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Abstract
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interested in extreme expectiles which are used as a risk measure in �nancial economics. The
higher-order MSE result for the ALS estimation also enables us to better understand the sources
of estimation uncertainty. The Monte Carlo simulation con�rms the bene�ts of the second-order
asymptotic theory and indicates that the second-order bias is larger at the extreme low and high
expectiles.
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1 Introduction

The higher-order asymptotic properties permit us to obtain better approximation of the bias of

estimators, and allow us to �nd an approach to improve the behavior of estimators and test sta-

tistics. Rilstone, Srivastava and Ullah (RSU, 1996) developed the second-order bias of a class of

nonlinear estimators in models with i.i.d. samples. Bao and Ullah (2007) analyzed the results for

time series dependent observations. In this paper, we extend the second-order asymptotic results

for the symmetric least squares (LS) estimators to asymmetric least squares (ALS) estimators.

The ALS estimation was �rst interpreted as a maximum likelihood estimator when the dis-

turbances arise from a normal distribution with unequal weight placed on positive and negative

disturbances by Aigner, Amemiya and Poirier (1976). Newey and Powell (1987) proposed the term,

ALS, and investigated the estimation and hypothesis tests for coe¢ cients of linear ALS models.

The symmetric LS gives the mean regression function while the ALS gives the "expectile" regression

function, a generalization of the usual regression function. The ALS model has been used in many

economic applications. A lot of recent research in �nancial economics uses the large sample theory

to study the properties of ALS models in �nancial risk management. Kuan, Yeh and Hsu (2009),

proposed an expectile based value-at-risk and extended asymptotic results to allow for stationary

and weakly dependent data using a parametric method. Xie, Zhou and Wan (2014) developed a

nonparametric varying-coe¢ cient approach for modeling the expectile-based value-at-risk. How-

ever, the literature on the ALS model has been entirely the �rst-order asymptotic properties. The

�rst-order asymptotic properties of the ALS model can be improved by considering the higher-order

asymptotic approximations which are better approximations. In this paper, we try to �ll this un-

explored area by developing the analytical results of the second-order bias and mean squared error

(MSE) for the ALS models. We show that the second-order bias is much larger as the asymmetry

is stronger, and therefore the bene�t of the second-order bias correction is greater when we are

interested in extreme expectiles. The higher-order MSE result for the ALS estimation enables us

to better understand the sources of estimation uncertainty. The Monte Carlo simulations results

present that the second-order bias corrected estimator has better behavior than the uncorrected

one.
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The paper is organized as follows. In Section 2, we review Newey and Powell (1987) to introduce

the ALS estimator, and present the moment condition of the ALS regression and the assumptions

used in this paper. In Section 3, we derive the second-order bias and MSE of the conditional ALS

regression estimators. In Section 4, a special case of the ALS regression model without a covariate

is considered, which gives the unconditional ALS estimator. In Section 5, we present Monte Carlo

simulations. Section 6 concludes.

In this paper, fi(�) � fi (�jxi) denotes the density of yi conditional on xi; and f (j)i (�) denote the

jth order derivative of fi(�) for j � 1. The jth-order partial derivative of a matrix A(�) is de�ned

as rj�A(�). For a matrix A, kAk denotes the usual norm, [trace (AA0)]
1=2 : If A is a k � 1 vector,

then jjAjj = (A0A)1=2 : The Kronecker product is de�ned in the usual way. For an m� n matrix A

and a p�q matrix B; we have A
B as an mp�nq matrix. The X = E(X) denotes the expectation

of a random vector X.

2 Asymmetric Least Squares Estimation

2.1 Loss Functions

Consider a random variable y from distribution F (�): Then the linear regression model is

yi = x
0
i� + ui; (1)

where yi is a scalar, xi is a k � 1 vector, and ui is a scalar, i = 1; : : : ; N .

Given � 2 (0; 1); the quantile regression estimators �̂ (�) proposed by Koenker and Bassett

(1987), are obtained by minimizing

QN (�; �) =
NX
i=1

r�
�
yi � x0i�

�
; (2)

where r� (�) is the check loss function,

r� (�) � j� � 1 (� < 0)j � j�j : (3)

Newey and Powell (1987) considered a similar class of estimators. Given � 2 (0; 1); the asym-

metric least squares (ALS) estimators �̂ (�) can be obtained by minimizing

RN (�; �) =

NX
i=1

��
�
yi � x0i�

�
; (4)
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where it replaces the check loss function by the following asymmetric least squares loss function,

�� (�) � j� � 1 (� < 0)j � �2: (5)

ALS gives weight of � and (1� �) to the squared errors depending upon the sign of errors ui. A

value of � = 0:5 reproduces ordinary least squares (OLS) estimation. Newey and Powell (1987)

showed that ALS estimators can be computed by iterated weighted least squares,

b� (�) = " NX
i=1

���� � 1(yi < x0ib� (�))���xix0i
#�1 NX

i=1

���� � 1(yi < x0ib� (�))���xiyi: (6)

We follow Newey and Powell (1987) and refer to � (�) = x0i� as the � -conditional expectile of

yi: There is an extensive literature on the relationship and di¤erence of quantile and expectile. In

general, an expectile � (�) is related to a quantile q (�). Yao and Tong (1996) showed that for any

� 2 (0; 1); there is a relationship that � (� (�)) = q (�) : Kuan et al. (2009) showed that an expectile

with a given � corresponds to quantiles with di¤erent � under distinct distribution, for example, for

a given � < 0:5; �(�) is larger for the distribution with thicker tails. The quantile depends only on

the probability of tails but not their magnitude. Therefore, quantile is insensitive to the magnitude

of extreme tails. Unlike quantile, the expectile is sensitive to magnitude of extreme tails.

Unlike the check loss function r� (�) ; which is not continuously di¤erentiable, the advantage of

ALS regression is that the asymmetric least squares loss function �� (�) is di¤erentiable in �; so

that �� (yi�x0i�) is di¤erentiable in �: See Pagan and Ullah (1999, pp. 240-241). Newey and Powell

(1987) investigated the moment conditions and asymptotic distribution of the ALS estimators. In

this paper, we use an alternative approach with the use of delta (generalized) function to derive

moment conditions. Our approach gives the identical results for the moment conditions and their

derivatives to those in Newey and Powell (1987). Given the asymmetric least squares loss function,

the k � 1 vector expectile estimators b� (�) can be obtained by solving
min
�
E[�� (yi � x0i�)] = E

h��� � 1(yi < x0i�)�� � �yi � x0i��2i : (7)

Equation (7) reduces to the standard least squares objective function when � = 0:5:

Newey and Powell (1987) indicated that �� (yi � x0i�) is continuously di¤erentiable in �: Then
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the population moment condition is

r1�E
�
�� (yi � x0i�)

�
= E

�
r1��� (yi � x0i�)

�
= E

�
r1�
��� � 1(yi < x0i�)�� � (yi � x0i�)2�+ 2E[j� � 1(yi < x0i�)j(yi � x0i�)(�xi)]: (8)

By the de�nition of the delta function in Appendix (subsection 7.2, Property B:1); we have 1(yi�

x0i� < 0) = 1(x
0
i� � yi � 0) = �(x0i� � yi): See Gelfand and Shilov (1964). Then

r1�1(yi � x0i� < 0) = r1��(x0i� � yi) =
d�(x0i� � yi)
d(x0i� � yi)

d(x0i� � yi)
d�

= x0i�(x
0
i� � yi):

The �rst term of the Equation (8) can be written as E[x0i�(x
0
i�� yi)(yi�x0i�)2]; which equals zero,

because according to Properties B:3 and B:4 of the Dirac delta function (see subsection 7.2), we

have

E[x0i�(x
0
i� � yi)(yi � x0i�)2] = E[x0i�(yi � x0i�)(yi � x0i�)2]

= E
�
x0iE

�
�(yi � x0i�)(yi � x0i�)2jxi

��
= E

�
x0i

Z +1

�1
�(yi � x0i�)(yi � x0i�)2fi(yi)dyi

�
= E

�
x0i(x

0
i� � x0i�)2fi(x0i�)

�
= 0;

where fi(x0i�) � fi(x
0
i�jxi) is the conditional density of yi evaluated at yi = x0i�; which equals to

the conditional density of the error evaluated at zero, i.e. fi(0jxi): Under the assumptions that we

will state shortly, the moment condition can be written as

r1�E
�
�� (yi � x0i�)

�
= 2E[j� � 1(yi < x0i�)j(yi � x0i�)(�xi)] (9)

� E [si(�)] ;

where si(�) � �2j� � 1(yi < x0i�)j(yi � x0i�)xi is the score function. This is the same as gi(�) in

Newey and Powell (1987, p. 844, line 2).

To get rid of the absolute value in (9), we �rst rewrite the score function as

si(�) = 2j� � 1(yi < x0i�)j(yi � x0i�)(�xi)

= 2
�
1(yi < x

0
i�)� �

�
xi
��yi � x0i��� :
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Since 1(yi � x0i�) = 1� 1(yi < x0i�); we then have

��yi � x0i��� = 1(yi � x0i�)
�
yi � x0i�

�
+ 1(yi < x

0
i�)
�
yi � x0i�

�
=

�
1� 1(yi < x0i�)

� �
yi � x0i�

�
+ 1(yi < x

0
i�)
�
yi � x0i�

�
=

�
yi � x0i�

� �
1� 2 � 1(yi < x0i�)

�
:

Thus, the score function can be rewritten as

si(�) = 2
�
1(yi < x

0
i�)� �

�
xi
��yi � x0i���

= 2
�
1(yi < x

0
i�)� �

�
xi
�
yi � x0i�

� �
1� 2 � 1(yi < x0i�)

�
= 2xi

�
yi � x0i�

� �
(2� � 1)1(yi < x0i�)� �

�
:

The sample moment condition for (9) is denoted as

	N (�) =
1

N

NX
i=1

si(�):
1 (10)

2.2 Assumptions

Now we discuss the assumptions under which theorems and corollaries stated below will be true.

We argue that these assumptions encompass a wide variety of ALS models, which means that the

analytical results are of wide interest and applicability. The �rst-order asymptotic properties of

the ALS model has been investigated by Newey and Powell (1987). To develop the higher-order

asymptotic properties of the ALS model, we follow Assumptions A-C in RSU (1996), which are

similar to some of the assumptions in Newey and Powell (1987). Assumptions A-C of RSU (1996)

is stated as follows.

Assumption A. The jth-order derivative of score function si(�) exists in a neighborhood of �0,

i = 1; 2; : : : ; and E
rj�si(�0)2 <1:

Assumption B. For some neighborhood of �0; (r	N (�))�1 = Op(1):
1Expressing this score function in matrix notation, s (�) = 2 (2� � 1)X 0u� � 2�X 0u; where X 0 = (x1; :::; xN ) ;

u = (u1; :::; uN )
0 ; and u� = (u11 (u1 < 0) ; :::; uN1 (uN < 0))

0 ; it may be possible to rewrite the bias expression in
the next section. However, due to some di¢ culty in taking derivatives of the score and using the properties of the
delta functions in matrix form, we leave this direction for future endeavor.
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Assumption C. jjrjqi(�)�rjqi(�0)jj 6 jj���0jjMi for some neighborhood of �0; where EjMij 6

C 61; i = 1; 2; : : : :

Assumption A implies that for the ALS mode, the jth-order derivative of si(�) exists in a neigh-

borhood of �0, and E jjxijj4 < 1; E
h
jjxijjj+2 f (j�1)i (0jxi)

i2
< 1; for j � 1; 2; where f (0)i (0jxi) =

fi(0jxi) is the conditional density of ui given xi evaluated at zero. Assumption A for ALS model

requires that the conditional density of yi given xi is continuous, and slightly higher than fourth

moments of xi are bounded, which are the same as Assumptions 2 and 3 in Newey and Powell

(1987). In the following, we present how we derive the speci�c expression in Assumption A for

the ALS model. Note that � is a k � 1 vector, where xi is a k � 1 vector, si(�) is a k � 1 vector,

�(x0i� � yi) is a scalar.

The derivative of a k�1 vector si(�) with respect to a k�1 vector � is a k�k matrix r1�si(�).

Then the �rst-order derivative of si(�) exists,

r1�si(�) = r1�
�
2xi
�
yi � x0i�

� �
(2� � 1)1(yi < x0i�)� �

��
= �2xix0i

�
(2� � 1)1(yi < x0i�)� �

�
+ 2 (2� � 1)xix0i

�
yi � x0i�

�
�(x0i� � yi)

= �2 (2� � 1)xix0i1(yi < x0i�) + 2�xix0i + 2 (2� � 1)xix0i
�
yi � x0i�

�
�(x0i� � yi):

Using Properties A:2; B:3 and B:4 in Appendix, we obtain

E
r1�si(�0) = E

�xix0i ��2 (2� � 1)1(yi < x0i�) + 2� + 2 (2� � 1) �yi � x0i�� �(x0i� � yi)��
= E

�xix0i ��2 (2� � 1)1(yi < x0i�) + 2� + 0��
= E

�xix0iE ���2 (2� � 1)1(yi < x0i�) + 2�� jxi��
= E

�xix0iE [(�2 (2� � 1) + 2�) � + 2� (1� �)]�
= 4�(1� �)E kxik2

< 1;

which is the same results as the derivative r2�R (�; �) in Newey and Powell (1987, p. 844 equation

A.11). The second-order derivative of a k � 1 vector si(�) with respect to a k � 1 vector � is a

k � k2 matrix r2�si(�).
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The second order derivative of si(�) exists,

r2�si(�) = r1�
�
�2 (2� � 1)xix0i1(yi < x0i�) + 2�xix0i + 2 (2� � 1)xix0i

�
yi � x0i�

�
�(x0i� � yi)

�
= �2 (2� � 1)

�
xix

0
i

�

 x0i�(x0i� � yi) + 2 (2� � 1)

�
xix

0
i

�


�
�x0i

�
�(x0i� � yi)

+2 (2� � 1)
�
xix

0
i

�

 x0i

�
yi � x0i�

�
�(1)(x0i� � yi)

= �4 (2� � 1)
�
xix

0
i

�

 x0i�(x0i� � yi) + 2 (2� � 1)

�
xix

0
i

�

 x0i

�
yi � x0i�

�
�(1)(x0i� � yi);

where the derivative of a scalar �(x0i� � yi) with respect to a k � 1 vector � is a 1 � k row vector

r1��(x0i� � yi): We denote

r1��(x0i� � yi) =
d�(x0i� � yi)
d(x0i� � yi)

d(x0i� � yi)
d�

= x0i�
(1)(x0i� � yi);

where �(1)(x0i� � yi) is a scalar. Using the properties in Appendix A:3; B:5 and B:6; we obtain

E
r2�si(�0)2 = (2� � 1)E

�xix0i�
 x0i h2 �yi � x0i�� �(1)(x0i� � yi)� 4�(x0i� � yi)i
= (2� � 1)E

�xix0i�
 x0i h2E h�yi � x0i�� �(1)(x0i� � yi)jxii� 4E ��(x0i� � yi)jxi�i
= (2� � 1)Ejj

�
xix

0
i

�

 x0i[�2

Z
�(1)(yi � x0i�)

�
yi � x0i�

�
fi(yi)dyi

�4
Z
�(yi � x0i�)fi(yi)dyi]jj

= (2� � 1)Ejj
�
xix

0
i

�

 x0i[2

Z
�(yi � x0i�)

�
fi(yi) + (yi � x0i�)f

(1)
i (yi)

�
dyi

�4fi(x0i�)]jj

= (2� � 1)E
�xix0i�
 x0i �2Z �(yi � x0i�)fi(yi)dyi + 0� 4fi(x0i�)

�
= (2� � 1)E

�xix0i�
 x0i �2fi(x0i�) + 0� 4fi(x0i�)�
= �2 (2� � 1)E

h
fi(x

0
i�) kxik

3
i

< 1:

The third-order derivative of a k � 1 vector si(�) with respect to a k � 1 vector � is a k � k3

matrix r3�si(�). The third order derivative of si(�) exists,

r3�st() = r1�
h
�4 (2� � 1)

�
xix

0
i

�

 x0i�(x0i� � yi) + 2 (2� � 1)

�
xix

0
i

�

 x0i

�
yi � x0i�

�
�(1)(x0i� � yi)

i
= �4 (2� � 1)

�
xix

0
i

�

 x0i 
 x0i�(1)(x0i� � yi) + 2 (2� � 1)

�
xix

0
i

�


�
�x0i

�

 x0i�(1)(x0i� � yi)

+2 (2� � 1)
�
xix

0
i

�

 x0i 
 x0i

�
yi � x0i�

�
�(2)(x0i� � yi)

=
�
xix

0
i

�

 x0i 
 x0i

h
�6 (2� � 1) �(1)(x0i� � yi) + 2 (2� � 1)

�
yi � x0i�

�
�(2)(x0i� � yi)

i
;
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where the derivative of a 1�k row vector r1��(x0i�� yi) with respect to a k� 1 vector � is a 1�k2

row vector r2��(x0i� � yi): We denote

r2��(x0i� � yi) = r1�x0i�(1)(x0i� � yi) = x0i 

d�(1)(x0i� � yi)
d(x0i� � yi)

d(x0i� � yi)
d�

= x0i 
 x0i�(2)(x0i� � yi);

where �(2)(x0i� � yi) is a scalar. Using Properties A:4; B:6 and B:7 in Appendix, we obtain

E
r3�si(�0) = (2� � 1)E

�xix0i�
 x0i 
 x0i h�6�(1)(x0i� � yi) + 2�(2)(x0i� � yi)(yi � x0i�)i
= (2� � 1)Ejj

�
xix

0
i

�

 x0i 
 x0i[�6E

h
�(1)(x0i� � yi)jxi

i
+2E

h
�(2)(x0i� � yi)(yi � x0i�)jxi

i
]jj

= (2� � 1)Ejj
�
xix

0
i

�

 x0i 
 x0i[6

Z
�(1)(yi � x0i�)fi(yi)dyi

+2

Z
�(2)(x0i� � yi)(yi � x0i�)fi(yi)dyi]jj

= (2� � 1)Ejj
�
xix

0
i

�

 x0i 
 x0i[�6

Z
�(yi � x0i�)fi(1)(yi)dyi

+2

Z
�(yi � x0i�)

h
2fi

(1)(yi) + (yi � x0i�)f
(2)
i (yi)

i
dyi]jj

= (2� � 1)E
�xix0i�
 x0i 
 x0i h�6f (1)i (x0i�) + 4f

(1)
i (x0i�) + 0

i
= �2 (2� � 1)E

h
fi
(1)(x0i�) kxik

4
i

< 1:

Next, we discuss Assumption B. For ALS models, Assumption B requires p lim
N!1

�
r1�	N (�)

��1
=�

lim
N!1

Er1�	N (�)
��1

=

�
lim
N!1

4�(1� �)E (xix0i)
��1

= O(1); that implies E (xix0i) is nonsingular,

which is the same as Assumption 4 of Newey and Powell (1987).

3 Second-order Bias and MSE of the ALS Estimators

The assumptions in RSU (1996) are necessary to obtain the stochastic expansion of b�; based on
which we derive the second-order bias of the ALS estimator. For the bias results in Theorems 1

and 3 we allow that xi and ui are not identically distributed but independent across i = 1; :::; N:

For independent and identically distributed (i.i.d.) xi and ui; the second-order bias and MSE can

be further simpli�ed since most of the cross-terms in the matrix multiplications drop out, which

will be stated in corresponding Corollaries 1 and 3.
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3.1 Bias

Theorem 1. Under Assumptions A-C, the second-order bias of the ALS estimators b� (�) up to
O(N�1) is

B
�b� (�)� =

1

N2

NX
i=1

4Q
�
(2� � 1)E

�
xix

0
iQxiui1(ui < 0)

�
� �2E

�
xix

0
iQxiui

�	
+
1

N

NX
i=1

(2� � 1)QE
��
xix

0
i

�

 x0ifi(0jxi)

�
� 1

N2

NX
i=1

4 (Q
Q)
�
� (2� � 1)E

�
(xi 
 xi)u2i1(ui < 0)

�
+�2E

�
(xi 
 xi)u2i

� �
; (11)

where Q =
�
4�(1� �) 1N

PN
i=1E [xix

0
i]
��1

; and fi(0jxi) is the conditional density of ui given xi

evaluated at ui = 0: �

Proof: Suppose xi and ui are not identically distributed, but independent across i = 1; :::; N:

Suppose yi has conditional density function fi (yjx) : To simplify the notation, we use fi (y) to

denote fi (yjx). As in Bao and Ullah (2007), the second-order bias of the ALS estimators b� (�) up
to O(N�1) is

B(b�) = Q �V d� 1
2
H2
�
d
 d

��
:

We have

	N (�) =
1

N

NX
i=1

si(�);

si(�) = 2xi
�
yi � x0i�

� �
(2� � 1)1(yi < x0i�)� �

�
;

H1 = r1�	N = r1�
1

N

NX
i=1

si =
1

N

NX
i=1

r1�si

=
1

N

NX
i=1

�
�2 (2� � 1)xix0i1(yi < x0i�) + 2�xix0i + 2 (2� � 1)xix0i

�
yi � x0i�

�
�(x0i� � yi)

�
;

H2 = r2�	N = r2�
1

N

NX
i=1

si =
1

N

NX
i=1

r2�si

=
1

N

NX
i=1

h
(2� � 1)

�
xix

0
i

�

 x0i

h
�4�(x0i� � yi) + 2

�
yi � x0i�

�
�(1)(x0i� � yi)

ii
;

9



H3 = r3�	N = r3�
1

N

NX
i=1

si =
1

N

NX
i=1

r3�si

=
1

N

NX
i=1

h
(2� � 1)

�
xix

0
i

�

 x0i 
 x0i

h
�6�(1)(x0i� � yi) + 2

�
yi � x0i�

�
�(2)(x0i� � yi)

ii
;

H1 = Er1�	N = 4�(1� �)
1

N

NX
i=1

E
�
xix

0
i

�
;

H2 = Er2�	N = �2(2� � 1)
1

N

NX
i=1

E
��
xix

0
i

�

 x0ifi(x0i�)

�
;

H3 = Er3�	N = �2(2� � 1)
1

N

NX
i=1

E
h�
xix

0
i

�

 x0i 
 x0i)fi(1)(x0i�)

i
;

Q =
�
H1
��1

=

 
4�(1� �) 1

N

NX
i=1

E
�
xix

0
i

�!�1
;

V = H1 �H1;

W = H2 �H2;

and

d = Q	N ;

where 	N ; si and d are all k� 1 vectors. H1; H1; Q; and V are all k� k matrixes, H2; H2 and W

10



are all k � k2 matrixes. H3 and H3 are k � k3 matrixes. Using Properties B:8 in Appendix,

V d = E
��
H1 �H1

�
Q	N

�
= E (H1Q	N )� E (	N )

= E

"
1

N

NX
i=1

�
�2 (2� � 1)xix0i1(yi < x0i�) + 2�xix0i + 2 (2� � 1)xix0i

�
yi � x0i�

�
�(x0i� � yi)

�
Q	N

#

=
1

N2

NX
i=1

E[�4(2� � 1)2xix0iQxi(yi � x0i�)1(yi < x0i�)

+4� (2� � 1)xix0iQxi(yi � x0i�)1
�
yi < x

0
i�
�

+4� (2� � 1)xix0iQxi(yi � x0i�)1
�
yi < x

0
i�
�

�4�2xix0iQxi(yi � x0i�)

+4� (2� � 1)2 xix0iQxi(yi � x0i�)2�(x0i� � yi)1
�
yi < x

0
i�
�

�4� (2� � 1)xix0iQxi(yi � x0i�)2�
�
yi � x0i�

�
]

=
1

N2

NX
i=1

�
4 (2� � 1)E

�
xix

0
iQxi(yi � x0i�)1(yi < x0i�)

�
� 4�2E

�
xix

0
iQxi(yi � x0i�)

�	
;

and

d
 d = E [(Q	N 
Q	N )] = E [(Q
Q) (	N 
	N )]

= (Q
Q)E [(	N 
	N )] =
1

N2

NX
i=1

(Q
Q)E (si 
 si)

=
1

N2

NX
i=1

(Q
Q)E
h
4 (xi 
 xi) (yi � x0i�)2

�
(2� � 1)1(yi < x0i�)� �

�2i
=

1

N2

NX
i=1

4 (Q
Q)
�

�2E
�
(xi 
 xi) (yi � x0i)2

�
� (2� � 1)E

�
(xi 
 xi) (yi � x0i�)21(yi < x0i�)

� � :
Therefore, the second-order bias of b� up to O(N�1) can be rewritten as

B
�b� (�)� = Q

�
V d� 1

2
H2
�
d
 d

��
=

1

N2

NX
i=1

4Q
�
(2� � 1)E

�
xix

0
iQxi(yi � x0i�)1(yi < x0i�)

�
� 4�2QE

�
xix

0
iQxi(yi � x0i�)

�	
+
1

N

NX
i=1

(2� � 1)QE
��
xix

0
i

�

 x0ifi(x0i�)

�
� 1

N2

NX
i=1

4 (Q
Q)
�
� (2� � 1)E

�
(xi 
 xi) (yi � x0i�)21(yi < x0i�)

�
+�2E

�
(xi 
 xi) (yi � x0i�)2

� �
;
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where Q =
�
4�(1� �) 1N

PN
i=1E [xix

0
i]
��1

: Since the conditional density of yi given xi evaluated at

yi = x
0
i� is the same as the conditional density of ui given xi evaluated at ui = 0: We use fi (0jxi)

to denote the conditional density of ui given xi evaluated at ui = 0; which completes the proof of

Theorem 1. �

Corollary 1. Under Assumptions A-C, when xi and ui are i.i.d., the second-order bias of b� (�)
up to O(N�1) is

B
�b� (�)� =

1

N
4Q
�
(2� � 1)E

�
xix

0
iQxiui1(ui < 0)

�
� �2E

�
xix

0
iQxiui

�	
+
1

N
4 (2� � 1)QE

��
xix

0
i

�

 x0if(0)

�
(Q
Q)

�
� (2� � 1)E

�
(xi 
 xi)u2i1(ui < 0)

�
+�2E

�
(xi 
 xi)u2i

� �
;

where Q = (4�(1� �)E [xix0i])
�1 : �

Since fi(0jxi) denotes the conditional density of ui evaluated at the ui = 0. When xi and ui are

i.i.d, the densities fi(�) are identical, and we use f(�) to denote the conditional density of ui:When xi

and ui are i.i.d., the conditional density of ui is the same as unconditional density, f(0jxi) = f (0) :

Remark 1.1. When xi and ui are i.i.d., and k = 1; we observe that xi; 	N ; si; d; H1; H1; Q;

V; H2; H2; W; H3; H3 are all scalars, and the second-order bias of b� (�) up to O(N�1) can be

rewritten as

B
�b� (�)� =

1

N

(
(2� � 1)E

�
x3iui1(ui < 0)

�
4�2(1� �)2

�
E
�
x2i
��2 �

E
�
x3iui

�
4(1� �)2

�
E
�
x2i
��2
)

+
1

N

(
(2� � 1)E

�
x3i
�
f(0)E

�
x2iu

2
i

�
16�(1� �)3

�
E
�
x2i
��3 �

(2� � 1)2E
�
x3i
�
f(0)E

�
x2iu

2
i1(ui < 0)

�
16�3(1� �)3

�
E
�
x2i
��3

)
:

Remark 1.2. The second-order bias of b� (�) goes to zero as the sample size goes to in�n-
ity. The second-order bias of b� (�) is larger at the extreme expectiles of a distribution, be-
cause (i) as � goes up toward 1 or down toward 0, Q also goes up; and (ii) (2� � 1) = [� (1� �)]

is monotonic in � ; and equals to zero at � = 0:5; then as � goes down to 0.5 from 1 or up

to 0.5 from 0, in equation (11), 1
N2

PN
i=1 4Q f(2� � 1)E [xix0iQxiui1(ui < 0)]g goes to zero, and

1
N

PN
i=1 (2� � 1)QE [(xix0i)
 x0ifi(0jxi)]� 1

N2

PN
i=1 4 (Q
Q)

�
� (2� � 1)E

�
(xi 
 xi)u2i1(ui < 0)

�
+�2E

�
(xi 
 xi)u2i

� �

12



also goes to zero, therefore, the only term left is 1
N2

PN
i=1 4Q

�
��2E [xix0iQxiui]

	
; Therefore, the

second-order bias of b� (�) is larger at the extreme expectiles of a distribution.
Remark 1.3. The objective function of ALS model reduces to the standard least-squares objective

function when � = 0:5: In this case, the second-order bias of b� (�) up to O(N�1) equals the second-

order bias of the OLS estimator. The OLS estimator is unbiased because E (uijxi) = 0.

Now, we derive the MSE of the ALS estimator of order up to O
�
N�2� in Theorem 2. For

simplicity, we make an additional assumption that xi and ui are not only identically distributed

but also independent and k = 1. The MSE result when xi and ui are independent but not identically

distributed as we did for the bias result in Theorem 1 can be easily obtained using the same method

but not presented here for simplicity.

3.2 MSE

Theorem 2. Under Assumptions A-C, in the ALS regression model, suppose xi and ui are i.i.d.

and k=1, the MSE of the ALS estimator b� (�) up to O(N�2) is

M
�b� (�)� =

1

N
4Q2C1 �

1

N2
16Q3C3 +

1

N2
8Q4C1 �

1

N2
Q416(2� � 1)E

�
x3i
�
f(0)C4

+
1

N2
96Q4C22 +

1

N2
48Q4

n
� (1� �)E

�
x4i
�
� 4�2(1� �)2

�
E
�
x2i
��2o

C1

+
1

N2
384Q5(2� � 1)E

�
x3i
�
f(0)C1C2 +

1

N2
240Q6(2� � 1)2

�
E
�
x3i
��2
[f(0)]2C21

+
1

N2
32Q5(2� � 1)E

�
x4i
�
f (1)(0)C21 ; (12)

where

Q =
�
4�(1� �)E

�
x2i
���1

;

C1 = E
�
� (2� � 1)x2iu2i1(ui < 0)

�
+ E

�
�2x2iu

2
i

�
;

C2 = E
�
(2� � 1)x3iui1(ui < 0)

�
� E

�
�2x3iui

�
;

C3 = E
�
� (2� � 1)

�
�2 � � + 1

�
x4iu

2
i1(ui < 0)

�
+ E

�
�3x4iu

2
i

�
;

C4 = E
�
(2� � 1)

�
�2 � � + 1

�
x3iu

3
i1(ui < 0)

�
� E

�
�3x3iu

3
i

�
;

and f(0) is the density of ui evaluated at ui = 0; f (1)(0) is the �rst derivative of the density of ui

evaluated at ui = 0. �
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Proof: Following RSU (1996), the MSE of the ALS estimator b� (�) up to O �N�2� is
M(b�) = 1

N
A1 +

1

N2

�
A2 +A

0
2

�
+

1

N2

�
A3 +A4 +A

0
4

�
where 1

NA1 = E(a�1=2a
0
�1=2);

1
N2 (A2 +A

0
2) = E(a�1a

0
�1=2+a�1=2a

0
�1);

1
N2 (A3 +A4 +A

0
4) = E(a�1a

0
�1+

a�3=2a
0
�1=2 + a�1=2a

0
�3=2):

Suppose xi and ui are i.i.d.: For ALS estimators when k = 1; i = 1; : : : ; N; and j = 1; : : : ; N;

we have

A1 = d2i ;

A2 = �QVid2i +
1

2
QH2d3i ;

A3 = 2Q
2ViVjdidj +Q

2V 2i d
2
i +

3

4
Q2H2

2
d2i d

2
j � 3Q

2H2Vidid2j ;

A4 = Q
2V 2i d

2
i + 2Q

2ViVjdidj �
9

2
Q2H2Vidid2j +

3

2
QWidid2j +

3

2
Q2H2

2
d2i d

2
j �

1

2
QH3d2i d

2
j ;

where H1 = r1�si; H1 = r1�si; H2 = r2�si; H2 = r2�si; H3 = r3�si; H3 = r3�si; Q =
�
H1
��1

; and

d = Q	N =
1

N

NX
i=1

di =
1

N

NX
i=1

Qsi;

V = r1�	N �r1�	N =
1

N

NX
i=1

Vi =
1

N

NX
i=1

�
r1�si �r1�si

�
;

W = r2�	N �r2�	N =
1

N

NX
i=1

Wi =
1

N

NX
i=1

�
r2�si �r2�si

�
:

If xi and ui are i.i.d., then si; di; Vi;andWi are all i.i.d.. Since ViVjdidj = Vidi
2
; Vidid2j = Vidid

2
i ; and

d2i d
2
j = d

2
i

2
; then A3 and A4 can be simpli�ed as

A3 = 2Q
2Vidi

2
+Q2V 2i d

2
i +

3

4
Q2H2

2
d2i
2
� 3Q2H2 Vidid2i ;

A4 = Q
2V 2i d

2
i + 2Q

2Vidi
2 � 9

2
Q2H2 Vidid2i +

3

2
QWidid2i +

3

2
Q2H2

2
d2i
2
� 1
2
QH3d2i

2
:

Then the MSE up to O(N�2) can be written as

M(b�) =
1

N
d2i �

1

N2
2Q

�
Vid2i �

1

2
H2d3i

�
+

1

N2
6Q2Vidi

2
+

1

N2
3Q2V 2i d

2
i

+
1

N2
3QWidid2i �

1

N2
12Q2H2 Vidid2i +

1

N2

15

4
Q2H2

2
d2i
2
� 1

N2
QH3d2i

2
;
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where we have

Vid2i = E
��
H1 �H1

�
Q2s2i

�
= E

�
H1Q

2s2i
�
�QE

�
s2i
�
;

E
�
H1Q

2s2i
�
= E

���
�2 (2� � 1)x2i1(yi < x0i�) + 2�x2i + 2 (2� � 1)x2i

�
yi � x0i�

�
�(x0i� � yi)

��
Q2s2i

�
= Q2E

8>><>>:
8 (2� � 1)2 x4iu2i1(ui < 0)� 8�2 (2� � 1)x4iu2i1(ui < 0)

�8� (2� � 1)x4iu2i1(ui < 0) + 8�2x4iu2i
�8 (2� � 1)2 x4iu3i �(x0i� � yi)1(ui < 0)

+8�2 (2� � 1)x4iu3i �(x0i� � yi)

9>>=>>;
= Q2E

�
8 (2� � 1)

�
��2 + � � 1

�
x4iu

2
i1(ui < 0)

�
+Q2E

�
8�3x4iu

2
i

�
:

We also observe

d2i = Q2E(s2i )

= Q2E
h
4x2i (yi � x0i�)2

�
(2� � 1)1(yi < x0i�)� �

�2i
= Q2E

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
+Q2E

�
4�2x2iu

2
i

�
;

d3i = Q3E(s3i )

= Q3E
h
8x3i (yi � x0i�)3

�
(2� � 1)1(yi < x0i�)� �

�3i
= Q3E

�
8 (2� � 1)

�
�2 � � + 1

�
x3iu

3
i1(ui < 0)

�
�Q3E

�
8�3x3iu

3
i

�
;

Vidi
2
= 16Q2

�
(2� � 1)E

�
x3iui1(ui < 0)

�
� �2E

�
x3iui

�	2
;
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V 2i = E
h�
H1 �H1

�2i
= E

h
H2
1 � 2H1H1 +H1

2
i

= E
�
H2
1

�
� 2H1

2
+H1

2

= E
�
H2
1

�
�H1

2

= E
h�
�2 (2� � 1)x2i1(yi < x0i�) + 2�x2i + 2 (2� � 1)x2i

�
yi � x0i�

�
�(x0i� � yi)

�2i
�
�
4�(1� �)E

�
x2i
��2

= E

8>><>>:
4 (2� � 1)2 x4i1(yi < x0i�) + 4�2x4i � 8� (2� � 1)x4i1(yi < x0i�)

+4 (2� � 1)2 x4i (yi � x0i�)
2 (�(x0i� � yi))

2

�8 (2� � 1)2 x4i (yi � x0i�)1(yi < x0i�)�(x0i� � yi)
+8� (2� � 1)x4i (yi � x0i�) �(x0i� � yi)

9>>=>>;
�16�2(1� �)2

�
E
�
x2i
��2

= 4� (1� �)E
�
x4i
�
+ E

�
4 (2� � 1)2 x4i

Z �
yi � x0i�

�2 �
�(x0i� � yi)

�2
f(yi)dyi

�
�16�2(1� �)2

�
E
�
x2i
��2
;

Widi = E
��
H2 �H2

�
Qsi
�

= E (H2Qsi)�QH2E (si)

= E
nh
(2� � 1)x3i

h
�4�(x0i� � yi) + 2

�
yi � x0i�

�
�(1)(x0i� � yi)

ii
Qsi

o

= 2 (2� � 1)QE

8>><>>:
�4 (2� � 1)x4i (yi � x0i�) �(x0i� � yi)1(yi < x0i�)

+4�x4i (yi � x0i�) �(x0i� � yi)
+2 (2� � 1)x4i (yi � x0i�)

2 �(1)(x0i� � yi)1(yi < x0i�)
�2�x4i (yi � x0i�)

2 �(1)(x0i� � yi)

9>>=>>;
= 2 (2� � 1)QE

�
(2� � 1)x4i (yi � x0i�)

2 �(1)(x0i� � yi)�2 (2� � 1)x4i (yi � x0i�)
2 (�(x0i� � yi))

2

�2�x4i (yi � x0i�)
2 �(1)(x0i� � yi)

�
= 2 (2� � 1)QE

n
�x4i

�
yi � x0i�

�2
�(1)(x0i� � yi)� 2 (2� � 1)x4i

�
yi � x0i�

�2 �
�(x0i� � yi)

�2o
= 2 (2� � 1)QE

�
x4i
R
(yi � x0i�)

2 �(1)(yi � x0i�)f(yi)dyi
�2 (2� � 1)x4i

R
(yi � x0i�)

2 (�(x0i� � yi))
2 f(yi)dyi

�
= 2 (2� � 1)QE

(
x4i
R
(yi � x0i�)

2 �(yi � x0i�)
h
�2xi (yi � x0i�) f(yi) + (yi � x0i�)

2 f (1)(yi)
i
dyi

�2 (2� � 1)x4i
R
(yi � x0i�)

2 (�(x0i� � yi))
2 f(yi)dyi

)

= �4 (2� � 1)2QE
�
x4i

Z �
yi � x0i�

�2 �
�(x0i� � yi)

�2
f(yi)dyi

�
:

Since the conditional density of yi given xi evaluated at yi = x0i� is the same as the conditional
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density of ui given xi evaluated at ui = 0: Then the MSE up to O(N�2) can be written as

M
�b� (�)� =

1

N
d2i �

1

N2
2Q

�
Vid2i �

1

2
H2d3i

�
+

1

N2
6Q2Vidi

2
+

1

N2
3Q2V 2i d

2
i

+
1

N2
3QWidid2i �

1

N2
12Q2H2 Vidid2i +

1

N2

15

4
Q2H2

2
d2i
2
� 1

N2
QH3d2i

2

=
1

N
Q2E

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
+
1

N
Q2E

�
4�2x2iu

2
i

�
� 1

N2
2Q

�
Q2E

�
8 (2� � 1)

�
��2 + � � 1

�
x4iu

2
i1(ui < 0)

�
+Q2E

�
8�3x4iu

2
i

�
�QE

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
�QE

�
4�2x2iu

2
i

� �
� 1

N2
2Q(2� � 1)E

�
x3i f(0)

� �
Q3E

�
8 (2� � 1)

�
�2 � � + 1

�
x3iu

3
i1(ui < 0)

�
�Q3E

�
8�3x3iu

3
i

�	
+
1

N2
6Q216Q2

�
(2� � 1)E

�
x3iui1(ui < 0)

�
� �2E

�
x3iui

�	2
+
1

N2
3Q2

(
4� (1� �)E

�
x4i
�
+ E

h
4 (2� � 1)2 x4i

R
(yi � x0i�)

2 (�(x0i� � yi))
2 f(yi)dyi

i
�16�2(1� �)2

�
E
�
x2i
��2

)
�
�
Q2E

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
+Q2E

�
4�2x2iu

2
i

��
� 1

N2
12Q (2� � 1)2QE

�
x4i

Z �
yi � x0i�

�2 �
�(x0i� � yi)

�2
f(yi)dyi

�
�
�
Q2E

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
+Q2E

�
4�2x2iu

2
i

��
+
1

N2
12Q22(2� � 1)E

�
x3i f(0)

� �
4 (2� � 1)QE

�
x3iui1(ui < 0)

�
� 4�2QE

�
x3iui

�	
�
�
Q2E

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
+Q2E

�
4�2x2iu

2
i

��
+
1

N2

15

4
Q24(2� � 1)2

�
E
�
x3i f(0)

��2 �
Q2E

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
+Q2E

�
4�2x2iu

2
i

��2
+
1

N2
Q2(2� � 1)E

h
x4i f

(1)(0)
i �
Q2E

�
�4 (2� � 1)x2iu2i1(ui < 0)

�
+Q2E

�
4�2x2iu

2
i

��2
:

This is as stated in Theorem 2. �

Remark 2. The asymptotic variance of the expectile estimator b� (�) equals the �rst-order term
of M

�b� (�)� in (12) in Theorem 2. Newey and Powell (1987) derived the �rst-order asymptotic

distribution of the ALS estimator as follows

p
N(b� � �0) d! N(0;W�1VW�1);

where wi (�) = j� � 1(ui < 0)j ; W = E
�
wi (�)x

2
i

�
; V = E

�
w2i x

2
iu
2
i

�
: It can be shown that the

asymptotic variance, 1
NW

�1VW�1; equals to 1
N 4Q

2C1; which is the �rst-order term in (12).
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4 Special Case: Unconditional ALS Model

In this section, we consider a special case of the ALS regression model with xi = 1; i.e., the ALS

model without any covariate, which gives the unconditional ALS estimator. Consider a random

variable y from distribution F (�): Then the unconditional ALS model is

yi = � + ui; (13)

where yi is a scalar and ui is a scalar, i = 1; : : : ; N . Given � 2 (0; 1); ALS estimators �̂ (�) can be

obtained by minimizing

RN (�; �) =
NX
i=1

�� (yi � �) ;

where the asymmetric least squares loss function is

�� (�) � j� � 1 (� < 0)j � �2:

For this simpler case, we now present the bias result in Theorem 3 and the MSE result in Theorem

4.

4.1 Bias

Theorem 3. Under Assumptions A-C, suppose that ui is independent but not identically distrib-

uted, the second-order bias of the unconditional ALS estimator b� (�) up to O(N�1) is

B
�b� (�)� =

1

N2

NX
i=1

4Q2
�
(2� � 1)E [ui1(ui < 0)]� �2E (ui)

	
+
1

N

NX
i=1

4 (2� � 1)Q3fi(0)

� 1

N2

NX
i=1

�
� (2� � 1)E

�
u2i1(ui < 0)

�
+ �2E

�
u2i
�	
; (14)

where Q = [4� (1� �)]�1; and fi(0) is the density of ui evaluated at ui = 0: �

Proof: Consider the linear ALS regression model yi = � + ui; where yi is a scalar, ui is the error

de�ned to be the di¤erence between yi and its � -expectile �; we call b� (�) as the unconditional
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ALS estimator. Given the asymmetric least squares loss function, the ALS estimators b� (�) can be
obtained by solving

min
�
E[�� (yi � �)] = E

h
j� � 1(yi < �)j � (yi � �)2

i
:

Then the population moment condition is

r1�E [�� (yi � �)] = E
�
r1��� (yi � �)

�
= E

�
r1� j� � 1(yi < �)j � (yi � �)2

�
� 2E[j� � 1(yi < �)j(yi � �)]:

By the de�nition of the Dirac delta function in Appendix B:1; we have 1(yi � � < 0) = 1(� � yi �

0) = �(� � yi): Then

r1�1(yi � � < 0) = �(� � yi):

According to Property B:4 of the delta function in Appendix, we have �(� � yi) = �(yi � �):

According to Property B:3 of the Dirac delta function, we have

E[�(� � yi)(yi � �)] = E[�(yi � �)(yi � �)]

=

Z +1

�1
�(yi � �)(yi � �)f(yi)dyi

= (� � �)f(�)

= 0:

Thus, the moment condition can be written as

r1�E[�� (yi � �)] = �2E[j� � 1(yi < �)j(yi � �)] � E[si(�)];

where si(�) is the score function. To get rid of the absolute value, �rst, we can rewrite the score

function as

si(�) = �2j� � 1(yi < �)j(yi � �)

= 2 (1(yi < �)� �) jyi � �j :

Since 1(yi � x0i�) = 1� 1(yi < x0i�); we have

jyi � �j = 1(yi � �) (yi � �) + 1(yi < �) (yi � �)

= [1� 1(yi < �)] (yi � �) + 1(yi < �) (yi � �)

= (yi � �) [1� 2 � 1(yi < �)] :
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Then, the score function can be written as

si(�) = 2 (1(yi < �)� �) jyi � �j

= 2 (1(yi < �)� �) (yi � �) [1� 2 � 1(yi < �)]

= 2 (yi � �) [(2� � 1)1(yi < �)� � ] :

Therefore, the sample moment condition can be written as

	N (�) =
1

N

NX
i=1

si(�); (15)

where si(�) = 2 (yi � �) [(2� � 1)1(yi < �)� � ].

The second-order bias up to O(N�1) is

B(b�) = Q �V d� 1
2
H2
�
d
 d

��
;

where

H1 = r1�	N

=
1

N

NX
i=1

r1� [2 (yi � �) [(2� � 1)1(yi < �)� � ]]

=
1

N

NX
i=1

[�2 (2� � 1)1(yi < �) + 2� + 2 (2� � 1) (yi � �) �(� � yi)] ;

H2 = r2�	N

=
1

N

NX
i=1

r1� [�2 (2� � 1)1(yi < �) + 2� + 2 (2� � 1) (yi � �) �(� � yi)]

=
1

N

NX
i=1

h
�4 (2� � 1) �(� � yi) + 2 (2� � 1) (yi � �) �(1)(� � yi)

i
;

H3 = r3�	N

=
1

N

NX
i=1

r3�
h
�4 (2� � 1) �(� � yi) + 2 (2� � 1) (yi � �) �(1)(� � yi)

i
=

1

N

NX
i=1

h
�6 (2� � 1) �(1)(� � yi) + 2 (2� � 1) (yi � �) �(2)(� � yi)

i
;
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H1 = Er1�	N

=
1

N

NX
i=1

E [�2 (2� � 1)1(yi < �) + 2� + 2 (2� � 1) (yi � �) �(� � yi]

=
1

N

NX
i=1

E [�2 (2� � 1)1(yi < �) + 2� + 0]

= (�2 (2� � 1) + 2�) � + 2� (1� �)

= 4� (1� �) ;

H2 = Er2�	N

=
1

N

NX
i=1

E
h
�4 (2� � 1) �(� � yi) + 2 (2� � 1) (yi � �) �(1)(� � yi)

i
=

1

N

NX
i=1

�
�4 (2� � 1)

Z
�(yi � �)fi(yi)dyi � 2 (2� � 1)

Z
�(1)(yi � �) (yi � �) fi(yi)dyi

�

=
1

N

NX
i=1

�
�4 (2� � 1) fi(�) + 2 (2� � 1)

Z
�(yi � �)

�
fi(yi) + (yi � �)f (1)i (yi)

�
dyi

�

=
1

N

NX
i=1

[�4 (2� � 1) fi(�) + 2 (2� � 1) fi(�) + 0]

= �2 (2� � 1) 1
N

NX
i=1

fi(�);

H3 = Er3�	N

=
1

N

NX
i=1

E
h
�6 (2� � 1) �(1)(� � yi) + 2 (2� � 1) (yi � �) �(2)(� � yi)

i
=

1

N

NX
i=1

�
6 (2� � 1)

R
�(1)(yi � �)fi(yi)dyi

+2 (2� � 1)
R
�(2)(yi � �) (yi � �) fi(yi)dyi

�

=
1

N

NX
i=1

"
�6 (2� � 1)

R
�(yi � �)f (1)i (yi)dyi

+2 (2� � 1)
R
�(yi � �)

�
2f

(1)
i (yi) + (yi � �)f (2)i (yi)

�
dyi

#

=
1

N

"
NX
i=1

�6 (2� � 1) f (1)i (�) + 2 (2� � 1)
h
2f

(1)
i (�) + 0

i#

= �2 (2� � 1) 1
N

NX
i=1

f
(1)
i (�);

Q =
�
H1
��1

= [4� (1� �)]�1;
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V = H1 �H1;

W = H2 �H2;

and

d = Q	N :

fi(�) is the density of yi evaluated at yi = �: f
(1)
i (�) and f (2)i (�) are the �rst and second derivative

of the density of yi evaluated at yi = �, respectively. Since 	N ; si; d; H1; H1; Q; V; H2; H2; W;

H3; H3 are all scalars, then

V d = E
��
H1 �H1

�
Q	N

�
= E (H1Q	N )� E (	N )

= E

"
1

N

NX
i=1

[�2 (2� � 1)1(yi < �) + 2� + 2 (2� � 1) (yi � �) �(� � yi)]Q	N

#

=
1

N2

NX
i=1

E[�4(2� � 1)2Q(yi � x0i�)1(yi < �) + 4� (2� � 1)Q(yi � �)1 (yi < �)

+4� (2� � 1)Q(yi � �)1 (yi < �)� 4�2Q(yi � �)

+4� (2� � 1)2Q(yi � �)2�(� � yi)1 (yi < �)� 4� (2� � 1)Q(yi � �)2� (yi � �)]

=
1

N2

NX
i=1

�
4 (2� � 1)QE [(yi � �)1(yi < �)]� 4�2QE(yi � �)

	
;

d
 d =
1

N2

NX
i=1

Q2E
�
s2i
�

=
1

N2

NX
i=1

Q2E
h
4(yi � �)2 [(2� � 1)1(yi < �)� � ]2

i
=

1

N2

NX
i=1

4Q2
�
�2E

�
(yi � �)2

�
� (2� � 1)E

�
(yi � �)21(yi < �)

�	
:

Therefore, the second-order bias of b� up to O(N�1);of the unconditional ALS estimators b� can be
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written as

B
�b� (�)� = Q

�
V d� 1

2
H2
�
d
 d

��
=

1

N2

NX
i=1

4Q2
�
(2� � 1)E [ui1(ui < 0)]� �2E(ui)

	
+
1

N

NX
i=1

(2� � 1)Qfi(�)
1

N2

NX
i=1

4Q2
�
� (2� � 1)E

�
u2i1(ui < 0)

�
+ �2E

�
u2i
�	
;

where Q = [4� (1� �)]�1: Since the unconditional density of yi evaluated at yi = � is the same

as the unconditional density of ui evaluated at ui = 0: We use fi (0) to denote the unconditional

density of ui evaluated at ui = 0; which completes the proof of Theorem 3. �

Corollary 3. Under Assumptions A-C, when ui are i.i.d., the second-order bias of the uncondi-

tional ALS estimator b� (�) up to O(N�1) is

B
�b� (�)� =

1

N

�
(2� � 1)E [ui1(ui < 0)]

4�2(1� �)2 � E (ui)

4(1� �)2

�
+
1

N

(
(2� � 1) f(0)E

�
u2i
�

16�(1� �)3 �
(2� � 1)2 f(0)E

�
u2i1(ui < 0)

�
16�3(1� �)3

)
:

�

Since fi(0) denotes the unconditional density of ui evaluated at the ui = 0. When ui are i.i.d.,

the densities fi(�) are identical, and we use f(�) to denote the unconditional density of ui:

Remark 3.1. The second-order bias of b� (�) goes to zero as the sample size goes to in�nity. The
second-order bias of b� (�) is larger at the extreme expectiles of a distribution, because (i) as � goes
up toward 1 or down toward 0, Q also goes up; and (ii) (2� � 1) = [� (1� �)] is monotonic in � ;

and equals to zero at � = 0:5; then as � goes down to 0.5 from 1 or up to 0.5 from 0, in equa-

tion (14), 1
N2

PN
i=1 4Q

2 f(2� � 1)E [ui1(ui < 0)]g goes to zero, and 1
N

PN
i=1 4 (2� � 1)Q3fi(0) �

1
N2

PN
i=1

�
� (2� � 1)E

�
u2i1(ui < 0)

�
+ �2E

�
u2i
�	
also goes to zero, therefore, the only term left

is 1
N2

PN
i=1 4Q

2
�
��2E (ui)

	
. Therefore the second-order bias of b� (�) is larger at the extreme

extreme expectiles of a distribution.

Remark 3.2. The objective function of the ALS model reduces to the standard least-squares

objective function when � = 0:5: In this case, the second-order bias of b� (�) up to O(N�1) equals

the second-order bias of the OLS estimator. The OLS estimator is unbiased because E (ui) = 0.
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4.2 MSE

Theorem 4. Under Assumptions A-C, suppose ui is i.i.d., the MSE of the unconditional ALS

estimators b� (�) up to O(N�2) is

M
�b� (�)� =

1

N
4Q2C1 �

1

N2
16Q3C3 +

1

N2
8Q4C1 �

1

N2
Q416(2� � 1)f (0)C4

+
1

N2
96Q4C22 +

1

N2
48Q4

n
� (1� �)� 4�2 (1� �)2

o
C1

+
1

N2
384Q5(2� � 1)f(0)C1C2 +

1

N2
240Q6(2� � 1)2 [f(0)]2C21

+
1

N2
32Q5(2� � 1)f (1)(0)C21 : (16)

where

Q = [4� (1� �)]�1;

C1 = E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�
;

C2 = E [(2� � 1)ui1(ui < 0)]� E
�
�2ui

�
;

C3 = E
�
� (2� � 1)

�
�2 � � + 1

�
u2i1(ui < 0)

�
+ E

�
�3u2i

�
;

C4 = E
�
(2� � 1)

�
�2 � � + 1

�
u3i1(ui < 0)

�
� E

�
�3u3i

�
;

and f(0) is the density of ui evaluated at ui = 0; f (1)(0) is the �rst derivative of the density of ui

evaluated at ui = 0. �

Proof: By Theorem 2, when xi = 1; the MSE of the unconditional ALS estimator b� (�) up to
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O
�
N�2� is
M
�b� (�)� =

1

N
4Q2

�
E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�	
� 1

N2
16Q3

�
E
�
� (2� � 1)

�
�2 � � + 1

�
u2i1(ui < 0)

�
+ E

�
�3u2i

�	
+
1

N2
8Q2

�
E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�	
� 1

N2
Q416(2� � 1)f(0)

�
E
�
(2� � 1)

�
�2 � � + 1

�
u3i1(ui < 0)

�
� E

�
�3u3i

�	
+
1

N2
96Q4

�
E [(2� � 1)ui1(ui < 0)]� E

�
�2ui

�	2
+
1

N2
48Q4

�
� (1� �)

�
4�2 � 4� + 1

�	 �
E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�	
� 1

N2
48Q4 (2� � 1)2

�
E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�	
+
1

N2
384Q5(2� � 1)f(0)

�
E [(2� � 1)ui1(ui < 0)]� E

�
�2ui

�	
�
�
E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�	
+
1

N2
240Q6(2� � 1)2 [f(0)]2

�
E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�	2
+
1

N2
32Q5(2� � 1)f (1)(0)

�
E
�
� (2� � 1)u2i1(ui < 0)

�
+ E

�
�2u2i

�	2
:

This is as stated in Theorem 4. �

5 Monte Carlo Simulation

Now we give some numerical calculations to present the second-order bias results by Sections 3 and

4. The goal of the data generating process (DGP) is to let the error term ui; in the ALS regression

model yi = x0i� + ui; satis�es that the � -conditional expectile of ui given xi is zero. Newey and

Powell (1987, p. 823) and Kuan, Yeh, and Hsu (2009) showed that the �rst order condition of

minimizing RN (�; �) is

�
R1
�(�) (y � � (�)) dF (y) + (� � 1)

R �(�)
�1 (� (�)� y) dF (y) = 0; (17)

so that the expectile � (�) = x0� (�) satis�es

�

1� � =
R �(�)
�1 (� (�)� y) dF (y)R1
�(�) (y � � (�))dF (y)

: (18)

If we set the true � to be zero, then yi have the same distribution as ui: To generate ui from

uniform distribution on [a; b] and � (�) = 0, we have
R �(�)
�1 (� (�)� y)dF (y) =

R 0
�1 (�y)dF (y) =
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R 0
a (�y)

1
b�ady =

a2

2(b�a) ; and
R1
�(�) (y � � (�))dF (y) =

R1
0 ydF (y) =

R b
0 y

1
b�ady =

b2

2(b�a) : Then we

can get the relationship between a and b; i.e. a = �
q

�
1�� b: In the DGP, we generate the error term

ui from uniform distribution on [a; b] ; where a = �
p

�
1��R

1+
p

�
1��
; b = R

1+
p

�
1��
; and the range R = b� a:

For example, R = 4; � = 0:1; implies that ui is generated from U [�1; 3] ; the mean of ui is 1,

variance of ui is 4
3 , and � (0:1) = 0: The DGP of ui guarantees that the 0:1 conditional expectile

of ui given xi is zero. In addition, we can verify the relationship of quantile and expectile, that is

if ui follows U [�1; 3] ; then � (0:1) = q (0:25) = 0: We simulate xi from exponential distribution,

f(xi) = exp(�xi). Then, yi is simulated from yi = x0i� + ui: In this setup, k = 1; � = 0;

R = 4; N 2 f100; 300g : In this DGP, with knowledge of the distribution of fxi; uig, we know the

various expectations in the theorems. See Appendix in subsection 7.3, where we explain how those

expectations are computed in our Monte Carlo.

Following Newey and Powell (1987) and Kuan et al. (2009), we use the iterated weighted least

squares algorithm to compute the ALS estimator in equation (6). We use the OLS estimates as the

initial value of b� for the iterated weighted least squares estimates and iterate until the estimates
converge. The convergence was quick and did not depend on the choice of initial value of b�. We
repeat the Monte Carlo simulations 10,000 times and take the average.

Table 1 presents the simulation results when xi is generated form the exponential distribution.

Table 2 presents the simulation results when xi = 1. For each � , the �rst row is for bias and the

second row is for the mean squared error of the ALS estimator. For each panel, the �rst column

presents the Monte Carlo (MC) simulation bias and MSE of ALS estimators b�, the second column
presents the second-order bias and MSE derived by Theorems (Thm), the third column presents

the Monte Carlo (MC) simulation bias and MSE of the bias-corrected ALS estimators e�, wheree� � b� �B �b��. The Monte Carlo results are summarized as follows: (i) e� is numerically closer to
the true value � = 0 than b�; as the bias in b� has been substantially corrected; (ii) the magnitude of
bias and MSE is larger in extreme expectiles; (iii) the estimator is unbiased when � = 0:5; because

the ALS model reduces to the OLS model; and (iv) there are upward bias at lower expectiles and

downward bias at upper expectiles.
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6 Conclusions

This paper provides the results on the second-order bias and MSE of ALS regression models. The

second-order bias result enables an improved bias correction and thus to obtain improved ALS

estimations. We show that the second-order bias is much larger as the asymmetry is stronger,

and therefore the bene�t of the second-order bias correction is greater when we are interested in

extreme expectiles. The higher-order MSE result for the ALS estimation also enables us to better

understand the sources of estimation uncertainty. The Monte Carlo simulation indicates that the

second-order bias corrected ALS estimator has better behavior than the uncorrected ones.
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7 Appendix

7.1 Properties of a norm

A:1 If A is a k � 1 vector,

jjAjj =
�
tr
�
AA0

��1=2
=
�
A0A

�1=2
:

A:2 ����AA0���� = �tr �AA0AA0��1=2 = �tr �A0AA0A��1=2 = �A0AA0A�1=2 = A0A = jjAjj2 :
A:3

�����AA0�
A0���� =
�
tr
���
AA0

�

A0

� ��
AA0

�

A

��	1=2
=

�
tr
��
AA0AA0

�


�
A0A

���1=2
=

�
tr
�
A0AA0AA0A

��1=2
=

�
A0A

�3=2
= jjAjj3 :

A:4

�����AA0�
A0 
A0���� = tr
���
AA0

�

A0 
A0

� ��
AA0

�

A
A

��1=2
= tr

��
AA0AA0

�


�
A0 
A0

�
(A
A)

�1=2
= tr

��
AA0AA0

�

A0A
A0A

�1=2
= tr

��
A0AA0A

�
A0AA0A

�1=2
=

�
A0AA0A

�
=

�
A0A

�2
= kAk4

7.2 Properties of the Dirac delta function

B:1 The Heaviside unit step function is de�ned as �(z) = 0 for z < 0; �(z) = 1 for z � 0: The

Dirac delta function is de�ned as �(z) =d�(z)=dz; where �(z) = 0 for z < 0; �(z) = 1 for z = 0;

�(z) = 0 for z > 0:
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B:2
R +1
�1 �(z)dz = 1:

B:3
R +1
�1 �(z � a)f(z)dz = f(a); where f : R! R is a real function di¤erentiable around a 2 R:

B:4 �(z) = �(�z):

B:5
R +1
�1 �(1)(z � a)f(z)dz = �

R +1
�1 �(z � a)f (1)(z)dz = �f (1)(a):

B:6 �(1)(�z) = ��(1)(z); �(2)(�z) = �(2)(z):

B:7
R +1
�1 �(n)(z � a)f(z)dz = (�1)n

R +1
�1 �(z � a)f (n)(z)dz = (�1)nf (n)(a):

B:8 �(z)�(z) = 1
2�(z):

B:9 �(z)�(1)(z) = 1
2�
(1)(z)� (�(z))2 :

7.3 Calculation in Monte Carlo Simulation

In the Monte Carlo simulation in Section 5, with knowledge of the distribution of fxi; uig under

the data generating process (DGP), we know the various expectations in the theorems.

The DGP of ui guarantees that the � -conditional expectile of ui given xi is zero. We generate

the error term ui from the uniform distribution [a; b] ; where a = �
p

�
1��R

1+
p

�
1��
; b = R

1+
p

�
1��
; and we

set the range R = b� a = 4; then for each � ; we are able to calculate

E (ui) = (a+ b) =2 =

�
1�

r
�

1� �

�
b=2;

E
�
u2i
�
= [E (ui)]

2 + V (ui) =

�
1�

r
�

1� �

�2
b2=4 + 4=3;

E [ui1(ui < 0)] =

Z 0

a

1

b� auidui = �
a2

2(b� a) ;

E
�
u2i1(ui < 0)

�
=

Z 0

a

1

b� au
2
i dui = �

a3

3(b� a) ;

and f(0) = 1
b�a ; which is the density of ui evaluated at ui = 0:

For the simulation results in Table 1, we generate xi from the exponential distribution with the

density f(xi) = exp(�xi). Thus we have E
�
x2i
�
= 2; E

�
x3i
�
= 6; and E

�
x4i
�
= 24: We simulate yi

from yi = x
0
i� + ui, and set k = 1; � = 0; R = 4: Since in this setup xi and ui are both i.i.d., for

each � ; we have

Q =

 
4�(1� �) 1

N

NX
i=1

E
�
xix

0
i

�!�1
= [4� (1� �)E

�
x2i
�
]�1 = [8� (1� �)]�1;
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1

N2

NX
i=1

E
�
xix

0
iQxiui1(ui < 0)

�
=
1

N
QE

�
x3i
�
E [ui1(ui < 0)] = �

1

2N
Q

a2

(b� a) ;

1

N2

NX
i=1

E
�
xix

0
iQxiui

�
=
1

N
QE

�
x3i
�
E (ui) =

3

N
Q

�
1�

r
�

1� �

�
b;

1

N2

NX
i=1

E
��
xix

0
i

�

 x0ifi(0jxi)

�
=
1

N
E
�
x3i
�
f(0) =

6

N

1

b� a;

1

N2

NX
i=1

E
�
(xi 
 xi)u2i1(ui < 0)

�
=
1

N
E
�
x2i
�
E
�
u2i1(ui < 0)

�
= � 2

N

a3

3(b� a) ;

1

N2

NX
i=1

E
�
(xi 
 xi)u2i

�
=
1

N
E
�
x2i
�
E
�
u2i
�
=
1

N
E

�
1�

r
�

1� �

�
b+

8

3N
:

For the simulation results in Table 2, we generate xi = 1: We simulate yi from yi = x
0
i� + ui,

and set k = 1; � = 0; R = 4: Since in this setup xi and ui are both i.i.d., then for each � ; we have

Q = [4� (1� �)]�1;

1

N2

NX
i=1

QE [ui1(ui < 0)] = �
1

N
Q

a2

2(b� a) ;

1

N2

NX
i=1

QE (ui) =
1

2N
Q

�
1�

r
�

1� �

�
b;

1

N2

NX
i=1

fi(0) =
1

N

1

b� a;

1

N2

NX
i=1

E
�
u2i1(ui < 0)

�
=
1

N
E
�
u2i1(ui < 0)

�
= � 1

N

a3

3(b� a) ;

1

N2

NX
i=1

E
�
u2i
�
=
1

N
E
�
u2i
�
=

1

2N

�
1�

r
�

1� �

�
b+

4

3N
:

In empirical applications without knowledge of the distribution of fxi; uig ; the expectations

can be evaluated by a bootstrap method. The density and derivatives of density can be evaluated

by non-parametric kernel methods.
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Table 1: Conditional ALS regression
N = 100 N = 300

� �̂MC �̂Thm
~�MC �̂MC �̂Thm

~�MC

0.1 bias 0.0110 0.0185 -0.0075 0.0039 0.0062 -0.0023
MSE 5.8157 3.6989 5.7503 1.7702 3.4974 1.7608

0.2 bias 0.0063 0.0091 -0.0028 0.0026 0.0030 -0.0004
MSE 6.4746 8.9006 6.4433 2.0444 3.0466 2.0376

0.3 bias 0.0045 0.0047 -0.0003 0.0014 0.0016 -0.0002
MSE 6.9401 7.7755 6.9204 2.1407 2.5508 2.1388

0.4 bias 0.0029 0.0021 0.0008 -0.0004 0.0007 -0.0011
MSE 6.9121 7.1058 6.9045 2.2059 2.3170 2.2070

0.5 bias -0.0006 0.0000 -0.0006 0.0002 0.0000 0.0002
MSE 7.0851 6.9000 7.0851 2.2253 2.2481 2.2253

0.6 bias -0.0005 -0.0021 0.0016 -0.0011 -0.0007 -0.0004
MSE 6.9674 7.1058 6.9697 2.2591 2.3170 2.2580

0.7 bias -0.0037 -0.0047 0.0011 -0.0025 -0.0016 -0.0009
MSE 6.7513 7.7755 6.7391 2.2169 2.5508 2.2115

0.8 bias -0.0051 -0.0091 0.0040 -0.0014 -0.0030 0.0017
MSE 6.3461 8.9006 6.3360 1.9873 3.0466 1.9883

0.9 bias -0.0102 -0.0185 0.0083 -0.0033 -0.0062 0.0029
MSE 5.8627 3.6989 5.8274 1.7144 3.4974 1.7121

Notes: Table 1 presents the simulation results when xi is generated form the exponential distrib-

ution. Table 2 presents the simulation results when xi = 1. For each � , the �rst row is for bias

and the second row is for the mean squared error
�
�103

�
of the ALS estimator. The results are

presented in the following manner in each corresponding cell,
Monte Carlo (MC) from theorems (Thm) Monte Carlo (MC)

� bias 1
J

PJ
j=1

�b�j (�)� � (�)� B
�b� (�)� 1

J

PJ
j=1

�e�j (�)� � (�)�
MSE 1

J

PJ
j=1

�b�j (�)� � (�)�2 M
�b� (�)� 1

J

PJ
j=1

�e�j (�)� � (�)�2
where the true value � (�) = 0 for all � : For each panel, the �rst and third columns present

the bias and MSE of the expectile estimator before and after bias correction, the second column

presents the second-order bias and MSE calculated by Theorems. The bias-corrected estimate ise� (�) = b� (�)�B �b� (�)� : The subscript j denotes the jth Monte Carlo replication (j = 1; : : : ; J) :
We replicate J = 10; 000 times in the Monte Carlo.
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Table 2: Unconditional ALS regression
N = 100 N = 300

� �̂MC �̂Thm
~�MC �̂MC �̂Thm

~�MC

0.1 bias 0.0079 0.0123 -0.0045 0.0026 0.0041 -0.0015
MSE 10.0440 30.0709 10.0024 3.2959 9.5140 3.2911

0.2 bias 0.0036 0.0061 -0.0025 0.0009 0.0020 -0.0011
MSE 11.7827 18.9978 11.7761 3.9036 6.2261 3.9040

0.3 bias 0.0036 0.0032 0.0004 0.0003 0.0011 -0.0007
MSE 12.8124 15.3133 12.7997 4.2727 5.0752 4.2731

0.4 bias 0.0004 0.0014 -0.0010 0.0009 0.0005 0.0004
MSE 13.1874 13.7730 13.1882 4.3606 4.5853 4.3600

0.5 bias 0.0007 0.0000 0.0007 0.0006 0.0000 0.0006
MSE 13.1945 13.3333 13.1945 4.4281 4.4444 4.4281

0.6 bias -0.0035 -0.0014 -0.0021 -0.0015 -0.0005 -0.0011
MSE 13.2806 13.7730 13.2727 4.5048 4.5853 4.5036

0.7 bias -0.0037 -0.0032 -0.0006 0.0007 -0.0011 0.0017
MSE 13.0086 15.3133 12.9951 4.2295 5.0752 4.2320

0.8 bias -0.0049 -0.0061 0.0012 -0.0029 -0.0020 -0.0009
MSE 11.9406 18.9978 11.9185 4.0243 6.2261 4.0165

0.9 bias -0.0060 -0.0123 0.0063 -0.0016 -0.0041 0.0025
MSE 10.1822 30.0709 10.1857 3.3284 9.5140 3.3322

Notes: See Table 1.
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