion of the well known AdaBoost. Several variants of AdaBoost, like Real
AdaBoost, LogitBoost and Gentle AdaBoost are also discussed. Then, we
consider in regression problem and introduce L2 Boosting. Next, Gradient
Boosting and Gradient Boosting Decision Tree are discussed in theory and
practice. Then, we introduce the several variants of Gradient Boosting such as

Boosting 33

Component-wise Boosting and Boost-GARCH for nonlinear time series mod-
eling, Boosting with Momentum and multi-layered Boosting Tree. Finally, we
discuss several applications of Boosting in macroeconomic forecasting and fi-
nancial modeling.

References

Adam T, Mayr A, Kneib T (2017) Gradient boosting in Markov-switching
generalized additive models for location, scale and shape

Audrino F, Bühlmann P (2016) Volatility estimation with functional gradi-
ent descent for very high-dimensional financial time series. The Journal of
Computational Finance 6(3):65–89

Bai J, Ng S (2009) Boosting diffusion indices. Journal of Applied Economet-
rics 24(4):607–629

Bartlett PL, Traskin M (2007) AdaBoost is consistent. Journal of Machine
Learning Research 8:2347–2368

Bartlett PL, Jordan MI, McAuliffe JD (2006) Convexity, classification, and
risk bounds. Journal of the American Statistical Association 101(473):138–
156

Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics 31(3):307–327

Breiman L (2004) Population theory for boosting ensembles. Annals of Statis-
tics 32(1):1–11

Bühlmann P (2006) Boosting for high-dimensional linear models. Annals of
Statistics 34(2):559–583

Bühlmann P, Yu B (2003) Boosting with the L2 loss: Regression and classi-
fication. Journal of the American Statistical Association 98(462):324–339

Chan KS, Tong H (1986) on estimating thresholds in autoregressive models.
Journal of Time Series Analysis 7(3):179–190

Chen R, Tsay RS (1993) Nonlinear additive ARX models. Journal of the
American Statistical Association 88(423):955–967

Chu J, Lee TH, Ullah A (2018) Component-wise AdaBoost algorithms for
high-dimensional binary classification and class probability prediction. In:
Handbook of Statistics, Elsevier

Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences 55:119–139

Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: A
statistical view of boosting. Annals of Statistics 28(2):337–407

Friedman JH (2001) Greedy function approximation: A gradient boosting
machine. The Annals of Statistics 29:1189–1232

Friedman JH (2002) Stochastic gradient boosting. Computational Statistics
and Data Analysis 38(4):367–378

34 Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, 2nd edn. Springer

Ji F, Yang Y, Zhi-Hua Z (2018) Multi-layered gradient boosting decision
trees. Proceedings of the 32nd Conference on Neural Information Process-
ing Systems

Mat́ıas J, Febrero-Bande M, González-Manteiga W, Reboredo J (2010)
Boosting GARCH and neural networks for the prediction of heteroskedastic
time series. Mathematical and Computer Modelling 51(3-4):256–271

Mease D, Wyner A, Buja A (2007) Cost-weighted boosting with jittering and
over/under-sampling: Jous-boost. Journal of Machine Learning Research
8:409–439

Mukherjee I, Canini K, Frongillo R, Singer Y (2013) Parallel boosting with
momentum. In: Blockeel H, Kersting K, Nijssen S ŽF (ed) Machine Learn-
ing and Knowledge Discovery in Databases, vol 8190 LNAI, Springer,
Berlin, Heidelberg, pp 17–32

Ng S (2014) Viewpoint: Boosting recessions. Canadian Journal of Economics
47(1):1–34

Ridgeway G (2007) Generalized boosted models: A guide to the gbm package.
Tech. Rep. 4

Robinzonov N, Tutz G, Hothorn T (2012) Boosting techniques for nonlinear
time series models. AStA Advances in Statistical Analysis 96(1):99–122

Rossi AG, Timmermann A (2015) Modeling covariance risk in Merton’s
ICAPM. Review of Financial Studies 28(5):1428–1461

Schapire RE (1990) The strength of weak learnability. Machine Learning
5:197–227

Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical
data. Journal of the Royal Statistical Society Series B (Methodological)
42(3):245–292

