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Abstract

This paper examines the theoretical and empirical properties of a supervised factor model
based on combining forecasts using principal components (CFPC), in comparison with two other
supervised factor models (partial least squares regression, PLS, and principal covariate regres-
sion, PCovR) and with the unsupervised principal component regression, PCR. The supervision
refers to training the predictors for a variable to forecast. We compare the performance of
the three supervised factor models and the unsupervised factor model in forecasting of U.S.
CPI inflation. The main finding is that the predictive ability of the supervised factor models
is much better than the unsupervised factor model. The computation of the factors can be
doubly supervised together with variable selection, which can further improve the forecasting
performance of the supervised factor models. Among the three supervised factor models, the
CFPC best performs and is also most stable. While PCovR also performs well and is stable,
the performance of PLS is less stable over different out-of-sample forecasting periods. The effect
of supervision gets even larger as forecast horizon increases. Supervision helps to reduce the
number of factors and lags needed in modelling economic structure, achieving more parsimony.
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1 Introduction

High dimensional information in the presence of many predictors brings opportunities to improve

the efficiency of a forecast by using much richer information than conventionally used and to

enhance the robustness of a forecast against structural instability which can plague low dimensional

forecasting. However, these opportunities come with the challenges. One notable challenge is that

the availability of overwhelming information complicates the way we process it to make relevant

instruments. To deal with the challenge we “supervise” the high dimensional information. Here,

supervision refers to training the predictors for a variable to forecast.

Two types of supervision are considered. The first type of supervision is variable selection or

subset selection which refers to selecting variables that are most predictive for a target variable

of interest. Do we need to supervise the selection of predictors for a forecast target variable?

Bair et al (2006) and Bai and Ng (2008) address this question. They reported that after variable

selection (by either hard-threshold method or soft-threshold method), the Principal Component

Regression (PCR) performs much better, reducing the mean squared forecast error (MSFE) to a

large extent. Various variable selection methods have been proposed such as forward and backward

selection, stepwise regression, as presented in e.g. Miller (2002) and Hastie et al (2009). Recently

the literature is filled with more sophisticated methods such as LASSO (Tibshirani 1996, Zou 2006),

Elastic Net (Zou and Hastie 2005, Zou and Zhang 2009), SCAD (Fan and Li 2001), Bridge (Huang,

Horowitz and Ma 2008), Least Angle Regression (Efron et al 2004) and so on. All these methods

seek to rank the variables and select a subset of variables based on their ranks.

The second type of supervision can be taken in the process of computing low dimensional latent

factors from the high dimensional predictors. If the low dimensional factors are computed only

from the predictors X but not using the forecast target y, the factors are not supervised for the

forecast target. This approach includes PCR. However, the PCR accounts only for the variation

of the selected predictors, but does not directly employ the information about the forecast target.

That is, no matter which variable to forecast (whether it is output growth, unemployment, stock

returns, bond yields, housing price, interest rate, or inflation), the PCR uses the latent factors of

the predictors only. Hence, another question arises. Do we need to supervise the computation of
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the latent factors for a particular forecast target? If the factors are computed not only from the

predictors but also from using the forecast target, the factors are supervised for the forecast target.

This paper addresses this question, by considering the supervised factor models. The supervised

factor model approach includes Partial Least Square (PLS) regression (de Jong 1993, Garthwait

1994), Principal Covariate Regression (PCovR, de Jong 1992), and Combining Forecast Principal

Components (CFPC) which is the PCR on many forecasts constructed in a particular way which

will be described shortly.

The question is whether the supervised factors from these supervised factor models are more

efficient and more robust in out-of-sample forecasting than the unsupervised factors from PCR. The

first contribution is to examine the properties of these factor models and compare their empirical

performance with supervision on the variable selection and/or on the factor computation. The

evidence is very clear. These supervisions do substantially improve the prediction. The predictive

ability of the three supervised factor models is much better than the unsupervised PCR model.

Interestingly, we find that the effect of supervision gets even larger as forecast horizon increases

and that the supervision helps a model achieving more parsimonious structure. Among the three

supervised factor models, the CFPC performs best and is most stable. While PCovR is nearly as

efficient and robust as CFPC, PLS is not as good or stable as CFPC and PCovR. The performance

of PLS is not robust over different out-of-sample forecasting periods and over the different forecast

horizons. The double supervision of the variable selection and factor computation helps even more

in out of sample forecasting.

Since the paper by Boivin and Ng (2006), the proper composition of data used for factor analysis

is a widely discussed topic in the literature. In particular for forecasting, it has turned out that

simple principal components factors estimated from very large datasets from time to time seem not

to be good predictors in macroeconomic applications. In this regard, the second contribution of

this paper is to introduce the sequential use of supervised variable selection and supervised factor

estimation, which we name as “double supervision” as discussed in Section 5.

The rest of the paper is organized as follows. Section 2 introduces the basic forecasting setup

and preliminary material that is needed for the understanding of factor models. Section 3 presents

the unsupervised factor model, PCR. Section 4 examines the supervised factor models, PLS, PCovR

2



and CFPC. Section 5 looks into ways to supervise the factor computation together with variable

selection. In Section 6, forecasting exercises are carried out to compare the performance of these

forecasting models for monthly CPI inflation in U.S. Section 7 concludes.

2 General Framework: Linear Factor Model

Consider the linear regression model,

y = Xβ + e, (2.1)

where y is a T × 1 vector, X is a T × N matrix of explanatory variables and β is the true but

unknown parameter. In case of N � T , or when columns of X are highly correlated, the OLS

estimation of the regression coefficient β is not feasible. Hence, for the purpose of forecasting, we

consider the following factor model,

F = XR, (2.2)

XB = FP ′ + E, (2.3)

y = UQ′ +G. (2.4)

Here F is a T × r factor matrix. Equation (2.2) says that the factor is linear in X. Each column

of F is a factor, which is a linear combination of rows of X. The N × r matrix R is the weight

matrix attaching to X. U is the factor matrix for y, which is usually assumed to be the same as

F . However, the estimation of U varies as we take different estimation approaches and it can be

far different from F as in PLS. P and Q are corresponding factor loading for X and y. The N ×N

matrix B is called “supervision matrix”. Note that the factor structure (2.3) contains that of Stock

and Watson (2002a) and Bai (2003) as a special case, with B being the identity matrix. As it is

formulated, (2.4) is a linear factor model due to the linearity in both the construction of F in (2.2)

and the prediction equation (2.4). E and G are the error terms. While it appears that B and P

may not be identified as presented, we will demonstrate special cases of this general framework in

Sections 3 and 4 with respective specifications of F,R,B, P, U and Q.

In the case that the number of factors used in (2.4) is less than or equal to the number of

observations, T , the coefficient Q can be estimated by OLS estimator Q̂, with U being estimated
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by Û . The forecast is formed as

ŷ = ÛQ̂′. (2.5)

The factor models, PCR, PLS, PCovR and CFPC, that we consider in this paper all fall into

this general framework of (2.2), (2.3) and (2.4), with different ways of specifying R, U and B. For

example, as will be seen in the next section, PCR takes B as the identity matrix, and then forms

the weight matrix R to be the matrix of eigenvectors of X ′X, with U being F .

The choice of the weight matrix and number of factors is the focus of factor modelling. To

choose the number of factors, the usual information criterion such as AIC or BIC can be used. In

the empirical section (Section 6), we will look into this aspect in further details. We focus on the

choice of weight matrix in the next two sections. Section 3 will present a popular (unsupervised)

factor model, PCR, which has been extensively used in economic forecasting as well as in other

social sciences. See Stock and Watson (2002a). PCR is unsupervised and methods of supervising

it will be presented in Section 4.

For matrix decomposition used later, we adopt the following convention: for a T × N matrix

C, it is decomposed into two blocks C1 and C2, with C1 containing its first r columns c1, . . . , cr

and C2 containing the rest. That is, C ≡ [C1, C2] , where C1 = [c1, . . . , cr] and C2 = [cr+1, . . . , cN ] .

Also ‘a := b’ means that a is defined by b, while ‘a =: b’ means that b is defined by a.

3 PCR

In this section we review how PCR can be used in forecasting. First we begin by using the eigenvalue

decomposition, and then in Section 4.1 we show PCR in an alternative framework for the principal

component analysis (the NIPALS algorithm for PCR, with details in Appendix A). The purpose of

presenting these two alternative framework is that we will use the former to introduce a supervised

factor model called CFPC in Section 4.3 and we will use the latter to introduce another supervised

factor model called PLS in Section 4.1.
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Note that, PCR is when P = R,B = I and U = F in the framework in Section 2, namely:

F = XR,

X = FR′ + E,

y = FQ′ +G,

where R is the matrix of eigenvectors of X ′X. Stock and Watson (2002a) considered the case

when y is one variable with (X, y) admitting the factor representation of (2.3) and (2.4). Equation

(2.4) specifies the forecast equation while (2.3) gives the factor structure. The factor F in (2.2) is

estimated using principal components and then it is used to form the prediction from (2.4) for y.

Let the N×r (r ≤ min(T,N)) matrix R1 be the first r eigenvectors, corresponding to the largest

r eigenvalues Λ1 = diag(λ1, . . . , λr) of X ′X. The eigenvalue decomposition of X ′X is

X ′X = RΛR′ = R1Λ1R
′
1 +R2Λ2R

′
2, (3.1)

where Λ = diag(Λ1,Λ2) is the eigenvalue matrix and R = [R1, R2] is the eigenvector matrix corre-

sponding to Λ. As R is orthonormal with R′R = I, we have

R′1X
′XR1 = Λ1. (3.2)

Stock and Watson (2002a,b) has shown that the true factors can be consistently estimated by the

first r principal components of X. Therefore, we adopt that F̂ = XR1. With Û = F̂ , the OLS

estimator of the coefficient Q, r × 1 vector, is given as

Q̂ =
(
F̂ ′F̂

)−1
F̂ ′y

=
(
R′1X

′XR1

)−1
R′1X

′y (3.3)

= Λ−11 R′1X
′y.

Therefore, PCR forecast is formed as

ŷPCR = F̂ Q̂ = XR1Λ
−1
1 R′1X

′y. (3.4)

The main criticism on PCR goes as follows. In the choice of the weight matrix R, PCR imposes

only the factor structure for X. This is naive since it does not take into account the dependent
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variable y. That is, no matter what y to forecast, PCR uses the same fixed combination of X to

form the prediction equation. Ignoring the target information of y in the computation of the factors

leads to inefficient forecast of the target y. Therefore, a supervision on the choice of weight matrix

and thus supervised factor models will be called for to make more efficient predictions. This issue

is to be addressed in the next section.

4 Supervised Factor Models

In this section we consider three supervised factor models, the partial least square, principal covari-

ate regression, and the combining forecast-principal component. The analysis here is based on the

factor framework in Section 2. The three models are generalization of the PCR in different ways

to supervise the factors for the forecast target y.

4.1 PLS

Although originally proposed by Wold (1966) in the field of econometrics, the partial least square

(PLS) regression has rarely been used in economics but rather popular in chemometrics. Empirical

results in chemistry show that PLS is a good alternative to multiple linear regression and PCR

methods. See Wold et al (1984), Otto and Wegscheider (1985), and Garthwait (1994) for more

details. Since PLS also supervises the factor computation process, it raises the possibility that it

can outperform PCR, which is a reason that we include the PLS in this paper.1

There have been several algorithms designed for PLS, among which NIPALS (Nonlinear Iterative

PArtial Least Square) is the most notable one. In the next subsection we review the NIPALS

algorithm briefly to show PLS in the general framework of factor models, (2.2), (2.3) and (2.4), in

Section 2. The purpose of the next subsection is to show that PLS can be viewed as a generalization

of PCR. However, the readers uninterested in details can skip the following subsection and Appendix

A-B.

1We note that the statistics literature is quite sceptical concerning the theoretical properties of PLS, see Butler
and Denham (2000) and Lingjaerde and Christoffersen (2000). In particular, PLS is known to have strange shrinkage
properties. Both papers derive the PLS estimator in a similar way as a shrinkage estimator in a multivariate regression
problem. However, both papers find that PLS does not shrink but rather expands some of the coefficients. Recently
Kelly and Pruitt (2015) propose the three-pass regression filter method which is related to PLS.
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4.1.1 NIPALS algorithm for PCR and PLS

Alternative to the eigenvalue decomposition used in Section 3 for PCR, we can use the Nonlinear

Iterative PArtial Least Square (NIPALS) algorithm developed by Wold (1966, 1975) to perform

the principal component analysis, which decomposes matrix X of rank r as a sum of r matrices of

rank 1 as

X = M1 +M2 + . . .+Mr + Er

= f1p
′
1 + f2p

′
2 + . . .+ frp

′
r + Er =: FP ′ + Er, (4.1)

where the second line uses the fact that the rank 1 matrices Mh can be written as outer products

of two vectors, fh (score) and p′h (loading), and F = [f1, f2, . . . , fr], P
′ = [p′1, p

′
2, . . . , p

′
r]. NIPALS

does not compute all the principal components F at once. But it calculates f1 and p′1 from X, then

the outer product f1p
′
1 is subtracted from X, and the residual E1 is calculated. This residual is used

to calculate f2 and p′2, and so on. The formal NIPALS algorithm for PCR is stated in Appendix A,

where it is shown that, on convergence, the NIPALS algorithm gives the same principal components

as derived by the eigenvalue decomposition of Section 3 for PCR. The algorithm does converge in

practice.

Now, to see how this algorithm can be extended from PCR to PLS, let us turn back to the

regression problem (2.4). The NIPALS algorithm can work for both X and y separately to extract

factors as in (4.1). That is,

X = FP ′ + Er =

r∑
h=1

fhp
′
h + Er, (4.2)

y = UQ′ +Gr =

r∑
h=1

uhq
′
h +Gr. (4.3)

Thus we can form an inner relationship between x-score, f , and y-score, u as

uh = γhfh + εh, (4.4)

for each pair of components. OLS estimation can be used for (4.4) thus we could use (4.3) to form

a prediction with x-scores, f , extracted with newly observed x.

However, note that the decomposition process in (4.2) and (4.3) still does not incorporate the

valuable information of y when forming the x-scores. Thus we consider the modification of the
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decomposition of X and y, using NIPALS, as stated in Appendix B. Note that in the special case of

y = X, x-factors extracted by NIPALS gives exactly the principal components of X as one might

have already conjectured. Thus in this case, NIPALS for PLS is the same as NIPALS for PCR.

See Geladi and Kowalski (1986) and Mardia et al (1980) for an excellent discussion for NIPALS

algorithm and its adaptations for PCR and PLS. The PLS is to find a linear combination of the

columns of X leading to a maximal covariance with the forecast target variable y. See Groen and

Kapetanios (2016) where the relationship between PCR and PLS is analyzed.

4.2 Principal Covariate Regression

Principal Covariate Regression (PCovR) is a prediction method proposed by de Jong and Kiers

(1992). “Covariate” was termed to stress that, apart from PCR, the components should vary with

the dependent variable y. The attractiveness of PCovR features its combination of PCR on X and

a regression on y by minimizing an appropriately defined least square loss function as follows,

l (α1, α2, R, P,Q) = α1 ‖ X −XRP ′ ‖2 + α2 ‖ y −XRQ′ ‖2 , (4.5)

where α1 and α2 are the (non-negative) weights attached to PCR on X and regression of y, respec-

tively. That is, the choice of the factor weight matrix R depends not only on the PCR of X, but

also on the regression equation (2.4). Then the factor is computed from F = XR as in (2.2).

Note that, PCovR is when B = I and U = F in the framework in Section 2. Unlike PCR,

P 6= R. While PCR takes (2.3) and (2.4) in two separate steps, PCovR puts them together in one

step as shown in (4.5). Two special cases of PCovR need to be pointed out here. For α1 = 0, the

loss (4.5) emphasizes completely on fitting y. Another extreme is when α2 = 0. In this case, (4.5)

emphasizes completely on the principal component analysis on X or PCR as described in Section

3.

Note that the minimization of (4.5) is nonlinear in nature due to the product terms RP and

RQ. An algorithm for the estimation of the unknown parameters (R,P,Q) is given in de Jong

(1993). Or see Heij, Groenen and van Dijk (2007) for an explicit SVD based algorithm.2

Although supervision is incorporated in PCovR by allocating weight to the regression (2.4),

there is no guidance regarding the optimal choice of the weight attached. Thus choice of α1 and α2

2We would like to thank Christiaan Heij and Dick van Dijk for kindly sharing their Matlab code for PCovR.
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can only be done on rather arbitrary grounds. In practice, one may consider a set of specifications

for α1 and α2, as did in Heij, Groenen and van Dijk (2007).

For prediction purpose, we propose an estimation of optimal weights by a grid search algorithm,

with the exploit of information available. Note that only the relative weights attached matter here.

We consider a normalization of the weights by the norm of the data matrix, that is,

α1 = w/ ‖ X ‖2 , and α2 = (1− w) / ‖ y ‖2 .

Therefore, we need to consider a choice of w instead of choices of α1 and α2 simultaneously. In

Section 6, we choose the value of w from {10−6, 10−4, 0.1, 0.5, 0.9} together with the determination of

other model parameters, such as number of factors and lags, by the Bayesian information criterion.

4.3 CFPC

This subsection discusses another form of supervision on the computation of factors. This is a

method quite different from those examined earlier in this section. The two previous supervised

models directly compute the factors, while CFPC first computes forecasts and then computes the

principal components of the forecasts as a tool to combining forecasts.

Consider a linear projection of y on xi for each i = 1, 2, . . . , N,

y = xib0i + ui, (4.6)

where b0i is estimated by OLS,

bi :=
(
x′ixi

)−1
x′iy. (4.7)

Thus the prediction could be formed as

ŷi := xibi. (4.8)

To write (4.8) in compact form,

Ŷ := [ŷ1, ŷ2, . . . , ŷN ] = [x1b1, x2b2, . . . , xNbN ] =: XB, (4.9)

where B := diag(b) = diag(b1 . . . bN ) is the diagonal matrix with b1, b2, . . . , bN sitting on the

diagonal. Let L1 be the N × r eigenvectors corresponding to the r largest eigenvalues Ω1 =
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diag(ω1, ω2, . . . , ωr) of Ŷ ′Ŷ . Parallel to (3.1), we also have its eigenvalue decomposition of Ŷ ′Ŷ as

follows,

Ŷ ′Ŷ = LΩL′ = L′1Ω1L1 + L2Ω2L
′
2.

The principal component estimator of F which is the first r principal components of Ŷ , is therefore

given as F̂ = Ŷ L1 = XBL1. Then consider the following regression,

y = F̂Q+ ε = Ŷ L1Q+ ε. (4.10)

The OLS estimation of the coefficient Q, r × 1 vector, in (4.10) is given as

Q̂ =
(
F̂ ′F̂

)−1
F̂ ′y =

(
L′1BX

′XBL1

)−1
L′1BX

′y = Ω−11 L′1BX
′y. (4.11)

Therefore, our CFPC forecast is formed as

ŷCFPC = Ŷ L1Q̂ = XBL1Ω
−1
1 L′1BX

′y. (4.12)

Remark 1 (Combining forecasts with many forecasts): Although the above analysis is explicitly

stated for Ŷ = XB, the result is useful when we observe only Ŷ but not X (e.g., Survey of

Professional Forecasters). The CFPC forecast, ŷCFPC = Ŷ L1Ω
−1
1 L′1Ŷ

′y, would then produce a

method of combining N forecasts in Ŷ when N →∞. �

Remark 2: The biggest difference between CFPC and PCR lies in the set of variables we use

to extract the principal components. In PCR, the principal components are computed from x’s

directly, without accounting for their relationship with the forecast target variable y. This problem

with PCR leads Bai and Ng (2008) to consider first selecting a subset of predictors (“targeted

predictors”) of x’s that are informative in forecasting y, then using the subset to extract factors.

In contrast, since CFPC combines forecasts not the predictors, the principal components in CFPC

are computed from the set of individual forecasts (ŷ1, ŷ2, . . . , ŷN ) that contain both information on

x’s and on all past values of y. This actually provides us further intuitions on why CFPC may be

more successful than PCR. �
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Remark 3: Forecasting combination using principal components has been proposed in Chan,

Stock, and Watson (1999) and in Stock and Watson (2004), there labeled “principal component

forecast combination.” We will refer to this approach as CFPC (combining forecasts principal

components). The specifications for individual forecasts in CFPC, however, differ from those in

Chan, Stock and Watson (1999) and Stock and Watson (2004) in that individual forecasting models

considered here use different and non-overlapping information sets (one regressor at a time), not

a common total information set as assumed in Chan, Stock and Watson (1999) and Stock and

Watson (2004). �

Remark 4 (Comparison of PCR and CFPC when X has full column rank): Instead of using

original predictors X to form principal components, CFPC uses the predicted matrix of y, Ŷ . This

is where supervision is incorporated. It is interesting to note that there are cases that PCR and

CFPC give the same prediction. Note that in case of N ≤ T and when X has full column rank,

and each column of X is predictive for y (bi 6= 0 for all i = 1, . . . , N), we could exhaust all principal

components of X and those of Ŷ . Thus we have, from (3.2),

R1Λ
−1
1 R′1 =

(
X ′X

)−1
. (4.13)

And also

BL1Ω
−1
1 L′1B = B

(
Ŷ ′Ŷ

)−1
B = B

(
BX ′XB

)−1
B =

(
X ′X

)−1
, (4.14)

where the last equality follows from the fact that B is also a full rank diagonal matrix. Thus,

combining (3.4), (4.12), (4.13) and (4.14) gives

ŷPCR = ŷCFPC.

Therefore, PCR and CFPC are equivalent in this case when X has a full column rank. When X does

not have a full column rank, the principal components of the forecasts in CFPC and the principal

components of predictors in PCR will differ from each other, because the linear combinations

maximizing covariances of forecasts (for which the supervision operates for the relationship between

y and X) and the linear combinations maximizing the covariances of predictors (for which there is

no supervision) will be different. �
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Remark 5 (Regression one-at-a-time): CFPC described here employs the regression of y on xi

one-at-a-time to formulate the prediction matrix Ŷ . It is simple to implement and computationally

appealing. Nevertheless, it can be generalized in various ways. �

CFPC also enjoys some theoretical justification as presented in Proposition 1 below. From

comparing (2.1) and (4.12), CFPC estimates β by β̂(b) = BL1Ω
−1
1 L′1BX

′y, which depends on an

initial estimator b. To proceed, we define a function f(·) such that

β̂ = BL1Ω
−1
1 L′1BX

′y (4.15)

= diag (b)L1Ω
−1
1 L′1diag (b)X ′y =: f(b),

where B = diag(b1, . . . , bN ) and b = (b1, . . . , bN )′. Note that β = (β1, . . . , βN )′.

We now show that the true parameter β is an asymptotic fixed point for f (·) . We first state

assumptions:

Assumption 1: (a) The process {Xt, yt} is jointly stationary and ergodic. (b) E [X ′t(yt −Xtβ)] =

0. (c) β is an interior point of parameter space Θ. (d) Assumptions A-F of Bai (2003) are satisfied

for the factor structure (2.3) with B = diag(β). (e) ||Σ−1XBΣE || = Op (N/T ), where Σξ denotes the

variance-covariance matrix of ξ, and || · || denotes a matrix norm. (f) N2/T → 0, as N,T →∞.

Proposition 1: Under Assumption 1, the true parameter β in (2.1) is an asymptotic fixed point

for f (·) defined in (4.15), that is,

(f (β)− β)i = Op

(
max

{
N√
T
,
N2

T

})
= op (1) for all i,

where ai denotes the i-th element of a. �

The proof is in Appendix C.

Remark 6 (Fixed point): Proposition 1 justifies the construction of the supervision matrix B =

diag(b). When we start with B = diag(b) such that b is close to β, CFPC would give an estimate of

β, f (b) , which is close enough to the true value β in the sense of Proposition 1. If one formulates

the CFPC alternatively following that of Chan, Stock and Watson (1999) and Stock and Watson

(2004) (as noted in Remark 3), such a fixed point result may not be available. Note further that if
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N > T , i.e., when condition (f) in Assumption 1 fails, the β in regression (1) become unidentified.

Therefore, the above fixed point result may not be available and the theoretical property of CFPC

remains unknown. �

5 Double Supervision: Supervising Factors with Variable Selec-
tion

The previous section looks into supervised factor models from the perspective of supervising the

formation of latent factors for a given set of original predictors. Before that step, we can consider

selecting a subset of the predictor variables. Boivin and Ng (2006) raise the concern of the quality

of data when researchers are ambitious to employ all data available from large panels. Through

simulation and application examples, they show that factors extracted from a smaller set of variables

are likely to perform no worse, and in many cases even better, in forecasting than those extracted

from a lager set of series.

To forecast using a subset of variables when there is too much information has been a popular

research topic and many methods have been developed to tackle the issue – see Miller (2002) and

Hastie et al (2009). Variable selection in forecasting in the presence of many predictors is not

as simple as in an AR model for which the lags have a natural order. Predictors are not in a

natural order. Thus we can not determine which variables should be included and which are not

unless we find ways to rank them. We rank the predictors in two ways: hard-thresholding and

soft-thresholding.

5.1 Hard-Thresholding Variable Selection

The method of hard-thresholding is to use a statistical test to determine if a particular predictor

is significant in forecasting, without considering the effect of other predictors. Bair et al (2006)

take this approach. (Although their model is termed as supervised principal component model,

their supervision is in selection of predictors but not in computation of the principal components.

Supervision there is only performed via variable selection, but not directly through the factor

computation process.) In this paper, lags of yt are included as regressors with each individual xit

to get the individual t-statistic as an indicator of the marginal predictive power of xit, following
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Bai and Ng (2008). It involves the following steps: For each i = 1, ..., N , run the regression of yt+h

on a constant, four lags of {yt−j}3j=0 and xit. Let ti denote the t-statistic associated with the i-th

predictor xit. Select those variables with ti larger than a threshold value at a given significance level

and apply factor models to them. As we show in the empirical application of Section 6, the hard-

threshold variable selection plays a critical role in forecasting in the sense that it can substantially

reduce MSFE.

5.2 Soft-Thresholding Variable Selection

Hard-thresholding variable selection is highly likely to choose variables similar to each other (so

called the “group effect”). In this sense, important information may be lost during the selection

process. In contrast to the hard-thresholding which uses a single index to separate qualified pre-

dictors from others, soft-thresholding employs more flexible indices to select variables. There are

several variable selection methods of this kind, see Tibshirani (1996), Efron et al (2004), and Zou

and Hastie (2005) among many others.

In this paper, we use the least angle regression or LARS of Efron et al (2004). LARS has gained

its popularity in forecasting literature due to its comparative advantages. First, it gives relative

ranking of predictors unlike hard-thresholding which gives the marginal predictive power of each

predictor. Second, it avoids the group effect. Third, it is very fast and has the same order of

computation complexity as OLS.

The LARS (Efron et al, 2004) algorithm proceeds roughly as follows. Like classical forward

selection we first find the predictor, say xj1 which is most correlated to the response y. However,

instead of taking the largest step in the direction of xj1 as in forward selection, we stop at the point

where some other predictor, say xj2 , has as much correlation with the current residual. Instead of

continuing along xj1 , LARS proceeds in a direction equiangular between the two predictors until a

third variable xj3 makes its way into the “most correlated” set. LARS then proceeds equiangularly

between xj1 , xj2 and xj3 , that is, along the “least angle direction,” until a fourth variable enters,

and so on. Readers interested in LARS are referred to Efron et al (2004) for detailed description

of the algorithm and its satisfactory properties.

In the next section, we apply the LARS algorithm to first select 30 variables, as in Bai and Ng
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(2008), from the 131 predictors. Then we use the four factor methods, PCR, PLS, PCovR, CFPC,

to the 30 variables in forecasting the monthly CPI inflation of U.S.

6 Empirical Applications

This section compares the methods described in the previous two sections. Variable of interest to

forecast is the logarithm of PUNEW, i.e., CPI all items, using some or all of the 132 monthly time se-

ries predictors. Data used are available on Mark Watson’s website: http//www.princeton.edu/mwatson.

The data range from 1960:1 to 2003:12, with 528 monthly observations in total. These data are

transformed by taking logs, first or second differences as suggested in Stock and Watson (2004).

Following Stock and Watson (2002b), define

yht+h :=
1200

h
· (yt+h − yt)− 1200 · (yt − yt−1), (6.1)

and

zt := 1200 · (yt − yt−1)− 1200 · (yt−1 − yt−2).

For h = 1, 3, 6, 12, 18, 24, 30 and 36, we form the factor-augmented forecast as, given information

at time t,

ŷt+h|t = α̂0 + α̂′1(L)zt + β̂′1(L)f̂t,

Here, zt is the set of lagged variables and f̂t latent factors. The number of lags of zt and f̂t are

determined by the BIC with the maximum number of lags set to six when the sample size permits,

and is reduced to four otherwise. Although we are forecasting the change in inflation, we will

continue to refer to the forecasts as inflation forecasts.

As parameter instability is salient in economic time series, we employ two ways to tackle this

difficulty in evaluating different forecasting schemes. First, note that for each time period t, the

predictors are selected and the forecasting equation is re-estimated after new factors are estimated.

We do not restrict the optimal predictors to be the same for every time period. Second, we

consider 9 forecast subsamples: 1970:1-1979:12, 1980:1-1989:12, 1990:1-1999:12, 1970:1-1989:12,

1980:1-1999:12, 1970:1-1999:12, 1970:1-2003:12, 1980:1-2003:12, 1990:1-2003:12. For all the forecast

subsamples, estimation sample starts at 1960:3 and ends with the data available. For example, for
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subsample 1970:1-1979:12, the first h-step forecast of 1970:1 is based on estimation up to 1960:3-

1970:1-h. Here, 1970:1-h is meant for 1969:2 when h = 3, as an example. The last forecast is for

1979:12, and it employs parameters estimated for the sample 1960:3-1979:12-h. That is, recursive

scheme is used here, as in Bai and Ng (2008).

MSFE are used to examine the performance of different forecasting procedures. We denote

RMSFE as the ratio of the MSFE for a given method relative to the MSFE of PCR model. There-

fore, RMSFE less than one means that the specified method outperforms the PCR model in the

forecasting practice considered.

Tables 1-8 About Here

Tables 1-8 report RMSFE for each of forecast horizons h = 1, 3, 6, 12, 18, 24, 30, 36. Column

1 lists the 9 out-of-sample forecasting subsamples. We report three panels of the RMSFE results

depending on whether or how we conduct the variable selection prior to applying the factor models.

The first panel of the results reported in Columns 2-5 is for factor models without variable selection,

where we use the all 131 predictors to estimate the latent factors for PCR, CFPC, PLS, PCovR.

Columns 6-9 and Columns 10-13 present RMSFE for the factor models after selecting the predictors.

The second panel reported in Columns 6-9 uses the hard-threshold variable selection at 5% level

with the critical value 1.65 for t statistics. To keep in line with Bai and Ng (2008), the third panel

of the results reported in Columns 10-13 uses the soft-thresholding variable selection via the LARS

algorithm to select 30 variables. Note that PCR without variable selection is used as a benchmark

(in each row) in computing the relative MSFEs and thus the values for PCR in Column 2 is 1.000

for all cases.

6.1 Supervision on Computation of Factors

One of the main objectives of this paper is to examine the effect of supervision on the computation

of latent factors. The main conclusion over this topic is summarized as below.

1. Although not reported in the table, the performance of AR(4) is generally as good as AR

model with number of lags selected by BIC. However, the predictive ability of the univariate
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AR model decreases as forecasting horizon increases, reporting larger MSFE as horizon getting

larger.

2. CFPC is better than PCR, no matter variable selection is performed or not. Looking at

Column 3 for CFPC from Tables 1-8, for 62 out of 72 cases without variable selection, CFPC

reports a RMSFE less than 1. In the case of hard threshold variable selection, 63 out of 72

cases favor CFPC (Column 7 for CFPC from Tables 1-8). Also, the LARS variable selection

reports 64 out of 72 cases that are in favor of CFPC over PCR (Column 11 for CFPC from

Tables 1-8).

3. PLS is not doing as well as one might expected. From Table 1, we can see that supervision

on factor computation does not make PLS much better than PCR. And it is seen in Tables 1

and 2 that PLS could be very bad and unstable, reporting RMSFE larger than 2. However,

as horizon increases, as in Table 6-8, PLS indeed improves over PCR a lot, reducing RMSFE

even below 70%. Variable selection also improves the performance of PLS over PCR, as can

be seen in the last two panels of Tables 1-8.

4. PCovR performs better than PCR most of the cases, with 64 out of 72 cases reporting RMSFE

lower than 1 without variable selection. Its better predictability is also revealed after variable

selection. For example, for h = 36, the subsample 90:1-99:12 reports RMSFE of PCovR as

0.187 while that of PCR is 0.834, with hard-thresholding variable selection.

By comparing the RMSFEs in each of the three panels from the tables, we conclude that, the

supervision on the computation of factors does improve the predictability of the naive principal

component. This improvement is quite substantial as noted above.

6.2 Supervision on Predictors

Next, let us take a look at the effects of variable selection on the predictability of factor models.

1. One notable observation from Tables 1-8 is that, variable selection does not make much

difference for PCR, with RMSFE closely around 1 most of the cases. This finding is consistent

with that reported in Stock and Watson (2002b).
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2. Hard threshold variable selection can make CFPC even better. Most of the cases, hard

threshold variable selection reports RMSFE smaller than that without variable selection. To

the contrary, more than often, the soft-thresholding LARS variable selection worsens the

predictive ability of CFPC.

3. PLS generally reports lower MSFE when variable selection is carried out in the first step.

Hard threshold even makes PLS the best method for several cases. See Table 8 for the second

and fourth subsamples for example.

4. For PCovR, the LARS variable selection makes it the best for several subsample when h = 1.

For all other cases, hard threshold works better as a variable selection procedure to improve

the performance of PCovR.

6.3 Effects of “Double Supervision”

Double supervision includes supervision for the variable-selection as in Bair et al (2006), and also

the supervision of the factor computation. It would be interesting to see that the above two parts

on supervision leads to the essence of this paper. The RMSFE reported for factor models after

supervision on the computation of factors and also the selection of variable are generally lower than

1, as can be seen in the last two panels of Tables 1-8. Exception to this conclusion is for PLS with

short forecasting horizons. In most of the cases, the reduction of MSFE relative to PCR is clearly

noticeable. After variable selection, CFPC reports RMSFE as low as 40% in a lot of cases. PCovR

can reduce RMSFE to be as low as 18.7%. The findings affirm the conjecture raised in Section

1 that the double supervision in selection of predictors and formation of latent factors should be

carried out in forecasting practice.

6.4 Supervision and Forecasting Horizon

The effect of supervision over forecasting horizons h is very clear, which can be seen by comparing

the results across the eight tables. From examining the RMSFE numbers as a function of the eight

values of forecast horizons h = 1, 3, 6, 12, 18, 24, 30, 36, it can be clearly seen that the RMSFEs

are generally decreasing with h for the three supervised factor models. That is, the superiority of

supervised factor models is getting more and more significant as the forecasting horizon increases.
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On the other hand, the unsupervised factor model, PCR, has RMSFEs moving up and down over

the horizons with no pattern over forecasting horizon h.

Note that the forecast target variable yht+h defined in (6.1) is the average monthly changes over

the h months, and it may be easier to forecast when forecasting horizon h is longer as it becomes

smoother. The three supervised factor models are able to capture this feature in yht+h while PCR

fails to do so. We also observe (although not reported for space) that neither AR(4) or AR models

with number of lags selected by BIC capture this feature. This is seen from the RMSFE values

for these univariate models, which are generally increasing over the forecasting horizons. Hence, it

seems that richer information from multivariate environment benefits the factor models even more

especially for longer forecast horizons when they are supervised on the selection of the variables

and on the computation of their latent factors.

6.5 Supervision and Number of Factors

Another important finding of this paper (not reported) is that, for supervised factor models, the

number of factors selected by BIC is less than that of PCR. This finding also favors the previous

result that, with supervision, factor models tend to form better latent variables and thus need less

indices to describe “the state of the economy”, as termed in Heij, Groenen and van Dijk (2007).

They report the result for PCovR and this paper validates their conclusion for PLS and CFPC.

7 Conclusions

In this paper we emphasize the importance of supervision in choosing and estimating the factors,

such that they are supervised to target the variable to be forecast rather than simply represent

the set of regressors without regard for the variable to be forecast. We discuss the construction of

forecasts when factors are extracted such that they are targeting the forecasting variable. Three

possible methods are discussed: partial least square regression, principal covariate regression, and

combining forecast principal components.

In exploiting high dimensional information from large number of predictors we wish to improve

efficiency of a forecast and to enhance the robustness of a forecast. This paper compares the

forecasting performance of factor models in such data-rich environment. Our findings suggest that
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one can profit from supervising the computation of factors.

Computation of latent factors may be doubly supervised with variable selection. Variable

selection is generally useful for the supervised factor models. Interestingly, the effect of supervision

gets even larger as forecast horizon increases and the supervision also helps a factor model achieving

more parsimonious factor structure. Among the supervised factor models compared in this paper,

CFPC stands out for its superiority in predictive ability and its stability in performance. In general,

the CFPC model generates most efficient and robust forecasts.
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Appendix

A NIPALS Algorithm for PCR

The intuition behind the working of the nonlinear iterative algorithm for PCR goes as follows.

Formally,

E1 = X − f1p′1, E2 = E1 − f2p′2, . . .

Eh = Eh−1 − fhp′h, . . . Er = Er−1 − frp′r. (A.1)

The NIPALS follows the steps for the computation of fh:

1. take a vector xJ from X and call it fh:

2. normalize fh: f ′h = f ′h/ ‖ f ′h ‖

3. calculate p′h:

p′h = f ′hX (A.2)

4. normalize p′h : p′h = p′h/ ‖ p′h ‖
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5. calculate fh:

fh = Xph (A.3)

6. compare fh in step 2 with that obtained in step 5. If they are the same, stop. Otherwise go

to step 2.

Note that the evolution of p′h and fh are described by (A.2) and (A.3). Substitute (A.3) into

(A.2), we have

cp′h = (Xph)′X, (A.4)

where c is a constant that accounts for the normalization in step 4. This is equivalent to

0 =
(
X ′X − cIr

)
ph. (A.5)

This is exactly the eigenvalue/eigenvector equation for X ′X in PCR. Hence, the NIPALS algorithm

gives the same principal components as derived by eigenvalue decomposition.
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B NIPALS Algorithm for PLS

For the X block: (1) take ustart = some yJ (instead of some xJ); (2) normalize u: u = u/ ‖ u ‖;

(3) p′ = u′X; (4) normalize p′: p′ = p′/ ‖ p′ ‖; (5) f = Xp.

For the y block: (6) q = f (instead of some yS); (7) normalize q: q = q/ ‖ q ‖; (8) u′ = y′q; (9)

normalize u′: u′ = u′/ ‖ u′ ‖; (10) compare f in step 5 with that in the preceding iteration step. If

they are equal (up to a tolerance level) then stop; otherwise go to step 2.

By exchanging scores in step 1 and 6, the above algorithm supervises the computation of the

x-score thus should improve the predictability of PLS over PCR. For the purpose of prediction, we

can rewrite (4.3) as

Eh = Eh−1 − fhp′h; X = E0,

Gh = Gh−1 − uhq′h; y = G0,

and a mixed relation is available as

Gh = Gh−1 − γhfhq′h,

where γh = (u′hfh) / (f ′hfh). Therefore,

ŷ =
∑

ûhq
′
h =

∑
γhfhq

′
h = FΓQ′, (B.1)

where Γ = diag(γ1, . . . , γr).

Note that the x-score extracted in the hth iteration, fh, is a linear combination of Eh−1, instead

of as a direct function of original data matrix X. de Jong (1993) gives a direct relationship as

F = XR ≡ XW (P ′W )−1, where P = [p1, . . . , ph] and W = [E0u1, . . . , Eh−1uh]. Thus, (B.1) can

be used for prediction as

ŷPLS = XRΓQ′. (B.2)

That is, we have R = W (P ′W )−1 , U = FΓ for the linear factor model framework, while β in (2.1)

is estimated by β̂ = RΓQ′.
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C Proof of Proposition 1

Rewrite (2.3) as

XB = C + E, (C.1)

where C = FP ′, is the common component of XB. Note that C is estimated using principal

component method as

C̃ = F̂ P̂ ′

= XBL1(L
′
1BX

′XBL1)
−1L′1BX

′XB

= XBL1Ω
−1
1 L′1BX

′XB.

Therefore, we have

C̃ ′C̃ = BX ′XBL1Ω
−1
1 L′1BX

′XBL1Ω
−1
1 L′1BX

′XB

= BX ′XBL1Ω
−1
1 L′1BX

′XB,

which leads to

J ≡ B
(
X ′X/T

)
BL1Ω

−1
1 L′1BX

′XB − (BΣXB − ΣE) (C.2)

= B
(
X ′X/T

)
BL1Ω

−1
1 L′1BX

′XB − (ΣXB − ΣE)

= B
(
X ′X/T

)
BL1Ω

−1
1 L′1BX

′XB − ΣC

=
(
C̃ ′C̃/T

)
− ΣC

=
1

T

(
C̃ ′C̃ − C̃ ′C + C̃ ′C − C ′C

)
+

(
1

T
C ′C − ΣC

)
=

1

T
C̃ ′
(
C̃ − C

)
+

1

T

(
C̃ − C

)′
C +

(
1

T
C ′C − ΣC

)
≡ ψ1 + ψ2 + ψ3.

Note that

ψ1
ij =

1

T

T∑
t=1

C̃ti

(
C̃tj − Ctj

)
= Op

(
1√
NT

)
. (C.3)

which follows from Theorem 3 of Bai (2003) that C̃it − Cit = Op

(
1/
√
N
)

under Assumption 1.d.

Similarly, we have

ψ2
ij = Op

(
1√
NT

)
. (C.4)
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By Assumption 1.a, we have

ψ3
ij = Op

(
1√
T

)
. (C.5)

(C.3), (C.4) and (C.5) lead to

Jij = Op

(
1√
NT

)
+Op

(
1√
NT

)
+Op

(
1√
T

)
= Op

(
1√
T

)
.

Note that (C.2) is equivalent to

J = BΣX [BL1Ω
−1
1 L′1BX

′X − IN − (C.6)

(ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1]B + op (1)

≡ BΣXHB + op (1)

where

H =
(
BL1Ω

−1
1 L′1BX

′X − IN − (ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1
)

where εNT , ζNT are sequences of small positive numbers such that εNT , ζNT → 0 as N,T → ∞.

εNT and ζNT are introduced to guarantee the matrix inverse exists. To see (C.6), note that the last

term in the bracket of the right hand

BΣX(ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

= B(ΣX + εNT IN )(ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

−BεNT (ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

= B(B + ζNT IN )−1ΣE(B + ζNT IN )−1B + op (1)

= (B + ζNT IN )(B + ζNT IN )−1ΣE(B + ζNT IN )−1B

−ζNT (B + ζNT IN )−1ΣE(B + ζNT IN )−1B + op (1)

= ΣE(B + ζNT IN )−1B + op (1)

= ΣE(B + ζNT IN )−1(B + ζNT IN )

−ΣE(B + ζNT IN )−1ζNT IN + op (1)

= ΣE + op (1) as εNT = op (1) as N,T →∞.

Note that (C.6) is true for all values of β. Therefore, it must be the case that

Hij = O (Jij) = Op

(
1√
T

)
.
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Define

K = BL1Ω
−1
1 L′1BX

′X − IN .

We have

K = H + (ΣX + εNT IN )−1(B + ζNT IN )−1ΣE(B + ζNT IN )−1

= H + Σ−1XBΣE + op (1) ,

i.e.,

Kij = Hij +Op (N/T ) (by Assumption 1.e) (C.7)

= Op

(
max

{
1√
T
,
N

T

})
.

By definition of f(β),

f(β)− β = diag (β)L1Ω
−1
1 L′1diag (β)X ′y − β

= BL1Ω
−1
1 L′1BX

′y − β

= BL1Ω
−1
1 L′1BX

′ (Xβ + e)− β

=
(
BL1Ω

−1
1 L′1BX

′X − IN
)
β + op (1) (by Assumption 1.b)

= Kβ + op (1) ,

and it follows from (C.7) that

(f(β)− β)i = Op

(
max

{
N√
T
,
N2

T

})
. (C.8)

�

25



References

Bai, J., 2003. Inferential theory for factor models of large dimensions. Econometrica 71:1, 135-171.

Bai, J., Ng, S., 2008. Forecasting economic time series using targeted predictors. Journal of

Econometrics 146, 304-317.

Bair, E., Hastie, T., Paul, D., Tibshirani, R., 2006. Prediction by supervised principal components.

Journal of the American Statistical Association 101:473, 119–137.

Boivin, J., Ng, S., 2006. Are more data always better for factor analysis. Journal of Econometrics

132, 169–194.

Butler, N.A., Denham, M.C., 2000. The peculiar shrinkage properties of PLS. Journal of the

Royal Statistical Society B 62, 585-593.

Chan, Y.L., Stock, J.H., Watson, M.W., 1999. A dynamic factor model framework for forecast

combination. Spanish Economic Review 1, 91-121.

de Jong, S., 1992. Principal covariate regression part I. theory. Chemometrics and Intelligent

Laboratory Systems 14, 155-164.

de Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemo-

metrics and Intelligent Laboratory Systems 18, 251-261.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regression. Annals of

Statistics 32:2, 407-499.

Fan, J., R. Li., 2001. Variable selection via nonconcave penalized likelihood and its oracle prop-

erties. Journal of the American Statistical Association 96, 1348-1360.

Garthwait, P.H., 1994. An interpretation of partial least squares. Journal of the American Sta-

tistical Association 89: 425, 122-127.

Geladi, P., Kowalski, B.R., 1986. Partial least-squares regression: a tutorial. Analytica Chimica

Acta 185, 1-17.

Groen, J.J.J., Kapetanios, G., 2016. Revisiting useful approaches to data-rich macroeconomic

forecasting. Computational Statistics & Data Analysis 100, 221-239.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning – data mining,

inference, and prediction, Second edition, Springer.

Heij, C., Groenen, P.J.F., van Dijk, D., 2007. Forecast comparison of principal component re-

gression and principal covariate regression. Computational Statistics and Data Analysis 51,

3612-3625.

Huang, J., Horowitz, J.L., Ma, S., 2008. Asymptotic properties of bridge estimators in sparse

high-dimensional regression models. Annals of Statistics 36, 587-613.

Kelly, B., Pruitt, S., 2015. The three-pass regression filter: a new approach to forecasting using

many predictors. Journal of Econometrics 186(2): 294-316

26



Lingjaerde, O.C., Christophersen, N., 2000. Shrinkage structure of partial least squares. Scandi-

navian Journal of Statistics 27(3): 459–473.

Mardia, K., Kent, J., Bibby, J., 1980. Multivariate Analysis, Academic Press, London.

Miller, A., 2002. Subset selection in regression, Chapman & Hall/CRC.

Otto, M., Wegscheider, W., 1985. Spectrophotometric multicomponent applied to trace metal

determinations. Analytical Chemistry 57, 63-69.

Stock, J.H., Watson, M.W., 2002a. Forecasting using principal components from a large number

of predictors. Journal of the American Statistical Association 97, 1167-1179.

Stock, J.H., Watson, M.W., 2002b. Macroeconomic forecasting using diffusion indexes. Journal

of Business Economical Statistics 20, 147-162.

Stock, J.H., Watson, M.W., 2004. Combination forecasts of output growth in a seven-country

data set. Journal of Forecasting 23, 405-430.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of Royal Statistical

Society Series B 58:1, 267–288.

Wold, H., 1966. Estimation of principal components and related models by iterative least squares,

in: Multivariate Analysis, Krishnaiaah, P.R. (ed.), New York: Academic Press, pp. 391-420.

Wold, H., 1975. Soft modelling by latent variables: the non-linear iterative partial least squares

approach, in Perspectives in Probability and Statistics, Papers in Honour of M.S. Bartlett,

J. Gani (ed.). Academic Press, London.

Wold, S., Ruhe, A., Wold, H., Dunn III, W.J., 1984. The collinearity problem in linear regression,

the partial least squares approach to generalized inverse. SIAM Journal of Scientific and

Statistical Computing 5, 735-743

Zou, H., 2006. The adaptive Lasso and its oracle properties. Journal of the American Statistical

Association 101:476, 1418-1429.

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal of

Royal Statistical Society Series B 67:2, 301–320.

Zou, H., Zhang, H. H., 2009. On the adaptive elastic-net with a diverging number of parameters.

The Annals of Statistics 37:4, 1773-1751

27



Table 1: RMSFE, h=1

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 1.138 2.057 1.024 1.085 1.018 1.167 1.093 1.005 1.078 1.060 0.985
80.1-89.12 1.000 0.863 1.109 0.931 1.046 0.922 1.060 0.969 1.001 0.927 0.911 0.926
90.1-99.12 1.000 0.994 1.291 1.003 1.054 0.949 1.079 0.985 1.008 0.986 1.040 0.993
70.1-89.12 1.000 0.988 1.538 0.973 1.064 0.966 1.108 1.025 1.003 0.996 0.978 0.953
80.1-99.12 1.000 0.898 1.158 0.951 1.048 0.929 1.065 0.973 1.003 0.943 0.946 0.944
70.1-99.12 1.000 0.989 1.497 0.978 1.062 0.963 1.103 1.018 1.004 0.994 0.989 0.960
70.1-03.12 1.000 1.007 1.497 0.979 1.066 0.985 1.136 1.018 1.003 0.998 0.992 0.964
80.1-03.12 1.000 0.943 1.224 0.957 1.056 0.969 1.121 0.981 1.002 0.959 0.959 0.954
90.1-03.12 1.000 1.057 1.389 0.993 1.071 1.035 1.209 0.999 1.004 1.004 1.028 0.994

Table 2: RMSFE, h=3

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 1.016 1.492 0.900 1.002 1.000 1.027 0.945 1.012 0.943 0.960 0.907
80.1-89.12 1.000 0.904 0.984 0.886 0.973 0.871 0.921 0.904 0.990 0.892 0.924 0.925
90.1-99.12 1.000 1.055 1.735 1.072 1.126 1.044 1.321 1.066 0.990 1.010 0.991 1.058
70.1-89.12 1.000 0.946 1.176 0.891 0.984 0.920 0.961 0.919 0.998 0.911 0.937 0.919
80.1-99.12 1.000 0.934 1.132 0.923 1.003 0.905 1.000 0.936 0.990 0.915 0.937 0.952
70.1-99.12 1.000 0.961 1.251 0.915 1.003 0.937 1.009 0.939 0.997 0.924 0.944 0.937
70.1-03.12 1.000 0.973 1.256 0.928 1.003 0.953 1.021 0.944 0.997 0.931 0.950 0.944
80.1-03.12 1.000 0.955 1.156 0.940 1.003 0.933 1.019 0.943 0.991 0.926 0.946 0.959
90.1-03.12 1.000 1.070 1.541 1.060 1.072 1.072 1.238 1.032 0.993 1.003 0.997 1.035

Table 3: RMSFE, h=6

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 0.902 1.267 0.908 0.922 0.824 0.806 0.847 0.983 0.842 0.824 0.829
80.1-89.12 1.000 0.895 1.119 0.937 0.971 0.842 0.929 0.886 1.001 1.005 1.056 0.953
90.1-99.12 1.000 0.964 1.656 0.996 1.068 0.975 1.374 0.955 0.985 0.971 1.027 1.006
70.1-89.12 1.000 0.898 1.180 0.925 0.951 0.835 0.878 0.870 0.994 0.938 0.960 0.902
80.1-99.12 1.000 0.910 1.229 0.949 0.991 0.870 1.021 0.900 0.998 0.998 1.050 0.964
70.1-99.12 1.000 0.907 1.243 0.935 0.966 0.853 0.944 0.881 0.993 0.942 0.969 0.916
70.1-03.12 1.000 0.927 1.261 0.959 0.972 0.874 0.977 0.893 0.993 0.954 0.984 0.932
80.1-03.12 1.000 0.939 1.258 0.984 0.998 0.899 1.062 0.915 0.998 1.010 1.064 0.983
90.1-03.12 1.000 1.045 1.600 1.098 1.063 1.036 1.387 0.986 0.989 1.023 1.085 1.055
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Table 4: RMSFE, h=12

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 0.762 1.281 0.807 0.960 0.738 0.886 0.734 1.014 0.716 0.757 0.727
80.1-89.12 1.000 0.797 1.008 0.843 1.042 0.787 0.845 0.868 1.005 0.967 1.114 0.867
90.1-99.12 1.000 0.891 1.415 0.980 1.101 0.906 1.381 0.924 0.976 0.936 0.979 1.015
70.1-89.12 1.000 0.782 1.128 0.827 1.006 0.765 0.863 0.808 1.009 0.856 0.956 0.805
80.1-99.12 1.000 0.817 1.095 0.872 1.054 0.812 0.959 0.880 0.998 0.961 1.085 0.899
70.1-99.12 1.000 0.796 1.166 0.847 1.018 0.784 0.931 0.824 1.004 0.867 0.959 0.833
70.1-03.12 1.000 0.822 1.205 0.883 1.034 0.811 0.980 0.855 1.004 0.883 0.979 0.859
80.1-03.12 1.000 0.857 1.162 0.926 1.076 0.854 1.033 0.924 0.998 0.978 1.106 0.934
90.1-03.12 1.000 1.013 1.567 1.143 1.167 1.029 1.528 1.072 0.979 1.007 1.084 1.111

Table 5: RMSFE, h=18

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 0.596 1.083 0.673 0.895 0.629 0.793 0.656 1.021 0.630 0.633 0.688
80.1-89.12 1.000 0.707 0.878 0.701 1.026 0.686 0.765 0.701 1.028 0.760 0.895 0.710
90.1-99.12 1.000 1.084 1.527 1.012 1.313 1.055 1.509 0.991 0.974 0.907 1.007 1.047
70.1-89.12 1.000 0.657 0.971 0.688 0.966 0.660 0.778 0.681 1.025 0.701 0.776 0.700
80.1-99.12 1.000 0.767 0.981 0.750 1.071 0.744 0.883 0.747 1.019 0.783 0.913 0.763
70.1-99.12 1.000 0.696 1.023 0.718 0.998 0.697 0.846 0.710 1.020 0.720 0.797 0.732
70.1-03.12 1.000 0.722 1.056 0.750 1.023 0.722 0.886 0.735 1.018 0.746 0.820 0.765
80.1-03.12 1.000 0.804 1.039 0.800 1.106 0.783 0.947 0.786 1.016 0.821 0.942 0.816
90.1-03.12 1.000 1.145 1.605 1.147 1.389 1.126 1.588 1.086 0.973 1.038 1.108 1.187

Table 6: RMSFE, h=24

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 0.524 0.951 0.625 0.890 0.561 0.632 0.610 0.975 0.623 0.597 0.672
80.1-89.12 1.000 0.794 0.867 0.834 1.078 0.773 0.718 0.837 1.014 0.849 0.850 0.849
90.1-99.12 1.000 0.450 0.881 0.347 0.868 0.444 0.775 0.324 0.957 0.346 0.933 0.316
70.1-89.12 1.000 0.667 0.907 0.735 0.989 0.673 0.678 0.730 0.995 0.743 0.731 0.766
80.1-99.12 1.000 0.684 0.871 0.678 1.011 0.668 0.736 0.674 0.996 0.689 0.876 0.679
70.1-99.12 1.000 0.624 0.901 0.658 0.965 0.628 0.697 0.650 0.988 0.664 0.771 0.676
70.1-03.12 1.000 0.644 0.927 0.675 0.973 0.647 0.730 0.668 0.991 0.687 0.784 0.700
80.1-03.12 1.000 0.711 0.914 0.704 1.019 0.695 0.785 0.700 1.000 0.723 0.889 0.716
90.1-03.12 1.000 0.569 0.994 0.482 0.919 0.563 0.898 0.466 0.976 0.507 0.957 0.488
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Table 7: RMSFE, h=30

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 0.513 0.934 0.672 0.911 0.539 0.619 0.579 0.986 0.612 0.592 0.625
80.1-89.12 1.000 0.761 0.809 0.844 1.029 0.760 0.704 0.832 1.002 0.842 0.862 0.822
90.1-99.12 1.000 0.343 0.765 0.285 0.831 0.343 0.654 0.240 1.020 0.308 0.707 0.290
70.1-89.12 1.000 0.658 0.861 0.773 0.980 0.668 0.669 0.727 0.995 0.746 0.750 0.740
80.1-99.12 1.000 0.620 0.794 0.656 0.962 0.619 0.687 0.632 1.008 0.662 0.810 0.643
70.1-99.12 1.000 0.586 0.839 0.661 0.946 0.593 0.666 0.615 1.001 0.646 0.740 0.637
70.1-03.12 1.000 0.600 0.864 0.673 0.953 0.607 0.684 0.629 1.001 0.668 0.753 0.663
80.1-03.12 1.000 0.639 0.833 0.673 0.971 0.637 0.713 0.651 1.008 0.693 0.824 0.680
90.1-03.12 1.000 0.435 0.874 0.389 0.875 0.434 0.727 0.351 1.018 0.445 0.761 0.444

Table 8: RMSFE, h=36

NO HARD THRESHOLD LARS(30)
VARIABLE SELECTION VARIABLE SELECTION VARIABLE SELECTION

SAMPLE PCR CFPC PLS PCovR PCR CFPC PLS PCovR PCR CFPC PLS PCovR

70.1-79.12 1.000 0.546 0.847 0.715 0.938 0.501 0.505 0.616 1.039 0.668 0.594 0.667
80.1-89.12 1.000 0.713 0.781 0.834 1.049 0.692 0.634 0.830 0.995 0.782 0.845 0.819
90.1-99.12 1.000 0.280 0.612 0.238 0.834 0.279 0.523 0.187 1.021 0.261 0.506 0.287
70.1-89.12 1.000 0.643 0.808 0.784 1.003 0.613 0.580 0.741 1.013 0.735 0.740 0.756
80.1-99.12 1.000 0.547 0.716 0.605 0.967 0.534 0.591 0.583 1.005 0.582 0.715 0.614
70.1-99.12 1.000 0.546 0.756 0.639 0.958 0.524 0.565 0.593 1.015 0.608 0.678 0.631
70.1-03.12 1.000 0.561 0.768 0.650 0.962 0.539 0.581 0.605 1.015 0.628 0.690 0.645
80.1-03.12 1.000 0.567 0.735 0.622 0.972 0.555 0.613 0.600 1.005 0.610 0.731 0.636
90.1-03.12 1.000 0.361 0.670 0.324 0.863 0.360 0.583 0.275 1.019 0.368 0.570 0.377
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