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Abstract

In this paper we consider the �Regularization of Derivative Expectation Operator� (Rodeo)
of La�erty and Wasserman (2008) and propose a modi�ed Rodeo algorithm for semiparametric
single index models in big data environment with many regressors. The method assumes sparsity
that many of the regressors are irrelevant. It uses a greedy algorithm, in that, to estimate the
semiparametric single index model (SIM) of Ichimura (1993), all coe�cients of the regressors
are initially set to start from near zero, then we test iteratively if the derivative of the regression
function estimator with respect to each coe�cient is signi�cantly di�erent from zero. The
basic idea of the modi�ed Rodeo algorithm for SIM (to be called SIM-Rodeo) is to view the
local bandwidth selection as a variable selection scheme which ampli�es the coe�cients for
relevant variables while keeping the coe�cients of irrelevant variables relatively small or at the
initial starting values near zero. For sparse semiparametric single index models, the SIM-Rodeo
algorithm is shown to attain consistency in variable selection. In addition, the algorithm is
fast to �nish the greedy steps. We compare SIM-Rodeo with SIM-Lasso method in Zeng et al.
(2012). Our simulation results demonstrate that the proposed SIM-Rodeo method is consistent
for variable selection and show that it has smaller integrated mean squared errors than SIM-
Lasso.
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1 Introduction

In a series of papers, Poirier (1980ab, 1994, 1996), Poirier and Rudd (1988), and Koop and Poirier

(1993, 2004), Dale Poirier has made many seminal contributions to the issues of identi�cation

and inference of probit and logit models, in Bayesian and classical approaches, for parametric,

semiparametric, partially linear models. This paper proposes a new method of variable selection

for sparse single index models, that would be useful for parametric and semiparametric probit and

logit models with many regressors.

Nadaraya (1964) and Watson (1964) propose the Nadaraya-Watson local constant kernel regres-

sion estimator. Kernel regression has been extremely popular for it is free of parametric assump-

tions. On the other hand, it su�ers from computational complexity and the curse of dimensionality.

Ichimura (1993) studies the semiparametric single index model (SIM) to overcome the curse of di-

mensionality by assuming that the true model is a function of an index which is a linear combination

of the explanatory variables. Klein and Spady (1993) study a similar semiparametric single index

model for binary outcomes and propose to estimate the model by maximum likelihood. However,

these SIM methods gain limited improvements computationally over the local constant and local

linear kernel regression and are still slow to implement.

Recent statistics and econometrics literature has been focusing on big data issues which are

extremely di�cult to solve with kernel regressions. To overcome this problem, under the sparsity

assumption, several papers propose regularized SIM methods with penalty terms. See e.g. Huang,

Horowitz, and Wei (2010). Su and Zhang (2014) provide a comprehensive review on those literature.

However, those penalties may induce additional complexity in computation and lead to huge bias

and variance when the ratio of information to noise is small. One such method that seems to be

a natural way for SIM is a Lasso-type approach by Zeng, He, and Zhu (2012) for estimation and

variable selection in SIM, which they termed as �SIM-Lasso�.

Meanwhile, there is a large volume of literature motivated by statistical machine learning, such

as AdaBoost, Boosting, Support Vector Machine and Deep Neural Net. In particular, in this paper,

we note that the method of La�erty and Wasserman (2008), called the Regularization of Derivative
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Expectation Operator (Rodeo), may be modi�ed for SIM. Rodeo is a greedy algorithm for variable

selection and estimation of the nonparametric regression function based on testing of marginal

contribution of an additional variable in selecting relevant explanatory variables. A goal of this

paper is to modify Rodeo so that it can be applied to semiparametric SIMs under sparsity. We will

call the modi�ed Rodeo for SIM as �SIM-Rodeo�.

The SIM-Rodeo method is able to distinguish relevant explanatory variables from irrelevant

variables and gives a competitive estimator for the model. In addition, the algorithm �nishes in

a reasonable period of time. The method assumes sparsity under which most of the explanatory

variables are irrelevant. We use a greedy algorithm that starts with a semiparametric SIM estimator

(Ichimura 1993) that sets all coe�cients
(
θj =

βj
h

)
as zero which are the ratio of slope coe�cients

βj to bandwidth h in the original Ichimura estimator. Then, we iteratively test if the derivative of

the regression estimator with respect to each coe�cient θj is zero. The intuition is for a relevant

explanatory variable, changing its coe�cient would lead to a dramatic change in the value of the

estimator. However, for an irrelevant variable, changing its coe�cient would lead to ideally no

change to the single index estimator. The impact of changing the coe�cient to the attained estimator

can be measured with the derivative of the estimator with respect to the coe�cient. If the derivative

with respect to one coe�cient is zero, it implies the corresponding explanatory variable does not

have a strong explanatory power on the dependent variable. And it will be seen as an irrelevant

variable and given coe�cient zero. However, if the derivative with respect to one coe�cient is

signi�cantly di�erent from zero, then we say the corresponding explanatory variable has a strong

explanatory power on the dependent variable. Hence, it will be seen as a relevant explanatory

variable and given coe�cient greater than zero. The proposed procedure attains a solution path

similar to the Least Angle Regression (Efron et al. 2004). The new method is superior to the usual

Lasso type penalty (Zeng et al. 2012) in the sense that it does not introduce bias into the estimation

process, is free of user-speci�c parameters and computationally more e�cient. Simulation results

show that the proposed method is consistent for variable selection and has smaller integrated mean

squared errors (IMSE) than using Lasso penalty.

The rest of the paper is organized as follows. Section 2 introduces the intuition and algorithm
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of the original Rodeo of La�erty and Wasserman (2008). Section 3 sets up a model for the semi-

parametric single index model of Ichimura (1993), introduces the SIM-Rodeo, and discusses the

asymptotic properties of SIM-Rodeo in variable selection and estimation of the semiparametric sin-

gle index model. Section 4 provides Monte Carlo simulation results for SIM-Rodeo in comparison

with SIM-Lasso of Zeng et al (2012). Section 5 concludes.

2 Rodeo

This section introduces the idea behind the Regularization of Derivative Expectation Operator

(Rodeo) proposed by La�erty and Wasserman (2008). We �rst provide an illustration of the Rodeo

algorithm, and then, a simple numerical example with one relevant explanatory variable and one

irrelevant noise variable.

2.1 Algorithm

Let yi ∈ R be the dependent variable, Xi ∈ Rk be an observation of k variables, X = (X ′1, . . . , X
′
n)′

be a matrix of n observations and x ∈ Rk be a local estimation point.

The Rodeo algorithm uses the kernel estimator

m̂h(x) =

∑n
i=1 yiK(Xi, x, h)∑n
i=1K(Xi, x, h)

, (1)

where h is a vector of length k that is equal to the number of potential explanatory variable, hj is

the jth element of h that is corresponding to variable j and K(Xi, x, h) is the standard notation of

a product kernel that takes the form

K(Xi, x, h) =
k∏
j=1

κ

(
Xij − xj

hj

)
, (2)

where κ(·) is usually given as a one-variable density function. Xij is the ith observation of the jth

variable and xj is the jth variable of a local estimation point x. In what follows, we keep the same

notation except that in the single index model, our kernel becomes a one-variable density function

instead of a product kernel.

The Rodeo algorithm takes the derivative of the kernel estimator (1) with respect to each
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bandwidth hj . Let

ι =

 1
...

1

 , (3)

and

Wx =

 K (X1, x, h) · · · 0
...

. . .
...

0 · · · K (Xn, x, h)

 . (4)

With fairly easy derivation, we can get the closed form of an estimate of the derivative

Zj ≡
∂m̂h(x)

∂hj

= (ι′Wxι)
−1ι′

∂Wx

∂hj
y − (ι′Wxι)

−1ι′
∂Wx

∂hj
ι(ι′Wxι)

−1ι′Wxy

≡
n∑
i=1

Gj (Xi, x, h) yi, (5)

where y = (y1, . . . , yn) is a vector of observations on the dependent variable. The conditional

variance of Zj can be calculated by

s2j ≡ Var(Zj |X)

= σ2
n∑
i=1

G2
j (Xi, x, h) , (6)

where σ2 is the variance of the error term in the model. A detailed derivation can be found in

Section 3 of La�erty and Wasserman (2008). Here we skip the derivation for the kernel regression.

However, we provide a detailed derivation for the single index model (SIM) in Section 4. Now we

get all the ingredients of the Rodeo algorithm. The Rodeo algorithm is as follows.
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Algorithm 1. Rodeo (La�erty and Wasserman 2008)

1. Select constant 0 < α < 1 and initial bandwidth

h0 =
c0

log log n

where c0 > 0 is su�ciently large.

2. Initialize the bandwidths, and activate all covariates:

(a) hj = h0, j = 1, . . . , k.

(b) A = {1, . . . , k} .

3. While A is nonempty, do for each j ∈ A:

(a) Compute the estimated derivative and its conditional variance: Zj and sj using (5) and

(6).

(b) Compute the threshold λj = ŝj
√

2 log n.

(c) If |Zj | > λj , then set hj ← αhj ; otherwise remove j from A (i.e., A ← A− {j}).

4. Output bandwidths h∗ = (h1, . . . , hk) and estimator m̂h∗ (x) where m̂h∗(x) is the kernel

estimator with bandwidth h∗.

The basic idea of the Rodeo algorithm by La�erty and Wasserman (2008) is to view the lo-

cal bandwidth selection as variable selection in sparse nonparametric kernel regression models by

shrinking the bandwidths for relevant variables while keeping the bandwidths of irrelevant variables

relatively large. The Rodeo algorithm is greedy as it solves for the locally optimal path choice at

each iteration and is shown to attain the consistency in mean square error when it is applied to

sparse nonparametric local linear model (La�erty and Wasserman 2008 Corollary 5.2).1

2.2 A Numerical Example

Now we give a numerical illustration of how Rodeo works. First we generate 100 data points from

the DGP

y =
1

1 + e−x1
+ u, (7)

where x1 is a random variable following uniform distribution with range [−3, 3] and u is a random

variable following the normal distribution with mean 0 and standard deviation 0.02. The generated

1We can also make Rodeo for local constant kernel regression models as we will demonstrate in this paper later.
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data of x1 and y are shown in Figure 1.

Next, we generate an irrelevant variable x2 that follows the same distribution as x1 but is not

included in the model. Thus, x2 and y are independent. The generated data of x2 and y are shown

in Figure 2.

In the algorithm, we start by setting bandwidths hj for all j large enough so that

Xij − xj
hj

→ 0 as hj →∞ for all i. (8)

Hence,

K(Xi, x, h)→
k∏
j=1

κ(0) as hj →∞ for all i. (9)

For simplicity of illustration, we assume the kernel function is an indicator function κ(Xij , xj , hj) =

1(|Xij − xj | < hj). This makes our estimate a simple average of the observations that satisfy

|Xij − xj | < hj for all j. If for all j, |Xij − xj | is smaller than the bandwidth hj , then we include

observation i in the average. Otherwise, we exclude it. At the beginning, when the bandwidths are

large enough, our estimate is the global mean since all observations are included in the estimate.

However, if we shrink the bandwidth hj , we exclude the observations whose Xij has a distance

greater than hj from xj . Hence, our estimate changes from the global mean m̂h (x) = ȳ to a local

mean m̂h (x) as shown in Figure 3.

However, this holds only for x1. Changing the bandwidth of x2 does not have the same e�ect.

A larger bandwidth of x2 includes more observations whose Xi2 is far away from x2. If Xi2 does not

determine yi, then including those observations does not a�ect m̂h(x). In fact, from Figure 4 we can

see that shrinking the bandwidth of x2 does not a�ect the value of the estimate. This observation

gives us a criteria to distinguish between relevant explanatory variables and irrelevant variables.

3 Rodeo for Single Index Model (SIM-Rodeo)

In this section, we show that Rodeo can be modi�ed for the sparse semiparametric linear single

index models by considering the bandwidths as the inverse of the parameters which form the linear

single index.
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First, we give a short introduction to the general set up of the SIM model and the Ichimura

(1993) estimator we use for estimation. We also give detailed intuition and description of our

proposed greedy estimation procedure.

3.1 SIM

We consider a standard single index model,

y = m
(
x′β
)

+ u, (10)

where β = (β1, . . . , βk) is a vector of coe�cients. Under the sparsity condition, we assume that

βj 6= 0 for j ≤ r and βj = 0 for j > r. We also assume that the random errors u are independent.

However, we allow the presence of heteroskedasticity to encompass a large category of models for

binary prediction, e.g. Logit and Probit models. The kernel estimator (Ichimura 1993) we use is as

shown below

m̂
(
x′β;h

)
=

∑n
i=1 yiK

(
X′iβ−x′β

h

)
∑n

i=1K
(
X′iβ−x′β

h

) , (11)

where K (·) is a kernel function. The semiparametric kernel regression looks for the best β and h

to minimize a weighted squared error loss. However, exact identi�cation is not available. If one

blows up β and h simultaneously by multiplying the same constant, the kernel estimator would

yield identical estimates and losses. The standard identi�cation approach is to set the �rst element

of β to be 1 (Ichimura 1993).

As recent research pays more attention to high-dimensional data, most literature makes the

sparsity assumption that many, if not most, of the elements of β are zero. The previous mentioned

identi�cation method appears to be unsuitable unless we have speci�c information that the true

value of the element of β that we set to be 1 is not zero. The most popular regularization method,

Lasso (Tibshirani 1996), also fails for the same reason. With L1 penalty, the algorithm can always

achieve a lower loss by shrinking β and h while keeping the ratio of βh constant. This would lead to

a lower value in the penalty term without changing the value of the squared error term.

In terms of variable selection and prediction, we only need to focus on �nding the best θ ≡ β
h .
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Hence, we can simplify the estimator to

m̂
(
x′θ
)

=

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

. (12)

Instead of the standard two stage estimation of Ichimura (1993), we introduce a test-based greedy

approach similar to La�erty and Wasserman (2008) where it was used for bandwidth selection in

local linear regression. The intuition for the method is that if xj is a relevant explanatory variable

of y, then we would expect that increasing the magnitude of θj would lead to a signi�cant change in

m̂ (x′θ) . This can be seen as giving higher weights to the observations closer to x′θ and lower weights

to the observations further away from x′θ. On the other hand, if xj is not a relevant explanatory

variable of y, then increasing the magnitude of θj can be seen as randomly reassigning weights for

the observations and will only result in a random (moderate) change in m̂ (x′θ). The in�uence of

changing the magnitude of θj on m̂ (x′θ) can be measured as the derivative of ∂m̂(x′θ)
∂θj

. Hence, we

can test if xj is a relevant explanatory variable by testing if ∂m̂(x′θ)
∂θj

is statistically di�erent from

zero.

3.2 SIM-Rodeo

The basic idea of the modi�ed Rodeo algorithm for SIM (SIM-Rodeo) is to view the local bandwidth

selection as a variable selection in sparse semiparametric single index model. The SIM-Rodeo

algorithm ampli�es the inverse of the bandwidths for relevant variables while keeping the inverse

of the bandwidths of irrelevant variables relatively small. The SIM-Rodeo algorithm is greedy as it

solves for the locally optimal path choice at each iteration. SIM-Rodeo is able to distinguish truly

relevant explanatory variables from noisy irrelevant variables. In addition, the algorithm is fast to

�nish the greedy steps.

Now we derive the Rodeo for Single Index Models. First we introduce some notation. Let

Wx =

 K (X ′1θ − x′θ) · · · 0
...

. . .
...

0 · · · K (X ′nθ − x′θ)

 (13)
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where K (·) is the Gaussian kernel. The standard Ichimura (1993) estimator takes the form

m̂
(
x′θ
)

=

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

=
(
ι′Wxι

)−1
ι′Wxy. (14)

The derivative of the estimator Zj with respect to θj is

Zj ≡
∂m̂ (x′θ)

∂θj
(15)

=
(
ι′Wxι

)−1
ι′
∂Wx

∂θj
y −

(
ι′Wxι

)−1
ι′
∂Wx

∂θj
ι
(
ι′Wxι

)−1
ι′Wxy

=
(
ι′Wxι

)−1
ι′
∂Wx

∂θj

(
y − ιm̂

(
x′θ
))
. (16)

For the ease of computation, let

Lj =


∂ logK(X′1θ−x′θ)

∂θj
· · · 0

...
. . .

...

0 · · · ∂ logK(X′nθ−x′θ)
∂θj

 . (17)

Note that

∂Wx

∂θj
= WxLj , (18)

which appears in equation (16). With the Gaussian kernel, K (t) = e−
t2

2 , then Lj becomes

Lj =


−1

2

∂(X′1θ−x′θ)
2

∂θj
· · · 0

...
. . .

...

0 · · · −1
2
∂(X′nθ−x′θ)

2

∂θj


=

 − (X ′1θ − x′θ) (X1j − xj) · · · 0
...

. . .
...

0 · · · − (X ′nθ − x′θ) (Xnj − xj)

 ,

where X1j and Xnj are the jth elements of vectors X1 and Xn. And xj is the jth element of vector

x. To simplify the notation, let Bx = (ι′Wxι)
−1 ι′Wx. Then, the derivative Zj becomes

Zj =
(
ι′Wxι

)−1
ι′
∂Wx

∂θj

(
y − ιm̂

(
x′θ
))

= BxLj (I − ιBx) y

≡ Gj (x, θ) y. (19)
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Note that now we are using a di�erent notation with Gj(·). In Section 2, Gj(·) is a three-argument

function and Gj(Xi, x, h) is a scalar. However, in this section, Gj(·) is a two-argument function and

Gj(x, θ) is a vector of length n. We are aware that this change of notation may cause confusion.

Nevertheless, Gj(·) in Sections 2 and 3 play the same role as the weights of y in Zj . So we think

sticking withGj(·) would be easier for the readers to understand and compare Rodeo and SIM-Rodeo

as long as the di�erence is pointed out and noticed by the readers.

Next, we give the conditional expectation and variance of Zj .

Zj = Gj (x, θ) y = Gj (x, θ)
(
m
(
x′β
)

+ u
)
, (20)

E (Zj |X) = E
(
Gj (x, θ)

(
m
(
x′β
)

+ u
)
|X
)

= Gj (x, θ)m
(
x′β
)
, (21)

Var (Zj |X) = Var
(
Gj (x, θ)

(
m
(
x′β
)

+ u
)
|X
)

= σ′Gj (x, θ)′Gj (x, θ)σ, (22)

where σ = (σ (u1) , . . . , σ (un))′ is the vector of standard deviations of u. In the algorithm, it is

necessary to insert an estimate of σ. In Algorithm 1, La�erty and Wasserman (2008) suggest to use

a generalized estimator of Rice (1984) under homoskedasticity. In our Algorithm 2, we allow the

errors to be heteroskedastic as in Logit and Probit models and estimate σ(ui) using the estimator

σ̂2(ui) = m(x′iθ̂)(1−m(x′iθ̂)).

SIM-Rodeo is described in Algorithm 2, which is a modi�ed algorithm of Rodeo (La�erty and

Wasserman 2008).
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Algorithm 2. SIM-Rodeo

1. Select a constant 0 < α < 1 and the initial value

θ0 = c0 log log n

where c0 is su�ciently small. Compute Zj with θj = θ0 for all j.

2. Initialize the coe�cients θ, and activate all covariates:

(a) θj =

{
θ0 Zj > 0
−θ0 otherwise,

j = 1, . . . , k.

(b) A = {1, . . . , k}.

3. While A 6= ∅ is nonempty, do for each j ∈ A:

(a) Compute Zj and sj =
√

Var (Zj |X) using (19) and (22) respectively.

(b) Compute the threshold λj = sj
√

2 log n.

(c) If |Zj | > λj , then set θj ← θj
α ; Otherwise, remove j from A (i.e., A ← A− {j}).

4. Output θ̂ = (θ1, . . . , θk) and estimator m̂
(
x′θ̂
)
.

Notice that in Algorithm 1, when selecting bandwidth for local linear and local constant re-

gression, the bandwidth is always positive. Hence, we do not have to worry about the sign of the

bandwidth. However, in our single index model, θ is the ratio of β and the bandwidth. Since β

could be either positive or negative, θ could also take positive or negative values. In Algorithm 2,

we propose to use the sign of the derivative estimate Zj as the sign of θj . Our method is based

on the observation that if θj and θj′ have the same sign, then their respective Z statistic Zj and

Zj′ will also have the same sign. Hence, SIM-Rodeo will give relatively correct signs to each θ, i.e.

all the positive θ will be given the same sign and all the negative θ will be given the same sign.

A similar method is applied by Ichimura (1993) where the value positive one is given to the �rst

β to ensure identi�cation. Under the sparsity assumption, it is problematic to arbitrarily assign

a magnitude greater than zero to any θ since the true value could be zero. However, it is safe to

assume the sign of one of the θ to be positive or negative since positive zero and negative zero will

not a�ect the relative scale of θ. Once again, due to the the identi�cation issue with single index

model, exact identi�cation of θ is not available. However, signs of θ can be obtained relatively.
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We start by setting θj = θ0 that is close to zero. Hence, (X ′iθ − x′θ) are close to zero and

K (X ′iθ − x′θ) are close to K (0). This means our estimator starts with the simple average of all

observations, ȳ. If the derivative of θj is statistically di�erent from zero. We amplify θj . If xj is

indeed a relevant explanatory variable, then the weights K (X ′iθ − x′θ) change according to xj . The

estimator will give higher weights to observations close to x′θ and lower weights to observations

away from x′θ.

3.3 Asymptotic Properties of SIM-Rodeo

We make the following assumptions.

Assumptions. (A1) The density f (x) of (x1, . . . , xk) is uniform on the unit cube.

(A2) lim infn→∞min1≤j≤r |mjj (·)| > 0 where mjj(·) is the second derivative of m(·).

(A3) All derivatives of m (·) up to and including fourth order are bounded.

Assumption (A1) greatly simpli�es the proof of Theorem 1. However, it is not necessary as

shown in our Monte Carlo designs where x's are not uniform distributed. Assumption (A2) is

crucial for SIM-Rodeo. As shown in Lemma 1, the expectation of Zj for a relevant variable will be

zero if the second derivative of m(·) is zero. As a result, we will not be able to distinguish relevant

variables from irrelevant variables through Zj since in both cases, the expectation of Zj is zero.

In the statement of Theorem 1, we follow the notation of La�erty and Wasserman (2008) and

write Yn = Õ (an) to mean that Yn = O (bnan) where bn is logarithmic in n. And we write

an = Ω (bn) if lim infn

∣∣∣anbn ∣∣∣ > 0 and an = Ω̃ (bn) if an = Ω (bncn) where cn is logarithmic in n.

Theorem 1. Suppose that Assumptions (A1), (A2) and (A3) hold. In addition, suppose that

min
j≤r

∣∣mjj

(
x′θ
)∣∣ = Ω̃ (1) (23)

and

max
j≤r

∣∣mjj

(
x′θ
)∣∣ = Õ (1) . (24)
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Then the SIM-Rodeo outputs θ̂ satisfying

Pr (θj = θ0 for all j > r)→ 1 as n→∞ (25)

and

Pr (θj > θ0 for all j ≤ r)→ 1 as n→∞. (26)

Proof. See Appendix.

Theorem 1 shows that under the given assumptions and conditions, the coe�cients θ for relevant

variables will always be ampli�ed while the coe�cients θ for irrelevant variables will always stay at

the initial value. Hence, we are able to consistently select the relevant variables by checking whether

the coe�cients θ is ampli�ed by the SIM-Rodeo.

Remark 1. Theorem 1 shows the consistency of the variable selection by the SIM-Rodeo. However,

the consistency of estimating m(·) is not proved in Theorem 1. We conjecture that the consistency

holds as supported by our simulation results. We leave this extension for a future work.

Remark 2. An alternative consistent estimation procedure is as follows. First, we use the proposed

SIM-Rodeo algorithm for variable selection. Then, we use the selected explanatory variables to

estimate β̂ and m̂(x′β̂;h) by using either Ichimura (1993) or Klein and Spady (1993). Since Theorem

1 shows that the SIM-Rodeo consistently selects the relevant variables, the methods of Ichimura

(1993) and Klein and Spady (1993) would yield consistent estimation of m(·) after the consistent

variable selection via the SIM-Rodeo.

4 Monte Carlo

This section examines the performance of SIM-Rodeo using Monte Carlo simulation compared with

SIM-Lasso (Zeng, He and Zhu 2012) and Maximum Likelihood (Klein and Spady 1993). We �rst

describe the designs of the DGPs. Then a brief introduction of SIM-Lasso is provided. At the end

of this section, we give a comprehensive discussion on the simulation results.
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4.1 Simulation Designs

We follow the simulation designs of Klein and Spady (1993) where the data generating process

(DGP) is given by

y∗i = β1xi1 + β2xi2 + β3xi3 + · · ·+ βkxik + ui for i = 1, . . . , n (27)

where

βj =

{
1 if j = 1, 2;

0 otherwise.
(28)

The observed variable yi is generated by

yi =

{
1 if y∗i ≥ 0;

0 otherwise.
(29)

The x's are independently and identically distributed. x1 is a chi-squared variate with 3 degrees

of freedom truncated at 6 and standardized to have zero mean and unit variance; x2 is a standard

normal variate truncated at ±2 and similarly standardized. All the other x's are irrelevant variables

and follow uniform distribution between −2 and 2.

We consider two link functions as shown in Figure 5 (Design 1 and Design 2). In Design 1, the

ui's are standard normal. In Design 2, they are normal with mean zero and variance 0.25
(
1 + v2i

)2
where vi ≡ β1xi1 + β2xi2. In both designs, ui's are independently distributed.

The probability Pr (y = 1|v) of the two designs are shown in Figure 5. Design 1 is the standard

Probit model. Design 2 is di�erent from Design 1 in the sense that it is not monotone and is

steeper in the tails. Hence, Design 2 has a larger curvature than Design 1 on average. As a result,

SIM-Rodeo is expected to preform better under Design 2 since Assumption (A2) and Conditions

(23) and (24) require the second derivative of the link function to be greater than zero.

4.2 SIM-Lasso

We show results for SIM-Rodeo together with SIM-Lasso (Zeng et al 2012) to check the relative

e�ciency of SIM-Rodeo. The SIM-Lasso is introduced as an application of the Lasso penalty under

the framework of Semiparametric Single Index Models for variable selection and estimation. Zeng,

14



He and Zhu (2012) propose to solve the following minimization problem

min
a,b,β,‖β‖=1

n∑
j=1

n∑
i=1

[
yi − aj − bjβ′ (Xi −Xj)

]2
wij + λ

n∑
j=1

|bj |
k∑
p=1

|βp| (30)

where λ is a hyper parameter as in standard Lasso practices and

wij =
K
(
X′iβ−X′jβ

h

)
∑n

q=1K
(
X′qβ−X′jβ

h

) . (31)

The authors provide their code in the supplemental materials of their paper which is available on

the website of Journal of Computational and Graphical Statistics.

4.3 Results

We report θ
(

= β
h

)
from SIM-Rodeo and SIM-Lasso both for the estimator of Ichimura (1993). The

results of the simulations are presented in Tables 1-4. Notice that for both algorithms, large values

of θ indicate that the associated variables are relevant explanatory variables while small values of

θ indicate that the associated variable are irrelevant variables. In both designs, only the �rst two

variables are relevant explanatory variables as in the description of the DGPs. We consider di�erent

values for n ∈ {100, 200} and k ∈ {5, 20} where n is the number of observations in the training

sample and k is the total number of relevant explanatory variables and irrelevant variables for each

observation. We also present results using the maximum likelihood (ML) of Klein and Spady (1993)

for the low dimension case (k = 5). We skip the ML for the high dimension case (k = 20) since

maximum likelihood su�ers dramatically from the curse of dimensionality. The maximum likelihood

is strictly dominated by the other methods even in the low dimension case. And theoretically, it

would only get worse when dimension increases. We report the Monte Carlo average of the value

of θ̂ obtained by the methods and the integrated mean squared error

IMSE =

∫ (
m̂(x′θ̂)−m(x′β)

)2
f(x)dx (32)

of the estimate m̂
(
x′θ̂
)
using the θ̂ obtained where f(x) is the probability density function of x as

in Assumption (A1).

From the simulation results, we can see that under the sparsity condition, SIM-Rodeo and
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SIM-Lasso both outperform the traditional maximum likelihood method of Klein and Spady (1993)

which does not take advantage of the sparsity structure in the DGP. While among the two methods

that take into account the sparsity structure, SIM-Rodeo outperforms SIM-Lasso in both variable

selection and estimation. In Design 2, SIM-Rodeo dominates SIM-Lasso in small and large samples

and various degrees of sparsity. In addition, SIM-Rodeo works better under Design 2 than Design

1. This is consistent with our analytical result since the expectation of the derivative estimate

Zj is depending on the second derivative of m(·). When the second derivative of m(·) is close to

zero, the expectations of Zj of relevant explanatory variables are also close to zero which makes the

di�erence between relevant variables and irrelevant variables smaller. Moreover, the conditions (23)

and (24) in Theorem 1 states that SIM-Rodeo requires a larger value for the second derivative of

m(·) when the number of observations n increases. As a result, when n increases from 100 to 200,

the already small second derivative in Design 1 becomes even more problematic. That is why in

Table 1, the IMSE of SIM-Rodeo for Design 1 does not bene�t from the increase of sample size. In

summary, SIM-Rodeo and SIM-Lasso both have excellent performance in terms of variable selection.

However, SIM-Rodeo generally has a smaller IMSE than SIM-Lasso. Maximum likelihood should

not be used when sparsity is assumed since both SIM-Rodeo and SIM-Lasso have considerably

better performance.

5 Conclusions

The basic idea of the Rodeo algorithm by La�erty and Wasserman (2008) is to view the local

bandwidth selection as variable selection in sparse nonparametric kernel regression by shrinking

the bandwidths for relevant variables while keeping the bandwidths of irrelevant variables relatively

large. The Rodeo algorithm is greedy as it solves the locally optimal path choice at each stage which

is shown to attain the asymptotic optimality in mean square error for sparse nonparametric local

linear or local constant kernel regression models (La�erty and Wasserman 2008 Corollary 5.2).

In this paper, we propose a new algorithm, based on the Rodeo, for variable selection and

estimation for the sparse semiparametric linear single index models by viewing the bandwidths as

the inverse of the parameters which form the linear single index. The basic idea of the modi�ed
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Rodeo algorithm for SIM (which we call SIM-Rodeo) is to view the local bandwidth selection as

a variable selection in sparse semiparametric single index model by amplifying the inverse of the

bandwidths for relevant variables while keeping the inverse of the bandwidths of irrelevant variables

relatively small. The SIM-Rodeo algorithm is greedy as it solves the locally optimal path choice

at each stage which can also be shown to attain the asymptotic optimality in mean square error

for sparse semiparametric single index models. The SIM-Rodeo method is able to distinguish truly

relevant explanatory variables from noisy irrelevant variables and gives a "competitive" estimator

for the model. In addition, the algorithm is fast to �nish the greedy steps.

We compare the SIM-Rodeo with a Lasso-type approach by Zeng et al (2012) for estimation

and variable selection in SIM, which Zeng et al (2012) call SIM-Lasso. Our Monte Carlo simulation

shows that SIM-Rodeo outperforms SIM-Lasso in variable selection and also in estimation. The

new method is superior to the usual Lasso type penalty in estimation because SIM-Rodeo does

not introduce bias from using the additive Lasso penalty and is computationally more e�cient.

Simulation results also show that the proposed SIM-Rodeo is consistent for variable selection and

has smaller integrated mean squared errors than using SIM-Lasso.
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Appendix: Proof of Theorem 1

We follow the notation of La�erty and Wasserman (2008) and write Yn = ÕP (an) to mean that

Yn = OP (bnan) where bn is logarithmic in n. And we write an = Ω (bn) if lim infn

∣∣∣anbn ∣∣∣ > 0 and

an = Ω̃ (bn) if an = Ω (bncn) where cn is logarithmic in n.

De�ne

µj (θ) =
∂

∂θj
E [m̂θ (x)−m (x) |X1, . . . , Xn] ,

which is the derivative of the conditional bias. The �rst lemma analyzes µj (θ) and E (µj (θ)) under

the assumption that f is uniform. The second lemma analyzes the variance. The third lemma

bounds the probabilities P (|Zj | ≥ λj) in terms of tail inequalities for standard normal variables.

In each of these lemmas, we make the following assumptions. We assume that f is uniform, K

is a Gaussian kernel, and α > 1. Moreover, without loss of generality, we make use of the following

set B of coe�cients where θ0 > 0

B =

θ = (θ1, . . . , θk) =

αt1θ0, . . . , αtrθ0︸ ︷︷ ︸
r terms

, θ0, . . . , θ0︸ ︷︷ ︸
k−r terms

 : 0 ≤ tj ≤ Tn, j = 1, . . . , r

 ,

where Tn ≤ c1 log n. Finally, we assume that

r = O (1) ,

k = O

(
log n

log log n

)
,

θ0 = c0 log log n.

The proofs of the lemmas can be found in La�erty and Wasserman (2008).

Lemma 1. For each θ ∈ B,

E (µj (θ)) =

{
ν2mjj(xθ)

θj
+

gj(xRθR)
θj

, j ≤ r,
0, j > r,

where ν2I =
∫
uuTK (u) du and gj (xRθR) depends only on the relevant variables and bandwidths,

and satis�es

|gj (xRθR)| = O

∑
l≤r

sup
x

|mjjll (xθ)|
θ2l

 .
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Furthermore, for any δ > 0,

Pr

 max
θ∈B

1≤j≤k

|µj (θ)− E (µj (θ))|
sj(θ)

>

√
δ log n

log log n
≤ 1

nδσ2/ (8c0)


where

s2j (θ) =
Cθ2j
n

k∏
l=1

θl,

with

C = σ2
∫
K2 (u) du

f (x)
.

Lemma 2. Let νj (θ) = Var (Zj |X1, . . . , Xn). Then

Pr

 max
θ∈B

1≤j≤k

∣∣∣∣∣νj (θ)

s2j (θ)
− 1

∣∣∣∣∣ > ε

→ 0,

for all ε > 0.

Lemma 3. For any c > 0 and each j > r,

Pr (|Zj (θ0)| > λj (θ0)) = o

(
1

nc

)
.

Uniformly for θ ∈ B, c > 0 and j ≤ r,

Pr (|Zj (θ)| < λj (θ)) ≤ Pr

(
N (0, 1) >

νj |mjj (xθ)|+ zn
sj (θ) θj

)
+ o

(
1

nc

)
,

where zn = O
(
θ−3j

)
.

Proof of Theorem 1. Let At be the active set at step t. De�ne St to be the event that At =

{1, . . . , r}. We want to show that

Pr (S1)→ 1,

from which the theorem follows.

Fix c > 0. In what follows, we let ξn (c) denote a term that is o (n−c); we will suppress the

dependence on c and simply write ξn.
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At Step t = 1, de�ne the event

B1 = {|Zj | > λj for all j ≤ r} ∩ {|Zj | < λj for all j > r} .

Thus, A1 = B1. We claim that

Pr (Bc
1) ≤ O

(
1

n

)
+ ξn.

From Lemma 3, when j > r,

Pr

(
max
j>r
|Zj | > λj

)
≤

k∑
j=r+1

Pr (|Zj | > λj) ≤ dξn = ξn.

When j ≤ r,

Pr (|Zj | < λj for some j ≤ r) ≤ O
(

1

n

)
+ ξn.

Hence,

Pr (θj = θ0 for all j > r)→ 1 as n→∞.

and

Pr (θj > θ0 for all j ≤ r)→ 1 as n→∞
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Table 1: Design 1 (k = 5)
θ1 θ2 θ3 θ4 θ5 IMSE of m (xθ)

n = 100
Rodeo 0.5739 0.3422 0.0713 0.0693 0.0724 0.0774

Lasso 0.6032 0.5822 0.0223 0.0228 0.0235 0.1136

ML 15.7902 11.3961 2.2156 2.2339 2.2334 0.3103

n = 200
Rodeo 0.8063 0.5095 0.1811 0.1894 0.1904 0.0780

Lasso 0.6572 0.6348 0.0142 0.0141 0.0142 0.0740

ML 13.6022 11.6887 1.5990 1.6322 1.6093 0.2356

Table 2: Design 2 (k = 5)
θ1 θ2 θ3 θ4 θ5 IMSE of m (xθ)

n = 100
Rodeo 0.2486 0.1452 0.0160 0.0120 0.0057 0.0474

Lasso 0.5241 0.4919 0.0332 0.0334 0.0357 0.1137

ML 10.0696 4.5824 1.5773 1.6003 1.5993 0.1858

n = 200
Rodeo 0.5022 0.2803 0.0296 0.0393 0.0426 0.0369

Lasso 0.6547 0.6031 0.0209 0.0192 0.0207 0.0616

ML 7.8625 4.7588 0.8896 0.8920 0.9034 0.1321

23



Table 3: Design 1 (k = 20)

n = 100

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Rodeo 0.2349 0.2117 0.0032 0.0048 0.0027 0.0049 0.0013 0.0080 0.0009 0.0023

0.1487θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Rodeo 0.0093 0.0066 0.0037 0.0045 0.0026 0.0036 0.0016 0.0033 0.0030 0.0016

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Lasso 0.4140 0.3904 0.0036 0.0036 0.0044 0.0045 0.0046 0.0048 0.0047 0.0047

0.2105θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Lasso 0.0063 0.0041 0.0056 0.0047 0.0048 0.0057 0.0034 0.0047 0.0045 0.0048

n = 200

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Rodeo 0.4191 0.3404 0.0036 0.0104 0.0182 0.0120 0.0109 0.0118 0.0115 0.0060

0.1238θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Rodeo 0.0077 0.0123 0.0086 0.0082 0.0074 0.0147 0.0105 0.0156 0.0105 0.0081

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Lasso 0.4308 0.4120 0.0021 0.0029 0.0026 0.0024 0.0023 0.0023 0.0018 0.0019

0.1572θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Lasso 0.0021 0.0025 0.0026 0.0026 0.0020 0.0027 0.0022 0.0026 0.0025 0.0025

Table 4: Design 2 (k = 20)

n = 100

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Rodeo 0.0692 0.0479 0.0007 0.0011 0.0000 0.0007 0.0000 0.0001 0.0004 0.0001

0.0611θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Rodeo 0.0004 0.0001 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0002 0.0000

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Lasso 0.3488 0.2933 0.0104 0.0120 0.0121 0.0111 0.0106 0.0117 0.0106 0.0091

0.2078θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Lasso 0.0094 0.0109 0.0113 0.0093 0.0117 0.0120 0.0123 0.0112 0.0107 0.0106

n = 200

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Rodeo 0.1958 0.1822 0.0018 0.0010 0.0024 0.0017 0.0008 0.0026 0.0022 0.0025

0.0517θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Rodeo 0.0014 0.0024 0.0024 0.0002 0.0003 0.0041 0.0005 0.0013 0.0036 0.0029

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 IMSE

Lasso 0.4324 0.3810 0.0058 0.0069 0.0066 0.0064 0.0059 0.0059 0.0063 0.0055

0.1728θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

Lasso 0.0058 0.0057 0.0053 0.0054 0.0067 0.0069 0.0063 0.0072 0.0052 0.0049
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Figure 1: y with x1
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Figure 2: y with x2
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m(h1,h2)(x1, x2) is the kernel estimator (1) with bandwidth h1 for x1 and bandwidth h2 for

x2. We start with a large bandwidth a for both x1 and x2. Shrinking the bandwidth h1 from

a to b leads to a dramatic change in the kernel estimator.

Figure 3: Shrinking bandwidth of x1 from a to b
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m(h1,h2)(x1, x2) is the kernel estimator (1) with bandwidth h1 for x1 and bandwidth h2 for

x2. We start with a large bandwidth a for both x1 and x2. Shrinking the bandwidth h2 from

a to b has no signi�cant e�ect on the kernel estimator.

Figure 4: Shrinking bandwidth of x2 from a to b
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Figure 5: Designs

29


