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1 Introduction

This paper investigates the forecast combination in the panel data model. Despite the scarcity of panel data

studies on the combined forecasts, there has been panel data research on forecast focusing on the pooling

of information; see Stock and Watson (1999, 2002a,b) and Forni et al. (2000, 2005). Nevertheless, there is

little research on pooling forecasts in the context of the forecast combination of Bates and Granger (1969).

We consider a panel data regression model

yit = x′itβ + αi + uit, (1)

where i = 1, . . . , n and t = 1, . . . , T, β is q× 1, xit is the ith observation on q explanatory variables, αi is the

individual e�ect, and uit is the random error. The individual e�ect terms can be modeled as either random

or �xed e�ects.

When estimating a panel data model, we need to decide whether we should use �xed e�ects (FE) or

random e�ects (RE) estimator. The FE and RE estimators and their combination are considered by Huang

(2015) and Wang et al. (2016), who independently derive their asymptotic distributions using a local-to-

exogeneity condition and calculate the asymptotic risk of the estimators based on Hansen (2017). If the

individual e�ects are correlated with the other regressors in the model, the FE model is consistent and the

RE model is inconsistent. The RE estimator becomes inconsistent since the regressors are correlated with

the individual e�ects and thus become endogenous. On the other hand, if the individual e�ects are not

correlated with the other regressors in the model, both RE and FE estimators are consistent and the RE

estimator is more e�cient. Therefore, there is a trade-o� between ine�cient FE estimation and biased RE

estimation.

In this paper, we consider the combined forecast approach to the combined estimation results for a panel

data model. We examine whether the FE and RE forecasts can be combined to produce a better forecast

when the regressors (predictors) are endogenous, and speci�cally we wish to see if the forecast combining the

FE and RE models can outperform the FE model forecast in terms of mean squared forecast error (MSFE).1

1This paper considers a static model. If one wants to perform a better forecasting a dynamic panel data model with a lagged

dependent variable would be more appropriate. However, for a dynamic panel data model, both the FE and RE estimators

become inconsistent and thus we need other robust estimation methods such as IV and GMM estimators. We can certainly
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Our simulation experiment shows that the combined forecast can uniformly dominate the FE forecast for all

degrees of endogeneity, demonstrating that the in-sample estimation result carries over to the out-of-sample

forecasting. It also shows that the combined forecast can reduce MSFE relative to the RE forecast for

moderate to large degrees of endogeneity of the regressors and heterogeneity of the individual e�ects.

We illustrate this method with an application to forecasting electricity and natural-gas demands for 51

US states. Since electricity and gasoline demand has been studied extensively, strong priors exist as to the

plausibility of price and income e�ects, providing a useful plausibility check to the results of the study. In

this literature, Maddala et al. (1997) obtained short-run and long-run elasticities of energy demand for

each of 49 US states over the period 1970-1990. They showed that heterogeneous time series estimates

for each state yield inaccurate signs for the coe�cients, while panel data estimates are not valid because

the hypothesis of homogeneity of the coe�cients was rejected. Baltagi et al. (2002) compared the out-of-

sample forecast performance of ten homogeneous and nine heterogeneous estimators including the shrinkage

estimators applying them to the same data set. They showed that the homogeneous panel data estimates give

the best out-of-sample forecasts. Our objective here is to compare the out-of-sample forecast performance of

the FE forecast, RE forecast, and the proposed combined forecasting procedures, by applying them to the

updated electricity and natural-gas panel data across 51 states (including Washington DC) over the period

1997-2012. We �nd that the combined forecast outperforms.

The rest of this paper is organized as follows. We begin with Section 2 where the combined estimation

and its asymptotic results are presented. Sections 3 presents the combined forecasting approach. Section 4

gives Monte Carlo simulation. An empirical application is given in Section 5. Section 6 concludes.

2 Stein-like Combined Estimation for Panel Data Models

First, we consider estimation using a panel data regression model with the random e�ects

yit = x′itβ + αi + uit, (2)

extend the current paper to the dynamic models by combining RE with GMM estimators for instance, but it would be beyond

the scope of the current paper and thus we leave this for a future work.
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where i = 1, . . . , n, t = 1, . . . , T , xit is the q explanatory variables, β is a q × 1 unknown parameter, αi is

the individual e�ect, and uit is the regression error. The RE model assumes that αi ∼ i.i.d.
(
0, σ2

α

)
, uit ∼

i.i.d.
(
0, σ2

u

)
, and αi are independent of the uit. In addition, the regressors xit are independent of the αi

and uit for all i and t. Under these assumptions, we can write

yit = x′itβ + vit, E (vit|xi) = 0, (3)

where vit = αi + uit. Write the model (3) in matrix form

y = Xβ + v, (4)

where y = (y11, . . . , y1T , . . . , yn1, . . . , ynT )
′
is nT × 1, X = (x11, . . . , x1T , . . . , xn1, . . . , xnT )

′
is nT × q, v =

Dα + u with D = In ⊗ ιT . Let ιT be a vector of ones of dimension T , JT = ιT ι
′
T , and P = In ⊗ J̄T

where J̄T = JT /T. Let Q = InT − P be a matrix which obtains the deviations from individual means. The

variance-covariance matrix of v is given by

Ω = σ2
α (In ⊗ JT ) + σ2

u (In ⊗ IT ) = σ2
1P + σ2

uQ, (5)

where σ2
1 = Tσ2

α + σ2
u. The feasible estimator of Ω̂ of Ω can be obtained by �rst running the OLS regression

y on X to get v̂it = yit − xitβ̂OLS as the OLS residual and β̂OLS = (X ′X)
−1
X ′y. This gives

σ̂2
u =

1

n (T − 1)

n∑
i=1

T∑
t=1

(
v̂it −

_

v̂i

)2
. (6)

Similarly, doing the OLS regression of ȳi = x̄iβ+v̄i, where V (v̄i) = Tσ2
α+σ2

u/T = σ2
1/T and ȳi = 1

T

∑T
t=1 yit,

we get

σ̂2
1 =

T

n

n∑
i=1

_

v̂
2

i . (7)

Note that σ̂2
α = 1

T

(
σ̂2
1 − σ̂2

u

)
. With these estimates, one can obtain the generalized least squares (GLS) of β

based on (4) is

β̂RE =
(
X ′Ω̂−1X

)−1
X ′Ω̂−1y, (8)
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and β̂RE has the asymptotic distribution as

√
n
(
β̂RE − β

)
d→ N (0, VRE) , (9)

where

VRE =

(
plim

X ′Ω−1X

n

)−1
. (10)

Remark 1. Except for Nerlove's (1971) method, there is no guarantee that the estimate of σ̂2
α would be

nonnegative regardless of the existence of the endogeneity problem. One solution suggested by Maddala and

Mount (1973) is to replace these negative estimates by zero. They �nd that the negative estimates occurred

only when the true σ2
α was small and close to zero, in which case OLS is still viable, and therefore the problem

is dismissed as not being serious. In the parametric models, one may consider some other positive estimators

of two unknown error variances in the random e�ect covariance matrix. In the nonparametric model, one

of them is as considered in Henderson and Ullah (2005). A detailed study on comparing estimators under

various estimates of variance parameters in the RE covariance matrix will be subject to a future study.

Second, we consider estimation using a panel data regression model with the �xed e�ects, for which the

αi are assumed to be �xed parameters to be estimated. Pre-multiplying the model by Q and performing the

OLS on the resulting transformed model

Qy = QXβ +Qu, (11)

we obtain the OLS estimator

β̂FE = (X ′QX)
−1
X ′Qy, (12)

α̂FE = (D′D)
−1
D′
(
y −Xβ̂FE

)
. (13)

The asymptotic distribution of β̂FE follows

√
n
(
β̂FE − β

)
d→ N (0, VFE) , (14)
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where

VFE = σ2
u

(
plim

X ′QX

n

)−1
. (15)

Under the random e�ects speci�cation, β̂RE is the asymptotically e�cient estimator while β̂FE is unbiased

and consistent but not e�cient. If E(αixit) 6= 0, β̂RE is biased and inconsistent while β̂FE is not a�ected.

Third, we consider the following combined estimator of β

β̂c = wβ̂RE + (1− w)β̂FE , (16)

where

w =

{
τ
Hn

if Hn ≥ τ
1 if Hn < τ

, (17)

Hn = n
(
β̂FE − β̂RE

)′ [
V̂FE − V̂RE

]−1
(β̂FE − β̂RE), (18)

and τ is a shrinkage parameter, Hn is the Hausman (1978) statistic. We set τ = q − 2 when q > 2. The

degree of shrinkage depends on the ratio τ/Hn. When Hn < τ then β̂c = β̂RE , When Hn ≥ τ then β̂c is a

weighted average of β̂RE and β̂FE , with more weight on β̂FE when Hn is larger. The combined estimator

can alternatively be written as a positive-part James-Stein estimator

β̂c = β̂RE +

(
1− τ

Hn

)+

(β̂FE − β̂RE) (19)

where (b)
+

= max (b, 0).

Next, to examine the asymptotic properties of β̂c, we use the local asymptotic approach based on the

Mundlak's (1978) projection, where we write αi as a linear function of x̄i = 1
T

∑T
t=1 xit

αi = x̄′iρ+ εi, (20)

with E (x̄iεi) = 0. The variable xit are exogenous if αi and xit are uncorrelated (when the coe�cient ρ is

zero). For �xed T , ρ is local to zero

ρ =
1√
n
δ, (21)

where the q× 1 parameter δ is a localizing parameter, which is the degree of correlation between xit and αi.
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If δ 6= 0, then xi are endogenous and the FE estimator is preferred. If δ = 0, xit are exogenous and the RE

estimator is preferred. Note that x̄′i is 1× q and is the ith row of the n× q matrix X̄.

Remark 2. We focus on the Mundlak's (1978) projection, which projects the unobserved e�ect αi onto the

average of xit all across all T time period. As a referee pointed out, Chamberlain's (1982) approach can be

used instead. Chamberlain's method is a generalization of Mundlak's model, but rather to replace αi with

the linear projection of it onto the explanatory variables in all time periods. Speci�cally, Chamberlain's

method leads to the following equation

αi = c+ xi1ρ1 + xi2ρ2 + . . .+ xiT ρT + εi

We leave this for a future work.

Now, we make the following assumptions:

Assumption 1. {xit, αi, uit} are i.i.d. over i, uit is i.i.d. over t, E (uit|xit, αi) = 0, E
(
u4it|xit, αi

)
<∞.

Assumption 2. E ‖xit‖2+k <∞ and E|uit|2+k <∞ for some k > 0.

Assumption 3: σ̂2
u = σ2

u + op (1) and σ̂2
α = σ2

α + op (1) .

Assumptions 1 and 2 specify that the variables have �nite fourth moments (so that the conventional

central limit theory applies) and that the error is conditionally homoskedastic given the regressors, which is

used to simplify the asymptotic covariance expressions. We have the following asymptotic results, extending

Hansen (2017) for the panel data models.

Theorem 1. Under Assumptions 1-3,

√
n

(
β̂RE − β
β̂FE − β

)
d→ h+ ξ, (22)

where

h =

(
σ−21 VREΣδ

0

)
, with Σ = plim

X̄ ′X̄

n
, (23)

and

ξ ∼ N(0, V ), with V =

(
VRE VRE
VRE VFE

)
. (24)
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Furthermore,

Hn
d→ (h+ ξ)

′
B(h+ ξ), (25)

and

√
n
(
β̂c − β

)
d→ Ψ ≡ G′2ξ −

(
τ

(h+ ξ)
′
B(h+ ξ)

)
1

G′ (h+ ξ) , (26)

where X̄ is n× q with x̄′i in its ith row, B = G (VFE − VRE)
−1
G′, G =

(
−I I

)′
, G2 =

(
0 I

)′
, and

(a)1 = min [1, a]. �

Proof: See Appendix.

Theorem 1 presents the joint asymptotic distribution of β̂RE and β̂FE , the Hausman statistic, and β̂c

under the local endogeneity setup in (21). The joint asymptotic distribution of β̂RE and β̂FE is normal.

β̂RE has an asymptotic bias when δ 6= 0 but β̂FE is consistent. The Hausman statistic has an asymptotic

non-central chi-square distribution, with non-centrality parameter h depending on the local endogeneity

parameter δ. The asymptotic distribution of β̂c is a nonlinear function of the normal random vector ξ and

a function of the noncentrality parameter h.

Finally, we compare β̂RE , β̂FE , β̂c in the asymptotic risk. The asymptotic risk of any sequence of estima-

tors βn of β is de�ned as

R (βn, β,W ) = lim
n→∞

E
[
n (βn − β)

′
W (βn − β)

]
. (27)

Denote R (βn) = R (βn, β,W ) for notational brevity. So long as the estimator has an asymptotic distribution

√
n (βn − β)

d→ ψ,

for some random variable ψ, the asymptotic risk can be calculated using

R (βn) = E (ψ′Wψ) = tr (WE (ψψ′)) . (28)

For example,

R
(
β̂FE

)
= tr (WVFE) (29)

from (14).
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Let λ1 ≥ λ2 ≥ · · · ≥ λq denote the ordered eigenvalues of W (VFE − VRE) . Denote the ratio

d =
tr (W (VFE − VRE))

λ1
. (30)

Notice that (30) satis�es 1 ≤ d ≤ q. In the case W = (VFE − VRE)
−1
, λ1 = 1 and we have the simpli�cation

d = q.

Theorem 2 Under Assumption 1-3, if d > 2 and

0 < τ ≤ 2 (d− 2) , (31)

then

R
(
β̂c

)
< R

(
β̂FE

)
− τλ1 [2 (d− 2)− τ ]

σ−41 δ′ΣVRE (VFE − VRE)
−1
VREΣδ + q

. (32)

�

Proof: See Appendix.

Remark 3. Equation (32) shows that the asymptotic risk of β̂c is strictly less than that of β̂FE , so long

as τ satis�es the condition (31). The assumption d > 2 is the critical condition needed to ensure that β̂c

can have smaller asymptotic risk than that of β̂FE . It is necessary in order for the right-hand-side of (31)

to be positive, which is necessary for the existence of τ . τ appears in the risk bound (32) as a quadratic

expression, so there is an optimal choice

τ∗ = d− 2, (33)

which minimizes this bound. Note that d > 2 is equivalent to λ2 + · · ·+ λq > λ1. This is violated only if λ1

is much larger than the other eigenvalues. (31) is equivalent to 0 < τ ≤ 2
(∑q

i=1
λi
λ1
− 2
)
. For the practical

implementation we replace the maximum eigenvalue λ1 with the average tr(W (VFE−VRE))
q = 1

q

∑q
1 λi. See

Hansen (2016).

Corollary 1. R
(
β̂c

)
− R

(
β̂FE

)
< 0, for d > 2 and 0 < τ ≤ 2 (d− 2) . When W = (VFE − VRE)

−1
, the

condition simpli�es to q > 2 and 0 < τ ≤ 2 (q − 2) , which is Stein's (1956) classic condition for shrinkage.�

The following two corollaries are obtained with W = (VFE − VRE)
−1
.
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Corollary 2. R
(
β̂RE

)
= tr(WVRE)+σ−41 δ′ΣVREWVREΣδ; R

(
β̂RE

)
≤ R

(
β̂FE

)
when σ−41 δ′ΣVREWVREΣδ ≤

q, and R
(
β̂RE

)
> R

(
β̂FE

)
otherwise. �

Proof: See Appendix.

Corollary 3. R
(
β̂c

)
−R

(
β̂RE

)
< 0, for q < σ−41 δ′ΣVREWVREΣδ, d > 2, and 0 < τ ≤ 2 (d− 2). �

Remark 4. Corollary 1 shows, as in Stein's (1956), that q > 2 is necessary in order for the Stein estimator

to achieve global reductions in risk relative to the usual estimator. d > 2 is the generalization to allow for

general weight matrices. Corollary 2 indicates that when endogeneity is weak (ρ and hence δ is close to zero)

the random e�ects estimator may perform better than the �xed e�ects estimator. Corollary 3 indicates that

when endogeneity is strong, d > 2, and 0 < τ ≤ 2 (d− 2) , the combined estimator is better than the RE

estimator. �

3 Stein-like Combined Forecast for Panel Data Models

First, we consider forecasting using a panel data regression model with the random e�ects. Suppose we want

to predict s periods ahead for the ith individual. By minimizing

∑
i

∑
t (yit − x′itβ − αi)

2

σ2
u

+

∑
i α

2
i

σ2
α

, (34)

we can obtain

α̂i =
σ̂2
α

σ̂2
1

T
_

ûi(RE), (35)

where
_

ûi(RE) = 1
T

∑
t ûit(RE). Then the s period ahead forecast for the ith individual is

ŷi,T+s,RE = x′i,T+sβ̂RE +
σ̂2
α

σ̂2
1

T
_

ûi(RE), (36)

where
σ̂2
α

σ̂2
1

∑
t ûit(RE) can be treated as α̂i,RE . Baltagi (2008) showed that Goldberger (1962) gave the best

linear unbiased predictor (BLUP) of yi,T+s as following

ŷi,T+s,RE = x′i,T+sβ̂RE +$′Ω−1v̂RE , (37)
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where v̂RE = y −Xβ̂RE and $ = E (vi,T+1v) . Note that for period T + s

vi,T+s = αi + ui,T+s, (38)

and $ = σ2
α (li ⊗ ιT ) where li is ith column of IN , i.e. li is a vector that has 1 in the ith position and zero

elsewhere. In this case

$′Ω−1 = σ2
α (l′i ⊗ ι′T )

[
1

σ2
1

P +
1

σ2
u

Q

]
=
σ2
α

σ2
1

l′i ⊗ ι′T , (39)

since (l′i ⊗ ι′T )P = (l′i ⊗ ι′T ) and (l′i ⊗ ι′T )Q = 0. The typical element of $′Ω−1v̂RE becomes
(
T σ̂2

α

σ̂2
1

_

ûi(RE)

)
.

Therefore, this BLUP for ŷi,T+s corrects the RE prediction by a fraction of the mean of the RE residuals

corresponding to the ith individual.

Next, consider forecasting using a panel data regression model with the �xed e�ects, from (13), we know

that for the ith individual, α̂i,FE = ȳi − x̄iβ̂FE . Thus, the s period ahead forecast for the ith individual is

ŷi,T+s,FE = ȳi + (xi,T+s − x̄i)′ β̂FE , (40)

or alternatively,

ŷi,T+s,FE = x′i,T+s β̂FE +
_

ûi(FE). (41)

Now, we consider the combined forecast. In Section 2, we have shown that the combined estimator is

better than the FE estimator in asymptotic risk (Theorem 2), and also better than the RE estimator when

the endogeneity is strong (Corollary 3). To see if this dominance in in-sample estimation holds true in

out-of-sample forecasting, we combine ŷi,T+s,RE and ŷi,T+s,FE using the weight in (17), then

ŷi,T+s,c = x′i,T+s β̂c + w$′Ω−1v̂RE + (1− w)
_

ûi(FE)

= w ŷi,T+s,RE + (1− w) ŷi,T+s,FE , (42)

In the following two sections, we conduct the comparison of the combined forecast ŷi,T+s,c (the forecast using

β̂c) with the RE forecast ŷi,T+s,RE (the forecast using β̂RE) and the FE forecast ŷi,T+s,FE (the forecast using

β̂FE) based on Monte Carlo and an application.
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4 Monte Carlo

We consider the following data generating process

yit = x′itβ + αi + uit, (43)

αi = ρ
√
T x̄′i ι /q +

√
1− ρ2 εi, (44)

where xit is q × 1 i.i.d. N (0, Iq) , ι is a q × 1 vector of ones, uit are i.i.d. N
(
0, σ2

u

)
across i, t. εi are i.i.d.

N (0, 1) independent of {xit, uit}. σu ∈ {.6, .8, 1} , Var(αi) = 1.We set
√
θ = σα

σu
∈
{

5
3 ,

5
4 , 1

}
, so that we

have ρ∗ = θ
1+θ = {.74, .61, .50} . ρ∗ controls the degree of heterogeneity which is the temporal correlation

between αi+uit and αi+uit′ . Then αi and xit have correlation
ρ√
q , which controls the degree of endogeneity.

We allow ρ to vary in (−1, 1). The distribution are invariant to β so we set it to zero, β = 0.

First we generated 300,000 samples on each calculated β̂RE , β̂FE , β̂c. We also calculated the Hausman

pre-test (PT) estimator

β̂PT = β̂RE1
(
Hn < χ2

q,0.05

)
+ β̂FE1

(
Hn ≥ χ2

q,0.05

)
(45)

where χ2
q,0.05 is the 5% critical value from the χ2

q distribution.

To compare the in sample �t of these estimators, calculate the median squared error (MedSE) of each

estimator and plot the relative MedSE relative to that of the robust estimator FE under endogeneity, that is

median

[(
β̂ − β

)′ (
β̂ − β

)]
median

[(
β̂FE − β

)′ (
β̂FE − β

)] . (46)

Thus a value less than one indicates improved precision relative to the FE estimator, and a value greater

than one indicates worse performance than the FE estimator, with larger MedSE than FE estimator. The

MedSE is symmetric with respect to ρ, so we only report the results with ρ between 0 and 1.

We use a portion of the available data for forecasting and use the other portion of the data for estimating

the model as follows: Use the observations over t = 1, . . . , T −s to estimate the forecasting models. Compute

the s-step error on the forecast for time T . Compute the forecast accuracy measures based on the forecast

errors obtained. To compare the prediction procedures, we calculate the s-step ahead out-of-sample mean

squared forecast error (MSFE) of each approach. The forecast error is de�ned as eT+s = yT+s − ŷT+s,
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and its MSFE is MSFE (eT+s) = E
(
e′T+seT+s

)
. Generate 10,000 samples on the FE forecast ŷT+s,FE ,

the RE forecast ŷT+s,RE , the Hausman pre-test forecast ŷT+s,PT , and the combined forecast ŷT+s,c. Plot

the MSFEs of the RE, FE, combined forecasts relative to the MSFE of the FE forecast. Thus values less

than one indicate improved precision relative to the FE forecast, and values greater than one indicate worse

performance than the FE forecast. We set T = 5, s = 1, q = 4, and n ∈ {20, 100}.

Figures 1 and 3 present the in-sample estimation results. In Figure 1: (a), (c) and (e) plot the relative

MedSE for n = 20; (b), (d) and (f) plot the relative MedSE for n = 100.We see that the region of dominance

for the combined estimator over RE estimator is greater for small n. Figure 1 plots the relative MedSE for

ρ∗ ∈ {.74, .61, .50} and τ = τ∗. This is the case of moderate to large degree of heterogeneity. Figure

1(e) and Figure 1(f) are the cases, ρ∗ = .50. We see that the gains from the combined estimator are strong

for small ρ, with the MedSE converging to that of FE as ρ increases towards 1. This is consistent with

Theorem 2, which shows that the improvements are asymptotically local to ρ = 0. The RE estimator has

lower MedSE than the combined estimator, but the ranking is reversed for larger values of ρ. Figure 1(a),

1(b), 1(c), and 1(d) are the cases, ρ∗ ∈ {.74, .61}. The general nature of the plot is the same, except that

the gains are not as strong as in the case ρ∗ = .50. Still the combined estimator has uniformly smaller

MedSE than that of FE. The FE and the combined estimators are getting closer as ρ∗ increases. RE has

similar MedSE to FE and combined estimators for small ρ, but the MedSE of the RE estimator increases

dramatically after intermediate values of ρ. It is also instructive to examine the performance of the pre-test

estimator. The MedSE of the pre-test estimator is generally similar to FE for moderate and higher values of

ρ. In summary, for moderate ρ∗ and higher ρ, or moderate ρ and higher ρ∗, the combined estimator is better

than RE estimator. For very large ρ∗ and very low ρ, the combined estimator is close to RE estimator.

The estimation simulation results provide strong �nite sample con�rmation of Theorem 2. Figure 2 plots

the relative MedSE for τ = 2τ, which still satis�es the classic James-Stein conditions in equations (30) and

(31). The region of dominance for the RE and combined estimators over FE is greater for the large value of

τ . The MSE of the combined estimator is closer to that of FE when the degree of endogeneity is small for

large τ . This can be seen by contrasting Figures 1 and 2. Hence, this indicates that the optimal choice of

τ = τ∗ in (33) obtained from minimizing the �bound� of the risk of R
(
β̂c

)
is not �optimal� in the sense of

12



minimizing the risk of R
(
β̂c

)
itself. To our knowledge, there is no result on this yet and thus we leave this

for a future work.

Figures 2 and 4 present the out-of-sample forecasting results. Figure 2 shows the relative 1-step ahead

out-of-sample MSFE of each approach with ρ∗ ∈ {.74, .61, .50}. By contrasting Figures 2 with Figures 1,

we see that the general nature of the plots is the same. In Figure 2: (a), (c) and (e) plot the MSFE for

n = 20; (b), (d) and (f) plot the MSFE for n = 100. We see again that the region of dominance for the

combined forecast over the FE forecast is greater for small n. Figure 2(e) and Figure 2(f) are the cases for

ρ∗ = .50. This is similar to Figure 1(e) and 1(f) that the combined forecast has much lower MSFE than the

FE forecast, regardless of the degree of endogeneity. For small ρ, the RE forecast has lower MSFE than the

combined forecast, but the ranking is reversed for larger values of ρ. Figure 2(a), 2(b), 2(c), and 2(d) are the

cases for larger ρ∗ = {.74, .61}, for which the combined forecast has lower MSFE than the FE forecast for

small ρ but the reverse holds for large ρ. The combined and the pre-test forecasts have much smaller MSFE

than FE for small values of ρ, but the ranking is reversed for large values of ρ. For large values of ρ, the

MSFE of the pre-test forecast is typically larger than the combined forecast. In all the cases, the combined

forecast uniformly dominates the FE forecast (which is the same as for the in-sample estimation results in

Theorem 2 and in Figures 1), demonstrating that the in-sample estimation results (Theorem 2) can hold

true for the out-of-sample forecasting. Figure 3 shows the relative 1-step ahead out-of-sample MSFE of each

approach with τ = τ∗. Figure 4 shows the relative 1-step ahead out-of-sample MSFE of each approach with

τ = 2τ∗. By contrasting Figures 2 and 4, we see again that the region of dominance for the combined forecast

over FE is greater for the large value of τ .

Figure 5 plots the relative 1-step ahead out-of-sample MSFE of each approach with �xed δ on the interval

[0, 5] on the horizontal abscissa for n ∈ {25, 100, 400}, which correspond to varying ranges of ρ on [0, 1],

[0, .5], [0, .25] for the di�erent sample size n ∈ {25, 100, 400}, respectively. These are the cases where the

degree of endogeneity does not depend on the sample size. In this plot, we see again that the gain form

the combined forecast has uniformly smaller MSFE than FE, with the MSFE converging to that of FE as

the degree of endogeneity increases. This is consistent with holds, which shows that the improvements are

asymptotic local to zero. This shows numerically that the improvements in Theorem 2 can be expected to

13



hold broadly in the parameter space.

In summary, the simulation evidence provides strong �nite sample con�rmation of the predictions from

the large sample theory on the estimation (Theorems 1 and 2). It also shows that the �nite sample prop-

erties of the in-sample combined estimation is carried over to the out-of-sample combined forecasting. The

improvement in the combined forecast over the FE forecast is greater for smaller heterogeneity ρ∗. For mod-

erate to large ρ∗ and higher ρ, or moderate to large ρ and higher ρ∗, the combined forecast is better than

the RE forecast. For very large ρ∗ and low ρ, the combined forecast is close to the RE forecast.

Remark 5. In constructing the Stein-like combined estimator we focus on the shrinkage parameter τ that

makes the Stein estimator dominate FE in the asymptotic risk (Theorem 2), rather than making it dominate

the RE estimator. The cost of winning over the FE is to increase the probability of losing to the RE when the

endogeneity is weak (when ρ is small) because τ∗ is too small for the Hausman statistic Hn to go below τ∗.

Therefore, we also consider a two-step approach, the pretesting (PT) estimator in (45), using the Hausman

statistic Hn to construct the PT estimator in (45) as done also in Hansen (2017). For the PT estimator based

on the Hausman statistic, we use the 5% critical value χ2
q,0.95. Under the null of no endogeneity (ρ = 0),

Pr
(
Hn < χ2

q,0.95

)
= Pr (Hn < 9.49) = 0.95 as χ2

q,0.95 = 9.49 with d.f. = q = 4. Thus, PT will have a 95%

chance to have the weight w = 1 to completely shrink FE towards RE, while the Stein combined estimator

has only 5% chance to do that with w = 1.

Remark 6. The optimal choice of τ , τ∗ in (33), is obtained to minimize the �bound� of the risk of R
(
β̂c

)
in Theorem 2. The bound is the RHS term in equation (32). However, as discussed in Remark 5 above, the

optimal choice of τ = τ∗ is too small when ρ is small because the probability that the Hausman statistic

is smaller than τ = τ∗ will be too small. Hence we have increased it to 2τ∗ as this choice still satis�es the

classic James-Stein conditions in equations (30) and (31). This makes the MSE of the combined estimator

closer to the MSE of FE when the degree of endogeneity is small. The results are reported in Figures 3 and

4, where τ = 2τ∗ are considered. Hence, this indicates that the optimal choice of τ = τ∗ in (33) obtained

from minimizing the �bound� of the risk of R
(
β̂c

)
is not �optimal� in the sense of minimizing the risk of

R
(
β̂c

)
itself. To our knowledge, there is no result on this yet and thus we leave this for a future work.
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Remark 7. The risk function (27) with a general weight matrix W includes many special cases. For

example, the unweighted MSE is obtained by setting W = Iq, in which case the coe�cients are of equal

importance. The canonical case is motivated by ease of use and simplicity, which is obtained by setting

W = (VFE − VRE)
−1
. This choice simpli�es many formulae, e.g., equation (30) has the simpli�cation d = q,

and the optimal choice of τ , τ∗ in (33) is q − 2. Following Hansen (2017), we set τ = q − 2, which would

be the same as the optimal choice τ∗ = d− 2 when W = (VFE − VRE)
−1

is used. See Corollary 1. See also

Remark 3 and equation (33). However, when W = Iq is used instead of W = (VFE − VRE)
−1
, it is possible

that the condition 0 < τ < 2(d− 2) in equation (31) may not hold if τ = q − 2 is used, especially when the

dimension q of X is large. In that case, we should use the theoretical optimal τ = d−2 = tr(W (VFE−VRE))
λ1

−2.

Remark 8. If τ is small, then w will be small towards zero. The Stein-like combined estimator puts more

weights on FE, resulting in less bias and more variance; If τ is large, then w will be large towards one. The

Stein combined estimator puts more weights on RE, resulting in more bias and less variance.

5 Application

There have been numerous studies on the price and income elasticities of residential natural-gas and electricity

demand. Maddala et al. (1997) applied classical, empirical Bayes, and Bayesian procedures to the problem

of estimating short-run and long-run elasticities of residential demand for electricity and natural gas in the

US for each of 49 states over the period 1970-1990. They found that shrinkage Bayesian type estimators

are superior to either the individual heterogeneous estimates or the homogeneous estimates, especially for

prediction purpose, through shrinking the individual estimates towards the pooled estimate using weights

depending on their corresponding variance-covariance matrices.

Using the Maddala et al. (1997) speci�cation and data sets, Baltagi et al. (2002) compare the out-

of-sample forecast performance of homogeneous and heterogeneous estimators applying them to electricity

and natural-gas. In this section, we compare the performances of the residential gas and electricity demand

forecast using panel data across 51 states (including Washington DC) over the period 1997-2012. The annual

state residential electricity and gas price data used in this study were obtained from The State Energy Price
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and Expenditure System of the U.S. Energy Information Administration. Annual personal income per capita

by state were drawn from the Bureau of Business and Economic Research, and the annual Consumer Price

Index for the United States was from CITIBASE.

Following Baltagi et al. (2002), we consider the following panel data model:

ŷi,T+s = β̂0 + β̂1x1i,T + β̂2x2i,T + β̂3x3i,T + α̂i, (47)

where i = 1, . . . , 51, t = 1, . . . , 14. The LHS variable of the equation is y = log(residential electricity

per capita consumption) for the electricity demand equation or y = log(residential natural-gas per capita

consumption) for the natural gas demand equation. The RHS variables for the electricity demand equation

are x1 = log(real per capita personal income), x2 = log(real residential electricity price), and x3 = log(real

residential natural-gas price). The RHS variables for the natural-gas demand equation are x1 = log(real per

capita personal income), x2 = log(real residential natural-gas price), and x3 = log(real residential electricity

price).

We compare alternative estimators in the prediction performance. Given the large data set of N = 51

states over T = 14 years, we estimate our model using a truncated data set (i.e. without the last 3 years

of data) and then apply each estimator to an out-of-sample forecast period. Panel A of Table 1 gives

a comparison of forecasts using the root-mean-squared-forecast-errors (RMSFE) for residential electricity

demand and similarly Panel B for residential natural-gas demand. Because the ability of an estimator to

characterize the long-run as well as the short-run response is at issue, the RMSFE is calculated across the

51 states at di�erent forecast horizons. The RMSFEs are reported in Table 1 for forecast horizons s = 1, 3

years. Both for the electricity demand (Panel A) and for the natural-gas demand (Panel B), the combined

estimator dominates FE forecast whether it is for the 1-year ahead or 3-years ahead forecasts, con�rming

that the gains in estimation by the combined estimator (Theorem 2) can bene�t the combined forecast in

out-of-sample forecasting. The combined forecast using the combined estimator performs better than both

FE and RE forecasts.

The overall forecast ranking in RMSFE o�ers a clear and strong endorsement for the combined forecast

which is constructed using the Stein-like combined estimator β̂c. The �Stein-like combined forecast� is
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superior to both the FE forecast and the RE forecast in out-of-sample prediction.

6 Conclusions

The goal of this paper is to examine if the theoretical results on the combined estimation for the parametric

panel data model with weak endogeneity (i.e., local to exogeneity) may be useful to form the combined

forecasting in the panel data model such that the gains in asymptotic risk in the combined estimator may

be carried over to the gains in mean squared forecast errors. We examine this by asymptotic theory, by

Monte Carlo simulation, and empirical applications. The FE and RE forecasts are combined when the RE

estimator su�ers from various degrees of endogeneity to produce a combined forecast. Speci�cally we show

that the forecast combining the FE and RE models can outperform the FE model forecast in terms of mean

squared forecast error. Our simulation experiment shows that the combined forecast can uniformly dominate

the FE forecast for all degrees of endogeneity, demonstrating that the in-sample estimation result is carried

over to the out-of-sample forecasting. It also shows that the combined forecast can reduce MSFE relative to

the RE forecast for moderate to large degrees of endogeneity and heterogeneity in the individual e�ects.

The use of the combined forecasting approach allows applied researchers to implement e�cient forecasting

under the presence of weak endogeneity. Even when there is no endogeneity or when there is strong endo-

geneity, without having to select a consistent forecast or an e�cient forecast, the weights in the combined

estimator will be 1 or 0. Hence, the combined forecast is particularly useful when the degree of endogeneity

is weak or when it is not clear which of the RE or FE panel data models to choose.
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7 Appendix

7.1 Proof of Theorem 1

Let h1 = G1h and ξ1 = G1ξ with G1 = (I 0)
′
, and let h2 = G2h and ξ2 = G2ξ with G2 = (0 I)

′
. Here we

derive the asymptotic distribution of the RE estimator for the parametric panel data model. Note that

β̂RE =
(
X ′Ω−1X

)−1
X ′Ω−1y

=

(
X ′
(
P

σ2
1

+
Q

σ2
u

)
X

)−1
X ′
(
P

σ2
1

+
Q

σ2
u

)
y

= (X ′ (λP +Q)X)
−1
X ′ (λP +Q) y ≡ Ay,

where λ =
σ2
u

σ2
1
, Ω−1 = 1

σ2
u

(λP +Q) = P
σ2
1

+ Q
σ2
u
. We then have

√
n
(
β̂RE − β

)
= ADX̄δ +

(
1

n
X ′ (λP +Q)X

)−1
1√
n
X ′ (λP +Q) (Dε+ u)

d→ h1 + ξ1,

where

ξ1 ∼
(
plim

1

n
X ′ (λP +Q)X

)−1
Z,

with

Z =
1√
n
X ′ (λP +Q) (Dε+ u) ∼ N

(
0, σ2

u

(
plim

1

n
X ′ (λP +Q)X

))
.

Hence,

ξ1 ∼ N

(
0, σ2

u

(
plim

(
1

n
X ′ (λP +Q)X

))−1)

= N

(
0,

(
plim

1

n
X ′Ω−1X

)−1)
= N (0, V1) .

The asymptotic bias h1 is

h1 =

(
plim

1

n
X ′ (λP +Q)X

)−1(
plim

1

n
X ′ (λP +Q)DX̄

)
δ

= σ−2u

(
plim

1

n
X ′Ω−1X

)−1(
plimλ

1

n
X̄ ′X̄

)
δ

= σ−21 V1Σδ,
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where the second equality follows from noting that QD = 0, PD = D, and X ′D = X̄ ′, and the last equality

follows from denoting Σ ≡ plim 1
nX̄
′X̄.

7.2 Proof of Theorem 2

First, we derive the asymptotic risk of the RE estimator R
(
β̂RE

)
for the parametric panel data model.

From Theorem 1.1,

√
n
(
β̂RE − β

)
d→ h1 + ξ1,

with ξ1 ∼ N (0, V1) . Hence,

R
(
β̂RE

)
= tr [E (ξ1Wξ′1) + h1Wh′1]

= trE (ξ1Wξ′1) + tr (h1Wh′1)

= tr (WV1) + σ−41 δ′ΣV1WV1Σδ.

For the asymptotic risk of the FE estimator, note that
√
n
(
β̂FE − β

)
d→ ξ2 ∼ N (0, V2) , and thus

R
(
β̂FE

)
= E (ξ2Wξ′2) = tr (WV2) .

The rest of the proof is based on Theorem 2 of Hansen (2017). De�ne Ψ∗ as a random variable without

positive part trimming

Ψ∗ = G′2ξ −
(

τ

(h+ ξ)
′
B(h+ ξ)

)
G′ (h+ ξ) .

Then using the fact that the pointwise quadric risk of Ψ is strictly smaller than that of Ψ∗

R
(
β̂c

)
= E (Ψ′WΨ) < E (Ψ∗′WΨ∗) ,

we can calculate that

E (Ψ∗′WΨ∗) = R
(
β̂FE

)
+ τ2E

(
(h+ ξ)

′
GWG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)
− 2τE

(
(h+ ξ)

′
GWG′2ξ

(h+ ξ)
′
B(h+ ξ)

)
.

By Stein's Lemma: If Z ∼ N(0, V ) is q × 1, K is q × q, and η (x):Rq→ Rq is absolutely continuous, then

E
(
η (Z + h)

′
KZ

)
= Etr

(
∂

∂x
η (Z + h)

′
KV

)
,
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η (x) = x/ (x′Bx) , and

∂

∂x
η (x) =

1

x′Bx
I − 2

(x′Bx)
2Bxx

′.

Therefore

E

(
(h+ ξ)

′
GWG′2ξ

(h+ ξ)
′
B(h+ ξ)

)
= Etr

(
GWG′2V

(h+ ξ)
′
B(h+ ξ)

− 2GWG′2V(
(h+ ξ)

′
B(h+ ξ)

)2B(h+ ξ)(h+ ξ)′

)

= E

(
tr (GWG′2V )

(h+ ξ)
′
B(h+ ξ)

)
− 2Etr

(
GWG′2V(

(h+ ξ)
′
B(h+ ξ)

)2B(h+ ξ)(h+ ξ)′

)
.

Since

GWG′2V = WG′2V G = W (V2 − V1)

and

GWG′2V B = GWG′2V G (V2 − V1)
−1
G′ = GWG′,

Etr

(
GWG′2V(

(h+ ξ)
′
B(h+ ξ)

)2B(h+ ξ)(h+ ξ)′

)
= Etr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)
.

Thus

E (ψ∗′Wψ∗) = R
(
β̂FE

)
+ τ2E

(
(h+ ξ)

′
GWG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)

+ 4τEtr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)

−2τEtr

(
(W (V2 − V1))

(h+ ξ)
′
B(h+ ξ)

)
.

De�ne B1 = (V2 − V1)
− 1

2 G′ and A∗ = (V2 − V1)
1
2 W (V2 − V1)

1
2 . Note that GWG′2V P = GWG′ = B′1A

∗B1,

B′1B1 = B. Using the inequality b′ab ≤ (b′b)λmax (a) for symmetric a, and let

λmax (a) = λmax (W (V2 − V1)) = λ1.

Then

tr (B(h+ ξ)(h+ ξ)′GWG′2V ) = (h+ ξ)′B′1A
∗B1(h+ ξ) (48)

≤ (h+ ξ)′B(h+ ξ)λ1.
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Using equation (48) and Jensen's inequality, we have

E (ψ∗′Wψ∗) ≤ R
(
β̂FE

)
+
(
τ2 + 4τ

)
E

(
λ1

(h+ ξ)
′
B(h+ ξ)

)
− 2τEtr

(
(W (V2 − V1))

(h+ ξ)
′
B(h+ ξ)

)
= R

(
β̂FE

)
− E

(
τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

(h+ ξ)
′
B(h+ ξ)

)
≤ R

(
β̂FE

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

E
(
(h+ ξ)

′
B(h+ ξ)

) . (49)

Since tr(BV ) = tr
(
G (V2 − V1)

−1
G′V

)
= q. We have

E
(
(h+ ξ)

′
B(h+ ξ)

)
= h′Bh+ tr (BV )

= σ−41 δ′ΣV1 (V2 − V1)
−1
V1Σδ + q.

Substituted into (49) we have

R
(
β̂c

)
< R

(
β̂FE

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

σ−41 δ′ΣV1 (V2 − V1)
−1
V1Σδ + q

with 0 < τ ≤ 2
(
tr(W (V2−V1))

λ1
− 2
)
.

7.3 Proof of Corollary 2

R
(
β̂RE

)
≤ R

(
β̂FE

)
when σ−41 δ′ΣV1WV1Σδ ≤ q; and R

(
β̂RE

)
> R

(
β̂FE

)
otherwise.

R
(
β̂RE

)
= tr (WV1) + σ−41 δ′ΣV1WV1Σδ

R
(
β̂FE

)
= tr (WV2)

tr (W (V2 − V1)) = q if W = (V2 − V1)
−1

R
(
β̂FE

)
−R

(
β̂RE

)
= tr (W (V2 − V1))− σ−41 δ′ΣV1WV1Σδ = q − σ−41 δ′ΣV1WV1Σδ.
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(a) n = 20, T = 5, q = 4, ρ∗ = .74
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(b) n = 100, T = 5, q = 4, ρ∗ = .74
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(c) n = 20, T = 5, q = 4, ρ∗ = .61
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(d) n = 100, T = 5, q = 4, ρ∗ = .61
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(e) n = 20, T = 5, q = 4, ρ∗ = .50
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(f) n = 100, T = 5, q = 4, ρ∗ = .50

Figure 1: Relative MedSE of FE, RE, Combined and Pretest Estimators, n = {20, 100} , T = 5, q = 4,
ρ∗ = {.74, .61, .50}.
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(b) n = 100, T = 5, q = 4, ρ∗ = .74
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(c) n = 20, T = 5, q = 4, ρ∗ = .61
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(f) n = 100, T = 5, q = 4, ρ∗ = .50

Figure 2: Relative MSFE of the FE, RE Combined and Pretest Estimators, One-Step Forecast, s = 1,
n = {20, 100} , T = 5, q = 4, ρ∗ = {.74, .61, .50}.
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Figure 3: Relative MedSE of FE, RE and Combined Estimators, n = {20, 100} , T = 5, q = 4, ρ∗ =
{.74, .61, .50}, 2τ∗
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Figure 4: Relative MSFE of the FE, RE and Combined Forecasts, One-Step Forecast, s = 1, n = {20, 100} ,
T = 5, q = 4, ρ∗ = {.74, .61, .50}, 2τ∗
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Figure 5: Relative MSFE of the FE, RE and Combined Forecasts, One-Step Forecast, s = 1, n =
{25, 100, 400} , T = 5, q = 4, ρ∗ = {.74, .50}, δ
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Table 1. Combined Forecast from the Combined Estimator

FE
RE

Combined

A. Electricity Demand

s = 1 s = 3
5.5261 6.4135
6.6025 7.9441
5.2837 6.1467

B. Natural Gas Demand

s = 1 s = 3
6.1593 8.1922
7.1044 9.0036
5.7310 7.4145

51 U.S. States including Washington DC. Reported are RMSFE for forecast horizons s = 1, 3.
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