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1 Introduction

This paper considers a Stein-like (1956) shirinkage estimation of panel data models. The Stein shrinkage

estimators have Bayesian interpretations which leads to a model combination framework parallel to Bayesian

model averaging (BMA) of Jeffreys (1961), which is one of the most commonly used model combination

method in statistical learning, see Hastie et al (2009, Section 8.8). It can be shown that BMA produces a

Stein-type shrinkage estimator. See Judge and Bock (1978, pp. 173-176).

In this important development of shrinkage estimation, Dale Poirier has been one of the leading researchers

for more than four decades. Among his numerous contributions in Bayesian analysis in econometrics and

statistics, he already developed in early 1980s an idea similar to the concept of model averaging (Hansen

2007). The BMA assigns prior probabilities of the candidate models being the true model, while there is

little guidance in the literature on elicitation of prior probabilities. An exception is the model occurrence

framework developed in Poirier and Klepper (1981) and Poirier (1988), and applied in Koop and Poirier

(1995). The model occurrence is related to model averaging (e.g., Hansen 2007) as its focus is on how

the underlying model occurrence probabilities of the competing models depend on characteristics of the

environments in which the data subsets are generated. In Poirier and Klepper (1981), classical, Bayesian,

and mixed estimation approaches are developed while the Bayesian approaches are shown to be especially

attractive whenever the models are nested. Recent literature on BMA includes Draper (1995) and Raftery,

Madigan, and Hoeting (1997), and a survey by Hoeting, Madigan, Raftery, and Volinsky (1999).

Although the model averaging has been one of most active topics in recent literature, we have not seen

much for panel data models. Recently, there has been increased interest in the estimation of models with

error cross-sectional dependence in panel data models. A particular form that has become popular is a

common factor error structure with a fixed number of unobserved common factors and individual-specific

factor loadings. The most obvious implication of error cross-sectional dependence is that the standard panel

data estimators are inefficient and estimated standard errors are biased and inconsistent. One popular

approach to this problem is the common correlated effects (CCE) method proposed by Pesaran (2006). The

virtue of the CCE estimation is that it can be easily computed by the least squares regression augmented

using the cross-sectional averages of the dependent and explanatory variables as proxies for the factors.

In this paper we consider the common correlated effects pooled (CCEP) estimator of Pesaran (2006) in
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comparison with the FE estimator. If there exists common correlated effect, the CCEP estimator is consistent

and the FE model is inconsistent. On the other hand, if there is no error cross-sectional dependence,

both the CCEP and FE estimators are consistent while the FE estimator is efficient. We consider the

combined estimator which is a weighted combination of the FE estimator and the CCEP estimator. We

study the asymptotic distribution of the combined estimator in a local asymptotic framework where some

factor loadings in the error term are in a local neighborhood of zero. We show that under certain conditions,

the combined (shrinkage) estimator has strictly smaller risk than the CCEP estimator. The combined

estimator also has smaller asymptotic risk compared to the FE estimator unless the endogeneity is very

weak. Our simulation result shows that the combined estimator can reduce finite sample MSE relative to

the CCEP estimator for all degrees of endogeneity, as well as relative to FE estimator for moderate to large

degrees of endogeneity.

Specifically, we consider a panel data regression model of the general form

yit = x′itβ + αi + uit, (1)

where i = 1, . . . , n, t = 1, . . . , T, xit is q × 1, zit is 1 × p, β is a q × 1 parameter of our interest, m (·) is

an unknown smooth function, αi is the individual effect, and uit is the random error. We are interested in

estimation of β for the case when the error term uit is correlated with the regressors xit. The above model

suffers from endogeneity which results in the inconsistent estimation of β.

The solution to the inconsistent estimation depends on what causes the endogeneity: (i) when the

individual effect αi is correlated with the regressors xit or (ii) when the error term uit is correlated with

the regressors xit. In both cases the above model suffers from endogeneity which results in the inconsistent

estimation of β. The first case endogeneity arises when the individual heterogenous effect αi is treated as the

random error component and it is correlated with the regressors. We are interested in estimation of β for the

second case, where the endogeneity arises when regressors that are omitted in the model are correlated with

the included regressors xit such that the regression error uit and the regressors xit share common factors

(common effects) and thus are correlated. In the first case, the solution is to treat the individual heterogenous

effect αi as fixed effects rather than random effects. In the second case, it is to remove the effect of the

misspecification, i.e., either by adding them to the model or by controlling for the omitted variables. As the
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omitted variables may be unobservable or their data may not be available in hand, we consider the ‘control

function approach’ suggested by Pesaran (2006), which is essentially the 2SLS estimator for the panel data

models.

In the mean time however, it is important to note that the solutions to restore the consistency will be

based on less efficient estimation. Therefore, there is a trade-off between consistency (bias) and efficiency

(variance). In the first case of the endogeneity when the random component αi is correlated with xit, the

random effects (RE) estimator is inconsistent but more efficient and the fixed effects (FE) estimator is

consistent but less efficient. In the second case when the error term uit is correlated with xit due to omitted

variables or unobservable variables, the fixed effect estimator (which is an OLS estimator) is inconsistent but

relatively more efficient and the common correlated effects (CCE) estimator of Pesaran (2006) (which is a

2SLS estimator) is consistent but less efficient. The CCE estimator can be thought of as a control function

estimator as the correlation between uit and xit are modelled by a common factor specification in one step

and then removed in another step, and therefore it is a 2SLS estimator for the panel data model with the

common effects in uit and xit.

When uit and xit are correlated (strong endogeneity), the CCE estimator is preferred to the FE estimator.

When uit and xit are not correlated (no endogeneity), the FE estimator is preferred to the CCE estimator.

Hence, a natural question is which one to choose when the endogenous is weak. The answer is that we

combine the FE and CCE estimators when uit and xit are weakly correlated. Hence this paper extends

Hansen (2017) for panel data models with common correlated effects.

The rest of this paper is organized as follows. To examine and compare the alternative estimators of

β and their combined estimator, Section 2 gives the models and these estimators. Section 3 presents the

asymptotic theory, with all the proofs collected in Appendix (Section 7). Section 4 provides some Monte

Carlo simulation results to demonstrate the asymptotic results in finite sample. An empirical application is

given in Section 5. Finally, Section 6 concludes.
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2 Estimating Panel Data Models with Common Correlated Ef-
fects

Consider a panel data regression model

yit = x′itβ + αi + uit, (2)

where i = 1, . . . , n, t = 1, . . . , T, xit is a vector of q explanatory variables, β is a q×1 unknown coefficients, αi

denotes the individual specific effects and is assumed to be fixed. The disturbance term uit has a multifactor

structure

uit = γ′ift + εit, (3)

in which ft is an r × 1 vector of individual-invariant time-specific unobserved common effects, γi is an

r × 1 stochastic individual-specific factor loading vector, and εit are the idiosyncratic errors assumed to be

independent of xit. To model the correlation between the regressors xit and the errors uit, the regressors

may contain the unobserved common factor

xit = Γ′ift + vit, (4)

where Γi is an r× q stochastic factor loading matrix, and vit is the q× 1 vector of idiosyncratic components

of xit and is independent of the common effects ft.

In vector notation,

yi = Xiβ + αiιT + ui, (5)

ui = Fγi + εi,

Xi = FΓi + vi,

where yi = (yi1, . . . , yiT )
′

is T × 1, Xi = (x′i1, . . . , x
′
iT )
′

is T × q, ui = (ui1, . . . , uiT )
′

is T × 1, ιT is the T × 1

vector of ones, F = (f ′1, . . . , f
′
T )
′

is T × r, vi = (vi1, . . . , viT )
′

is T × q.

We make the following assumptions on the common factors, their loadings and the individual or unit

specific errors.

Assumption 1. εit is independently and identically distributed (iid) across both i and t with E (εit) = 0,
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V ar (εit) = σ2 > 0 and E ‖εit‖4 <∞.

Assumption 2. vit is distributed independently across both i and t with E (vit) = 0, V ar (vit) = Σi positive

definite and E ‖vit‖4 <∞.

Assumption 3. ft is covariance stationary with absolute summable autocovariances, such that E ‖ft‖4 <∞.

Assumption 4. γi and Γi are iid across i and independent of εit and vit, ft for all i and t with fixed means

and finite variances. In particular,

γi = γ + ηi, ηi ∼ iid (0,Ωη) , (6)

where Ωη is an r × r symmetric nonnegative definite matrix, and ‖γ‖ < K, ‖Γ‖ < K and ‖Ωη‖ < K for

some positive constant K <∞.

Assumption 5. εit, vit and ft are mutually independent.

First, let QT ≡ IT − ιT (ι′T ιT )
−1
ι′T , which is a T ×T symmetric idempotent matrix. Further, QT ιT = 0,

and so for ith unit, pre-multiplying (5) by QT gives

QT yi = QTXiβ +QTui. (7)

The β̂FE can be expressed as

β̂FE =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

X ′iQT yi

)
, (8)

and

avar
(
β̂FE

)
= Ψ∗−1R∗Ψ∗−1, (9)

where R∗ = plim
(
σ2 1

n

∑n
i=1X

′
iQTXi + 1

n

∑n
i=1X

′
iQTFΩηF

′QTXi

)
, and Ψ∗−1 = plim

(
1
n

∑n
i=1X

′
iQTXi

)
. If

γi 6= 0 so that the error term uit and xit have the common correlated effects, the FE estimator is inconsistent.

If γi = 0, β̂FE is consistent and has the following asymptotic distribution

√
n
(
β̂FE − β

)
d→ N (0, ΣFE) , (10)

where ΣFE = σ2
(
plim 1

n

∑n
i=1X

′
iQTXi

)−1
, under the following additional assumption:

Assumption 6. 1
n

∑n
i=1X

′
iQTXi is bounded and nonsingular.

Next, let us consider the common correlated effects pooled (CCEP) estimator of Pesaran (2006). The
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idea underlying the common correlated effects approach is that the unobservable common factors ft can be

well approximated by a linear combination of the cross-section averages of the dependent variable and those

of the regressors. To illustrate this result, we write (2) and (4) as

zit =

(
yit
xit

)
= Bi + C ′ift + eit, (11)

where

eit =

(
β′vit + εit

vit

)
, (12)

Bi =

(
αi
0

)
, Ci =

(
γi Γi

)( 1 0
β Iq

)
, (13)

zit is (q + 1)× 1, Bi is 1× (q + 1) , 0 is a q× 1 vector of zeros, Ci is r× (q + 1) , and Iq is an identity matrix

of order q. The covariance matrix of eit is given by

E (eite
′
it) = Σe,i =

[
β′Σiβ + σ2

i β′Σi
Σiβ Σi

]
. (14)

Then the cross-sectional average is

z̄t = B̄ + C̄ ′ft + ēt, (15)

where

z̄t =
1

n

n∑
i=1

zit, B̄ =
1

n

n∑
i=1

Bi, C̄ =
1

n

n∑
i=1

Ci, ēt =
1

n

n∑
i=1

eit. (16)

Although not considered here, generally one can consider z̄t = z̄wt =
∑n
i=1 wizit, where wi = σ−2

i /
∑n
j=1 σ

−2
j .

If we assume

Rank
(
C̄
)

= r ≤ q + 1, for all n, (17)

it follows that

ft =
(
C̄C̄ ′

)−1
C̄
(
z̄t − B̄ − ēt

)
. (18)

Therefore ft can be approximated by a linear combination of {z̄t 1} , if ēt
q.m.→ 0 as n→∞ (cf. Lemma 1 in

Pesaran 2006). In such a case, we obtain

ft − (CC ′)
−1
C
(
z̄t − B̄

) p→ 0 as n→∞, (19)
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where

C̄
p→ C = Γ̃

(
1 0
β Ik

)
as n→∞ (20)

and Γ̃ = (E (γi) E (Γi)) = (γ Γ).

From (2) and (3), yit is generated as

yit = x′itβ + αi + γ′ift + εit. (21)

Next, substitute ft = (CC ′)
−1
C
(
z̄t − B̄

)
into (21),

yit = x′itβ + αi + γ′i (CC ′)
−1
C
(
z̄t − B̄

)
+ εit (22)

= x′itβ +
(
αi − γ′i (CC ′)

−1
CB̄

)
+ γ′i (CC ′)

−1
C z̄t + εit

= x′itβ + h̄′tci + εit,

where ci =
[(
αi − γ′i (CC ′)

−1
CB̄

)
γ′i (CC ′)

−1
C
]′

is (q + 2) × 1 and h̄t = (1 z̄′t)
′

is (q + 2) × 1. This

suggests using h̄t = (1 z̄′t)
′

as an observable proxy for ft. In vector notation,

yi = Xiβ + H̄ci + εi, (23)

where H̄ =
(
ιT Z̄

)
is T × (q + 2), Z̄ = (z̄1, . . . , z̄T ) is T × (q + 1). Let M̄ = IT − H̄

(
H̄ ′H̄

)−1
H̄ ′. Since

M̄H̄ = 0,

M̄yi = M̄Xiβ + M̄εi. (24)

Now we state the following assumptions:

Assumption 7. 1
n

∑n
i=1X

′
iM̄Xi is bounded and nonsingular.

The CCE estimator can be obtained by performing OLS on the resulting transformed model

β̂CCEP =

(
1

n

n∑
i=1

X ′iM̄Xi

)−1(
1

n

n∑
i=1

X ′iM̄yi

)
. (25)

Following Pesaran (2006), for fixed T and n → ∞, the asymptotic for CCEP estimator still holds. Under

Assumptions 1-5, 7 and with the rank condition (17) satisfied,

√
n
(
β̂CCEP − β

)
d→ N (0, ΣCCEP ) , (26)
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where ΣCCEP = Ψ−1RΨ−1, R = plim
(
σ2 1

n

∑n
i=1X

′
iMfXi + 1

n

∑n
i=1X

′
iMfFΩηF

′MfXi

)
, Ψ−1 =

plim
(

1
n

∑n
i=1X

′
iMfXi

)
, Mf = I − F1 (F ′1F1)

−1
F ′1, and F1 = (ιT F ) .

With the common correlated effects, the FE estimator (which is an OLS) does not produce consistent

estimates of the coefficients β of interest. Pesaran (2006) suggests the CCEP approach that yields consistent

estimation in the presence of the correlated unobserved common effects. We now extend Hansen (2017) to

propose the following combined estimator of β, which is a weighted combined FE and CCEP estimator with

weights depending on Hausman (1978) statistic:

β̂c = wβ̂FE + (1− w)β̂CCEP , (27)

where

w =

{
τ
Hn

if Hn ≥ τ
1 if Hn < τ

, (28)

Hn = n
(
β̂CCEP − β̂FE

)′ [
V ar

(√
n
(
β̂CCEP − β̂FE

))]−1 (
β̂CCEP − β̂FE

)
, (29)

where τ is a shrinkage parameter. The degree of shrinkage depends on τ/Hn. When Hn < τ then β̂c = β̂FE ,

When Hn ≥ τ then β̂c is a weighted average of β̂FE and β̂CCEP , with more weight on β̂CCEP when Hn is

large.

3 Asymptotics

The variable xit is exogenous if γi = 0. We use the local asymptotic approach. For fixed T , γi is local to

zero by setting

γi = γ̃iρ, (30)

ρ =
1√
n
δ, (31)

where γ̃i is an r × 1 constant, and ρ, δ are scalars. Thus the correlation between xi and ui is local to zero.

When δ = 0, xit are exogenous. When δ 6= 0, xit are endogenous. δ controls the degree of endogeneity. We

make a further assumption:

Assumption 8. Xi, i = 1, . . . , n, are iid over i. E ‖xit‖2+K
< ∞ for some K > 0. E ‖xit‖4 < ∞.
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V1 = σ2
ε

(
plim 1

n

∑n
i=1X

′
iQTXi

)−1
and V2 =

(
plimΨ−1RΨ−1

n

)−1

, where σ2
ε = E

(
ε2
it

)
is the variance of the

idiosyncratic error in (3).

Theorem 1. Under Assumptions 1-8,

√
n

(
β̂FE − β
β̂CCEP − β

)
d→ h+ ξ, (32)

where

h =

(
σ−2
ε V1Σδ

0

)
, with Σ ≡ plim

1

n

n∑
i=1

X ′iQTF γ̃i, (33)

and

ξ ∼ N(0, V ), with V =

(
V1 V ′21

V21 V2

)
. (34)

Furthermore,

Hn
d→ (h+ ξ)

′
B(h+ ξ), (35)

and

√
n
(
β̂c − β

)
d→ Ψ̃ = G′2ξ −

(
τ

(h+ ξ)
′
B(h+ ξ)

)
1

G′ (h+ ξ) , (36)

where B = G (V1 + V2 − (V21 + V ′21))
−1
G′, G1 = (I 0)

′
, G2 = (0 I)

′
, G = G2 − G1 = (−I I)

′
and

(a)1 = min [1, a] . �

Theorem 1 gives expressions for the joint asymptotic distribution of the FE and CCEP estimator, the

Hausman statistic, and the combined estimator as a transformation of the normal random vector ξ and

the noncentrality parameter h under the local exogeneity assumption. As noted in Poirier (1995, p. 284)

the mean and covariance matrix of the Stein-like combined estimator are complicated. See Judge and Bock

(1978, pp. 172-173) for details. In our case, the asymptotic distribution of β̂c is written as a random weighted

average of the asymptotic distribution of β̂FE and β̂CCEP , as shown in equation (36).

Remark 1. Theorem 1 extends Hansen (2017) for the panel data models and generalizes his results by

allowing V1 6= V12 and B = G (V1 + V2 − V12 − V21)
−1
G′ to be asymmetric. If β̂FE is fully efficient, then

V1 = V12 = V21 and B = G (V2 − V1)
−1
G′ as in the case of Hansen (2017). In general β̂FE may not be fully

efficient and so V1 6= V12 and B = G (V1 + V2 − V12 − V21)
−1
G′. In that case the derivation of V12, V21 is

required or they need to be estimated by the use of bootstrap as we do in this paper in Sections 4 and 5.
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Next, we compare β̂1, β̂2, β̂c in the asymptotic risk. The asymptotic risk of any sequence of estimators

βn of β can be defined as

R (βn, β,W ) = lim
n→∞

E
[
n (βn − β)

′
W (βn − β)

]
= R (βn) . (37)

Define the largest eigenvalue of the matrix A+A′

2 and A∗+A∗′

2

λ1 = λmax

(
A+A′

2

)
, (38)

λ∗1 = λmax

(
A∗ +A∗′

2

)
, (39)

where

A = (V1 + V2 − (V21 + V ′21))
1
2 W (V2 − V21) (V1 + V2 − (V21 + V ′21))

− 1
2 , (40)

A∗ = (V1 + V2 − (V21 + V ′21))
1
2 W (V1 + V2 − (V21 + V ′21))

1
2 . (41)

Let

d =
tr (W (V2 − V21))

λ1
. (42)

Theorem 2. Under Assumptions 1-8, if

d > 2, (43)

and

0 < τ ≤ 2λ1 (d− 2)

λ∗1
, (44)

then R
(
β̂c

)
= tr

[
WE

(
Ψ̃Ψ̃′

)]
,

R
(
β̂CCEP

)
= tr (WV2) ,

and

R
(
β̂c

)
< R

(
β̂CCEP

)
− τ (2λ1 (d− 2)− λ∗1τ)

σ−4δΣ′V1 [V1 + V2 − (V21 + V ′21)]
−1
V1Σδ + q

. (45)

�

Equation (45) shows that the asymptotic risk of the combined estimator is strictly less than that of the

CCEP estimator, so long as τ satisfies the condition (44). τ appears in the risk bound (45) as a quadratic

expression, so there is an optimal choice τ∗ = λ1(d−2)
λ∗1

which minimizes this bound. The assumption d > 2
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is the critical condition needed in order for the right-hand-side of (44) to be positive, which is necessary for

the existence of τ satisfying (44).

Poirier (1995, p. 284) noted the fact that the asymptotic risk of the combined estimator is strictly less

than that of the CCEP estimator, R
(
β̂c

)
< R

(
β̂CCEP

)
, does not imply that MSE

(
β̂c

)
< MSE

(
β̂CCEP

)
for each element of the estimator of the q × 1 coefficients of β. Poirier (1995) also wrote, “While it may

appear that [the James-Stein estimator] is some sort of mathematical trick pulled out of the air, this is not

the case. [It] can in fact be given a Bayesian interpretation.”

Corollary 1. R
(
β̂c

)
− R

(
β̂CCEP

)
< 0, for d > 2 and 0 < τ ≤ 2λ1(d−2)

λ∗1
. In the case W = (V2 − V21)

−1
,

0 < τ ≤ 2
(
q−2
λ∗1

)
and q > 2 which is Stein’s (1956) classic condition for shrinkage. �

See Poirier (1995, p. 283) for more discussion on Stein’s (1956) classic condition for shrinkage. The

following two corollaries are obtained with W = (V2 − V1)
−1

.

Corollary 2. R
(
β̂FE

)
= tr(WV1)+σ−4δ′Σ′V1WV1Σδ; R

(
β̂FE

)
≤ R

(
β̂CCEP

)
when σ−4δ′Σ′V1WV1Σδ ≤

q, and R
(
β̂FE

)
> R

(
β̂CCEP

)
otherwise. �

Corollary 3. R
(
β̂c

)
−R

(
β̂FE

)
< 0, for q < σ−4δ′Σ′V1WV1Σδ, d > 2, and 0 < τ ≤ 2λ1(d−2)

λ∗1
. �

Corollary 2 indicates that when endogeneity is weak (γi and hence δi is close to zero) the FE estimator

may perform better than the CCEP estimator. Corollary 3 indicates that when endogeneity is strong, d > 2,

0 < τ ≤ 2λ1(d−2)
λ∗1

, the combined estimator performs best among these three estimators.

4 Monte Carlo

We now investigate the finite sample MSE of our combined estimator in the following simulation design,

yit = αi + β′xit + γ′ift + εit, (46)

xit = Γ′ift + vit, (47)

where αi is drawn from N (0, 1) , εit ∼ iid N (0, 1) , vit ∼ iid N (0, 1). The factor is drawn from N (0, Ir) .

We vary n ∈ {50, 100}, T ∈ {8, 16} , q ∈ {1, 2, 3}, r ∈ {1, 3} and β ∈ {0, 1}. The parameters of

the unobserved common effects in the xit equation are generated independently across replications as Γi =
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(Γi1 Γi2 Γi3) with Γi1 ∼ iid N (0.5, 0.5) , Γi2 ∼ iid N (0, 0.5) , and Γi3 ∼ iid N (0, 0.5). Let γi = γ̃iρ

where γ̃i1 ∼ iid N (1, 0.1) , γ̃i2 ∼ iid N (1, 0.1) , γ̃i3 ∼ iid N (1, 0.1) . We consider ρ on a 40-point grid on

[0, 0.975] . ρ controls the degree of endogeneity.

We generated 5,000 samples on each calculated β̂CCEP , β̂FE , β̂c, for the latter we set τ = 1/4 for q = 1,

τ = 1 for q = 2, and τ = τ∗ otherwise. We also calculated the Hausman pre-test estimator

β̂PT = β̂FE1 (Hn < c) + β̂CCEP 1 (Hn ≥ c)

where c is the 5% critical value from the χ2
q distribution. We compare the estimator by relative MSE

MSE
(
β̂
)

= E
(
β̂ − β

)′ (
β̂ − β

)
, (48)

which we normalize by MSE of the CCEP estimator. Thus value less than one indicates improved preci-

sion relative to CCEP estimator, and values greater than one indicate worse performance than the CCEP

estimator.

We do a bootstrap pairs procedure that resample with replacement over i and uses all observed time

periods for a given individual. For data {(yi, Xi) , i = 1, . . . , n} this yields B pseduo-samples and for each

pseudo-sample we perform regression, yielding B estimates, b = 1, . . . , B. The panel bootstrap estimate of

the variance matrix is then given by

V̂Boot

(
β̂CCEP − β̂FE

)
=

1

B − 1

B∑
b=1

(
θ̂b − θ̂

)(
θ̂b − θ̂

)′
. (49)

b denotes the bth of B bootstrap replications, and θ̂ = β̂CCEP − β̂FE , θ̂ = B−1
∑
b θ̂b.

The dotted line (black) is the normalized MSE of the CCEP estimator, the solid line (green) is the

normalized MSE of the combined estimator, the longer dashed line (red) is the normalized MSE of the FE

estimator, the shorter dashed line (blue) is the normalized MSE of the pre-test estimator.

Figure 3, 4, 7 and 8 plots the relative MSE of β̂CCEP , β̂FE , β̂c, β̂PT with q = {1, 2} . These are the cases

where the equations (43) and (44) are not satisfied, which are sufficient conditions for Theorem 2 to hold,

R
(
β̂c

)
< R

(
β̂CCEP

)
. Because these conditions are just sufficient but not necessary, the theorem may or

may not hold for these smaller values of q = 1, 2. Indeed, q = 1 makes the results quite erratic, showing that

Theorem 2 does not hold for q = 1, and somewhat less degree for q = 2.
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In each Figure, subfigure (a) plots the relative MSE for n = 50; subfigure (b) plot the relative MSE for

n = 100. Figure 1, 2, 3 and 4 plot the relative MSE for t = 8; Figure 5, 6, 7 and 8 plot the relative MSE for

t = 16. We see that the region of dominance for the combined estimator over the FE and CCEP estimators

is greater for smaller n and smaller t.

Next consider the case of three endogenous regressors, q = 3. This is the case where Theorem 2 shows

that the weighted asymptotic MSE of the combined estimator is uniformly smaller than that of the CCEP

estimator. From Figure 1, 2, 5 and 6, we see that the MSE of the combined estimator is uniformly smaller

than that of the CCEP estimator for all factor loading values. For small ρ, the FE estimator has lower MSE

than the combined estimator, but the ranking is reversed for moderate values of ρ. The FE estimator is very

sensitive, which has quite low MSE for very small ρ, but very large MSE for large ρ. The combined and the

pre-test estimators have much smaller MSE than CCEP for small values of ρ, but the ranking is reversed for

large values of ρ. The MSE of the pre-test estimator is generally similar to the FE estimator for small ρ. For

intermediate values of ρ, the MSE of the pre-test estimator is typically larger than the combined estimator.

Following Pesaran (2006), γi and Γi are randomly generated as described earlier, while we have also tried

with constant γi and Γi which give slightly better but essentially the same results (not reported).

Figure 2 and 6 are the cases, r = 3. The general nature of the plot is the same, except that the gains is

not as strong as in the case r = 1. We see that the gains from the combined estimator are strong for small

ρ, with the MSE converging to that of CCEP as ρ increases towards 1. This is consistent with Theorem 2,

which shows that the improvement are asymptotically local to ρ = 0. The FE estimator has lower MSE than

the combined estimator, but the MSE of the FE estimator increases dramatically after intermediate values of

ρ. Still the combined estimator has uniformly smaller MSE than CCEP. In summary, the simulation results

provide strong finite sample confirmation of Theorem 2 and its corollaries 1, 2, 3.

Remark 1. It is interesting that the relative performance of using CCEP versus IFE depends on the true

value of β is zero or not. We have experimented in simulation with β ∈ {0, 1} . A few figures to compare the

results for β ∈ {0, 1} are reported in figure 9 and 10. The figures with β = 1 were almost exactly the same

as those with β = 0.

Remark 2. We have also tried 2τ∗ as this choice still satisfies the classic James-Stein condition in equation

(44). could make the MSE of the combined estimator somewhat closer to the MSE of FE when the degree

13



of endogeneity is small. The results are reported in figure 11 and 12.

5 Application

Holly, Pesaran, and Yamagata (2010), hereafter HPY, provide an empirical analysis of changes in real house

prices in U.S. using state level data. They use a panel of 49 states over the period 1975-2003 to show

that state level real housing prices are driven by economic fundamentals, such as real per capita disposable

income, as well as by common shocks, such as changes in interest rates, oil prices and technological change.

Baltagi and Li (2014) replicate their results using a panel of 381 metropolitan statistical areas observed over

the period 1975–2011. Their replication shows that HPY results are fairly robust. Our empirical analysis

relies upon a panel of 49 states over the period 1975–2011 to examine the performance of the combined

estimator. Consider the following panel data model for US states

pi,t = β0 + β1yi,t + β2gi,t−1 + β3ci,t−1 + αi + uit, (50)

where i = 1, . . . , 49, t = 1, . . . , 17, pi,t is the logarithm of the real price of housing in the ith State during

year t, and yi,t is the logarithm of the real per capita personal disposable income. The net cost of borrowing

defined by ci,t−1 = rit − ∆pit, where rit represents the long-term real interest rate and gi,t represents the

population growth rate. The state-specific effects can be treated as the endowment of climate, location and

culture. A more detailed description can be found in HPY. We would expect a rise in ci,t to be associated

with a fall in the price income ratio, and hence a negative coefficient for ci,t−1. The effect of population

growth on real house prices is expected to be positive.

Table 1 suggests that the income elasticity of real house prices for the combined estimator is 1.2151, and

the estimate of the coefficients on the rate of change of population, and the net cost of borrowing are 1.6120

and -0.2047, respectively for the combined estimator. We find a significant positive effect for population

growth and a significant negative effect associated with net cost of borrowing, which are in agreement with

the results of HPY. The other two rows report the FE and CCEP estimates. The estimates of the combined

estimator lies quite close to that of the CCEP estimator. We bootstrap the data 5000 times by resampling

across individuals and keep the time series structure for each individual unchanged. The bootstrap MSE and

the standard errors for the above estimates, then, can be calculated based on the estimates of the coefficients
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for each bootstrap data. The MSE for FE, CCEP and combined estimators are 3.4250, 2.4288 and 2.1425,

respectively. Among these three estimators, the combined estimator has the smallest MSE. The Hausman

statistic is 24.9018. Thus, the exogeneity assumption is rejected at the one percent level of significance,

which also indicates that the CCEP estimator is more reliable.

6 Conclusions

This paper extends Hansen (2017) for the combined (model averaging) estimation of the parametric panel

data model with weak endogeneity (i.e., local to exogeneity) from common correlated effects. We introduce

a combined estimation of the FE and CCEP estimators for the panel data models when the FE estimator

suffers from inconsistency due to endogeneity arising from the correlated common effects. This can be viewed

as the panel data model version of the shrinkage estimator combining the 2SLS estimator (CCEP) and the

OLS estimator (FE) because the CCEP estimator is a control function estimator to remove the endogeneity

from the correlated common effects.

The use of the combined estimation allows applied researchers to implement efficient estimation under

the presence of weak endogeneity. The combined estimation would work even when there is no endogeneity

or when there is strong endogeneity, without having to select a consistent estimator or an efficient estimator

since the weights in the combined estimator will then be 1 or 0. Hence, the combined estimator is an omnibus

estimator across all degrees of endogeneity, particularly useful when it is not clear which estimator to choose

when endogeneity is weak.

7 Appendix

Proof of Theorem 1. Here we derive only the asymptotic distribution of the FE estimator for the parametric

panel data model with common correlated effects as specified in (3) and (4). The asymptotic distribution of

the CCEP estimator for this model is shown in Pesaran (2006). For the joint asymptotic distribution of the

FE and the CCEP estimators, the asymptoric covariance V12 is complicated and thus we will use bootstrap

to estimate V12.

To derive the asymptotic distribution of the fixed effects (FE) estimator, we use the notation h1 = G1h
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and ξ1 = G1ξ with G1 = (I 0)
′
. Now, write the FE estimator as

β̂FE =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

X ′iQT yi

)
,

β̂FE − β =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

X ′iQTui

)
.

Given that ui = Fγi + εi,

β̂FE − β =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

(X ′iQTFγi +X ′iQT εi)

)
.

Since γi = 1√
n
γ̃iδ, we have

β̂FE − β =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

(
X ′iQTF

γ̃iδ√
n

+X ′iQT εi

))
√
n
(
β̂FE − β

)
=

(
1

n

n∑
i=1

X ′iQTXi

)−1(
1

n

n∑
i=1

X ′iQTF γ̃iδ

)
+

(
1

n

n∑
i=1

X ′iQTXi

)−1(
1√
n

n∑
i=1

X ′iQT εi

)
d→ h1 + ξ1,

where

h1 =

(
plim

1

n

n∑
i=1

X ′iQTXi

)−1(
plim

1

n

n∑
i=1

X ′iQTF γ̃iδ

)
= σ−2

ε V1Σδ,

with Σ ≡ plim 1
n

∑n
i=1X

′
iQTF γ̃i, and

ξ1 ∼

(
plim

1

n

n∑
i=1

X ′iQTXi

)−1

Z,

with

Z =
1√
n

n∑
i=1

X ′iQT εi ∼ N

(
0, σ2

ε

(
plim

1

n

n∑
i=1

X ′iQTXi

))
.

Hence,

ξ1 ∼ N

0, σ2
ε

(
plim

1

n

n∑
i=1

X ′iQTXi

)−1
 = N (0, V1) ,

and

√
n
(
β̂FE − β

)
d→ N (h1, V1) ,

where

V1 = σ2
ε

(
plim

1

n

n∑
i=1

X ′iQTXi

)−1

,

as defined in Assumption 8 with σ2
ε = E

(
ε2
it

)
is the variance of the idiosyncratic error in (3).
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Proof of Theorem 2:

Noting that
√
n
(
β̂CCEP − β

)
→d G

′
2ξ ∼ N (0, V2) , then

R
(
β̂CCEP

)
= E (ξ′G′2WG′2ξ) = tr (WV2) .

Define Ψ∗ as a random variable without positive part trimming

Ψ∗ = G′2ξ −
(

τ

(h+ ξ)
′
B(h+ ξ)

)
G′ (h+ ξ) .

Then using the fact that the pointwise quadric risk of Ψ is strictly smaller than that of Ψ∗

R
(
β̂c

)
= E (Ψ′WΨ) < E (Ψ∗′WΨ∗) ,

we can calculate that

E (Ψ∗′WΨ∗) = R
(
β̂CCEP

)
+ τ2E

(
(h+ ξ)

′
GWG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)
− 2τE

(
(h+ ξ)

′
GWG′2ξ

(h+ ξ)
′
B(h+ ξ)

)
.

By Stein’s Lemma: If Z ∼ N(0, V ) is q × 1, K is q × q, and η (x):Rq → Rq is absolutely continuous, then

E
(
η (Z + h)

′
KZ

)
= Etr

(
∂

∂x
η (Z + h)

′
KV

)
,

η (x) = x/ (x′Bx) , and

∂

∂x
η (x) =

1

x′Bx
I − 2

(x′Bx)
2Bxx

′.

Therefore

E

(
(h+ ξ)

′
GWG′2ξ

(h+ ξ)
′
B(h+ ξ)

)
= Etr

(
GWG′2V

(h+ ξ)
′
B(h+ ξ)

− 2GWG′2V(
(h+ ξ)

′
B(h+ ξ)

)2B(h+ ξ)(h+ ξ)′

)

= E

(
tr (GWG′2V )

(h+ ξ)
′
B(h+ ξ)

)
− 2Etr

(
GWG′2V(

(h+ ξ)
′
B(h+ ξ)

)2B(h+ ξ)(h+ ξ)′

)
.

Since

GWG′2V = WG′2V G = W (V2 − V21) ,

and

GWG′2V B = GWG′2V G (V1 + V2 − (V21 + V ′21))
−1
G′ = GW (V2 − V21) (V1 + V2 − (V21 + V ′21))

−1
G′,
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set W (V2 − V21) (V1 + V2 − (V21 + V ′21))
−1

= C, then

Etr

(
GWG′2V(

(h+ ξ)
′
B(h+ ξ)

)2B(h+ ξ)(h+ ξ)′

)
= Etr

(
(h+ ξ)′GCG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)
.

Thus

E (Ψ∗′WΨ∗) = R
(
β̂CCEP

)
+ τ2E

(
(h+ ξ)

′
GWG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)

+ 4τEtr

(
(h+ ξ)′GCG′(h+ ξ)(

(h+ ξ)
′
B(h+ ξ)

)2
)

−2τEtr

(
(W (V2 − V21))

(h+ ξ)
′
B(h+ ξ)

)
. (51)

Define B1 = (V1 + V2 − (V21 + V ′21))
− 1

2 G′ and A = (V1 + V2 − (V21 + V ′21))
1
2 C (V1 + V2 − (V21 + V ′21))

1
2

Note that GWG′2V B = GCG′ = B′1AB1, B
′
1B1 = B. Using the inequality b′ab ≤ (b′b)λmax (a) for

symmetric a, and let

λmax (a) = λmax

(
A+A′

2

)
= λ1.

Then

tr (B(h+ ξ)(h+ ξ)′GWG′2V ) =
(h+ ξ)′B′1 (A+A′)B1(h+ ξ)

2

≤ (h+ ξ)′B(h+ ξ)λ1. (52)

Define A∗ = (V1 + V2 − (V21 + V ′21))
1
2 W (V1 + V2 − (V21 + V ′21))

1
2 . Note that GWG′ = B′1A

∗B1, B
′
1B1 = B,

and let

λmax (a) = λmax

(
A∗ +A∗′

2

)
= λ∗1,

we have

tr ((h+ ξ)′GWG′(h+ ξ)) =
(h+ ξ)′B′1 (A∗ +A∗′)B1(h+ ξ)

2

≤ (h+ ξ)′B(h+ ξ)λ∗1. (53)

18



Plug (52) and (53) into (51) and use Jensen’s inequality, then we have

E (Ψ∗′WΨ∗) ≤ R
(
β̂CCEP

)
+ τ2E

(
λ∗1

(h+ ξ)
′
B(h+ ξ)

)
+ 4τE

(
λ1

(h+ ξ)
′
B(h+ ξ)

)
−2τEtr

(
(W (V2 − V12))

(h+ ξ)
′
B(h+ ξ)

)
= R

(
β̂CCEP

)
− E

(
τ (2 (trW (V2 − V21)− 2λ1)− λ∗1τ)

(h+ ξ)
′
B(h+ ξ)

)
≤ R

(
β̂CCEP

)
− τ (2 (trW (V2 − V21)− 2λ1)− λ∗1τ)

E
(
(h+ ξ)

′
B(h+ ξ)

) . (54)

Since tr(BV ) = tr
(
G (V1 + V2 − (V21 + V ′21))

−1
G′V

)
= q. We have

E
(
(h+ ξ)

′
B(h+ ξ)

)
= h′Bh+ tr (BV )

= σ−4
1 δ′Σ′V1 (V1 + V2 − (V21 + V ′21))

−1
V1Σδ + q.

Substitute into (54), then we have

R
(
β̂c

)
≤ R

(
β̂CCEP

)
− τ (2λ1 (d− 2)− λ∗1τ)

σ−4δΣ′V1 [V1 + V2 − (V21 + V ′21)]
−1
V1Σδ + q

.
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(a) n = 50, T = 8, q = 3, r = 1
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Figure 1: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 8, q = 3,
r = 1
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Figure 2: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 8, q = 3,
r = 3
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Figure 3: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 8, q = 1,
r = 1
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Figure 4: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 8, q = 2,
r = 1
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Figure 5: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 16, q = 3,
r = 1
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Figure 6: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 16, q = 3,
r = 3
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(a) n = 50, T = 16, q = 1, r = 1
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(b) n = 100, T = 16, q = 1, r = 1

Figure 7: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 16, q = 1,
r = 1
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(a) n = 50, T = 16, q = 2, r = 1
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(b) n = 100, T = 16, q = 2, r = 1

Figure 8: Relative MSE of CCEP, FE, Pre-test and Combined Estimators, n = {50, 100} , T = 16, q = 2,
r = 1
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(a) n = 100, T = 8, q = 3, r = 1, β = 0
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(b) n = 100, T = 8, q = 3, r = 1, β = 1

Figure 9: Relative MSE of CCEP, FE and Combined Estimators, n = 100, T = 8, q = 3, r = 1, β = {0, 1}
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(a) n = 100, T = 8, q = 3, r = 3, β = 0
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(b) n = 100, T = 8, q = 3, r = 3, β = 1

Figure 10: Relative MSE of CCEP, FE and Combined Estimators, n = 100, T = 8, q = 3, r = 3, β = {0, 1}
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(a) n = 100, T = 8, q = 3, r = 1, τ
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(b) n = 100, T = 8, q = 3, r = 1, 2τ

Figure 11: Relative MSE of CCEP, FE and Combined Estimators, n = 100, T = 8, q = 3, r = 1, {τ, 2τ}
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(a) n = 100, T = 8, q = 3, r = 3, τ
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(b) n = 100, T = 8, q = 3, r = 3, 2τ

Figure 12: Relative MSE of CCEP, FE and Combined Estimators, n = 100, T = 8, q = 3, r = 3, {τ, 2τ}
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Table 1. Economics of Real House Prices: Correlated Common Effects

β̂1 β̂2 β̂3

FE 0.5804 1.3286 -0.5088
(0.3013) (1.8132) (0.1546)

CCEP 1.2705 1.6367 -0.1781
(0.2990) (1.5217) (0.1541)

Combined 1.2151 1.6120 -0.2047
(0.2986) (1.4237) (0.1530)

Notes: 49 U.S. States. 1975-2011. Reported are parameter estimates with the standard errors in

parentheses.

34


