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1. Introduction

When the functional form of the parametric regression function is in question, semi-parametric (SP)

and nonparametric (NP) kernel methods have become widely accepted statistical techniques. In panel data

model, when the functional form is in question due to little prior knowledge on a particular specification,

such SP and NP kernel methods may also be very useful to capture nonlinear structure in the panel data5

regression functions. In this paper we adopt an SP approach to modelling a general partially linear panel

data model. There is a rich literature on SP estimation of panel data model. See Horowitz and Markatou

(1996)[1], Ullah and Roy (1998)[2] and Li and Hisao (1998)[3], to mention only a few. Li and Ullah (1998)[4]

discuss the partially linear panel data model with random effects. Baltagi and Li (2002)[5], Henderson,

Carroll, and Li (2008)[6], and Su and Ullah (2006)[7] consider the estimation of the partially linear panel10

data models with fixed effects.

When the exogeneity of the regressors in regression functions is in question, the model may suffer from

inconsistent estimation. Various consistent estimation methods (e.g., using instruments or control functions)

have become widely accepted econometric techniques. In panel data model, when the exogeneity of the

regressors is in question due to possible correlation of the individual effects with the regressors, such consistent15

estimation may be achieved by taking the individual effects as fixed rather than random. If the individual

effects are correlated with the regressors in the model, the random-effects (RE) estimation is inconsistent

while the fixed-effects (FE) estimation is still consistent. A random-effects approach involves an assumption

that is rarely palatable, that the individual effects are uncorrelated with the regressors. When this assumption

fails, the random effects estimator is inconsistent. On the other hand, if the individual effects are not20

correlated with the regressors in the model, both the random- and fixed-effects estimators are consistent

while the random-effects estimator is efficient. Therefore, there is a trade-off between inefficient fixed-effects

estimation and inconsistent random-effects estimation. Under this scenario, when the exogeneity assumption

fails or falls in doubt, i.e., when the endogeneity exists but is weak, the inefficient fixed-effects estimation and

the inconsistent random-effects estimation may be combined to take advantage of each of the two estimators25

and to obtain a combined estimator.
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In this paper, we adopt the combined estimation approach for the semiparametric panel data models.

The combined estimator (denoted SPCombined) is a weighted combination of the SP random-effects (SPRE)

estimator and the SP fixed-effects (SPFE) estimator. The combining weights depend on the Hausman

statistic that measures the degrees of the endogeneity. The asymptotic distributions of the SPRE estimator,30

the SPFE estimator, and their combined estimator, are derived using a local asymptotic framework (Theorem

1). We show that under certain conditions, the SPCombined estimator has strictly smaller asymptotic risk

than the SPFE estimator (Theorem 2). The parametrically combined estimator can be viewed as a special

case of the semi-parametric combined estimator (Remark 2). Further, in the Monte Carlo study we show

that the SPCombined estimator outperforms the SPFE and SPRE estimators except when the degrees of35

“endogeneity” and “heterogeneity” of the individual effects are very small. Finally, in an application, we

re-examine the role for public sector in affecting private sector economic performance, using these three

estimators for the SP panel data model.

This paper is organized as follows. Section 2 presents three estimators for the semiparametric panel data

model – the SPRE, SPFE, and SPCombined estimators. Section 3 presents the asymptotic distributions40

of these three estimators. Section 4 compares them in the asymptotic risk. The proofs are collected in

Appendix (Section 8). Section 5 gives Monte Carlo simulation. An empirical application is presented in

Section 6. Section 7 concludes.

2. Estimation

In this section, we introduce the three estimators – the SPRE, SPFE, and SPCombined estimators, for45

the semiparametric panel data models.

First, we consider the following semi-parametric regression model with fixed effects (SPFE):

yit = x′itβ +m(zit) + αi + uit, i = 1, . . . , n, t = 1, . . . , T, (1)

where xit and zit are of dimensions q×1 and p×1, respectively, and β is a q×1 vector of unknown parameters,

m (·) is an unknown smooth function. αi’s are fixed effects and uit’s are the random disturbances. We

consider the usual panel data case with a large n and a small T . Hence all the asymptotics are for n → ∞
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for a fixed T . In matrix notation, (1) can be written as

y = Xβ +m(Z) + Dα+ u.

D = In ⊗ ιT is nT × n, α is n× 1, and u ∼ iid
(
0, σ2

uInT
)
.

A local linear approximation of the model (1) can be written as

yit ≈ x′itβ +m (z) + (zit − z) ṁ (z) + αi + uit, (2)

= x′itβ + Z′it (z) δ (z) + αi + uit.

where Zit (z) =
(
1, (zit − z)′

)′
, δ (z) =

(
m (z) , (ṁ (z))

′)′
, and ṁ (·) is the first derivative of m (·) . In a

vector form, we can write

y = Xβ + Z (z) δ (z) + Dα+ u,

where y = (y11, . . . , y1T , . . . , yn1, . . . , ynT )
′
, X = (x11, . . . , x1T , . . . , xn1, . . . , xnT )

′
and

Z (z) = (Z11 (z) , . . . , Z1T (z) , . . . , Zn1 (z) , . . . , ZnT (z))
′
.50

Let K denote a kernel function on Rp and H = diag (h1, . . . , hp), a matrix of bandwidth sequences.

(In our application p = 1. Nevertheless, our theory is general to take p > 1. See Assumption 5. Many

applications with p > 1 can be found in, e.g., Henderson and Parmeter, 2015[8]; Rilston and Ullah, 1989[9];

Pagan and Ullah, 1999[10]; Ullah 1988[11]; Su, Ullah and Wang, 2013[12]; Su, Murtazashvili, and Ullah,

2013[13]. Our Monte Carlo simulation considers p = 1 and p = 2.)55

Set KH (z) = |H|−1K
(
H−1z

)
, where |H| is the determinant of H. Further denote that K

(
H−1z

)
=

diag
(
K
(
H−1 (z11 − z)

)
, . . . ,K

(
H−1 (z1T − z)

)
, . . . ,K

(
H−1 (znT − z)

))
.Given (α′, β′)

′
, Su and Ullah (2006)[7]

estimate δ (z) by minimizing the following criterion function

(y −Xβ −Dα− Z (z) δ (z))
′
KH (z) (y −Xβ −Dα− Z (z) δ (z)) .

Define the smoothing operator by S (z) =
[
Z (z)

′
KH (z)Z (z)

]−1
Z (z)

′
KH (z) , then

δ (z) = S (z) (y −Dα−Xβ) .
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In particular, m (z) is given by

m (z) = s (z)
′
(y −Xβ −Dα) , (3)

where s (z)
′

= e′S (z) , and e = (1, 0, . . . , 0)
′

is a (p+ 1) × 1 vector. The parameter β is then estimated by

the profile likelihood method by minimizing

(y −Xβ −Dα−m (Z))
′
(y −Xβ −Dα−m (Z)) , (4)

where m (Z) = (m (z11) , . . . ,m (z1T ) , . . . ,m (znT ))
′
. Plugging (3) into (4) and using the formula for parti-

tioned regression, we can obtain

β̂SPFE = (X∗′Q∗X∗)
−1

X∗′Q∗y∗ (5)

and

α̂SPFE = (D∗′D∗)
−1

D∗′y∗,

where D∗ = (InT − S) D, y∗ = (InT − S) y, X∗ = (InT − S) X, Q∗ = InT − D∗ (D∗′D∗)
−1

D∗′, S =

(s11, . . . , s1T , s21, . . . , snT )
′
, and sit = s (zit) . The profile likelihood estimator for δ (z) is given by

δ̂ (z) = S (z)
(
y −Xβ̂SPFE −Dα̂SPFE

)
.

In particular, the profile likelihood estimator for m (z) is

m̂ (z) = s (z)
′
(
y −Xβ̂SPFE −Dα̂SPFE

)
.

The asymptotic distribution of β̂SPFE follows

√
n
(
β̂SPFE − β

)
d→ N (0, VSPFE) , (6)

where VSPFE = σ2
u

(
plimX∗′Q∗X∗

n

)−1
.

Second, we present the semi-parametric regression model with random effects (SPRE):

yit = x′itβ +m(zit) + αi + uit, i = 1, . . . , n, t = 1, . . . , T, (7)

4



in matrix notation, (7) can be written as

y = Xβ +m(Z) + v. (8)

The error v in (8) follows an one-way error components structure:

v = Dα+ u,

where α ∼
(
0, σ2

αIn
)
, u ∼

(
0, σ2

uInT
)
, v ∼ (0, Ω). The variance-covariance matrix of v is given by

Ω = σ2
uInT + σ2

αDD′ = σ2
1P + σ2

uQ, where Q = InT −P, P = D (D′D)
−1

D′, σ2
1 = Tσ2

α + σ2
u. The inverse

matrix of Ω is given by Ω−1 = 1
σ2
1
P + 1

σ2
u
Q. By taking expectation of (7) conditional on zit, obtain

E (yit|zit) = E (x′it|zit)β +m(zit). (9)

Then one can eliminate the unknown function m (·) by subtracting (9) from (7) to get

yit − E (yit|zit) = (xit − E (x′it|zit))β + vit.

In vector notation,

y − E (y|Z) = (X− E (X|Z))β + v,

y∗ = X∗β + v, (10)

where the conditional expectations E (y|Z) and E (X|Z) can be estimated by local linear least squares

estimators (LLLS). Therefore, y∗ and X∗ in (10) are

y∗ = (InT − S) y

and

X∗ = (InT − S) X.

The feasible estimator of Ω̂ of Ω can be obtained by running the OLS regression y∗ on X∗. Define

σ̂2
1 =

T

n

n∑
i=1

v̂
2

i
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and

σ̂2
u =

1

n (T − 1)

n∑
i=1

T∑
t=1

(
v̂it − v̂i

)2
,

where v̂ = y∗−X∗β̂OLS is the OLS residual and β̂OLS = (X∗′X∗)
−1

X∗′y∗. Noting that σ̂2
1 and σ̂2

u estimate

σ̂2
α = 1

T

(
σ̂2
1 − σ̂2

u

)
. With these estimates, one can obtain the generalized least squares (GLS) of β based on

(10) is

β̂SPRE =
(
X∗′Ω̂−1X∗

)−1
X∗′Ω̂−1y∗. (11)

Following the appendix of Li and Ullah (1998)[4], it can be easily verified that σ̂2
u = σ2

u + op (1) and

σ̂2
α = σ2

α + op (1) , and Ω̂−1 = Ω−1 + op (1) . β̂SPRE has an asymptotic distribution as

√
n
(
β̂SPRE − β

)
d→ N (0, VSPRE) , (12)

where VSPRE =
(

plimX∗′Ω−1X∗

n

)−1
.

Third, we now introduce the semiparametric combined estimator (SPCombined) from combining the

SPRE and SPFE estimators. Under the RE specification, the SPRE estimator is the asymptotically efficient

estimator while the SPFE estimator is unbiased and consistent but not efficient. If E(αixit) 6= 0, the SPRE

estimator is biased and inconsistent while the SPFE estimator is not affected. Motivated by this observation,

we would like to see if the combination of β̂SPRE and β̂SPFE can result in an improved estimation. As in

Hansen (2017)[14] for combining 2SLS and OLS, we consider the following SPCombined estimator of β,

which is a weighted combination of β̂SPRE and β̂SPFE with weights depending on the Hausman statistic

[15]:

β̂SP,c = wβ̂SPRE + (1− w)β̂SPFE , (13)

where

w =

{
τ
Hn

if Hn ≥ τ
1 if Hn < τ

(14)

and

Hn = (β̂SPFE − β̂SPRE)′
[
V̂(β̂SPFE − β̂SPRE)

]−1
(β̂SPFE − β̂SPRE), (15)

where τ is a shrinkage parameter and Hn is the Hausman statistic. The notation Hn here should not
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be confused with the notation H = diag (h1, . . . , hp) introduced earlier for a matrix of bandwidths. Also,60

the notation h1, . . . , hp for the bandwidths should not be confused with the non-centrality parameter h in

Equation (19) for Theorem 1.

The degree of shrinkage depends on the ratio τ/Hn. When Hn < τ then β̂SP,c = β̂SPRE , When Hn ≥ τ

then β̂SP,c is a weighted average of β̂SPRE and β̂SPFE , with more weight on β̂SPRE when τ/Hn is large.

Alternatively, it can be written as a positive-part James-Stein Estimator

β̂SP,c = β̂SPRE +

(
1− τ

Hn

)+

(β̂SPFE − β̂SPRE),

where (b)
+

= b if b > 0, and 0 if b ≤ 0.

3. Asymptotic Distributions

Write αi as a linear function of x̄i =
∑
t xit/T

αi = x̄′iρ+ εi, (16)

where E (x̄iεi) = 0. The variable xit is exogenous if αi and xit are uncorrelated, or equivalently if the

coefficient ρ is zero. We use the local asymptotic approach. For fixed T , ρ is local to zero,

ρ =
1√
n
δ. (17)

δ is a q × 1 localizing parameter for the degree of correlation between x̄i and αi. When δ = 0, xit are65

exogenous. When δ 6= 0, xit are endogenous. δ (and hence ρ) controls the degree of endogeneity.

Now, we make the following assumptions:

Assumption 1. (αi,ui,xi, zi) , i = 1, . . . , n, are i.i.d. over i, uit is i.i.d over t, where ui = (ui1, . . . , uiT )
′

and xi and zi are similarly defined. E (uit|xit, αi) = 0 and E
(
u4it|xit, αi

)
<∞.

Assumption 2. E ‖xit‖2+k <∞ and E |uit|2+k <∞ for some k > 0.70

Assumption 3. Let x∗it ≡ xit − E (xit|zit) ,
∑
tE
{
x∗it [x∗it −

∑
s x
∗
is/T ]

′}
is positive definite.

Assumption 4. The kernel function K (·) is a continuous density with compact support on Rq. All odd

order moments of K vanish.
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Assumption 5. As n → ∞, ‖H‖ → 0, n |H|2 → ∞, ‖H‖4 |H|−1 → 0 and n |H| ‖H‖4 → c ∈ [0,∞), where

|H| is the determinant of H.75

Assumption 6. E ‖xit‖4 <∞; σ2
u

(
plimX∗′Q∗X∗

n

)−1
= V2, plim

(
X∗′Ω−1X∗

n

)−1
= V1 and

σ2
u

(
plim

(X∗′Q∗X∗)
−1

X∗′Q∗Ω−1X∗(X∗′Ω−1X∗)
−1

n

)
= V21 as n→∞.

Assumptions 1 and 2 are standard in the literature. Assumption 3 rules out time-invariant terms xit.

Assumption 4 requires that K be compactly supported. From Su and Ullah (2006)[7], Assumption 5 is easily

satisfied by considering H = diag(h1, . . . , hp) with hi ∝ n−1/(4+p), for p < 4. When p ≥ 4, higher order local80

polynomial can be used to achieve bias reduction. Nevertheless, due to the ‘the curse of dimensionality’, we

do not expect large p in practical application of the partially linear semiparametric panel data models. In

Assumption 6, we simplify the notation by VSPRE =: V1 and VSPFE =: V2. It is important to note that

the SPRE estimator may not be fully efficient for the SP panel models and thus V1 6= V21, which makes

Theorem 1 and Theorem 2 of this paper different from those of Hansen (2017)[14].85

Theorem 1. Under Assumptions 1–6,

√
n

(
β̂SPRE − β
β̂SPFE − β

)
d→ h + ξ, (18)

where

h =

(
σ−21 V1Σδ

0

)
, with Σ = plim

X̄∗′X̄

n
, (19)

and

ξ ∼ N(0,V), with V =

(
V1 V′21
V21 V2

)
.

Furthermore,

Hn
d→ (h + ξ)

′
B(h + ξ), (20)

and

√
n
(
β̂SP,c − β

)
d→ Ψ = G′2ξ −

(
τ

(h + ξ)
′
B(h + ξ)

)
1

G′ (h + ξ) , (21)

where X̄ is n × q with x̄i =
∑
t xit/T in its ith row, X̄∗ is n × q with x̄∗i =

∑
t x
∗
it/T in its ith row,

B = G (V1 + V2 − (V21 + V′21))
−1

G′, G =
(
−I I

)′
, G2 =

(
0 I

)′
, and (a)1 = min [1, a] . �
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Theorem 1 presents the joint asymptotic distribution of β̂SPRE and β̂SPFE , the Hausman statistic, and

β̂SP,c under the local exogeneity assumption. The joint asymptotic distribution of β̂SPRE and β̂SPFE is

normal. β̂SPRE has an asymptotic bias when δ 6= 0 but β̂SPFE does not have an asymptotic bias. The90

Hausman statistic has an asymptotic non-central chi-square distribution, with non-centrality parameter h

depending on the local endogeneity parameter δ. The asymptotic distribution of β̂SP,c is a nonlinear function

of the normal random vector and a function of the noncentrality parameter h.

Remark 1. Theorem 1 extends Hansen (2017) for the panel data models and generalizes his results by allow-

ing V1 6= V21 and B = G (V1 + V2 −V21 −V′21)
−1

G′ to be asymmetric. If β̂SPRE were fully efficient, then95

V1 = V21 and B = G (V2 −V1)
−1

G′ is symmetic as in the case of Hansen (2017). In general β̂SPRE is not

fully efficient and so V1 6= V21. Therefore, the computation of V21 and B = G (V1 + V2 −V21 −V′21)
−1

G′

is needed. This also affects the calculation of the asymptotic risk as shown in the next section.

4. Asymptotic Risk

Based on Theorem 1, we now compare β̂SPRE , β̂SPFE , β̂c in the asymptotic risk. The asymptotic risk

of any sequence of estimators βn of β is defined as

R (βn, β,W) = lim
n→∞

E
[
n (βn − β)

′
W (βn − β)

]
, (22)

so long as the estimator has an asymptotic distribution

√
n (βn − β)

d→ ψ,

for some random variable ψ. Denote R (βn, β,W) =: R (βn) for short. The asymptotic risk can be calculated

using

R (βn) = E (ψ′Wψ) = tr
(
WE

(
ψψ′

))
. (23)

Define the largest eigenvalue of the matrix A+A′

2 and A∗+A∗′

2

λ1 = λmax

(
A + A′

2

)
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and

λ∗1 = λmax

(
A∗ + A∗′

2

)
,

where

A = (V1 + V2 − (V21 + V′21))
1
2 W (V2 −V21) (V1 + V2 − (V21 + V′21))

− 1
2

and

A∗ = (V1 + V2 − (V21 + V′21))
1
2 W (V1 + V2 − (V21 + V′21))

1
2 .

Let

d =
tr (W (V2 −V21))

λ1
.

Theorem 2. Under Assumptions 1–6, if

d > 2 (24)

and

0 < τ ≤ 2λ1 (d− 2)

λ∗1
, (25)

then

R
(
β̂SP,c

)
= tr

[
WE

(
ΨΨ′

)]
,

R
(
β̂SPFE

)
= tr (WV2)

and

R
(
β̂SP,c

)
< R

(
β̂SPFE

)
− τ (2λ1 (d− 2)− λ∗1τ)

σ−41 δ′Σ′V1 (V1 + V2 − (V21 + V′21))
−1

V1Σδ + q
. (26)

�100

Proof: See Appendix.

Equation (26) shows that the asymptotic risk of β̂SP,c is strictly less than that of β̂SPFE , so long as τ

satisfies the condition (25). The assumption d > 2 is the critical condition needed to ensure that β̂SP,c can

have smaller asymptotic risk than that of β̂SPFE . It is necessary in order for the right-hand-side of (25) to

be positive, which is necessary for the existence of τ satisfying (25). τ appears in the risk bound (26) as a
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quadratic expression, so there is an optimal choice

τ∗ =
λ1
λ∗1

(d− 2) , (27)

which minimizes this bound.

Corollary 1. R
(
β̂SP,c

)
− R

(
β̂SPFE

)
< 0, for d > 2 and 0 < τ ≤ 2λ1(d−2)

λ∗1
. When W = (V2 −V21)

−1
,

0 < τ ≤ 2
(
q−2
λ∗1

)
and q > 2, which is Stein’s (1956)[16] classic condition for shrinkage. �

The following two corollaries are obtained with W = (V2 −V1)
−1

.105

Corollary 2. R
(
β̂SPRE

)
= tr(WV1) + σ−41 δ′Σ′V1WV1 Σδ; R

(
β̂SPRE

)
≤ R

(
β̂SPFE

)
when

σ−41 δ′Σ′ V1WV1Σδ ≤ q, and R
(
β̂SPRE

)
> R

(
β̂SPFE

)
otherwise. �

Corollary 3. R
(
β̂SP,c

)
−R

(
β̂SPRE

)
< 0, for q < σ−41 δ′Σ′V1WV1Σδ, d > 2, and 0 < τ ≤ 2λ1(d−2)

λ∗1
. �

Corollary 2 indicates that when endogeneity is weak (ρ and hence δ is close to zero), β̂SPRE may perform

better than β̂SPFE . Corollary 3 indicates that when endogeneity is strong, d > 2, 0 < τ ≤ 2λ1(d−2)
λ∗1

, β̂SP,c110

performs best among these three estimators.

Remark 2. A parametric combined estimator can be viewed as a special case of the semi-parametric

combined estimator. Write (2) as

yit ≈ xitβ + α (z) + zitṁ (z) + αi + uit,

= xitβ + Zitδ (z) + αi + uit,

where α (z) = m (z)− zṁ (z) , Zit = (1, zit) , δ (z) =
(
α (z) , (ṁ (z))

′)′
. As hl →∞, 1 ≤ l ≤ p, the weighted

function KH (z)→ K (0) and local minimization becomes global minimization:

(y −Xβ −Dα− Zδ)
′
(y −Xβ −Dα− Zδ) .

In this case, dropping Z or assuming it is in X, one can obtain the combined estimator for the parametric

linear panel data model as

β̂SP,c = wβ̂SPRE + (1− w)β̂SPFE ,

11



where β̂SPFE = (X′QX)
−1

X′Qy and β̂SPRE =
(
X′Ω̂−1X

)−1
X′Ω̂−1y. Noting that if Z is included in

regression, the only difference is that X will be replaced by MX and y will be replaced by My where M is115

the same as Q but based on Z.

5. Monte Carlo

The observations are generated by the progress

yit = x′itβ +m (zit) + αi + uit, (28)

αi = ρ
√
T x̄′i

ι
√
q

+
√

1− ρ2 εi, (29)

where xit are i.i.d. N (0, Iq) , uit are i.i.d. N
(
0, σ2

u

)
, and zit are i.i.d. N (0, Ip) , all across i, t. εi are i.i.d.

N (0, 1) independent of {xit, uit}. Then αi and xit have correlation ρ√
q , but all other correlations are zero.

We allow ρ to vary in (−1 1). As the distribution is invariant to β, we set it to zero, β = 0, without loss of

generality. Let ι be an n× 1 vector of ones. We consider n ∈ {20, 100} , T = 3, q ∈ {4, 8} , p ∈ {1, 2} and

m (z) = 2z + e−4(z−0.5)
2

− 1, for p = 1 (30)

and

m (z) = 2 (z1 + z2) + e−4(z1+z2−0.5)
2

− 1, for p = 2. (31)

We use the Gaussian kernel. For bandwidths, we use the least-squares cross validation to choose H =

diag (h1, . . . , hp). We consider different values for σu ∈ {.4, .6, .8, 1, 1.2, 1.4, 1.6} , with fixing Var(αi) =120

σ2
α = 1. Let

√
θ ≡ σα

σu
, which measures the heterogeneity σα of the individual effects (relative to σu). Then

√
θ ∈

{
5
2 ,

5
3 ,

5
4 , 1, 5

6 ,
5
7 ,

5
8

}
. We then normalize θ on the unit interval (0 1) by defining ρ∗ ≡ θ

1+θ . Then

ρ∗ ∈ {.28, .34, .41, .50, .61, .74, .86}. We report the simulation results in figures for these seven values of

ρ∗ to examine the effect of the different degrees of heterogeneity, which also measures the temporal correlation

between (αi + uit) and (αi + uit′).125

Having generated 100,000 samples on each of the estimators β̂SP,RE , β̂SP,FE , β̂SP,c, the median squared

error (MedSE) of each estimator is calculated. To compare the estimators we plot the relative MedSE of
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each estimator relative to MedSE of the SPFE estimator, that is

median

[(
β̂ − β

)′ (
β̂ − β

)]
median

[(
β̂SPFE − β

)′ (
β̂SPFE − β

)] . (32)

Thus the MedSE values less than one indicate improved precision relative to the SPFE estimator, and the

MedSE values greater than one indicate worse performance, larger MedSE compared to the SPFE estimator.

The MedSE is symmetric with respect to ρ, so we only report the results with ρ between 0 and 1.

Figures for q = 4 were similar to the plots in Figures with q = 8 and thus not reported. The improvement

in the combined estimator over the SPFE estimator with different values of ρ∗ are greater in the case of130

larger number (q) of regressors.

In Figure 1, (a), (c) and (e) plot the relative MedSE for n = 20; (b), (d) and (f) plot the relative MedSE

for n = 100. We see that the region of dominance for the combined estimator over the SPFE and SPRE

estimators is greater for small n. Figure 1 plots the relative MedSE for ρ∗ = {.86, .74, .61}. Thess are the

cases of large degree of heterogeneity. The combined estimator has uniformly smaller MedSE than SPFE.135

SPRE has similar MedSE to the combined estimator for small ρ, but the MedSE of the SPRE estimator

increases dramatically after intermediate values of ρ.

Figure 2 plots the relative MedSE of β̂SPRE , β̂SPFE , β̂SP,c with ρ∗ = {.50, .41, .34}. These are the

cases of moderate to small degree of heterogeneity. In Figure 2: (a), (c) and (e) plot the relative MedSE for

n = 20; (b), (d) and (f) plot the relative MedSE for n = 100. We see again that the region of dominance140

for the combined estimator over SPFE is greater for small n. Figure 2(a) and Figure 2(b) are the cases

with ρ∗ = .50. We see that the gains from the combined estimator are strong for small ρ, with the MedSE

converging to that of SPFE as ρ increases towards 1. This is consistent with Theorem 2, which shows that the

improvement are asymptotically local to ρ = 0. The SPRE estimator has lower MedSE than the combined

estimator, but the ranking is reversed for larger values of ρ.145

Figure 3 plots the relative MedSE of β̂SPRE , β̂SPFE , β̂SP,c with ρ∗ = .28 for the small degree of

heterogeneity. The combined estimator has much lower MedSE than SPFE, regardless of the degree of

endogeneity. The combined estimator uniformly dominates SPFE. For small ρ, SPRE has lower MedSE than

13



the combined estimator, but the ranking is reversed for larger values of ρ.

Figures 4, 5, and 6 plot the relative MedSE for p = 2, which are similar to the plots in Figures 1, 2, and150

3 for p = 1. The general nature is the same for both p = 1 and p = 2. With p = 2, we see again that the

combined estimator has uniformly smaller MedSE than SPFE and we also see that the gains are stronger

for smaller values of ρ and for smaller values of ρ∗. This is general finding in the simulation experiment for

p = 1 and also for p = 2, which is consistent with Theorem 2.

Note that the improvement in the combined estimator over the SPFE estimator is greater for smaller155

heterogeneity ρ∗. For very small ρ∗, the SPRE estimator tends to be better than both the SPFE and the

combined estimators. For moderate ρ∗ and higher ρ, or moderate ρ and higher ρ∗, the combined estimator

is better than SPRE estimator. For very large ρ∗ and very low ρ, the combined estimator is close to the

SPRE estimator.

Generally, the dominance of the combined estimator over the SPFE estimator is greater for small sample160

size n. For very small ρ∗, the SPRE estimator performs better than both the SPFE and combined estimators

except when n and ρ are large. For moderate ρ∗ and larger ρ, the combined estimator performs better than

SPRE estimator, but for very small ρ the combined estimator can be beaten by the SPRE estimator. For

very large ρ∗ and very small ρ, the combined estimator is close to both SPRE and SPFE estimators, while

both the combined and SPFE estimators have smaller risk than the SPRE estimator for larger values of ρ.165

In summary, the simulation results provide strong finite sample confirmation of Theorem 2 and its

Corollaries 1, 2, 3.

Remark 3. The risk function (22) with a general weight matrix W includes many special cases. For

example, the unweighted MSE is obtained by setting W = Iq, in which case the coefficients are of equal

importance. The canonical case is motivated by ease of use and simplicity, which is obtained by setting170

W = (VSPFE −VSPRE)
−1
. This choice simplifies many formulae, e.g., equation (24) has the simplification

d = q, and the optimal choice of τ , τ∗ in (27) is q − 2. Following Hansen (2017), we set τ = q − 2.

However, when when W = Iq is used instead of W = (VSPFE −VSPRE)
−1

, it is possible that the condition

0 < τ ≤ 2λ1(d−2)
λ∗1

in equation (25) may not hold if τ = q − 2 is used, especially when the dimension q of X

14



is large. In that case we should use the theoretical optimal τ = d− 2 = tr(W(V2−V21))
λ1

− 2.175

Remark 4. The optimal choice of τ , τ∗ in (27), is obtained from minimizing the “bound” of the risk of

R
(
β̂SP,c

)
in Theorem 2. The bound is the RHS term in equation (26). However, the optimal choice of

τ = τ∗ is too small when ρ is small because the probability that the Hausman statistic is smaller than

τ = τ∗ will be too small. Hence one can increase it to 2τ∗ as this choice still satisfies the classic James-Stein

conditions in equations (24) and (25). This makes the MSE of the SP-Combined estimator closer to the180

MSE of SPFE when the degree of endogeneity is small. Hence, this indicates that the optimal choice of

τ = τ∗ in (27) obtained from minimizing the “bound” of the risk of R
(
β̂SP,c

)
is not “optimal” in the sense

of minimizing the risk of R
(
β̂SP,c

)
itself. To our knowledge, there is no result on this yet and thus we leave

this for a future work.

6. Application185

In this section, we use panel data for the 48 contiguous U.S. states in each year between 1970 and 1986.

To these data, we fit Cobb-Douglas and translog production function to revisit the relationship between

public infrastructure and private economic performance. Details on this data set can be found in Munnell

(1990)[17]. A large body of research has explored the public-sector capital and private economic performance

relationship. Some theories support a positive and significant impact of public capital stock on private sector190

output [see, e.g., Munnell (1990)]. However, many studies believe that the public capital had negative and

significant effects on private productivity [see, e.g., Evans and Karras (1994)[18]]. In addition, another

type of findings is that the contribution of the public infrastructure does not have quantitatively significant

spillover effects on private sector across states. See, e.g., Holtz-Eakin (1994) [19] and Baltagi and Pinnoi

(1995) [20].195

The following SP panel data model is estimated:

log (Yit) = β0 + β1 log (KGi,t−2) + β2 log (KPRi,t−2) + β3 log (Li,t−2) +m (UNEMPi,t−2) + αi + uit,

where i = 1, . . . , 48, t = 1, . . . , 17. Yit denotes the gross private non-agricultural product of state i in period

t, KG denotes public capital which includes highways and streets, water and sewer facilities and other public

15



buildings and structures, KPR is the private capital stock estimated from the Bureau of Economics Analysis,

L is labor input measured as employment in non-agricultural payrolls, and UNEMP stands for the states

unemployment rate, included to control for business cycle effects as in the previous literature. Xi,t−2 is used200

in the regression to take into account the time delay effects, since it takes time for the investments to be fully

utilized. Fixed effects for each state will pick up state specific factors such as natural resources, the quality of

public infrastructure, physical characteristics of a state. Furthermore, the spillover effects of infrastructure

improvement from other states could also be included in the state-specific effects.

In order to obtain the mean square errors (MSE) and the standard errors for these estimates, we bootstrap205

the data 10000 times by resampling across individuals and keep the time series structure for each individual

unchanged. We obtain estimates of the average elasticities and coefficients for each bootstrap data, based

on which we can calculate the bootstrap MSE and the standard errors for the above estimates. The MSE

for SPFE, SPRE and SPCombined estimators are 0.0148, 0.0133 and 0.0122, respectively. The SP combined

estimator gives smaller MSE than both SP fixed effects and SP random effects estimators. In order to210

obtain these results, we use the Gaussian kernel and choose the bandwidth of m (UNEMP ) according to

leave-one-out cross-validation.

Table 1 suggests that the elasticities of gross private non-agricultural product for SPFE estimator with

respect to KG, KPR, and L are−0.0207, 0.3501 and 0.5237, respectively; The elasticities for SPRE estimator

with respect to KG, KPR, and L are 0.0773, 0.2440 and 0.5798, respectively; The elasticities for the215

combined estimator with respect to KG, KPR, and L are −0.0166, 0.3480 and 0.5249, respectively. Both

the SPFE and combined estimators report that the public capital is counter productive and insignificantly

in the state private production. In contrast, the SPRE estimator finds that the public capital is productive

and insignificantly.

Note that the Hausman statistic is 48.9985. Thus, the null hypothesis of exogeneity is easily rejected220

at the one percent level of significance. This indicates that there exists a huge problem of endogeneity. In

this circumstance, the SPFE estimator solves the problem. Thus, it would be more appropriate to treat

αi as fixed. The SPRE estimator seems overwhelming that public capital has a positive impact on private

sector output. The combined estimator result is consistent with SPFE estimator. Our empirical analysis
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is in agreement with the findings of Holtz-Eakin (1994) and Baltagi and Pinnoi (1995) that there is no225

quantitatively important spillover effects across states. The estimated ρ∗ = 0.6486, which may also explain

why the combined estimator result is closer to SPFE estimator. As a result, the combined estimator is more

reliable under this scenario. This is also supported by the smaller MSE of the SPCombined estimator than

both SPFE and SPRE estimators.

Therefore, we conclude that the public sector output has an insignificant effect on the private sector230

productivity. The public infrastructure has insignificant effects on private sector across states.

Table 1. Economics of Private Sector Output: Semi-parametric Models

β̂KG β̂KPR β̂L
SPFE -0.0207 0.3501 0.5237

(0.0379) (0.0308) (0.0317)

SPRE 0.0773 0.2440 0.5798
(0.0435) (0.0290) (0.0383)

SPCombined -0.0166 0.3480 0.5249
(0.0378) (0.0305) (0.0313)

48 U.S. States. 1970-1986. Reported are parameter estimates with the standard errors in parentheses.

7. Conclusions

This paper considers the combined estimation for the semiparametric panel data model with weak endo-

geneity (i.e., local to exogeneity). We introduce the combined estimation of the SPRE and SPFE estimators235

for the semi-parametric model, when the semiparametric RE estimator suffers from inconsistency due to

the individual effects being random and correlated with the regressors. The combined estimator uniformly

dominates SPFE, while the combined estimator also dominates SPRE except when endogeneity and hetero-

geneity of the individual effects are weak. The use of the combined estimation allows applied researchers

to implement efficient estimation under the presence of possible endogeneity without having to select the240

consistent SPFE estimator or the efficient SPRE estimator.

8. Appendix

Proof of Theorem 1: Let hI = G1h and ξI = G1ξ with G1 = (I 0)
′
, and let hII = G2h and ξII = G2ξ

with G2 = (0 I)
′
.
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First, the semiparametric random effect (SPRE) estimator is245

β̂SPRE =
(
X∗′ Ω−1X∗

)−1
X∗′ Ω−1y∗,

= (X∗′ (λP + Q) X∗)
−1

X∗′ (λP + Q) y∗ = Ay∗

where Ω−1 = 1
σ2
u

(λ P + Q) = P
σ2
1

+ Q
σ2
u

, λ =
σ2
u

σ2
1

β̂SPRE = A (X∗β + Dα+ u) = β + A (Dα+ u) ,

where α is correlated with X̄ with the correlation ρ = δ√
n

α = X̄
δ√
n

+ ε.

Then

β̂SPRE − β = A

(
DX̄

δ√
n

+ Dε+ u

)
,

√
n
(
β̂SPRE − β

)
= ADX̄δ +

(
1

n
X∗′ (λP + Q) X∗

)−1
1√
n

X∗′ (λP + Q) (Dε+ u)
d→ hI + ξI ,

where

hI =

(
plim

1

n
X∗′ (λP + Q) X∗

)−1(
plim

1

n
X∗′ (λP + Q) DX̄

)
δ,

=

(
plim

1

n
X∗′ (λP + Q) X∗

)−1(
plim λ

1

n
X̄∗′X̄

)
δ,

= σ−21 V1Σδ,

with Σ = plim 1
nX̄∗′X̄, and

ξI ∼
(

plim
1

n
X∗′ (λP + Q) X∗

)−1
Z,

with

Z =
1√
n

X∗′ (λP + Q) (Dε+ u) ∼ N
(

0, σ2
u

(
plim

1

n
X∗′ (λP + Q) X∗

))
.

Hence,

ξI ∼ N

(
0, σ2

u

(
plim

1

n
X∗′ (λP + Q) X∗

)−1)
= N (0, V1) ,
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and

√
n
(
β̂SPRE − β

)
→ N (hI , V1) .

Next, the semiparametric fixed effect (SPFE) estimator is

β̂SPFE = (X∗′Q∗X∗)
−1

X∗′Q∗ (X∗β + D∗ α+ u) ,

β̂SPFE − β = (X∗′Q∗X∗)
−1

X∗′Q∗
(

D∗X̄
δ√
n

+ u

)
=

(
1

n
X∗′Q∗X∗

)−1(
1

n
X∗′Q∗u

)
,

and

√
n
(
β̂SPFE − β

)
d→ ξII ∼ N

(
0, σ2

u

(
plim

1

n
X∗′Q∗X∗

)−1)
.

Finally, to obtain the joint asymptotic distribution of the RE and FE estimators, the asymptotic covari-

ance matrix of the RE and FE estimators is250

n
(
β̂SPRE − β

)′ (
β̂SPFE − β

)
=

(
1

n
X∗′ (λP + Q) X∗

)−1
1

n
X∗′ (λP + Q) uu′Q∗X∗

(
1

n
X∗′Q∗X∗

)−1
→ σ2

u

(
plim

1

n

(
X∗′Ω−1X∗

)−1
X∗′Ω−1Q∗X∗ (X∗′Q∗X∗)

−1
)

The rest follows by the continuous mapping theorem, as in theorem 1 of Hansen (2017).

Proof of Theorem 2: The proof is based on the arguments in Theorem 2 of Hansen (2017). The important

difference in this paper is that the SPRE estimator may not be fully efficient and thus the proof is not the

same as that of Hansen (2017) as shown below.

Noting that
√
n
(
β̂SPFE − β

)
→d G′2ξ ∼ N (0, V2) , then

R
(
β̂SPFE

)
= E

(
ξ′G′2WG′2ξ

)
= tr (WV2) .

Define Ψ∗ as a random variable without positive part trimming

Ψ∗ = G′2ξ −
(

τ

(h + ξ)
′
B(h + ξ)

)
G′ (h + ξ) .

Then using the fact that the pointwise quadric risk of Ψ is strictly smaller than that of Ψ∗

R
(
β̂SP,c

)
= E (Ψ′WΨ) < E (Ψ∗′WΨ∗) ,
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we can calculate that

E (Ψ∗′WΨ∗) = R
(
β̂SPFE

)
+ τ2E

(
(h + ξ)

′
GWG′(h + ξ)(

(h + ξ)
′
B(h + ξ)

)2
)
− 2τE

(
(h + ξ)

′
GWG′2 ξ

(h + ξ)
′
B(h + ξ)

)
.

By Stein’s Lemma: If Z ∼ N(0, V) is q × 1, K is q × q, and η (x) : Rq→ Rq is absolutely continuous, then

E
(
η (Z + h)

′
KZ

)
= Etr

(
∂

∂x
η (Z + h)

′
KV

)
,

η (x) = x/ (x′Bx) , and

∂

∂x
η (x) =

1

x′Bx
I− 2

(x′Bx)
2 Bxx′.

Therefore255

E

(
(h + ξ)

′
GWG′2ξ

(h + ξ)
′
B(h + ξ)

)
= Etr

(
GWG′2V

(h + ξ)
′
B(h + ξ)

− 2GWG′2V(
(h + ξ)

′
B(h + ξ)

)2 B (h + ξ) (h + ξ)
′

)

= E

(
tr
(
GWG′2V

)
(h + ξ)

′
B(h + ξ)

)
− 2Etr

(
GWG′2V(

(h + ξ)
′
B(h + ξ)

)2 B (h + ξ) (h + ξ)
′

)
.

Since

GWG′2V = WG′2VG = W (V2 −V21) ,

and

GWG′2VB = GWG′2VG (V1 + V2 − (V21 + V′21))
−1
G′ = GW (V2 −V21) (V1 + V2 − (V21 + V′21))

−1
G′,

set W (V2 −V21) (V1 + V2 − (V21 + V′21))
−1

= C, then

Etr

(
GWG′2V(

(h + ξ)
′
B(h + ξ)

)2 B (h + ξ) (h + ξ)
′

)
= Etr

(
(h + ξ)

′
GCG′ (h + ξ)(

(h + ξ)
′
B(h + ξ)

)2
)
.

Thus

E (Ψ∗′WΨ∗) = R
(
β̂FE

)
+ τ2E

(
(h + ξ)

′
GWG′ (h + ξ)(

(h + ξ)
′
B(h + ξ)

)2
)

+ 4τEtr

(
(h + ξ)

′
GCG′ (h + ξ)(

(h + ξ)
′
B(h + ξ)

)2
)

−2τEtr

(
W (V2 −V21)

(h + ξ)
′
B(h + ξ)

)
. (33)

Define B1 = (V1 + V2 − (V21 + V′21))
− 1

2 G′ and A = (V1 + V2 − (V21 + V′21))
1
2 C (V1 + V2 − (V21 + V′21))

1
2

Note that GWG′2VB = GCG′ = B′1AB1, B′1B1 = B. Using the inequality b′ab ≤ (b′b)λmax (a) for
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symmetric a, and let

λmax (a) = λmax

(
A + A′

2

)
= λ1.

Then

tr
(
B(h + ξ) (h + ξ)

′
GWG′2V

)
=

(h + ξ)′B′1 (A + A′) B1(h + ξ)

2

≤ (h + ξ)
′
B(h + ξ)λ1. (34)

Define A∗ = (V1 + V2 − (V21 + V′21))
1
2 W (V1 + V2 − (V21 + V′21))

1
2 . Note that GWG′ = B′1A

∗B1,

B′1B1 = B, and let

λmax (a) = λmax

(
A∗ + A∗′

2

)
= λ∗1,

we have

tr
(
(h + ξ)

′
GWG′ (h + ξ)

)
=

(h + ξ)
′
B′1 (A∗ + A∗′) B1 (h + ξ)

2

≤ (h + ξ)
′
B(h + ξ)λ∗1. (35)

Plug (34) and (35) into (33) and use Jensen’s inequality, then we have260

E (Ψ∗′WΨ∗) ≤ R
(
β̂SPFE

)
+ τ2E

(
λ∗1

(h + ξ)
′
B(h + ξ)

)
+ 4τE

(
λ1

(h + ξ)
′
B(h + ξ)

)
−2τEtr

(
(W (V2 −V21))

(h + ξ)
′
B(h + ξ)

)
= R

(
β̂SPFE

)
− E

(
τ (2 (trW (V2 −V21)− 2λ1)− λ∗1τ)

(h + ξ)
′
B(h + ξ)

)
≤ R

(
β̂SPFE

)
− τ (2 (trW (V2 −V21)− 2λ1)− λ∗1τ)

E
(
(h + ξ)

′
B(h + ξ)

) . (36)

Since tr(BV) = tr
(
G (V1 + V2 − (V21 + V′21))

−1
G′V

)
= q. We have

E
(
(h + ξ)

′
B(h + ξ)

)
= h′Bh + tr (BV)

= σ−41 δ′Σ′V1 (V1 + V2 − (V21 + V′21))
−1

V1Σδ + q.

Substitute into (36), then we have

R
(
β̂SP,c

)
≤ R

(
β̂SPFE

)
− τ (2 (trW (V2 −V21)− 2λ1)− λ∗1τ)

σ−41 δ′Σ′V1 (V1 + V2 − (V21 + V′21))
−1

V1Σδ + q
.
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(a) n = 20, T = 3, q = 8, p = 1, ρ∗ = .86
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(b) n = 100, T = 3, q = 8, p = 1, ρ∗ = .86
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(c) n = 20, T = 3, q = 8, p = 1, ρ∗ = .74
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(d) n = 100, T = 3, q = 8, p = 1, ρ∗ = .74
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(e) n = 20, T = 3, q = 8, p = 1, ρ∗ = .61
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(f) n = 100, T = 3, q = 8, p = 1, ρ∗ = .61

Figure 1: Median Squared Error of SPFE, SPRE and SPCombined Estimators, n = {20, 100} , T = 3, q = 8, p = 1, ρ∗ =
{.61, .74, .86}.
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(a) n = 20, T = 3, q = 8, p = 1, ρ∗ = .50
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(b) n = 100, T = 3, q = 8, p = 1, ρ∗ = .50
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(c) n = 20, T = 3, q = 8, p = 1, ρ∗ = .41
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(d) n = 100, T = 3, q = 8, p = 1, ρ∗ = .41
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(e) n = 20, T = 3, q = 8, p = 1, ρ∗ = .34
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(f) n = 100, T = 3, q = 8, p = 1, ρ∗ = .34

Figure 2: Median Squared Error of SPFE, SPRE and SPCombined Estimators, n = {20, 100} , T = 3, q = 8, p = 1, ρ∗ =
{.34, .41, .50}.
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(a) n = 20, T = 3, q = 8, p = 1, ρ∗ = .28
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(b) n = 100, T = 3, q = 8, p = 1, ρ∗ = .28

Figure 3: Median Squared Error of SPFE, SPRE and SPCombined Estimators, n = {20, 100} , T = 3, q = 8, p = 1, ρ∗ = {.28}.
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(a) n = 20, T = 3, q = 8, p = 2, ρ∗ = .86
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(b) n = 100, T = 3, q = 8, p = 2, ρ∗ = .86
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(c) n = 20, T = 3, q = 8, p = 2, ρ∗ = .74
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(d) n = 100, T = 3, q = 8, p = 2, ρ∗ = .74
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(e) n = 20, T = 3, q = 8, p = 2, ρ∗ = .61
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(f) n = 100, T = 3, q = 8, p = 2, ρ∗ = .61

Figure 4: Median Squared Error of SPFE, SPRE and SPCombined Estimators, n = {20, 100} , T = 3, q = 8, p = 2, ρ∗ =
{.61, .74, .86}.
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(a) n = 20, T = 3, q = 8, p = 2, ρ∗ = .50
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(b) n = 100, T = 3, q = 8, p = 2, ρ∗ = .50
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(c) n = 20, T = 3, q = 8, p = 2, ρ∗ = .41
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(d) n = 100, T = 3, q = 8, p = 2, ρ∗ = .41
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(e) n = 20, T = 3, q = 8, p = 2, ρ∗ = .34
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(f) n = 100, T = 3, q = 8, p = 2, ρ∗ = .34

Figure 5: Median Squared Error of SPFE, SPRE and SPCombined Estimators, n = {20, 100} , T = 3, q = 8, p = 2, ρ∗ =
{.34, .41, .50}.
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(a) n = 20, T = 3, q = 8, p = 2, ρ∗ = .28
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(b) n = 100, T = 3, q = 8, p = 2, ρ∗ = .28

Figure 6: Median Squared Error of SPFE, SPRE and SPCombined Estimators, n = {20, 100} , T = 3, q = 8, p = 2, ρ∗ = {.28}.
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