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Abstract

When some of the regressors in a panel data model are correlated with the random individual effects,
the random effect (RE) estimator becomes inconsistent while the fixed effect (FE) estimator is consis-
tent. Depending on the various degree of such correlation, we can combine the RE estimator and FE
estimator to form a combined estimator which can be better than each of the FE and RE estimators.
In this paper, we are interested in whether the combined estimator may be used to form a combined
forecast to improve upon the RE forecast (forecast made using the RE estimator) and the FE forecast
(forecast using the FE estimator) in out-of-sample forecasting. Our simulation experiment shows that
the combined forecast does dominate the FE forecast for all degrees of endogeneity in terms of mean
squared forecast errors (MSFE), demonstrating that the theoretical results of the risk dominance for
the in-sample estimation carry over to the out-of-sample forecasting. It also shows that the combined
forecast can reduce MSFE relative to the RE forecast for moderate to large degrees of endogeneity and
for large degrees of heterogeneity in individual effects.
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1 Introduction

This paper investigates the forecast combination in the panel data model. Despite the scarcity of panel data
studies on the combined forecasts, there has been panel data research on forecast focusing on the pooling
of information; see Stock and Watson (1999, 2002a,b) and Forni et al. (2000, 2005). Nevertheless, there is
little research on pooling forecasts in the context of the forecast combination of Bates and Granger (1969).

We consider a panel data regression model

Vit = T B+ o + wit, (1)

wherei=1,...,nand t=1,...,T, Bis ¢ X 1, x; is the ith observation on ¢ explanatory variables, «; is the
individual effect, and w;; is the random error. The individual effect terms can be modeled as either random
or fixed effects.

When estimating a panel data model, we need to decide whether we should use fixed effects (FE) or
random effects (RE) estimator. The FE and RE estimators and their combination are considered by Huang
(2015) and Wang et al. (2016), who independently derive their asymptotic distributions using a local-to-
exogeneity condition and calculate the asymptotic risk of the estimators based on Hansen (2017). If the
individual effects are correlated with the other regressors in the model, the FE model is consistent and the
RE model is inconsistent. The RE estimator becomes inconsistent since the regressors are correlated with
the individual effects and thus become endogenous. On the other hand, if the individual effects are not
correlated with the other regressors in the model, both RE and FE estimators are consistent and the RE
estimator is more efficient. Therefore, there is a trade-off between inefficient FE estimation and biased RE
estimation.

In this paper, we consider the combined forecast approach to the combined estimation results for a panel
data model. We examine whether the FE and RE forecasts can be combined to produce a better forecast
when the regressors (predictors) are endogenous, and specifically we wish to see if the forecast combining the

FE and RE models can outperform the FE model forecast in terms of mean squared forecast error (MSFE).!

I This paper considers a static model. If one wants to perform a better forecasting a dynamic panel data model with a lagged
dependent variable would be more appropriate. However, for a dynamic panel data model, both the FE and RE estimators
become inconsistent and thus we need other robust estimation methods such as IV and GMM estimators. We can certainly



Our simulation experiment shows that the combined forecast can uniformly dominate the FE forecast for all
degrees of endogeneity, demonstrating that the in-sample estimation result carries over to the out-of-sample
forecasting. It also shows that the combined forecast can reduce MSFE relative to the RE forecast for
moderate to large degrees of endogeneity of the regressors and heterogeneity of the individual effects.

We illustrate this method with an application to forecasting electricity and natural-gas demands for 51
US states. Since electricity and gasoline demand has been studied extensively, strong priors exist as to the
plausibility of price and income effects, providing a useful plausibility check to the results of the study. In
this literature, Maddala et al. (1997) obtained short-run and long-run elasticities of energy demand for
each of 49 US states over the period 1970-1990. They showed that heterogeneous time series estimates
for each state yield inaccurate signs for the coefficients, while panel data estimates are not valid because
the hypothesis of homogeneity of the coefficients was rejected. Baltagi et al. (2002) compared the out-of-
sample forecast performance of ten homogeneous and nine heterogeneous estimators including the shrinkage
estimators applying them to the same data set. They showed that the homogeneous panel data estimates give
the best out-of-sample forecasts. Our objective here is to compare the out-of-sample forecast performance of
the FE forecast, RE forecast, and the proposed combined forecasting procedures, by applying them to the
updated electricity and natural-gas panel data across 51 states (including Washington DC) over the period
1997-2012. We find that the combined forecast outperforms.

The rest of this paper is organized as follows. We begin with Section 2 where the combined estimation
and its asymptotic results are presented. Sections 3 presents the combined forecasting approach. Section 4

gives Monte Carlo simulation. An empirical application is given in Section 5. Section 6 concludes.

2 Stein-like Combined Estimation for Panel Data Models

First, we consider estimation using a panel data regression model with the random effects

Vit = Ty B+ o + uie, (2)

extend the current paper to the dynamic models by combining RE with GMM estimators for instance, but it would be beyond
the scope of the current paper and thus we leave this for a future work.



where : = 1,...,n,t =1,...,T, z; is the ¢q explanatory variables, 8 is a ¢ x 1 unknown parameter, «; is
the individual effect, and wu;; is the regression error. The RE model assumes that «; ~ i.i.d. (0, 03) , Ugp ~
iid. (0, 02), and o; are independent of the u;. In addition, the regressors z;; are independent of the o

and w;y for all ¢ and ¢. Under these assumptions, we can write
Yit = T3+ vir, E (vit|z;) = 0, (3)
where v;; = «; + u;. Write the model (3) in matrix form
y=Xp+w, (4)

where y = (y117...7y1T,...7yn17...,ynT)/ isnT x1, X = (gcu,...,xlT,...,xnl,...,an)/ isnT xq, v=
Do + u with D = I, ® vp. Let ¢p be a vector of ones of dimension T, Jp = vpip, and P = I, ® Jr
where Jp = Jr/T. Let @Q = I, — P be a matrix which obtains the deviations from individual means. The

variance-covariance matrix of v is given by
Q =0y (I, © Jr) + o0 (I, @ It) = 01 P + 02.Q, (5)

where 07 = T'o2 + o2. The feasible estimator of Q of Q can be obtained by first running the OLS regression

y on X to get Oy = yiy — xit,@OLS as the OLS residual and BOLS = (X’X)_1 X'y. This gives

2 1 L =
“:n(T—l)ZZ(v” ”) (6)

=1 t=1

Q>

Similarly, doing the OLS regression of §; = #;3+0;, where V (v;) = To2+02/T = 01 /T and ; = = Zthl Yits

we get
o TR==2
i=1
Note that 62 = % (67 — 62) . With these estimates, one can obtain the generalized least squares (GLS) of /8

based on (4) is

Brp = (X’Q‘lX)_ X'0 1y, (8)



and Brp has the asymptotic distribution as
Vn (BRE - 5) % N (0, Vi), (9)

where

XQX) (10)

VrE = <plim
Remark 1. Except for Nerlove’s (1971) method, there is no guarantee that the estimate of 62 would be
nonnegative regardless of the existence of the endogeneity problem. One solution suggested by Maddala and
Mount (1973) is to replace these negative estimates by zero. They find that the negative estimates occurred
only when the true o2 was small and close to zero, in which case OLS is still viable, and therefore the problem
is dismissed as not being serious. In the parametric models, one may consider some other positive estimators
of two unknown error variances in the random effect covariance matrix. In the nonparametric model, one
of them is as considered in Henderson and Ullah (2005). A detailed study on comparing estimators under

various estimates of variance parameters in the RE covariance matrix will be subject to a future study.

Second, we consider estimation using a panel data regression model with the fixed effects, for which the
a; are assumed to be fixed parameters to be estimated. Pre-multiplying the model by @ and performing the

OLS on the resulting transformed model

Qy = QXS+ Qu, (11)
we obtain the OLS estimator
BFE = (X/QX)il XIQ% (12)
~ / —1 ’ A
arp = (D'D)'D (nyﬂpE). (13)
The asymptotic distribution of BF g follows
Vi (Brw = 8) 5 N (0, Vieg) (14)



where

‘WQX>{ (15)

VFE = O'Z (plim

Under the random effects specification, B rE is the asymptotically efficient estimator while ﬁF g is unbiased
and consistent but not efficient. If F(a;z;) # 0, BRE is biased and inconsistent while BFE is not affected.

Third, we consider the following combined estimator of

B = whrE + (1 —w)BrE, (16)
where
T {; it H, >7 )
1 ifH, <7’
) Y NI T -1 A
H, = n <5FE - 5313) [VFE - VRE:| (BrE — BrE), (18)

and 7 is a shrinkage parameter, H,, is the Hausman (1978) statistic. We set 7 = ¢ — 2 when ¢ > 2. The
degree of shrinkage depends on the ratio 7/H,,. When H,, < 7 then Bc = BRE, When H,, > 7 then BC is a
weighted average of 5 rEe and BF g, with more weight on BFE when H,, is larger. The combined estimator

can alternatively be written as a positive-part James-Stein estimator

+
~ ~ T ~ ~
Be = Bre + <1 - H> (BrE — BRE) (19)
where (b)" = max (b, 0).

Next, to examine the asymptotic properties of Bc, we use the local asymptotic approach based on the

Mundlak’s (1978) projection, where we write «; as a linear function of z; = % ZtT:I Tit
o = Tip + €, (20)

with E (Z;e;) = 0. The variable z;; are exogenous if a; and z;; are uncorrelated (when the coefficient p is
zero). For fixed T, p is local to zero

p= %6, (21)

where the g x 1 parameter § is a localizing parameter, which is the degree of correlation between x;; and «;.



If § # 0, then x; are endogenous and the FE estimator is preferred. If § = 0,

x; are exogenous and the RE

estimator is preferred. Note that Z/ is 1 x ¢ and is the ith row of the n x ¢ matrix X.

Remark 2. We focus on the Mundlak’s (1978) projection, which projects the unobserved effect a; onto the

average of x;; all across all T time period. As a referee pointed out, Chamberlain’s (1982) approach can be

used instead. Chamberlain’s method is a generalization of Mundlak’s model, but rather to replace «; with

the linear projection of it onto the explanatory variables in all time periods. Specifically, Chamberlain’s

method leads to the following equation
o; =Cc+xip1 + Tigp2 + ...+ Tirpr + €
We leave this for a future work.
Now, we make the following assumptions:

Assumption 1. {z;, «o;, u;} are i.i.d. over i, u; is i.i.d. over ¢, F (ui|zi,
. 2
Assumption 2. E ||z;)*"" < 0o and E|uy|2™* < oo for some k > 0.

Assumption 3: 62 =02 +0,(1) and 62 = 02 + 0, (1).

a;))=0, F (u?t|xit,ai) < 0.

Assumptions 1 and 2 specify that the variables have finite fourth moments (so that the conventional

central limit theory applies) and that the error is conditionally homoskedastic given the regressors, which is

used to simplify the asymptotic covariance expressions. We have the following asymptotic results, extending

Hansen (2017) for the panel data models.

Theorem 1. Under Assumptions 1-3,

i(Gea ) A e
where
-2 v/ Vv
h= < o1 Vrp3o ) . with Y :plimXX
0 n
and

. _( Vre Vre
&~ N(0,V), with V = < Ver Vig >

; (23)

(24)



Furthermore,

H, % (h+¢) B(h+¢), (25)
and
A d, v T /
ﬁ(ﬂcﬂ)ﬂf%&((Hg),B(HO)lG (h+8), (26)

where X is n x ¢ with Z} in its ith row, B = G (Vpg —VRE)_lG’, G = ( -1 I )/7 Gy = ( 0 I )/, and
(a); =min[1,al. O

Proof: See Appendix.

Theorem 1 presents the joint asymptotic distribution of BRE and BFE, the Hausman statistic, and BC
under the local endogeneity setup in (21). The joint asymptotic distribution of Szz and Bpg is normal.
B rEe has an asymptotic bias when 6 # 0 but BF g is consistent. The Hausman statistic has an asymptotic
non-central chi-square distribution, with non-centrality parameter h depending on the local endogeneity
parameter §. The asymptotic distribution of f. is a nonlinear function of the normal random vector & and

a function of the noncentrality parameter h.

Finally, we compare B RE, B FE, Bc in the asymptotic risk. The asymptotic risk of any sequence of estima-

tors 8, of B is defined as
R (B, 8, W) = lim E[n(8, — B) W (8, = 5)] (27)

Denote R (8,) = R(Bn, 8, W) for notational brevity. So long as the estimator has an asymptotic distribution

for some random variable ¢, the asymptotic risk can be calculated using

R(Bn) = E('Wy) = tr (WE (1)) (28)

For example,
R (BFE) = tr (WVFE) (29)

from (14).



Let Ay > Ay > --- > ), denote the ordered eigenvalues of W (Vrg — Vrg) . Denote the ratio

tr (W (VFE — VRE))

d= N

(30)

Notice that (30) satisfies 1 < d < ¢. In the case W = (Vpp — VRE)_l, A1 = 1 and we have the simplification

d=gq.

Theorem 2 Under Assumption 1-3, if d > 2 and

0<7<2(d—2), (31)
then
R . A [2(d —2) — 7]
R (B, R - )
(5 ) < (/BFE) oS Vie (Vin — Vas) VasSd +q (32)
O

Proof: See Appendix.

Remark 3. Equation (32) shows that the asymptotic risk of BC is strictly less than that of BFE, so long
as 7 satisfies the condition (31). The assumption d > 2 is the critical condition needed to ensure that Be
can have smaller asymptotic risk than that of B rE. It is necessary in order for the right-hand-side of (31)
to be positive, which is necessary for the existence of 7. 7 appears in the risk bound (32) as a quadratic
expression, so there is an optimal choice

T =d-2, (33)

which minimizes this bound. Note that d > 2 is equivalent to Ay + --- 4+ A; > Ay. This is violated only if A\;
is much larger than the other eigenvalues. (31) is equivalent to 0 < 7 < 2 ( ! /’\\—1 — 2) . For the practical

implementation we replace the maximum eigenvalue A\; with the average w = %Z’f Ai. See

Hansen (2016).

Corollary 1. R (ﬁ) - R (5FE) <0, ford>2and 0 <7 <2(d—2). When W = (Vpg — Vag) "', the

condition simplifies to ¢ > 2 and 0 < 7 < 2(q — 2), which is Stein’s (1956) classic condition for shrinkage.(]

The following two corollaries are obtained with W = (Vpg — VRE)fl.



Corollary 2. R (,@RE) = to(W Vi) +or 0 SVrpW VapEs; R (BRE) <R (,BFE) when o746 SVrEW VipSe <
q, and R (BRE) >R (BFE) otherwise. O

Proof: See Appendix.
Corollary 3. R (ﬂ) “R (BRE) <0, for ¢ < o ' SVreWVapSs, d > 2, and 0 <7 < 2(d— 2). 0

Remark 4. Corollary 1 shows, as in Stein’s (1956), that ¢ > 2 is necessary in order for the Stein estimator
to achieve global reductions in risk relative to the usual estimator. d > 2 is the generalization to allow for
general weight matrices. Corollary 2 indicates that when endogeneity is weak (p and hence ¢ is close to zero)
the random effects estimator may perform better than the fixed effects estimator. Corollary 3 indicates that
when endogeneity is strong, d > 2, and 0 < 7 < 2(d — 2), the combined estimator is better than the RE

estimator. J
3 Stein-like Combined Forecast for Panel Data Models

First, we consider forecasting using a panel data regression model with the random effects. Suppose we want

to predict s periods ahead for the i¢th individual. By minimizing

Do (Wie — 2B — ai)z N > a? ) -

2 2
ou Oa

we can obtain

~2
N e

& = 5T 0(rE), (35)
01

where i rp) = % > @;;(rE)- Then the s period ahead forecast for the ith individual is

~2

~ 3 g ~
Yi,r+s,RE = Tj 14 OrE + &%TW(RE), (36)
1

@
M

where

> ¢ Uir(rE) can be treated as &; rp. Baltagi (2008) showed that Goldberger (1962) gave the best

=1

linear unbiased predictor (BLUP) of y; vy as following

Ji,r+s,RE = T} 1y BrE + @' QU ORE, (37)



where irp =y — XBrr and w = E (v; r41v) . Note that for period T + s
Vi Ts = Qi + Ui Tts, (38)

and @ = 02 (I; ® 1) where [; is ith column of I, i.e. I; is a vector that has 1 in the ith position and zero
elsewhere. In this case

' =02 (@) {;%P + 013(62} = Z‘;‘l; Q up, (39)
since (I} ® o) P = (I} ® /%) and (I} ® /) Q = 0. The typical element of @'~ '9rp becomes (%ﬁim@) .
Therefore, this BLUP for g; 74 corrects the RE prediction by a fraction of the mean of the RE residuals
corresponding to the ith individual.

Next, consider forecasting using a panel data regression model with the fixed effects, from (13), we know

that for the ith individual, &; pp = y; — EiBFE. Thus, the s period ahead forecast for the ith individual is
Ui, 745, FE = Ui + (Ti74s — z;) BFE, (40)

or alternatively,
Ji s, FE = Ty s BPE + Wi(rp)- (41)

Now, we consider the combined forecast. In Section 2, we have shown that the combined estimator is
better than the FE estimator in asymptotic risk (Theorem 2), and also better than the RE estimator when
the endogeneity is strong (Corollary 3). To see if this dominance in in-sample estimation holds true in

out-of-sample forecasting, we combine ¢; 74+ rp and §; r+s rg using the weight in (17), then

Ui Tyse = Tipi Be +ww' Q Yogp + (1 — W) pE)

W Yirts,rE + (1 — W) irys,FE, (42)

In the following two sections, we conduct the comparison of the combined forecast §; 7+ . (the forecast using
BC) with the RE forecast §; 745 rr (the forecast using BRE) and the FE forecast §; 745 rr (the forecast using

BFE) based on Monte Carlo and an application.

10



4 Monte Carlo

We consider the following data generating process

Yie = Tiyuf+ o 4w, (43)

o = pVTZ, v Jq+V1—p? e, (44)

where z;; is ¢ x 11.i.d. N (0, I,), ¢is a g X 1 vector of ones, u; are i.i.d. N (0, o2) across i,t. ¢; are i.i.d.
N (0, 1) independent of {zs, ui}. oy € {.6, .8, 1}, Var(a;) = 1. We set V0 = Z—Z € {%, %, 1} , so that we
have p* = % = {.74, .61, .50}. p* controls the degree of heterogeneity which is the temporal correlation
between «o; +u;; and «; + ;. Then «; and z;; have correlation Lq, which controls the degree of endogeneity.
We allow p to vary in (—1, 1). The distribution are invariant to 8 so we set it to zero, 8 = 0.

First we generated 300,000 samples on each calculated BRE, BFE, Bc. We also calculated the Hausman

pre-test (PT) estimator

Bpr = BrEl (Hn < X2 0.05) + Brpl (Hn > X2 0.05) (45)

where x? o5 is the 5% critical value from the x?2 distribution.
To compare the in sample fit of these estimators, calculate the median squared error (MedSE) of each

estimator and plot the relative MedSE relative to that of the robust estimator FE under endogeneity, that is

median | (3 8)' (3~ 5),

wmedian | (5ee ) (Bre - 8)|

(46)

Thus a value less than one indicates improved precision relative to the FE estimator, and a value greater
than one indicates worse performance than the FE estimator, with larger MedSE than FE estimator. The
MedSE is symmetric with respect to p, so we only report the results with p between 0 and 1.

We use a portion of the available data for forecasting and use the other portion of the data for estimating
the model as follows: Use the observations over ¢t = 1,...,7T — s to estimate the forecasting models. Compute
the s-step error on the forecast for time 7. Compute the forecast accuracy measures based on the forecast
errors obtained. To compare the prediction procedures, we calculate the s-step ahead out-of-sample mean

squared forecast error (MSFE) of each approach. The forecast error is defined as erys = yris — Gr+s,

11



and its MSFE is MSFE (erys) = E (e, er4s) . Generate 10,000 samples on the FE forecast §r4s,rp,
the RE forecast §r4s rp, the Hausman pre-test forecast §rys pr, and the combined forecast yrys .. Plot
the MSFEs of the RE, FE, combined forecasts relative to the MSFE of the FE forecast. Thus values less
than one indicate improved precision relative to the FE forecast, and values greater than one indicate worse
performance than the FE forecast. We set T =5, s =1, ¢ = 4, and n € {20, 100}.

Figures 1 and 3 present the in-sample estimation results. In Figure 1: (a), (¢) and (e) plot the relative
MedSE for n = 20; (b), (d) and (f) plot the relative MedSE for n = 100. We see that the region of dominance
for the combined estimator over RE estimator is greater for small n. Figure 1 plots the relative MedSE for
p* € {74, .61, .50} and 7 = 7*. This is the case of moderate to large degree of heterogeneity. Figure
1(e) and Figure 1(f) are the cases, p* = .50. We see that the gains from the combined estimator are strong
for small p, with the MedSE converging to that of FE as p increases towards 1. This is consistent with
Theorem 2, which shows that the improvements are asymptotically local to p = 0. The RE estimator has
lower MedSE than the combined estimator, but the ranking is reversed for larger values of p. Figure 1(a),
1(b), 1(c), and 1(d) are the cases, p* € {.74, .61}. The general nature of the plot is the same, except that
the gains are not as strong as in the case p* = .50. Still the combined estimator has uniformly smaller
MedSE than that of FE. The FE and the combined estimators are getting closer as p* increases. RE has
similar MedSE to FE and combined estimators for small p, but the MedSE of the RE estimator increases
dramatically after intermediate values of p. It is also instructive to examine the performance of the pre-test
estimator. The MedSE of the pre-test estimator is generally similar to FE for moderate and higher values of
p. In summary, for moderate p* and higher p, or moderate p and higher p*, the combined estimator is better
than RE estimator. For very large p* and very low p, the combined estimator is close to RE estimator.
The estimation simulation results provide strong finite sample confirmation of Theorem 2. Figure 2 plots
the relative MedSE for 7 = 27, which still satisfies the classic James-Stein conditions in equations (30) and
(31). The region of dominance for the RE and combined estimators over FE is greater for the large value of
7. The MSE of the combined estimator is closer to that of FE when the degree of endogeneity is small for
large 7. This can be seen by contrasting Figures 1 and 2. Hence, this indicates that the optimal choice of

7 = 7" in (33) obtained from minimizing the “bound” of the risk of R (BC) is not “optimal” in the sense of

12



minimizing the risk of R (BC) itself. To our knowledge, there is no result on this yet and thus we leave this
for a future work.

Figures 2 and 4 present the out-of-sample forecasting results. Figure 2 shows the relative 1-step ahead
out-of-sample MSFE of each approach with p* € {.74, .61, .50}. By contrasting Figures 2 with Figures 1,
we see that the general nature of the plots is the same. In Figure 2: (a), (c¢) and (e) plot the MSFE for
n = 20; (b), (d) and (f) plot the MSFE for n = 100. We see again that the region of dominance for the
combined forecast over the FE forecast is greater for small n. Figure 2(e) and Figure 2(f) are the cases for
p* = .50. This is similar to Figure 1(e) and 1(f) that the combined forecast has much lower MSFE than the
FE forecast, regardless of the degree of endogeneity. For small p, the RE forecast has lower MSFE than the
combined forecast, but the ranking is reversed for larger values of p. Figure 2(a), 2(b), 2(c), and 2(d) are the
cases for larger p* = {.74, .61}, for which the combined forecast has lower MSFE than the FE forecast for
small p but the reverse holds for large p. The combined and the pre-test forecasts have much smaller MSFE
than FE for small values of p, but the ranking is reversed for large values of p. For large values of p, the
MSFE of the pre-test forecast is typically larger than the combined forecast. In all the cases, the combined
forecast uniformly dominates the FE forecast (which is the same as for the in-sample estimation results in
Theorem 2 and in Figures 1), demonstrating that the in-sample estimation results (Theorem 2) can hold
true for the out-of-sample forecasting. Figure 3 shows the relative 1-step ahead out-of-sample MSFE of each
approach with 7 = 7*. Figure 4 shows the relative 1-step ahead out-of-sample MSFE of each approach with
T = 27*. By contrasting Figures 2 and 4, we see again that the region of dominance for the combined forecast
over FE is greater for the large value of 7.

Figure 5 plots the relative 1-step ahead out-of-sample MSFE of each approach with fixed § on the interval
[0, 5] on the horizontal abscissa for n € {25, 100, 400}, which correspond to varying ranges of p on [0, 1],
[0, .5], [0, .25] for the different sample size n € {25, 100, 400}, respectively. These are the cases where the
degree of endogeneity does not depend on the sample size. In this plot, we see again that the gain form
the combined forecast has uniformly smaller MSFE than FE, with the MSFE converging to that of FE as
the degree of endogeneity increases. This is consistent with holds, which shows that the improvements are

asymptotic local to zero. This shows numerically that the improvements in Theorem 2 can be expected to

13



hold broadly in the parameter space.

In summary, the simulation evidence provides strong finite sample confirmation of the predictions from
the large sample theory on the estimation (Theorems 1 and 2). It also shows that the finite sample prop-
erties of the in-sample combined estimation is carried over to the out-of-sample combined forecasting. The
improvement in the combined forecast over the FE forecast is greater for smaller heterogeneity p*. For mod-
erate to large p* and higher p, or moderate to large p and higher p*, the combined forecast is better than

the RE forecast. For very large p* and low p, the combined forecast is close to the RE forecast.

Remark 5. In constructing the Stein-like combined estimator we focus on the shrinkage parameter 7 that
makes the Stein estimator dominate FE in the asymptotic risk (Theorem 2), rather than making it dominate
the RE estimator. The cost of winning over the FE is to increase the probability of losing to the RE when the
endogeneity is weak (when p is small) because 7* is too small for the Hausman statistic H,, to go below 7*.
Therefore, we also consider a two-step approach, the pretesting (PT) estimator in (45), using the Hausman
statistic H,, to construct the PT estimator in (45) as done also in Hansen (2017). For the PT estimator based
on the Hausman statistic, we use the 5% critical value x? g5 Under the null of no endogeneity (p = 0),
Pr(H, < x20.95) = Pr(H, <9.49) = 0.95 as x7 95 = 9.49 with d.f. = ¢ = 4. Thus, PT will have a 95%
chance to have the weight w = 1 to completely shrink FE towards RE, while the Stein combined estimator

has only 5% chance to do that with w = 1.

Remark 6. The optimal choice of 7, 7* in (33), is obtained to minimize the “bound” of the risk of R (BC)
in Theorem 2. The bound is the RHS term in equation (32). However, as discussed in Remark 5 above, the
optimal choice of 7 = 7* is too small when p is small because the probability that the Hausman statistic
is smaller than 7 = 7* will be too small. Hence we have increased it to 27* as this choice still satisfies the
classic James-Stein conditions in equations (30) and (31). This makes the MSE of the combined estimator
closer to the MSE of FE when the degree of endogeneity is small. The results are reported in Figures 3 and
4, where 7 = 27* are considered. Hence, this indicates that the optimal choice of 7 = 7* in (33) obtained
from minimizing the “bound” of the risk of R (BC> is not “optimal” in the sense of minimizing the risk of

R <Bc) itself. To our knowledge, there is no result on this yet and thus we leave this for a future work.
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Remark 7. The risk function (27) with a general weight matrix W includes many special cases. For
example, the unweighted MSE is obtained by setting W = I, in which case the coefficients are of equal
importance. The canonical case is motivated by ease of use and simplicity, which is obtained by setting
W= (Vig — VRE)_1 . This choice simplifies many formulae, e.g., equation (30) has the simplification d = ¢,
and the optimal choice of 7, 7* in (33) is ¢ — 2. Following Hansen (2017), we set 7 = ¢ — 2, which would
be the same as the optimal choice 7* = d — 2 when W = (Vpg — VRE)_1 is used. See Corollary 1. See also
Remark 3 and equation (33). However, when W = I, is used instead of W = (Vpg — Vre) ™', it is possible
that the condition 0 < 7 < 2(d — 2) in equation (31) may not hold if 7 = ¢ — 2 is used, especially when the

dimension g of X is large. In that case, we should use the theoretical optimal 7 = d—2 = W —2.

Remark 8. If 7 is small, then w will be small towards zero. The Stein-like combined estimator puts more
weights on FE, resulting in less bias and more variance; If 7 is large, then w will be large towards one. The

Stein combined estimator puts more weights on RE, resulting in more bias and less variance.
5 Application

There have been numerous studies on the price and income elasticities of residential natural-gas and electricity
demand. Maddala et al. (1997) applied classical, empirical Bayes, and Bayesian procedures to the problem
of estimating short-run and long-run elasticities of residential demand for electricity and natural gas in the
US for each of 49 states over the period 1970-1990. They found that shrinkage Bayesian type estimators
are superior to either the individual heterogeneous estimates or the homogeneous estimates, especially for
prediction purpose, through shrinking the individual estimates towards the pooled estimate using weights
depending on their corresponding variance-covariance matrices.

Using the Maddala et al. (1997) specification and data sets, Baltagi et al. (2002) compare the out-
of-sample forecast performance of homogeneous and heterogeneous estimators applying them to electricity
and natural-gas. In this section, we compare the performances of the residential gas and electricity demand
forecast using panel data across 51 states (including Washington DC) over the period 1997-2012. The annual

state residential electricity and gas price data used in this study were obtained from The State Energy Price
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and Expenditure System of the U.S. Energy Information Administration. Annual personal income per capita
by state were drawn from the Bureau of Business and Economic Research, and the annual Consumer Price
Index for the United States was from CITIBASE.

Following Baltagi et al. (2002), we consider the following panel data model:
Girvs = Bo + Brzrir + Potos + Bawair + du, (47)

where ¢ = 1,...,51, t = 1,...,14. The LHS variable of the equation is y = log(residential electricity
per capita consumption) for the electricity demand equation or y = log(residential natural-gas per capita
consumption) for the natural gas demand equation. The RHS variables for the electricity demand equation
are z1 = log(real per capita personal income), xo = log(real residential electricity price), and x5 = log(real
residential natural-gas price). The RHS variables for the natural-gas demand equation are 1 = log(real per
capita personal income), o = log(real residential natural-gas price), and x3 = log(real residential electricity
price).

We compare alternative estimators in the prediction performance. Given the large data set of N = 51
states over T' = 14 years, we estimate our model using a truncated data set (i.e. without the last 3 years
of data) and then apply each estimator to an out-of-sample forecast period. Panel A of Table 1 gives
a comparison of forecasts using the root-mean-squared-forecast-errors (RMSFE) for residential electricity
demand and similarly Panel B for residential natural-gas demand. Because the ability of an estimator to
characterize the long-run as well as the short-run response is at issue, the RMSFE is calculated across the
51 states at different forecast horizons. The RMSFEs are reported in Table 1 for forecast horizons s = 1,3
years. Both for the electricity demand (Panel A) and for the natural-gas demand (Panel B), the combined
estimator dominates FE forecast whether it is for the 1-year ahead or 3-years ahead forecasts, confirming
that the gains in estimation by the combined estimator (Theorem 2) can benefit the combined forecast in
out-of-sample forecasting. The combined forecast using the combined estimator performs better than both
FE and RE forecasts.

The overall forecast ranking in RMSFE offers a clear and strong endorsement for the combined forecast

which is constructed using the Stein-like combined estimator BC. The “Stein-like combined forecast” is
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superior to both the FE forecast and the RE forecast in out-of-sample prediction.

6 Conclusions

The goal of this paper is to examine if the theoretical results on the combined estimation for the parametric
panel data model with weak endogeneity (i.e., local to exogeneity) may be useful to form the combined
forecasting in the panel data model such that the gains in asymptotic risk in the combined estimator may
be carried over to the gains in mean squared forecast errors. We examine this by asymptotic theory, by
Monte Carlo simulation, and empirical applications. The FE and RE forecasts are combined when the RE
estimator suffers from various degrees of endogeneity to produce a combined forecast. Specifically we show
that the forecast combining the FE and RE models can outperform the FE model forecast in terms of mean
squared forecast error. Our simulation experiment shows that the combined forecast can uniformly dominate
the FE forecast for all degrees of endogeneity, demonstrating that the in-sample estimation result is carried
over to the out-of-sample forecasting. It also shows that the combined forecast can reduce MSFE relative to
the RE forecast for moderate to large degrees of endogeneity and heterogeneity in the individual effects.
The use of the combined forecasting approach allows applied researchers to implement efficient forecasting
under the presence of weak endogeneity. Even when there is no endogeneity or when there is strong endo-
geneity, without having to select a consistent forecast or an efficient forecast, the weights in the combined
estimator will be 1 or 0. Hence, the combined forecast is particularly useful when the degree of endogeneity

is weak or when it is not clear which of the RE or FE panel data models to choose.

17



7 Appendix

7.1 Proof of Theorem 1

Let hy = Gih and & = G1€ with Gy = (I 0), and let hy = Goh and & = G2€ with Go = (0 I)". Here we

derive the asymptotic distribution of the RE estimator for the parametric panel data model. Note that

Bre = (X'Q7'X)7 x'Qly

B (P Q (P Q
= (X (a%%a)X) X(af*aa)y

= (X'(\P+Q)X) X' (\P+Q)y = 4y,
where A = 2%, Q71 = L (AP + Q) = U% + £ We then have

-1
\/H(BRE *5) = ADX5 + <71LX’ (>\P+Q)X) %X’ (AP + Q) (De +u) 5 hy + &1,

where
1 -1
&1~ <plimX' (AP + Q) X) Z,
n
with
1
z-Lx (AP +Q)(De+u)~N (0, o2 (plim=X"AP+Q)X ] ).
Vvn n
Hence,

-1
& ~ N (0, o? (plim (111X/ ()\P—i—Q)X)) )
1 —1
= N <0, (plimnX’Q‘1X> ) =N (0, V7).

The asymptotic bias hy is

-1
hi = (plimiX’ (AP + Q) X) <plim711X’ (AP + Q) DX> )

-1

= 0,2 (plile’Q_1X> (plim)\lX’X>§
n n

= 0?26,
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where the second equality follows from noting that QD = 0, PD = D, and X'D = X', and the last equality

follows from denoting ¥ = plim%X’X.
7.2 Proof of Theorem 2

First, we derive the asymptotic risk of the RE estimator R (BRE) for the parametric panel data model.

From Theorem 1.1,
vn (BRE - 5) & b+ &,
with & ~ N (0,V7) . Hence,
R(Brr) = wlBE@WE)+mWh]

= trE (& WE) + tr (A Wh))

tr (WVL) + oy 'SV, WV, X6.

For the asymptotic risk of the FE estimator, note that /n (BFE — ﬁ) 4 & ~ N (0,V3), and thus
R (Bre) = B(&W&) = tr (WVa).

The rest of the proof is based on Theorem 2 of Hansen (2017). Define ¥* as a random variable without

positive part trimming

T

(h+&) B(h+¢€)

\I/*:G’2§—( )G'(h+§).
Then using the fact that the pointwise quadric risk of W is strictly smaller than that of U*

R (5) — E(WWU) < E(TWE),

we can calculate that

((h+€) B(h+¢))” (h+¢€) B(h+ 5)) '

By Stein’s Lemma: If Z ~ N(0,V)is ¢ x 1, K is ¢ X ¢, and 7 (x):R?— R? is absolutely continuous, then

/ . 8
E(n(Z+h) KZ) = Etr (('f)xn

(Z+h) KV) ,
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n(x) =z/(2’Bx), and
0 1 7 2

%n(:r) =Bl (x’Bx)2wa/
Therefore
. < (h+§)/ GWG’2§) e ( GV[I/G’QV _ 26WGYV 23(h+§)(h+§)’>
(h+&) B(h+¢) (h+8) B(h+&)  ((h+¢) B(h+¢))
tr (GWGLV) ) GWGLV ,)
= E / — 2Etr B(h+€)(h+ .
((h+£) B(h+¢) (((h+§)'B(h+§))2 (b8 +)
Since
GWGLV =WGLVG =W (Vo — 1))
and
GWGLVB =GWGLVG (Vo — V1) ' G = GW (&,
Etr ( WG phtoyn+ g)’) — Etr (<h IALCACRS ?) .
((h+&) B(h+¢) ((h+&) B(h+¢))
Thus

R ) <h+£)’GWG'(h+§>> ((h+€)’GWG’(h+§)>
E@W*Wv¢*) = R(fpgp)+1°E 2| +47Etr / >
(#rs) <((h+€)'3(h+€)) ((h+&) B(h+6))
(W (Vo =) >
(h+&) Bh+¢))

—27 Etr (

Define By = (Va — V1) "% G’ and A* = (Va — V1)® W (Va — V1) % . Note that GWGLV P = GWG' = B, A* B,

B{B; = B. Using the inequality b'ab < (b'b) Apax (a) for symmetric a, and let
)\max (CL) = )\max (W (‘/2 - ‘/1)) = )‘1'
Then

tr (B(h+&)(h+&)/GWGLV) = (h+&)B,A*By(h+¢) (48)

IA

(h+ &) B(h+&)\;.
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Using equation (48) and Jensen’s inequality, we have

2 A1 (W (Vo = V1))
R( FE) + (7 +4T>E<(h+£),B(h+£)) —27'Etr((h+£),B(h+£))

. (2 (tr (W (Vo — V1)) — 201) — 7A1)

R (Pre) E( (h+&) B(h+ &) )

7(2 (tr (W (V2 — Vl)) — 2)\1) — T)\l)
E((h+¢) B(h+¢)

IN

=

E ™ Wyr)

< R (BFE) - : (49)
Since tr(BV) = tr (G (Vo —w1)~ " G/V) = ¢. We have

E((h+€) B(h+¢))

' Bh + tr (BV)

= o 4NV (Vo — V1) VARG + .

Substituted into (49) we have

T2 (W (Vo —V1)) —2X\1) —7A1)
oV (Vo — V1) T ES + ¢

R (Bc) <R (3FE> -
with 0 < 7 < 2 (W=D _9),
7.3 Proof of Corollary 2

R (BRE) <R (BFE) when 01_45’ZV1WV125 <gq;and R (BRE> >R (BFE) otherwise.

R(Brp) = tr(WW)+ o6 SViWiss
R (Bm) = tr(WVh)
tr (W (Va—Wy)) = qif W= (Vo—Vy) "

R (BFE) -R (BRE) =tr (W (Vo = V1)) — o 'SVIWVIES = q — o7 ' SVIW VL X6,
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Figure 1: Relative MedSE of FE, RE, Combined and Pretest Estimators, n = {20,100}, T = 5, ¢ = 4,
p* = {.74, 61, .50}.
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Table 1. Combined Forecast from the Combined Estimator

A. Electricity Demand B. Natural Gas Demand

s=1 s=3 s=1 s=3

FE 5.5261 6.4135 6.1593 8.1922
RE 6.6025 7.9441 7.1044 9.0036
Combined 5.2837 6.1467 5.7310 7.4145

51 U.S. States including Washington DC. Reported are RMSFE for forecast horizons s = 1, 3.
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