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Abstract

This paper studies a nonparametric hedonic equilibrium model in which
certain product characteristics are unobserved. Unlike most previously studied
hedonic models, both the observed and unobserved agent heterogeneities enter
the structural functions nonparametrically. Prices are endogenously determined
in equilibrium. Using both within- and cross-market price variation, I show
that all the structural functions of the model are nonparametrically identified
up to normalization. In particular, the unobserved product quality function
is identified if the relative prices of the agent characteristics differ in at least
two markets. Following the constructive identification strategy, I provide easy-
to-implement series minimum distance estimators of the structural functions
and derive their consistency and uniform rates of convergence. To illustrate the
estimation procedure, I estimate the unobserved efficiency of American full-time
workers as a function of age and unobserved ability.

∗I am deeply indebted to Jinyong Hahn, Zhipeng Liao and Rosa L. Matzkin for guidance and
help. I am grateful to Moshe Buchinsky for constant encouragement and help. I also thank Jaap
Abbring, Youssef Benzarti, Leah Boustan, Denis Chetverikov, Yingying Dong, Edward Kung, Adri-
ana Lleras-Muney, Elena Manresa, Maurizio Mazzocco, Rodrigo Pinto, Shuyang Sheng and Till
Von Wachter for helpful discussions. Comments from the participants of the California Economet-
rics Conference, Bristol Econometrics Study Group, Econometric Society Asian Meeting, Midwest
Econometrics Group Annual Meeting, International Associationg for Applied Econometrics Annual
Meeting, seminars at UCLA, Syracuse University, Boston University, Sydney University University
of New South Wales, UC Riversides, UC Davis and UC Santa Cruz helped shape the paper as well.
†Department of Economics, University of California Riverside. Email: ruoyao.shi@ucr.edu.

1



Keywords: hedonic equilibrium, unobserved quality, distributional effects, non-
parametric identification, series estimation

1 Introduction

Counterfactual distributions are indispensable components for the evaluation of dis-
tributional effects of large-scale policy interventions or social changes; they can also
be used to measure the values of public good or natural resources. For example, labor
economists might be interested in constructing the counterfactual wage distribution
in 1988 had there been no de-unionization or decline in real minimum wage during
the 1979-1988 period to evaluate the effect of labor market institutions on inequality
(see DiNardo, Fortin, and Lemieux, 1996 for details). Another application of interest
would be to measure heterogenous willingness to pay for clean air as exhibited in hous-
ing prices (e.g., Sieg, Smith, Banzhaf, and Walsh, 2004, and Chay and Greenstone,
2005).

Three features should be acknowledged in the counterfactual distributional anal-
ysis. First, large-scale interventions usually affect a substantial proportion of the
agents (e.g., DiNardo, Fortin, and Lemieux, 1996, and Chernozhukov, Fernández-
Val, and Melly, 2013), hence the importance of accounting for the equilibrium effects
is of first order (e.g., Sieg, Smith, Banzhaf, and Walsh, 2004). Second, some product
characteristics might not be observed by researchers and their importance in price
determination is widely recognized (e.g., Berry, Levinsohn, and Pakes, 1995), and
workers’ efficiency in labor markets is an important example. Third, there is con-
siderable observed and unobserved heterogeneity among the agents. Ignoring any of
them (e.g., ignoring changes in return to college education as more college graduates
entered the labor force and other factors remained constant) is likely to result in
biased counterfactual predictions.

This paper is the first to provide an economic model and an econometric method
that admit all these features in a nonparametric setting. In this paper, I study a
hedonic equilibrium model with unobserved product quality. I show that the qual-
ity function, together with all the other structural functions of the model, can be
nonparametrically identified. I also provide easy-to-implement estimators for the
structural functions and an algorithm to solve the counterfactual equilibrium. In
contrast to widely used distributional decomposition methods, the counterfactuals
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thus constructed shall account for equilibrium effects of large-scale interventions.
I incorporate unobserved product quality captured by a structural quality func-

tion e(x, a) into standard hedonic equilibrium models (e.g., Heckman, Matzkin, and
Nesheim, 2010), which have been used to analyze the market equilibria of differenti-
ated products with heterogenous agents. Let zmi denote the effective amount of the
product traded between seller-buyer pair i in market m upon which the payment is
determined, and assume that

zmi ≡ hmi · e(xmi , ami ), (1.1)

where hmi represents observed quantity, vector xmi and scalar ami represent the seller’s
observed and unobserved heterogeneity, respectively. I relax the restriction in stan-
dard hedonic equilibrium models that e(x, a) ≡ 1 by allowing the functional form of
the quality function (and hence, the values of e(xmi , ami ) and zmi ) to be unknown to
researchers.

The identification strategy consists of three steps.1 First, I show that the re-
duced form (equilibrium outcome) payment function Im(x, a) and quantity function
hm(x, a) are nonparametrically identified within each market m. Second, I exploit
within- and cross-market variation in the reduced form functions to identify the un-
observed quality function up to normalization. Specifically, equation (1.1) indicates
that quantity and quality are substitutes in determining the payment. As a result,
variation in quality is manifested inversely in the variation in quantity among sellers
who receive the same payment within the same market. Moreover, since quantity
is optimally chosen by sellers, it suffers from an endogeneity problem. The different
distributions of observed agent characteristics across markets serve as aggregate sup-
ply or demand shifters that induce cross-market variation in the payment functions,
which facilitates the full identification of the quality function. The identification re-
quirement boils down to a rank condition on the payment functions, which requires
that relative prices of the agent characteristics vary across markets.2 Finally, the
third step utilizes the agents’ first-order conditions to identify the marginal utility

1This paper focuses on the supply side, since the identification and estimation of the demand
side structural functions is completely symmetric.

2To focus on the key identification problem that arises because of unobserved quality, I concen-
trate on the scalar-valued quality function e(x, a) in the main text. It is, however, easy to extend
the argument to a vector-valued quality function e(x, a) captured by a single-index structure as in
Epple and Sieg (1999) and Sieg, Smith, Banzhaf, and Walsh (2004).
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functions, in the spirit of the second step of Rosen (1974)’s method.3

The constructive identification strategy suggests an easy-to-implement series es-
timation procedure. I derive consistency and uniform rates of convergence of the
estimators and demonstrate the procedure by estimating the unobserved efficiency
of American full-time workers using data from the 2015 American Time Use Survey
(ATUS).4

The literature on the identification and estimation of hedonic equilibrium mod-
els is vast. In his seminal work, Rosen (1974) originated a two-step method, of
which the first step obtains the hedonic price function and its derivatives by fitting
a parametric regression of prices on observed product characteristics, and the sec-
ond step combines the hedonic price function and agents’ first-order conditions to
recover the preference and production parameters. Ekeland, Heckman, and Nesheim
(2004) considered the identification of a nonparametric hedonic equilibrium model
with additive marginal utility and marginal production functions using single market
data. Heckman, Matzkin, and Nesheim (2010) formalized the argument in Brown and
Rosen (1982), Epple (1987) and Kahn and Lang (1988) that, in general, cross-market
variation in price functions is necessary to nonparametrically identify the structural
functions. They then focused on the sufficient restrictions for the identification using
single market data, and generalized Rosen (1974)’s two-step method to a nonpara-
metric setting. This paper advances the literature on hedonic equilibrium models
in two ways. First, it allows product quality to be unobserved by researchers (but
still observed by both seller and buyer), which captures a crucial feature of many
applications. Second, this paper is the first to present a nonparametric estimation
procedure and to provide convergence rates for the structural function estimators in
hedonic equilibrium models using multiple market data.

The counterfactual analysis enabled by this model is closely related to an exten-
sive literature on distributional decomposition methods (elegantly reviewed in Fortin,
Lemieux, and Firpo (2011)), which aims to evaluate the distributional effects of pol-
icy interventions or historical changes. Several methods have been proposed, in-

3Unlike Rosen (1974), the estimation procedure introduced in Section 4.1 does not require ex-
plicitly estimating the price schedule functions.

4I also propose an algorithm to solve for the counterfactual equilibrium of the model in Supple-
mental Appendix A. It is based on the equilibrium condition and Chiappori, McCann, and Nesheim
(2010)’s insight that hedonic equilibrium models are mathematically equivalent to an optimal trans-
portation problem. A simple simulation experiment indicates that the numerical equilibrium solution
is stable with regard to the estimation errors in the structural functions.
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cluding the imputation method (Juhn, Murphy, and Pierce, 1993), the reweighting
method (DiNardo, Fortin, and Lemieux, 1996), the quantile regression-based method
(Machado and Mata, 2005), the re-centered influence function method (Firpo, Fortin,
and Lemieux, 2009), among many others (e.g., Fessler, Kasy, and Lindner, 2013, and
Fessler and Kasy, 2016). Moreover, Rothe (2010) and Chernozhukov, Fernández-Val,
and Melly (2013) considered inference in the context of distributional decomposition.
This literature is based on the “selection on observables” assumption, which excludes
general equilibrium effects. On the contrary, this paper establishes an equilibrium
model, which allows the prices (e.g., the returns to college education) to change in
response to changes in the distribution of the characteristics in the population (e.g.,
as more college graduates enter the labor force).

Characteristic-based demand models in industrial organization and marketing per-
mit unobserved product characteristic as well. This immense literature dates back
at least to Berry (1994) and Berry, Levinsohn, and Pakes (1995) and includes Rossi,
McCulloch, and Allenby (1996), Nevo (2001), Petrin (2002), Berry, Levinsohn, and
Pakes (2004), Bajari and Benkard (2005), Berry and Pakes (2007), and many others.5

The econometric methods used to analyze characteristic-based demand models are
reviewed by Ackerberg, Benkard, Berry, and Pakes (2007).6 Characteristic-based de-
mand models focus on the demand side and often assume additively separable utility
functions and parametric distributions for the random error terms, which facilitates
the identification and estimation. In this paper, however, the utility functions are
nonparametrically identified and estimated, and the estimators are of least-square
type (and hence easy to implement).

The rest of this paper is organized as follows. Section 2.1 sets up the model and
describes some important properties of the equilibrium; Section 2.2 discusses that
this model can be applied to labor markets to conduct counterfactual policy analysis.
Section 3 explains the nonparametric identification of the structural functions of the
model. The key step is the identification of the unobserved quality function; the
intuition and formal results of this step are given in Section 3.2. Section 4 describes

5The utility functions in Bajari and Benkard (2005) and Berry and Pakes (2007) are similar to
that in this paper, where only the characteristics of the products bear utility, but not the products
per se. The consumers’ utility functions in models of Berry, Levinsohn and Pakes (1995) type have
independently and identically distributed random error terms, which represent taste for products
for reasons besides product characteristics.

6The estimation of production functions, dynamic models and other issues are also reviewed.
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the series estimators and derives their uniform rates of convergence. An illustration
of the estimation procedure using the 2015 ATUS data is given in Section 5. Section
6 concludes the paper. The algorithm to solve for the counterfactual equilibrium and
the proofs are collected in the Supplemental Appendices.

2 Model

The hedonic equilibrium model with unobserved quality studied in this paper allows
some product characteristics to be unobserved by researchers. Section 2.1 intro-
duces the model and discusses its properties that facilitate identifying the structural
functions and solving for the counterfactual equilibrium of the model.7 Section 2.2
describes labor markets in which the model and the econometric method provided
in this paper could be applied to analyze the distributional effects of counterfactual
interventions.

2.1 Model Setup and Properties of Equilibrium

The model analyzed in this paper pertains to competitive markets (indexed by m ∈
M) of a product (good or service), of which the quantity is observed by researchers
but quality is not. Each seller and buyer only trades once, and chooses the effective
amount z, where z ∈ Z. I assume that Z ⊂ R is compact. Let Pm(z) be a twice
continuously differentiable price schedule function defined on Z. Then the value of
Pm(z) is the payment for an effective amount z of the product in market m.

The following is the key assumption of this model, and distinguishes it from other
hedonic equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010).

Assumption 1. Suppose that the unobserved effective amount z of the product is
determined by the unobserved quality e and observed quantity h in a multiplicative
way, i.e., z = h · e.

Assumption 1 implies that quantity h and quality e are substitutes in production.
Existing hedonic equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010)
assume that e ≡ 1, hence z is observed. But this paper allows quality e and z to be

7Parallel discussion for hedonic equilibrium models without unobserved quality can be found
in Heckman, Matzkin, and Nesheim (2010), Ekeland, Heckman, and Nesheim (2004) and Ekeland
(2010).
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unknown to researchers. Sellers and buyers both observe quality. As a result, there
is no principal-agent problem in this model.

Each seller’s quality e is exogenously determined by a quality function e(x, a),
where the dx×1 vector x is the seller’s observed characteristics, and the scalar a is the
seller’s unobserved characteristic. Sellers have quasilinear utility Pm(z)− U(h, x, a),
where U(h, x, a) is the disutility that a seller with characteristics (x, a) endures by
producing the product of quantity h ∈ H (the set H ⊂ R is compact).8 The popu-
lation of sellers in market m is described by the density fmx,a, which is assumed to be
differentiable and strictly positive on the compact sets X × A ⊂ Rdx+1. Sellers may
choose not to trade, then they obtain reservation utility V0.

Each buyer has a utility function R(z, y, b), where the dy×1 vector y is the buyer’s
observed characteristics and the scalar b is the buyer’s unobserved characteristic. The
population of buyers in market m is described by the density fmy,b, which is assumed
to be differentiable and strictly positive on the compact set Y×B ⊂ Rdy+1. If a buyer
chooses not to participate, she gets reservation utility S0.

For the structural functions e(x, a), U(h, x, a) and R(z, y, b), assume the following
assumptions hold.

Assumption 2. Suppose that buyers’ utility function R(z, y, b), sellers’ disutility
function U(h, x, a) and quality function e(x, a) are all twice continuously differentiable
with respect to all arguments on their respective supports. Also suppose that e(x, a) is
bounded below away from zero.

Assumption 3. Suppose that Uh > 0, Ua < 0, Uha < 0 and Uhh > 0 for all (h, x,

a) ∈ H × X × A, and suppose that Rz > 0, Rb > 0, Rzb > 0 and Rzz < 0 for all (z,

y, b) ∈ Z × Y × B.

Assumption 4. Suppose ea > 0, that is, the quality function is strictly increasing in
the unobserved characteristic of the seller, for all (x, a) ∈ X ×A.

If reservation utilities V0 and S0 are sufficiently small, then sellers and buyers
always participate.9 In addition, similar to the discussion in Heckman, Matzkin,

8I concentrate on scalar-valued quantity h in the main text. But it is easy to extend the argument
to a vector-valued h captured by a single-index structure as those in Epple and Sieg (1999) and Sieg,
Smith, Banzhaf, and Walsh (2004).

9Allowing for binding reservation utilities serves as an important topic for future research.
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and Nesheim (2010) and Chiappori, McCann, and Nesheim (2010), Assumptions 2-
4 (Spence-Mirrlees type single-crossing condition) are sufficient for each seller and
buyer who participates to have a unique interior optimum.

A seller with characteristics (x, a) in marketm chooses h ∈ H, a quantity supplied,
to maximize

max
h∈H

Pm(h · e(x, a))− U(h, x, a).

Since quality e(x, a) is fixed for seller (x, a), choosing h ∈ H is equivalent to choosing
z ∈ Z. Under Assumptions 2-4, there exists an effective amount supply function
zs ≡ sm(x, a) (hence a quantity supply function hm(x, a) ≡ sm(x, a)/e(x, a)) that
satisfies the seller’s first-order condition (FOC)

Pm
z (sm(x, a)) · e(x, a)− Uh

(
sm(x, a)

e(x, a)
, x, a

)
= 0. (2.1)

Applying the Implicit Function Theorem (Hildebrandt and Graves, 1927) to equa-
tion (2.1) gives rise to

∂zs

∂a
=

∂sm(x, a)

∂a
=
eUha − Pm

z eea − Uhhhmea
Pm
zze

2 − Uhh
, (2.2)

where the arguments of the functions on the right-hand side of equation (2.2) are
suppressed for simplicity. By Assumptions 2 and 3 and the FOC in equation (2.1),
Pm
z > 0. Then Assumptions 2-4 imply that sm(x, a) is strictly increasing in a.10 Then

the inverse effective amount supply function a = (sm)−1(x, z) exists and satisfies

∂(sm)−1(x, z)

∂zs
=

Pm
zze

2 − Uhh
eUha − Pm

z eea − Uhhhmea
.

The payment received by seller (x, a) in market m is then determined by

Im(x, a) = Pm(sm(x, a)) = Pm(hm(x, a) · e(x, a)). (2.3)

Note that the payment function Im(x, a) is also strictly increasing in a. But
since hm(x, a) = sm(x, a)/e(x, a), the quantity function hm(x, a) is not necessarily
monotonic in a.

10As discussed later, equations (2.6) and (2.7) imply that Pm
zze

2 − Uhh < 0.
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Similar argument applies to the buyers. Each buyer chooses z ∈ Z to maximize

max
z∈Z

R(z, y, b)− Pm(z).

There exists an effective amount demand function zd ≡ dm(y, b) that satisfies the
buyers’ FOC

Rz(d
m(y, b), y, b)− Pm(dm(y, b)) = 0, (2.4)

and an inverse effective amount demand function b = (dm)−1(y, z) that satisfies

∂(dm)−1(y, z)

∂zd
=

Rzb

Pm
zz −Rzz

.

Define the range of equilibrium effective amount supplied

Zs = {z ∈ Z: there exists a market m ∈M and some

(x, a) ∈ X ×A such that in equilibrium z = hm(x, a) · e(x, a)},

and the range of equilibrium effective amount demanded

Zd = {z ∈ Z: there exists a market m ∈M and some

(y, b) ∈ Y × B such that in equilibrium z = dm(y, b)}.

In a unique interior equilibrium, the density of effective amount supplied zs equals that
of effective amount demanded zd for all z ∈ Z. Using standard change-of-variables
formula, this requires Zs = Zd and∫

X
fmx,a

(
x, (sm)−1(x, z)

) ∂(sm)−1(x, z)

∂zs
dx

=

∫
Y
fmy,b
(
y, (dm)−1(y, z)

) ∂(dm)−1(y, z)

∂zd
dy, (2.5)

for ∀z ∈ Zs ∩ Zd.
Figure 2.1 illustrates the market equilibrium. Under the price schedule function

Pm, each seller (x, a) (drawn from distribution fmx,a) chooses her optimal effective
amount supplied zs. The distribution of zs is represented by the red line in the
figure. Similarly, each buyer (y, b) (drawn from distribution fmy,b) chooses her optimal
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effective amount demanded zd. The distribution of zd is represented by the blue line
in the figure. If the red density equals the blue density for ∀z ∈ Z, then the market
is in equilibrium.

On the contrary, Figure 2.2 illustrates a case where the market is not in equi-
librium. For example, sellers who are willing to supply the effective amount z1 out-
number the buyers who demand z1, and more buyers than sellers are willing to trade
effective amount z2. This mismatch between supply and demand will drive the price
schedule function Pm to adjust to clear the market.

Following Chiappori, McCann, and Nesheim (2010), the equilibrium of this model
is defined as follows.

Definition 1. (Equilibrium) Let µm be a joint density on the space of effective
amount z, characteristics (x, a) of sellers and (y, b) of buyers. A pair (µm, Pm) is an
equilibrium if:

(i) the marginal of µm with respect to (x, a) equals fmx,a, and that with respect to
(y, b) equals fmy,b (market clears); and

(ii) if (z, x, a, y, b) is in the support of µm, then z = sm(x, a) = dm(y, b) (agents
optimize).

By the argument provided in Chiappori, McCann, and Nesheim (2010) (also in
Ekeland (2010) and Heckman, Matzkin, and Nesheim (2010)), Assumptions 2-4 are
sufficient for the equilibrium to exist and to be unique and pure. A pure equilibrium
means that each seller matches to a single buyer, and each pair chooses a single
effective amount z.

Note that the effective amount supply function sm(x, a) and demand function
dm(y, b) have a superscript m, since they both depend on the market-specific price
schedule function Pm. And price schedule function Pm is itself an equilibrium out-
come, which in turn depends on the market primitives (fmx,a, f

m
y,b, U, e, R). To see

this more clearly, substitute ∂(sm)−1(x,z)
∂zs

and ∂(dm)−1(y,z)
∂zd

, rearrange equation (2.5) and
suppress the arguments of the functions, one gets

Pm
zz (z) =

∫
Y
fmy,b
Rzb

Rzzdy +
∫
X

fmx,a
−(Uhae−Pm

z eea−Uhhhmea)
Uhhdx∫

Y
fmy,b
Rzb

dy +
∫
X

e2fmx,a
−(Uhae−Pm

z eea−Uhhhmea)
dx

. (2.6)

Equation (2.6) implies that the curvature of the price schedule function Pm can be
regarded as a weighted average of the curvatures of the sellers’ disutility and the
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buyers’ utility functions. Assumptions 2 and 3 imply that the second-order condition
(SOC)11

Rzz · e2 − Uhh < 0 (2.7)

holds for all (h, x, a) ∈ H×X×A and all (z, y, b) ∈ Z×Y×B. Together, equation (2.6)
and equation (2.7) imply Pm

zze
2 − Uhh < 0.

Since the structural functions (U, e, R) remain invariant across markets, equa-
tion (2.6) implies that cross-market variation in the price schedule functions Pm is
driven by that in the distributions fmx,a and fmy,b. As a result, cross-market variation in
other reduced form (equilibrium outcome) functions, such as sm, dm, hm and Im, also
depends on that in fmx,a and fmy,b. Throughout this paper, I summarize this dependence
using the superscript m.

In the same market, all sellers and buyers face the same price schedule function
Pm, so sellers with the same characteristics (x, a) always choose the same quan-
tity hm(x, a) to supply. Without restrictions on sellers’ marginal disutility function
Uh(h, x, a), its identification using single market data is obstructed by this endogene-
ity problem. With multiple market data, however, the distributions fmx,a and fmy,b
serve as aggregate supply or demand shifters (i.e., instruments) that induce variation
in Pm (and hence hm(x, a)) while maintaining individual values of (x, a). In practice,
multiple markets could be geographically isolated locations, or repeated observations
of the same market over time.

Chiappori, McCann, and Nesheim (2010) showed that the classic hedonic equi-
librium model is mathematically equivalent to a stable matching problem and to an
optimal transportation problem. The same argument applies to the model in this
paper as well, since quality is observable to both sellers and buyers. This insight
suggests an algorithm for solving for the counterfactual equilibria, which is provided
in Supplemental Appendix A.

2.2 Application to Labor Markets

In labor markets, the product that is traded between sellers (workers) and buyers
(employers or single-employeed firms) is labor.12 The quantitiy of labor, i.e. how
much time workers work may be observed by researchers. For example, common

11SOC of a pair-wise surplus maximization problem.
12It is also helpful to think of the buyers as job positions.
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The red line illustrates the distribution of the optimal effective labor supply zs under the price
schedule function Pm in marketm, as a function of sellers’ observed characteristics x and unobserved
characteristic a, which follow the distribution fmx,a. Similarly, the blue line illustrates the distribution
of the optimal effective labor demand zd under the same price schedule function Pm in market m,
as a function of buyers’ observed characteristics y and unobserved characteristic b, which follow the
distribution fmy,b. As is shown in this figure, when the distributions of zs and zd are the same, the
market clears.

Figure 2.1: Equilibrium

surveys such as Current Population Survey ask about the respondents’ working time;
punch card records may also be available in many proprietary data sets. But the
workers’ efficiency, which is how much work the workers get done within one unit
of time, is rarely available to researchers. On the other hand, employers often can
obtain some idea about workers’ efficiency, at least in the long run, by observing the
amount of work that the workers accomplish. In equilibrium, workers’ efficiency plays
an important role in determining their earnings. For workers on a piece rate job, this
is apparent. Even for hourly paid or salaried workers, more efficient workers maker
higher earnings in the long run by being promoted to higher positions or gaining
accesses to more oppotunities.

Both workers and firms exhibit considerable heterogeneity. Workers differ in ob-
served characteristics x (e.g., age, education and skills) and unobserved characteristic

12



The red line illustrates the distribution of the optimal effective labor supply zs under the price
schedule function Pm in marketm, as a function of sellers’ observed characteristics x and unobserved
characteristic a, which follow the distribution fmx,a. Similarly, the blue line illustrates the distribution
of the optimal effective labor demand zd under the same price schedule function Pm in market m,
as a function of buyers’ observed characteristics y and unobserved characteristic b, which follow the
distribution fmy,b. As is shown in this figure, when the distributions of zs and zd are different (for
example, density of the effective labor supply is larger than that of the demand at z1, and is the
opposite at z2), the market is off equilibrium and the price schedule function Pm will adjust.

Figure 2.2: Off Equilibrium

a (e.g., ability). Likewise, employers differ in observed characteristics y (e.g., capi-
tal stock) and unobserved characteristic b (e.g., firm’s productivity). For a worker
with characteristics (x, a), her efficiency is given by the function e(x, a), which is the
amount of work she gets done within one unit of time. For the same characteristics
(x, a), we assume that the worker’s efficiency is the same across markets and is un-
known to researchers.13 On the other hand, distributions of agent heterogeneity (fmx,a
and fmy,b) could vary among markets, which induce market-specific earnings schedule
functions Pm(z). As a result, workers with the same characteristics may choose to
work different amount of time hm(x, a) and make different earnings Im(x, a) in differ-
ent markets. Workers’ working time and efficiency are substitutes in production, and
firms care about how much work is done, but not the working time in itself.14 There-

13Firms know z and e(x, a) by looking at how much work the worker gets done.
14Ideally, researchers would want to measure the actual time workers spend in working. The
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fore, earnings depend on the effective amount of labor z via the earnings schedule
functions Pm(z), but not on working time hm(x, a) or efficiency e(x, a) per se.

The model in this paper could be used to answer various counterfactual questions
that labor economists are interested in. For example, to understand the distribu-
tional effects of the changes in labor market institutions during 1979-1988, one may
want to construct counterfactual earnings distribution in 1988 had there been no de-
unionization since 1979 (e.g., DiNardo, Fortin, and Lemieux, 1996). This corresponds
to the counterfactual equilibrium earnings of a market in which workers’ union status
(one element of x) had remained what it was in 1979 and other agent characteristics
(other variables in (x, a, y, b)) had shifted to their 1988 values. The example of college
expansion requires the counterfactual that many people attained higher education sta-
tus (also one element of x) such that the return to college education might change as
a result. Technological advances, on the other hand, entail the counterfactual where
one element of y increased for many employers.

3 Identification

This section explains identification of the reduced form (equilibrium outcome) func-
tions and the structural functions of the model. The analysis in this section assumes
that seller characteristics x, buyer characteristics y, equilibrium payment I and equi-
librium quantity h in all markets are observed. The effective amount z, however, is
unknown to researchers.

The identification consists of three steps. First, identify the reduced form payment
functions Im(x, a) and the quantity functions hm(x, a) using single market data. This
step employs an existing method (Matzkin, 2003) and facilitates the identification
of structural functions. Second, exploit the variation of the payment and quantity
functions within and across markets to identify the quality function e(x, a). This is
the key step, and I will provide both graphical illustration of intuition and general
results. The key identification condition requires that the relative returns to sellers’
characteristics differ across markets. Finally, combine the functions identified from
the first two steps and sellers’ FOC to recover sellers’ marginal disutility function
Uh(h, x, a). To overcome the endogeneity problem of h, this final step requires multiple

required working time written on the contract deviates from the actual time, since workers could
shirk or work over-time.
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market data as well. Section 3.1, 3.2 and 3.3 elaborate these steps, respectively.
This section focuses on the quality function e(x, a) and sellers’ marginal disutility

function Uh(h, x, a). The identification of buyers’ marginal utility function Rz(z, y, b)

can be achieved via the same method as that used for Uh(h, x, a), and is briefly
discussed in Section 3.4. Although fmx,a and fmy,b are also primitives of the model and
serve as aggregate supply or demand shifters that generate cross-market variation
in equilibria, their identification is straightforward. The convergence rate results in
Section 4.2 account for the fact that they need to be estimated.

3.1 Identification of Payment Functions Im(x, a) and Quantity

Functions hm(x, a) Using Single Market Data

In each market m, there is a payment function Im(x, a) and a quantity function
hm(x, a) in equilibrium. This section uses the method developed by Matzkin (2003)
to identify these reduced form functions using data from their own markets.

Assumption 5. Suppose that x ⊥⊥ a and y ⊥⊥ b within each market m ∈M.15

Assumption 6. Suppose that the sellers’ unobserved characteristic a follows the uni-
form distribution U [0, 1] in all markets.

Assumption 6 may seem restrictive at first glance. But an equivalent interpre-
tation is that a is the quantile of the seller’s unobserved characteristic. Based on
this interpretation, Assumption 6 requires that the sellers’ unobserved characteristic
has the same distribution (probably unknown) across all markets.16 Assumption 6
is also a normalization that facilitates identification of nonseparable functions like
Im(x, a) (see Matzkin, 2003 for details).17 But this normalization does not affect
counterfactuals.

15Like Heckman, Matzkin, and Nesheim (2010), because a enters the quality function and sellers’
marginal disutility function nonparametrically, this independence assumption is much weaker than
it would be if a entered additively.

16To see this clearly, suppose that Fa is the distribution function of a, and suppose Ũ(h, x, a) and
ẽ(x, a) are the "real" supply side structural functions. Then, based on the quantile interpretation,
the supply side structural functions identified in this paper are compounds of Fa and the "real"
structural functions. That is, U(h, x, a) = Ũ

(
h, x, F−1a (a)

)
and e(x, a) = ẽ

(
x, F−1a (a)

)
. Therefore,

Assumption 7 implicitly requires that Fa is invariant across markets.
17One could normalize the distribution of a to any other distributions.
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Lemma 1. Under Assumptions 1-6, the payment function Im(x, a) is strictly in-
creasing in the seller’s unobserved characteristic a, and Im(x, a) is nonparametrically
identified within each market m.

Corollary 1. Under the conditions for Lemma 1, the partial derivatives of the pay-
ment function Imxj(x, a) (j = 1, . . . , dx) and Ima (x, a) are nonparametrically identified
within each market m.

Once one identifies the payment function Im, she can invert it with respect to a
to obtain a = (Im)−1(x, I). Now that a is known, it is easy to identify the quantity
function hm(x, a). Unlike Im(x, a), monotonicity is not necessary for identification of
hm(x, a).

Lemma 2. Under the conditions for Lemma 1, the quantity function hm(x, a) is
nonparametrically identified within each market m. Moreover, its partial derivatives
hmxj(x, a) (j = 1, . . . , dx) and hma (x, a) are nonparametrically identified within each
market m as well.

Note that the functional forms of Im(x, a) and hm(x, a) vary from market to market
due to the cross-market variation in fmx and fmy , and they are identified within each
market. Their variation within and across markets reveals enough information to
identify the quality function e(x, a).

3.2 Identification of Quality Function e(x, a) Using Multiple

Market Data

This section explains how to use within- and cross-market variation in the reduced
form functions to identify the structural quality function e(x, a). Section 3.2.1 illus-
trates the intuition for scalar-valued x. The intuition applies to vector-valued x as
well. Section 3.2.2 gives general results.

Since quality e and effective amount z are both unobserved, one can always re-scale
the price schedule function to make two quality functions observationally equivalent.
So we need the following normalization.

Assumption 7. Suppose that for a known fixed vector (x̄, ā) ∈ X × A, we have
e(x̄, ā) = 1.

The vector (x̄, ā) corresponds to a normalization seller, and the quality of other
sellers will be expressed as ratio relative to her.
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3.2.1 Intuition

This section illustrates the intuition for identifying the unobserved quality function
e(x, a) for scalar-valued x. The interpretation of the key identification condition is
that relative returns to sellers’ characteristics differ across markets.

Recall the payment equation (2.3),

Im(x, a) = Pm(sm(x, a)) = Pm(hm(x, a) · e(x, a)).

Since all sellers in the same market face the same price schedule function Pm(z), those
sellers who receive the same payment must have sold the same effective amount z of
the product. In other words, if Imi = Imj for two sellers i and j in the same market
m, then

hm(xmi , a
m
i ) · e(xmi , ami ) = hm(xmj , a

m
j ) · e(xmj , amj ),

which implies
e(xmi , a

m
i )

e(xmj , a
m
j )

=
hm(xmj , a

m
j )

hm(xmi , a
m
i )
. (3.1)

That is, the quality ratio between sellers who receive the same payment in the same
market equals the inverse ratio of their quantities.

This is illustrated by Figure 3.1. The solid green line in Step 1 of Figure 3.1
represents the iso-payment curve in Market 1 that contains the normalization seller
(x̄, ā). By equation (3.1), the quality of any seller (x1, a1) on the same iso-payment
curve can be identified as

e(x1, a1) =
h1(x̄, ā)

h1(x1, a1)
.

The same argument applies to other iso-payment curves in Market 1, which are rep-
resented by dashed green lines in Step 1. For example, for sellers (x̃, ã) and (x2, a2)

on another iso-payment curve, we get

e(x2, a2)

e(x̃, ã)
=

h1(x̃, ã)

h1(x2, a2)
. (3.2)

Since iso-payment curves in the same market are disjoint, neither e(x2, a2) nor e(x̃, ã)

could be identified relative to the normalization seller (x̄, ā). The dashed green lines
in Step 1 indicate that the quality of the sellers on those iso-payment curves are not
identified yet. This is the most one can get from variation of reduced form functions
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in one market.

Green lines (solid and dashed) illustrate the disjoint iso-payment curves in Market 1 and blue lines
(solid and dashed) illustrate the disjoint iso-payment curves in Market 2. The quality e(x̄, ā) is
normalized to be one. In each market, the relative qualities for sellers on the same iso-payment curves
can be identified, but not for those on different iso-payment curves. For example, e(x1, a1)/e(x̄, ā)
and e(x2, a2)/e(x̃, ã) are identified from Market 1 (illustrated in Step 1), but not e(x2, a2)/e(x̄, ā).
From Market 2, however, e(x2, a2)/e(x̄, ā) can be identified (illustrated in Step 2). As a result,
e(x2, a2)/e(x̄, ā) can be identified using the data from both markets (illustrated in Step 3). This
idea could be applied repeatedly to identify the quality function e(x, a) (illustrated in the last panel).
The identification requires a rank condition on the derivatives of the payment functions Im(x, a)
across markets. As is shown in the figure, this condition can be understood as requiring that the
slopes of the iso-payment curves across markets are different.

Figure 3.1: Identification of e(x, a) in Two Markets

With data from another market, however, it is possible to connect the disjoint
iso-payment curves. Suppose that in Market 2, there is an iso-payment curve that
contains both (x̄, ā) and (x2, a2), then

e(x2, a2) =
h2(x̄, ā)

h2(x2, a2)
. (3.3)

Combining equation (3.2) and equation (3.3), we now can identify the quality for
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seller (x̃, ã) as

e(x̃, ã) =
h1(x2, a2)

h1(x̃, ã)
· h

2(x̄, ā)

h2(x2, a2)
.

Once e(x̃, ã) is identified, so is the quality of other sellers on the same iso-payment
curve.

In Step 2 of Figure 3.1, the iso-payment curve in Market 2 is represented by the
solid blue line. It connects the Market 1 iso-payment curve that contains (x̄, ā) with
the one that contains (x̃, ã), and thus helps determine the quality level of the latter.
In Step 3 of Figure 3.1, the latter becomes solid green as the quality of those sellers
are identified. Step 4 shows that by applying this idea recursively to the iso-payment
curves from the two markets that cross with each other, one will be able to identify
the quality of all sellers with characteristics in the support of their distribution.

As suggested by Figure 3.1, the key identification condition is that for any seller
characteristics (x, a), one could find two markets that have iso-payment curves with
different slopes. Otherwise, all the iso-payment curves are disjoint, and it is impossible
to connect a seller (x, a) with the normalization seller (x̄, ā) if they do not belong to
the same iso-payment curve.

Note that the slope of an iso-payment curve can be expressed in terms of the
partial derivatives of the payment function, then the identification condition is

I1
x(x, a)

I1
a(x, a)

6= I2
x(x, a)

I2
a(x, a)

,

for ∀(x, a) ∈ X×A, scalar-valued x and two markets. This condition is also equivalent
to that the matrix (

I1
a(x, a) −I1

x(x, a)

I2
a(x, a) −I2

x(x, a)

)
has full column rank.

This key condition is easy to understand. Partial derivatives of the payment
functions represent the equilibrium market returns to respective seller characteristics.
For example, Imx (x, a) could represent labor market return to education, and Ima (x, a)

to ability. Then the identification condition requires that the relative equilibrium
returns to education and to ability differ in at least two markets. This in turn requires
that cross-market variation in fmx and fmy is sufficiently rich to induce such cross-
market variation in equilibria.
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3.2.2 General Results

It is not hard to generalize the intuition explained in Section 3.2.1 to vector-valued
x. This section formalizes this intuition and gives general results on the identification
of the unobserved quality function e(x, a).

When x is vector-valued (dx > 1), the key identification condition is still that
relative market returns to seller characteristics differ in at least two markets. Without
loss of generality, one could measure returns as relative to that to the unobserved
characteristic a. Suppose Ima (x, a) 6= 0 and Im

′
a (x, a) 6= 0 for markets m and m′.

Then it is required that(
Imx1(x, a)

Ima (x, a)
, . . . ,

Imxdx (x, a)

Ima (x, a)
, 1

)
6=

(
Im
′

x1
(x, a)

Im′a (x, a)
, . . . ,

Im
′

xdx
(x, a)

Im′a (x, a)
, 1

)
. (3.4)

These are just the gradient vectors of the payment functions Im(x, a) and Im′(x, a).
Cross-market variation in equilibria is crucial for identifying the quality function.

The following assumption requires that neither sellers nor buyers move across markets
on a large scale. Otherwise, the distributions fmx and fmy will tend to equalize across
markets, which diminishes the cross-market variation.

Assumption 8. Suppose that the sellers and buyers do not move across markets.

In order to state the formal identification condition and the theorem, I need some
notation. Let ∇xI

m(x, a) denote the dx × 1 vector of the derivatives of Im(x, a) with
respect to (x1, . . . , xdx)′, let ∇xh

m(x, a) denote those of hm(x, a) and let ∇xe(x, a)

denote those of e(x, a). For any integer d, let Id denote a d× d identity matrix.

Assumption 9. Suppose that there exist M markets such that the (Mdx)× (dx + 1)

matrix B(x, a) defined as

B(x, a) ≡


Idx ⊗ I1

a(x, a) −∇xI
1(x, a)

...
...

Idx ⊗ IMa (x, a) −∇xI
M(x, a)


has full column rank for all (x, a) ∈ X ×A.18

18Note that a necessary condition for B(x, a) to have full column rank is that there are dx + 1
linearly independent rows in B(x, a). Therefore we need at least two markets. But when data
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It only takes some basic algebra to see that if equation (3.4) holds for all (x, a) ∈
X ×A, then Assumption 9 is satisfied. Moreover, if Assumption 9 holds, there could
be more than two markets satisfying equation (3.4).

Define the (Mdx)× 1 vector A(x, a) as

A(x, a) ≡


[h1
a(x, a)∇xI

1(x, a)− I1
a(x, a)∇xh

1(x, a)] /h1(x, a)
...[

hMa (x, a)∇xI
M(x, a)− IMa (x, a)∇xh

M(x, a)
]
/hM(x, a)

 .

And define dx + 1 real-valued functions g1(x, a), . . . , gdx+1(x, a) as

(g1(x, a), . . . , gdx+1(x, a))′ ≡ [B(x, a)′B(x, a)]−[B(x, a)′A(x, a)],

where the superscript “−” indicates the generalized inverse of a matrix.

Theorem 1. Suppose that Assumptions 7-9 and the conditions for Lemma 1 are
satisfied. The quality function is then nonparametrically identified on X ×A as

e(x, a)

= exp

(
dx∑
j=1

∫ xj

x̄j

gj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

∫ a

ā

gdx+1(x, t)dt

)
(3.5)

and x̄j (j = 1, . . . , dx) and ā are coordinates of the normalization vector (x̄, ā).

Define the range of equilibrium effective amount supplied in market m as

Zms = {z ∈ Z: there exists some (x, a) ∈ X ×A in market

m ∈M such that in equilibrium z = hm(x, a) · e(x, a)}.

Corollary 2. Under the conditions for Theorem 1, the unobserved effective amount
z = hm(x, a) · e(x, a) is identified.

Corollary 3. Under the conditions for Theorem 1, the price schedule function Pm(z)

for market m ∈M is nonparametrically identified on Zms .

from more markets is available, and multiple combinations of rows satisfy the requirement, we get
over-identification.
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3.3 Identification of Sellers’ Marginal Disutility Function Uh(h, x, a)

Using Multiple Market Data

The next important result is the identification of the marginal disutility function
Uh. Before stating the theorem, define the equilibrium support for sellers’ marginal
disutility function as:

HXA = {(h, x, a) ∈ H ×X ×A: there exists a market m ∈M and

some (x, a) ∈ X ×A such that in equilibrium h = hm(x, a)}.

If |M| = 1, then HXA is degenerate since h is endogenous. As discussed in
Section 2.1, different distributions fmx and fmy serve as aggregate supply or demand
shifters (i.e., instruments) that induce variation in Pm (and hence hm(x, a)) while
maintaining individual values of (x, a). The richer the variation in fmx and fmb , the
larger the set HXA will be.

Theorem 2. Under the conditions for Theorem 1, the sellers’ marginal disutility
function Uh(h, x, a) is nonparametrically identified on HXA.

3.4 Identification of Buyers’ Marginal Utility Function Rz(z, y, b)

Using Multiple Market Data

Identifying buyers’ marginal utility function Rz(z, y, b) and the effective amount de-
mand function dm(y, b) makes little difference from Heckman, Matzkin, and Nesheim
(2010)’s method. The only tweak stems from the fact that z is not directly observed.
Once one recovers z from the supply side, Heckman, Matzkin, and Nesheim (2010)’s
method can be applied without modification. The relevant definition, assumption
and results are given below.

Define the equilibrium support for buyers’ marginal utility function Rz(z, y, b) as:

ZYB = {(z, y, b) ∈ Z × Y × B: there exists a market m ∈M

and some (x, a) ∈ X ×A such that z = dm(y, b)

and z = hm(x, a) · e(x, a) in equilibrium}.
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Assumption 10. Suppose that the buyers’ unobserved characteristic b follows the
uniform distribution U [0, 1] in all markets.

Lemma 3. (Heckman, Matzkin, and Nesheim 2010 Theorem 4.1) Under
Assumption 10 and the conditions for Theorem 1, the buyers’ marginal utility function
Rz(z, y, b) is nonparametrically identified on ZYB.19

4 Estimation

This section provides an estimation procedure for the structural functions. Section
4.1 describes the estimation procedure step by step, and in Section 4.2 I derive the
uniform rates of convergence for the estimators.

4.1 Series Estimation of Structural Functions

The estimators introduced in this section are premised on the following data struc-
ture. Suppose that linked seller-buyer data for M independent markets are available.
Within each market m, suppose that there are Nm seller-buyer pairs, and each pair is
indexed by i. Researchers observe which seller is matched with which buyer. For each
pair i (i = 1, . . . , Nm and m = 1, . . . ,M), researchers observe (Imi , x

m
i , h

m
i , y

m
i ).20

Assumption 11. Suppose {(Imi , xmi , hmi , ymi )}Nm

i=1 are i.i.d. for m = 1, . . . ,M .

Assumption 12. For notational simplicity, suppose that the sample sizes from all
the markets are equal, i.e., N1 = N2 = · · · = NM = N .

In the rest of this paper, I maintain Assumptions 1-12. Assumption 12 is not
essential for deriving the convergence rates, but relaxing it will complicate the no-
tation and will not provide any new insights. In principle, even though the sample
sizes from all the markets are the same, one still could use market-specific numbers
of series basis functions kmQ,N , kmI,N and kmh,N to estimate âm, Îm(x, a) and ĥm(x, a)

respectively within each market. To keep the notation simple, however, I assume that
one uses the same tuning parameters for all markets for the rest of the paper, i.e.,

19In labor markets, if the firms’ revenue is observed by researchers, then the function R(z, y, b) is
also nonparametrically identified under the conditions of Lemma 3.

20In labor markets, it is possible that the employers’ revenue Rm
i is also observed in the data.
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kmQ,N = kQ,N , kmI,N = kI,N and kmh,N = kh,N . All the convergence rate results in Section
4.2 hold if one relaxes this assumption.21

For any vector v, let ‖v‖ ≡ (v′v)1/2 denote its Euclidean norm; for any matrix A,
let ‖A‖ ≡ [trace(A′A)]1/2 denote its Euclidean norm.

The estimation of the structural functions (Uh, e, Rz) follows the steps suggested by
the identification strategy. I start with the within market estimation of two reduced
form functions, namely, the payment function Im(x, a) and the quantity function
hm(x, a), as well as their partial derivative functions for each market. Then the
quality function e(x, a) can be estimated by an estimated version of equation (3.5).
Finally, sellers’ marginal disutility function Uh(h, x, a) can be estimated by a series
minimum distance (MD) estimator using the sellers’ FOCs.

Following the identification steps in Section 3, this section describes the steps for
estimating e(x, a) and Uh(h, x, a) in details. The steps for the buyers’ marginal utility
function Rz(z, y, b) are similar and will be briefly summarized at the end.

4.1.1 Estimation of Payment Functions Im(x, a) and Quantity Functions
hm(x, a) Using Single Market Data

Let me first clarify some notation used in this section: Im(x, a) and hm(x, a) indicate
the reduced form functions; Im (or hm, xm, or am) is a random variable, denoting the
payment received by (or the quantity supplied by, the observed characteristics of, or
the unobserved characteristic of) a randomly chosen seller from market m; and Imi

(or hmi , xmi , or ami ) represents the observed payment (or the observed quantity, the
observed characteristics, or the unobserved characteristic) value of a specific seller i
in market m.

In Section 2.1, I showed that the payment function Im(x, a) is strictly increasing
in a under Assumptions 1-4. Recall that am is the conditional quantile of the payment
Im given observed characteristics xm of the seller in market m. That is

FIm|xm=x(I
m(x, a)) = Fam(a) = a.

Use a series of basis functions ΛkQ,N
(x) ≡ (λ1(x), . . . , λkQ,N

(x))′ to approximate the
indicator function I(Im ≤ Imi ) , where kQ,N is the number of basis functions. Then

21With minor changes in notation to accommodate market-specific tuning parameters.
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one can estimate ami , the conditional quantile of Im given xm by

âmi

≡ F̂Im|xm=xmi
(Imi )

≡ ΛkQ,N
(xmi )′

(
N∑
j=1

ΛkQ,N
(xmj )ΛkQ,N

(xmj )′

)−( N∑
j=1

ΛkQ,N
(xmj )I(Imj ≤ Imi )

)
.(4.1)

Note that the tuning parameter kQ,N might depend on the sample size N . Here, âmi
serves as a generated regressor when we estimate functions Im(x, a) and hm(x, a).

Use a series of basis functions ΦkI,N (x, a) ≡ (φ1(x, a), . . . , φkI,N (x, a))′ to approx-
imate the unknown payment function Im(x, a), where kI,N is the number of basis
functions. Then, the estimated series coefficients for the payment function Im(x, a)

are the solution to the following least square problem

ξ̂mI,kI,N ≡ arg min
ξ∈RkI,N

N∑
i=1

(
Imi − ΦkI,N (xmi , â

m
i )′ξ

)2
.

Therefore, the estimated payment function is

Îm(x, a) ≡ ΦkI,N (x, a)′ξ̂mI,kI,N . (4.2)

Note that there is an explicit solution for ξ̂mI,kI,N ,

ξ̂mI,kI,N =

(
N∑
i=1

ΦkI,N (xmi , â
m
i )ΦkI,N (xmi , â

m
i )′

)−( N∑
i=1

ΦkI,N (xmi , â
m
i )Imi

)
. (4.3)

Because ΦkI,N (x, a) is a series of known functions, their first-order derivatives are also
known. Therefore, the series estimator of the partial derivatives of Im(x, a) can be
obtained immediately

Îmxj(x, a) ≡
(
∂φ1(x, a)

∂xj
, . . . ,

∂φkI,N (x, a)

∂xj

)
ξ̂mI,kI,N , (4.4)

for j = 1, . . . , dx, and

Îma (x, a) ≡
(
∂φ1(x, a)

∂a
, . . . ,

∂φkI,N (x, a)

∂a

)
ξ̂mI,kI,N . (4.5)
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Similarly, use the series of basis functions Φkh,N (x, a) ≡ (φ1(x, a), . . . , φkh,N (x, a))′ to
approximate the unknown quantity function hm(x, a).

Then the estimated series coefficients for the quantity function hm(x, a) is

ξ̂mh,kh,N ≡

(
N∑
i=1

Φkh,N (xmi , â
m
i )Φkh,N (xmi , â

m
i )′

)−( N∑
i=1

Φkh,N (xmi , â
m
i )hmi

)
. (4.6)

Therefore, the estimated quantity function and its first-order derivatives are

ĥm(x, a) ≡ Φkh,N (x, a)′ξ̂mh,kh,N , (4.7)

ĥma (x, a) ≡
(
∂φ1(x, a)

∂a
, . . . ,

∂φkh,N (x, a)

∂a

)
ξ̂mh,kh,N , (4.8)

and

ĥmxj(x, a) ≡
(
∂φ1(x, a)

∂xj
, . . . ,

∂φkh,N (x, a)

∂xj

)
ξ̂mh,kh,N . (4.9)

for j = 1, . . . , dx.

4.1.2 Estimation of Quality Function e(x, a) Using Multiple Market Data

Just like the identification strategy, estimating the quality function e(x, a) starts with
replacing Im(x, a), hm(x, a) and their derivatives in B(x, a) and A(x, a) with their
counterparts estimated in Section 4.1.1. Use the series of basis functions Φkxj,MN

(x,

a) = (φ1(x, a), . . . , φkxj,MN
(x, a))′ to approximate exj(x, a)/e(x, a) and Φka,MN

(x, a) =

(φ1(x, a), . . . , φka,MN
(x, a))′ to approximate ea(x, a)/e(x, a). Let the series coefficients

be βxj ,kxj,MN
(j = 1, . . . , dx) and βa,ka,MN

, respectively. And let βMN ≡ (β′x1,kx1,MN
, . . . ,

β′xdx ,kxdx ,MN
, β′a,ka,MN

)′. Then, one estimate β̂MN by minimizing the distance between
the left and the right sides of the following equation:

B̂m(xmi , â
m
i ) ·


Φkx1,MN

(xmi , â
m
i )′β̂x1,kx1,MN

...
Φkxdx ,MN

(xmi , â
m
i )′β̂xdx ,kxdx ,MN

Φka,MN
(xmi , â

m
i )′β̂a,ka,MN

 = Âm(xmi , â
m
i ),
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where the dx × (dx + 1) matrix B̂m(xmi , â
m
i ) is

B̂m(xmi , â
m
i ) ≡

(
Idx ⊗ Îma (xmi , â

m
i ) , −∇xÎ

m(xmi , â
m
i )
)
,

and the dx × 1 vector Âm(xmi , â
m
i ) is

Âm(xmi , â
m
i ) ≡

[
ĥma (xmi , â

m
i )∇xÎ

m(xmi , â
m
i )− Îma (xmi , â

m
i )∇xĥ

m(xmi , â
m
i )
]/

ĥm(xmi , â
m
i ).

Therefore, the estimated series coefficients are the solutions to the following least
square problem

β̂MN ≡ arg min
β

M∑
m=1

N∑
i=1

LS(xmi , â
m
i ; β),

where

LS(xmi , â
m
i ; β) ≡

∥∥∥∥∥∥∥∥∥∥
B̂m(xmi , â

m
i ) ·


Φkx1,MN

(xmi , â
m
i )′βx1

...
Φkxdx ,MN

(xmi , â
m
i )′βxdx

Φka,MN
(xmi , â

m
i )′βa

− Âm(xmi , â
m
i )

∥∥∥∥∥∥∥∥∥∥

2

.

There is an explicit expression for β̂MN as follows:

β̂MN = Ŝ−ΦΦŜΦA,

where

ŜΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′ŜΦ(xmi , â

m
i ), (4.10)

ŜΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Âm(xmi , â

m
i ). (4.11)

In equations (4.10) and (4.11),

ŜΦ(xmi , â
m
i ) ≡

(
ŜΦ,1(xmi , â

m
i ) , ŜΦ,2(xmi , â

m
i )
)
,
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where

ŜΦ,1(xmi , â
m
i ) ≡


Φkx1,MN

(xmi , â
m
i )′ 0

. . .

0 Φkxdx ,MN
(xmi , â

m
i )′

⊗ Îma (xmi , â
m
i ),

ŜΦ,2(xmi , â
m
i ) ≡ −∇xÎ

m(xmi , â
m
i )⊗ Φka,MN

(xmi , â
m
i )′.

Then the estimated ratios of the quality function are

êx1 (x,a)

e(x,a)
≡ ĝ1(x, a) = Φkx1,MN

(x, a)′β̂x1,kx1,MN
,

...
...

̂exdx (x,a)

e(x,a)
≡ ĝdx(x, a) = Φkxdx ,MN

(x, a)′β̂xdx ,kxdx ,MN
,

êa(x,a)
e(x,a)

≡ ĝdx+1(x, a) = Φka,MN
(x, a)′β̂a,ka,MN

.

(4.12)

By replacing the relevant ratios of the quality function in equation (3.5) with their
estimators given in equation (4.12), one obtains the estimator of the quality function

ê(x, a) = exp

(
dx∑
j=1

∫ xj

x̄j

ĝj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

∫ a

ā

ĝdx+1(x, t)dt

)

= exp

(
dx∑
j=1

∫ xj

x̄j

[
Φkxj,MN

(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)′β̂xj ,kxj,MN

]
dsj

+

∫ a

ā

[
Φka,MN

(x, t)′β̂a,ka,MN

]
dt

)
. (4.13)

4.1.3 Estimation of Sellers’ Marginal Disutility Function Ûh(h, x, a) Using
Multiple Market Data

Estimation of the sellers’ marginal disutility function starts from the partial deriva-
tives of the payment equation (2.3). Combined with the sellers’ FOC in equation (2.1),
they imply that for ∀(x, a) ∈ X ×A,∇xI

m(x, a) =
[
∇xh

m(x, a) + hm(x, a)∇xe(x,a)
e(x,a)

]
· Uh(hm(x, a), x, a),

Ima (x, a) =
[
hma (x, a) + hm(x, a) ea(x,a)

e(x,a)

]
· Uh(hm(x, a), x, a).

(4.14)
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Now, use a series of basis functions ΨkU,MN
(h, x, a) ≡ (ψ1(h, x, a), . . . , ψkU,MN

(h, x, a))′

to approximate the unknown marginal disutility function. Then, one wants to choose
the series coefficients γ̂kU,MN

to minimize the sum of the squared distances between the
left-hand sides and the right-hand sides of the equations (4.14). Specifically, define

Gx,MN(hmi , x
m
i , â

m
i ; γ)

≡

[
∇xĥ

m(xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi , â
m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ −∇xÎ

m(xmi , â
m
i ),

and

Ga,MN(hmi , x
m
i , â

m
i ; γ)

≡

[
ĥma (xmi , â

m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi , â
m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ − Îma (xmi , â

m
i ).

And the minimum distance (MD) estimator of the series coefficients are defined as

γ̂kU,MN
≡ arg min

γ∈RkU,MN

M∑
m=1

N∑
i=1

∥∥∥∥∥
(
Gx,MN(hmi , x

m
i , â

m
i ; γ)

Ga,MN(hmi , x
m
i , â

m
i ; γ)

)∥∥∥∥∥
2

.

The estimator γ̂kU,MN
has a closed-form expression given by

γ̂kU,MN
= Ŝ−ΨΨŜΨI

where

ŜΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′ŜΨ(hmi , x

m
i , â

m
i ), (4.15)

ŜΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′ŜI(h

m
i , x

m
i , â

m
i ). (4.16)
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In equations (4.15) and (4.16), the (dx + 1)× kU,MN matrix ŜΨ(hmi , x
m
i , â

m
i ) is

ŜΨ(hmi , x
m
i , â

m
i ) ≡


[
∇xĥ

m(xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi ,â
m
i )

e(xmi ,â
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′[

ĥma (xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi ,â
m
i )

e(xmi ,â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′


and the (dx + 1) × 1 vector ŜI(hmi , xmi , âmi ) ≡ (∇xÎ

m(xmi , â
m
i )′, Îma (xmi , â

m
i ))′. As a

result, the estimated sellers’ marginal disutility function is

Ûh(h, x, a) ≡ ΨkU,MN
(h, x, a)′γ̂kU,MN

.

The steps described in Sections 4.1.1-4.1.3 complete the estimation of the supply
side structural functions (e, Uh).

4.1.4 Estimation of Buyers’ Marginal Utility Function R̂z(z, y, b) Using
Multiple Market Data

The buyers’ marginal utility function Rz can be estimated by similar steps. First,
within each market m, estimate the conditional quantile bmi of the payment Imi using
a formula similar to equation (4.1). The unobserved effective amounts can also be
estimated as ẑmi ≡ hmi · ê(xmi , âmi ), since researchers observe which seller is matched
with which buyer. Second, estimate the reduced form payment function Im(y, b)

and effective amount demand function dm(y, b) using the generated regressor b̂mi and
generated dependent variable ẑmi from the single market m. Third, taking the partial
derivatives of the payment equation for the buyers yields

∇yI
m(y, b) = Pm

z (dm(y, b)) · ∇yd
m(y, b),

Ima (y, b) = Pm
z (dm(y, b)) · dma (y, b).

Combine these equations with the buyers’ FOC in equation (2.4), and use a se-
ries of basis functions ΘkN (z, y, b) ≡ (θ1(z, y, b), . . . , θkN (z, y, b)) to approximate the
unknown buyers’ marginal utility function Rz(z, y, b). Then, the function can be es-
timated by an MD estimator similar to that in Section 4.1.3. Moreover, if the buyers’
utility values Rm

i are observed,22 then the second and third steps are not necessary.
22For example, firm revenue in labor markets.
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The series estimation of R and its derivative functions boils down to a linear regression
of Rm

i on ΘkN (ẑmi , y
m
i , b̂

m
i ) using multiple market data.

4.2 Uniform Rates of Convergence of Structural Function Es-

timators

In this section and proofs, C denotes a sufficiently large, generic positive constant,
and c denotes a sufficiently small, generic positive constant, both of which may take
different values in different uses.

4.2.1 Convergence Rate of Unobserved Heterogeneity Estimators âmi

This subsection derives the convergence rates of the within market series estimators
of the conditional quantile ami given in equation (4.1).

Assumption 13. Suppose that FIm|xm(I|x) ≡ FIm|xm=x(I) is continuously differen-
tiable of order d1 > dx on the support with derivatives uniformly bounded in I and
x.

Define

νa,N ≡
(
kQ,N
N

+ k
1−2d1/dx
Q,N

)1/2

.

Theorem 3. Suppose that Assumption 13 is satisfied. Then,

N∑
i=1

|âmi − ami |2/N = O
(
ν2
a,N

)
.

And if kQ,N/N → 0 and kQ,N →∞, then
∑N

i=1 |âmi − ami |2/N = op(1).

4.2.2 Convergence Rates of Payment Function Estimators Îm(x, a) and
Quantity Function Estimators ĥm(x, a)

This subsection derives the convergence rates of the within market series estimators
of the reduced form payment functions Im(x, a) and quantity functions hm(x, a) and
their first-order derivatives.

Assumption 14. Suppose that X and Y are Cartesian products of closed intervals.
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Assumption 15. Suppose that Φk(x, a) = Φ1,k1(x1) � · · · � Φdx,kdx
(xdx) � Φa,ka(a).

This implies that k = ka ·
∏dx

j=1 kj.

In Assumption 15, if k denotes the number of series basis functions used to approx-
imate an unknown function of (x, a) (or of (h, x, a)), then let kh, kj and ka denote the
numbers of series basis functions used to approximate the h component, xj compo-
nent and a component in the Cartesian space, respectively. For simplicity, we assume
that kh, kj and ka grow at the same rate.

Let ζ0(k) ≡ k, ζa(k) ≡ k2
ak, and ζj(k) ≡ k2

jk.

Assumption 16. Suppose that for allm ∈M, Im(x, a) and hm(x, a) are continuously
differentiable of order d ≥ 2 on the support.23

For a function l(x, a) : X × A → R, define the norm |l|δ as |l|δ ≡ max|µ|≤δ

sup(x,a)∈X×A |∂µl(x, a)/∂xµ11 · · · ∂x
µdx
dx
∂aµa |, with µ1+· · ·+µdx +µa = µ (µ1, . . . , µdx , µa

are integers).
One implication of Assumptions 5, 6 and 16 is that there exist some positive

constants BI and Bhu such that for all m ∈M, |Im|2 ≤ BI , and |hm|2 ≤ Bhu.
Suppose that the following assumption about the approximation error by the basis

functions holds.

Assumption 17. Suppose that for a positive integer δI ≥ 1, there exist a constant
αI > 2 and pseudo-true series coefficients ξm0,I,kI ∈ RkI such that |Im − Φ′kIξ

m
0,I,kI
|δI ≤

Ck−αI
I for all positive integers kI . Suppose as well that for a positive integer δh ≥ 1,

there exist a constant αh > 2 and pseudo-true series coefficients ξm0,h,kh ∈ Rkh such
that |hm − Φ′khξ

m
0,h,kh
|δh ≤ Ck−αh

h for all positive integers kh.24

Let lm(x, a) denote either the payment function Im(x, a) or the quantity function
hm(x, a). Let l̂m(x, a) denote the series estimator of lm(x, a) defined in equation (4.2)
or equation (4.7), and let l̂mxj(x, a) (j = 1, . . . , dx) and l̂ma (x, a) denote the series estima-
tors of the first-order derivatives of lm(x, a) defined in equation (4.4), equation (4.5),
equation (4.8) or equation (4.9).

Define

νl,N ≡ ζ0(kl,N)
(
νa,N + k−αl

l,N

)
,

23Without loss of generality, here I assume that d is the same across all markets m ∈M.
24Without loss of generality, here I assume that αI and αh are the same across all marketsm ∈M.
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νlj ,N ≡ ζj(kl,N)
(
νa,N + k−αl

l,N

)
,

νla,N ≡ ζa(kl,N)
(
νa,N + k−αl

l,N

)
.

Theorem 4. Suppose that Assumptions 14-17 and the conditions of Theorem 3 are
satisfied. Suppose as well that the numbers of series basis functions used to approxi-
mate each component in kl,N all increase to infinity with N , and

√
kl,Nνa,Nζa(kl,N)→

0 as N →∞. Then

sup
(x,a)∈X×A

|l̂m(x, a)− lm(x, a)| = Op (νl,N) .

And if kl,Nνa,N → 0 and kl,N →∞, then

sup
(x,a)∈X×A

|l̂m(x, a)− lm(x, a)| = op(1).

Theorem 5. Suppose that the conditions for Theorem 4 are satisfied . Then

sup
(x,a)∈X×A

∣∣∣l̂mxj(x, a)− lmxj(x, a)
∣∣∣ = Op

(
νlj ,N

)
,

sup
(x,a)∈X×A

∣∣∣l̂ma (x, a)− lma (x, a)
∣∣∣ = Op (νla,N) .

And if k2
j,l,Nkl,Nνa,N → 0 and kj,l,N →∞, then

sup
(x,a)∈X×A

∣∣∣l̂mxj(x, a)− lmxj(x, a)
∣∣∣ = op(1);

if k2
a,l,Nkl,Nνa,N → 0 and ka,l,N →∞, then

sup
(x,a)∈X×A

∣∣∣l̂ma (x, a)− lma (x, a)
∣∣∣ = op(1).

Moreover, note that νl,N = O(νlj ,N), and νl,N = O(νla,N).

Since âmi is used as a generated regressor,25 the convergence rates of the reduced
form functions and their derivatives depend on the estimation errors of âmi as well as
on the series approximation errors of the functions themselves.

25Recall equations (4.3) and (4.6).
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4.2.3 Convergence Rate of Quality Function Estimator ê(x, a)

This subsection derives the convergence rates of the cross-market series estimators of
the quality function e(x, a) and its first-order derivative ratios.

Assumption 18. Suppose that for a positive integer δe ≥ 0, there exist a constant
αe > 1 and pseudo-true series coefficients β0,xj ,kxj

∈ Rkxj (for j = 1, . . . , dx) and
β0,a,ka ∈ Rka such that |exj/e − Φ′kxj

β0,xj ,kxj
|δe ≤ Ck−αe

xj
and |ea/e − Φ′kaβ0,a,ka |δe ≤

Ck−αe
a for all positive integers kxj (j = 1, . . . , dx) and ka.

Define

SΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

SΦ(xmi , a
m
i )′SΦ(xmi , a

m
i ),

where
SΦ(xmi , a

m
i ) ≡ (SΦ,1(xmi , a

m
i ) , SΦ,2(xmi , a

m
i )) ,

SΦ,1(xmi , a
m
i ) ≡


Ima (xmi , a

m
i )Φkx1,MN

(xmi , a
m
i )′ 0

. . .

0 Ima (xmi , a
m
i )Φkxdx ,MN

(xmi , a
m
i )′

 ,

and
SΦ,2(xmi , a

m
i ) ≡ −∇xI

m(xmi , a
m
i )⊗ Φka,MN

(xmi , a
m
i )′.

Assumption 19. Suppose that there exist some positive constants Beu and Bel such
that the quality function e(x, a) satisfies |e|2 ≤ Beu and |e|0 ≥ Bel.

Assumption 20. Suppose:
(i) λmin (E(SΦΦ)) ≥ c > 0;
(ii) There exists some positive constant Bhl such that for all m ∈M, |hm|0 ≥ Bhl.

For j = 1, . . . , dx, define

νej ,M,N ≡ ζ0(kxj ,MN)

[
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αe
a,MN +

dx∑
j=1

k−αe
xj ,MN

]
,

νea,M,N ≡ ζ0(ka,MN)

[
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αe
a,MN +

dx∑
j=1

k−αe
xj ,MN

]
.
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Lemma 4. Suppose that Assumptions 18-20 and the conditions of Theorems 3-5
are satisfied. Suppose as well that the numbers of series basis functions kxj ,MN →
∞, ν2

a(σN)
(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)
→ 0, νa,N(ζa(kxj ,MN) + ζa(ka,MN))(ζ0(kxj ,MN) +

ζ0(ka,MN)) → 0, [νla,Nζ0(kxj ,MN) + ζ0(ka,MN)νlj ,N ](ζ0(kxj ,MN) + ζ0(ka,MN)) → 0 for
j = 1, . . . , dx, ka,MN → ∞, and [ζ2

0

(
maxj=1,...,dx kxj ,MN

)
+ ζ2

0 (ka,MN)](maxj=1,...,dx

kxj ,MN + ka,MN)/(MN)→ 0 as N →∞. Then

∥∥∥β̂MN − β0,MN

∥∥∥ = Op

(
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αe
a,MN +

dx∑
j=1

k−αe
xj ,MN

)
.

Theorem 6. Suppose that the conditions for Lemma 4 are satisfied. Then, for j =

1, . . . , dx

sup
(x,a)∈X×A

∣∣∣ ̂exj(x, a)/e(x, a)− exj(x, a)/e(x, a)
∣∣∣ = Op

(
νej ,M,N

)
,

sup
(x,a)∈X×A

∣∣∣ ̂ea(x, a)/e(x, a)− ea(x, a)/e(x, a)
∣∣∣ = Op (νea,M,N) .

And if for l = I, h, kxj ,MNνla,N → 0, kxj ,MNνlj ,N → 0 (j = 1, . . . , dx), kxj ,MNk
−αe
a,MN →

0 and kxj ,MN →∞, then

sup
(x,a)∈X×A

∣∣∣ ̂exj(x, a)/e(x, a)− exj(x, a)/e(x, a)
∣∣∣ = op(1).

Similarly, if we swap kxj ,MN and ka,MN in the above conditions, then

sup
(x,a)∈X×A

∣∣∣ ̂ea(x, a)/e(x, a)− ea(x, a)/e(x, a)
∣∣∣ = op(1).

Theorem 7. Suppose that the conditions for Theorem 6 are satisfied. Then

sup
(x,a)∈X×A

|ê(x, a)− e(x, a)| = Op

(
dx∑
j=1

νej ,M,N + νea,M,N

)
.

And if both of the following hold:

sup
(x,a)∈X×A

∣∣∣ ̂exj(x, a)/e(x, a)− exj(x, a)/e(x, a)
∣∣∣ = op(1),
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sup
(x,a)∈X×A

∣∣∣ ̂ea(x, a)/e(x, a)− ea(x, a)/e(x, a)
∣∣∣ = op(1),

then we have
sup

(x,a)∈X×A
|ê(x, a)− e(x, a)| = op(1).

The convergence rates of the quality function and its derivative ratios depend
on the estimation errors of the reduced form functions and the series approximation
errors of the quality function itself. Note that the estimation errors in âmi affect the
estimation errors of exj(x, a)/e(x, a), ea(x, a)/e(x, a) and e(x, a) only through Îm, ĥm

and their partial derivatives.

4.2.4 Convergence Rate of Sellers’ Marginal Disutility Function Estima-
tor Ûh(h, x, a)

This subsection derives the convergence rate of the cross-market series estimator of
the sellers’ marginal disutility function Uh(h, x, a).

For a function l(h, x, a): H×X ×A → R, define the norm |l|δ as |l|δ ≡ max|µ|≤δ

sup(h,x,a)∈H×X×A |∂µl(x, a)/∂hµh∂xµ11 · · · ∂x
µdx
dx
∂aµa |, with µh + µ1 + · · · + µdx + µa =

µ (µh, µ1, . . . , µdx , µa are integers).

Assumption 21. Suppose that for a positive integer δU ≥ 0, there exist a constant
αU > 1 and pseudo-true series coefficients γ0,kU ∈ RkU such that |Uh −Ψ′kUγ0,kU |δU ≤
Ck−αU

U for all positive integers kU .

Assumption 22. Suppose that there exists some positive constant BU such that
|Uh|1 ≤ BU .

Assumption 23. Suppose that Ψk(h, x, a) = Ψh,kh(h)�Ψ1,k1(x1)�· · ·�Ψdx,kdx
(xdx)�

Ψa,ka(a). This implies that k = kh · ka ·
∏dx

j=1 kj.

Assumption 24. Suppose that H is a compact set and the cross-market variation in
fmx and fmy is rich enough that the equilibrium cross-market joint density of (h, x, a)

is bounded away from zero.

Define

SΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

SΨ(hmi , x
m
i , a

m
i )′SΨ(hmi , x

m
i , a

m
i ),
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where

SΨ(hmi , x
m
i , a

m
i ) ≡

 [
∇xh

m(xmi , a
m
i ) + hm(xmi , a

m
i )
∇xe(xmi ,a

m
i )

e(xmi ,a
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , a

m
i )′[

hma (xmi , a
m
i ) + hm(xmi , a

m
i )

ea(xmi ,a
m
i )

e(xmi ,a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′

 .

Assumption 25. Suppose that λmin (E(SΨΨ)) ≥ c > 0.

Lemma 5. Suppose that Assumptions 21-25 and the conditions for Theorem 6 are
satisfied. Suppose as well that kU,MN → ∞,

√
kU,MNνa,Nζa(kU,MN) → 0, kU,MN

νej ,N → 0 and kU,MNνea,N → 0 as N →∞. Then

∥∥γ̂kU,MN
− γ0,kU,MN

∥∥ = Op

(
νea,M,N +

dx∑
j=1

νej ,M,N + k−αU
U,MN

)
.

In addition, define

νUh,M,N ≡ ζ0(kU,MN)

[
νea,M,N +

dx∑
j=1

νej ,M,N + k−αU
U,MN

]
.

Theorem 8. Suppose that the conditions of Lemma 5 are satisfied. Then

sup
(h,x,a)∈H×X×A

∣∣∣Ûh(h, x, a)− Uh(h, x, a)
∣∣∣ = Op (νUh,M,N) .

And if kU,MN →∞, kU,MNνea,M,N → 0 and for j = 1, . . . , dx, kU,MNνej ,M,N → 0, then
we have

sup
(h,x,a)∈H×X×A

∣∣∣Ûh(h, x, a)− Uh(h, x, a)
∣∣∣ = op(1).

The convergence rate of the sellers’ marginal disutility function depends on the
estimation errors of the quality function and on the series approximation error of the
sellers’ marginal disutility function itself. Note that the estimation errors of âmi and
the reduced form functions and their derivatives directly affect the convergence rate
of the sellers’ marginal disutility function, but they are dominated by the estimation
errors of the quality function and its derivatives.
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Figure 5.1: Scatter Plots of Weekly Earnings and Working Time in the Three Cities

5 Empirical Illustration in Labor Markets

In this section, I apply the estimation procedure provided in Sections 4.1 to estimate
the efficiency (quality) function e in labor markets. Section 5.1 introduces the data
set, and Section 5.2 estimates the workers’ unobserved efficiency function.

5.1 Data: the 2015 American Time Use Survey

The data set I use is the American Time Use Survey (ATUS, see Hofferth, Flood,
and Sobek, 2013 for details). The ATUS randomly chooses one individual from a
subsample of the households that are completing their participation in the Current
Population Survey (CPS) and asks them to recall their time spent, minute by minute,
on various activities within a randomly picked 24-hour period in the past. The ATUS
classifies activities into 17 major categories and many more sub-categories, and pro-
vides a quite precise measure of the time that workers actually spent in working.26

I consider the 2015 ATUS respondents,27 and focus on full-time workers in the
26Major categories include working and work-related activities, household activities, education,

traveling and others. For working and work-related activities, it further breaks down to working,
looking for a job, eating and drinking on the job (e.g., lunch breaks), security procedures, and so
on. I use the time spent in the working sub-category as the measure of working time.

27The data were obtained via ATUS-X Extract Builder: Sandra L. Hofferth, Sarah M. Flood, and

38



three largest cities: New York, Los Angeles and Chicago28. After dropping observa-
tions on Saturdays and Sundays and making some other minor adjustments, I end up
with a sample of 92 workers in New York, 74 workers in Los Angeles, and 55 workers
in Chicago.

I use the time spent in the “working” sub-category of the ATUS as the measure
of working time hmi , the weekly earnings in the CPS as the measure of earnings Imi ,
and the age reported in the CPS as the observed characteristic xmi of the workers.29

Figure 5.1 shows the scatter plots of working time per day and weekly earnings of
each worker in the three cities. Within- and cross-market variation appears promi-
nent: (i) both working time and earnings vary substantially within all the markets;
(ii) for the same working time, earnings in New York tend to be higher than those
in Los Angeles, which in turn, tend to be higher than those in Chicago. In fact, the
median of the earnings-to-working-time ratio is 2.47 for the workers in New York,
2.03 in Los Angeles, and 1.62 in Chicago. Such within- and cross-market variation is
crucial for the identification of the unobserved efficiency function.

5.2 Estimation of Unobserved Efficiency Function

With the observed data (Imi , h
m
i , x

m
i ) from the three cities, one is able to estimate the

efficiency function e(x, a).
As discussed in Sections 2.1 and 3, distributions fmx of workers’ observed charac-

teristic xmi (age) serve as aggregate instruments that induce cross-market variation in
the earnings functions. Figure 5.2 plots the kernel estimated densities of the work-
ers’ age distributions in the three cities. It shows that in the 2015 ATUS sample,
full-time workers in Chicago are slight younger than in the other two cities. The age
distributions in Los Angeles and Chicago are slightly more dispersed than that in
New York.

Such variation in the distributions fmx appears to be sufficient to generate ade-

Matthew Sobek. 2013. American Time Use Survey Data Extract System: Version 2.4 [Machine-
readable database]. Maryland Population Research Center, University of Maryland, College Park,
Maryland, and Minnesota Population Center, University of Minnesota, Minneapolis, Minnesota.

28To be precise, the three largest metro areas: New York-Newark-Bridgeport (NY-NH-CT-PA),
Los Angeles-Long Beach-Riverside (CA), and Chicago-Naperville-Michigan City (IL-IN-WI).

29Individuals in the ATUS can be linked to their observations in the CPS to obtain rich demo-
graphic information. In this illustration, I use age as the only observed characteristic for simplicity.
The application to more observed variables poses no theoretical problem, but it may take more
computing time.
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For ease of illustration, age is used as the single observed characteristic (x) of the workers. This figure
shows that there is decent cross-market variation in the distributions of x, which drives (partially)
the cross-market variation in the equilibrium payment functions.

Figure 5.2: Distributions of Age in the Three Cities

quate variation in the earnings functions. Figure 5.3 draws representative iso-earnings
curves for the three cities on the support X ×A = [25, 65]× [0.05, 0.95]. Recall that
Assumption 9 for identifying the efficiency function requires that the iso-earnings
curves from at least two cities have different slopes. For each value of (x, a) on the
support, this is the case, except in the very small region with a > 0.9 and x ∈ [35, 55].
This suggests that Assumption 9 is satisfied. Moreover, using estimated derivatives
of the earnings functions Îmx (x, a) and Îma (x, a), m = 1, . . . ,M , I compute B̂(x, a), the
estimate of the coefficient matrix B(x, a) defined in Assumption 9 for a grid of (x, a)

values on the support X ×A. The determinants of B̂(x, a)′B̂(x, a) for all these (x, a)

values are bounded well away from zero. This indicates that the matrix B(x, a) has
full column rank. As a result, I am convinced that the key identification condition
for the efficiency function e(x, a) is satisfied.

The normalization worker I choose is (x̄, ā) ≡ (25, 0). I used the tensor product of
quadratic polynomials of x and a to approximate ex(x, a)/e(x, a) and ea(x, a)/e(x, a).30

30That is, I approximate the two ratio functions using β0 + β1x + β2x
2 + β4a + β5zx + β6ax

2 +
β7a

2 + β8a
2x + β9a

2x2. There is no obvious rule for how one should determine the order of the
polynomials for the efficiency function or for the other structural functions in this model. This may
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This figure shows representative iso-earnings curves for the three cities, on the support of age (x)
and “ability” (a). For majority of the support, the iso-earnings curves from at least two markets
cross. This suggests that the identification condition for the efficiency function e(x, a) is satisfied.

Figure 5.3: Iso-Earnings Curves in the Three Cities

With the two estimated ratio functions, one could obtain the estimates of the effi-
ciency function defined as in equation (4.13). Figure 5.4 plots the estimated efficiency
function ê(x, a) on the support X ×A.

Figure 5.4 presents a prominent and interesting pattern of the efficiency function.
For workers with the same level of unobserved characteristic a (“ability”), efficiency
first increases with age, and then decreases. For workers of the same age, efficiency
increases with a. At age 25, workers with the highest ability do not exhibit much
higher efficiency than their lower ability peers. As they mature, however, their effi-
ciency could be much higher than their peers with the lowest ability.31

serve as a topic for further research.
31Since I only control for age and neglect the dynamic perspective of the workers, one should be

cautious when interpreting this estimate. But this issue will be investigated in future research, and
an in-depth empirical analysis is beyond the scope of this section.
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Estimated worker efficiency function increases with “ability” (a), and is hump-shaped with age (x).

Figure 5.4: Estimated Efficiency Function e(x, a)

6 Conclusion and Extensions

In this paper, I study the identification and estimation of a nonparametric hedo-
nic equilibrium model with unobserved quality. I explain how to use within- and
cross-market variation in equilibrium prices and quantities to identify and estimate
the structural functions of the model. Using the estimated structural functions and
the equilibrium-solving algorithm suggested in this paper, researchers could solve the
counterfactual equilibrium to analyze the distributional effects of policy interven-
tions. In contrast to other widely used methods, the counterfactuals thus constructed
account for unobserved quality and equilibrium effects of policy interventions in a
nonparametric setting.
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