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Abstract

When the regressors are observed with measurement errors, the OLS estimator is
inconsistent and typically the use of the IV estimator is recommended. In this paper
we place this recommendation under scrutiny, especially (i) when the instruments are
weak and (ii) when there are many instruments. Following Hansen (2017), we use the
Hausman (1978) test for errors in variables to combine OLS and IV estimators. The
combined estimator has the asymptotic risk strictly less than that of the IV estimator.
Then we show some useful �ndings for small samples based on the Monte Carlo simu-
lations. In terms of the mean squared error risk, we �nd that (a) typically OLS gets
worse as the measurement error gets larger while IV is more robust and better than
OLS, (b) OLS can be better than IV when the measurement error is small, and (c)
the combined estimator outperforms IV as the asymptotic result predicts. (a) and (b)
are true only when the instruments are not weak and when there are not many instru-
ments. However, when the instruments are weak or when there are many instruments:
(c) still holds as it is a theorem, but (a), (b) turn out to become quite the opposite, i.e.,
OLS can be much better than IV even when measurement error is large. This happens
because IV is known to be inconsistent with weak instruments and many instruments
(Staiger and Stock 1997, Bekker 1994), and can be much worse than OLS, making the
combined estimator close to OLS. In that case, the typical recommendation to use IV
should be guided by the combined estimator, and IV and the combined estimator need
to be regularized for weak instruments and many instruments.
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1 Introduction

When some of the regressors have errors in variables, the ordinary least squares (OLS) estim-

ator is inconsistent and typically the instrumental variables (IV) estimator is recommended.

In this paper we look into this recommendation closely and propose an estimator providing

improvement over the IV as well as OLS estimators in terms of the total mean squared error

risk. Motivated by Hansen (2017), we use the Hausman (1978) test for errors in variable to

combine OLS and IV. Further, following Hansen (2017), the asymptotic distribution and the

asymptotic risk of the combined estimator using a local asymptotic framework are presented.

This shows that, if the regressor dimension exceeds two, the asymptotic risk of the combined

estimator is strictly less than that of the IV estimator.

Our simulation result shows that the combined estimator can substantially reduce �nite

sample risk relatively to the IV estimator, as well as relative to the OLS estimator for

moderate degrees of measurement errors. In terms of the mean squared error risk, we �nd

that (a) typically OLS gets worse as the measurement error gets larger while IV is more

robust and better than OLS, (b) OLS can be better than IV when the measurement error

is small, and (c) the combined estimator outperforms IV as the asymptotic result predicts.

(a) and (b) are true only when the instruments are not weak and when there are not many

instruments.

However, when the instruments are weak or when there are many instruments, (c) still

holds as it is a theorem, but (a), (b) turn out to become quite the opposite, i.e., OLS

can be much better than IV even when measurement error is large. This happens because

IV is known to be inconsistent with weak instruments and many instruments (Staiger and

Stock 1997, Bekker 1994), and can be much worse than OLS, making the combined estimator

become closer to OLS. In that case, the typical recommendation to use IV should be guided by

the combined estimator and we need to regularize the OLS, IV, and the combined estimators
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to reduce the number of instruments and to shrink the e¤ect of the weak instruments.

The �ndings from this paper suggest that in the presence of many instruments and weak

instruments, the regularization would be the �rst step to recover the consistency of IV

before using it to construct a regularized combined estimator. Weak instruments and many

instruments need to be treated before constructing the combined estimator.

The rest of the paper is organized as follows. Section 2 reviews issues in the regression

model with measurement errors. Section 3 presents the combined estimator and summarizes

its asymptotic distribution and the asymptotic risk. Monte Carlo simulation is provided in

Section 4. Concluding remarks follows in Section 5.

2 Regression Model with Measurement Errors

We consider the linear regression

yi = x�0i � + "1i; (1)

where yi and "1i are scalars, x�i is a q � 1 vector, and �2"1 = E ("21i) : The covariates x
�
i is

unobserved but measured with measurement error "2i such that

xi = x�i + "2i (2)

is observed and �"2 = E ("2i"
0
2i). Our goal is to estimate �: Let zi be an `� 1 (` � q) vector

of instruments that are related to x�i

x�i = �zi + "3i; (3)

where x�i ; "2i; "3i are q � 1 vectors. For simplicity, we assume that all of "1i; "2i; "3i are

uncorrelated each other, and we also assume that �"2 = diag(�
2
1; �

2
2; � � � ; �2q) is diagonal.

Then the model is written as

yi = x�0i � + "1i = x0i� + ("1i � "02i�) � x0i� + ui; (4)
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where ui = "1i � "02i� and �
2
u = E (u2i ) = �2"1 + �0�"2�: Also,

xi = x�i + "2i = �zi + "3i + "2i � �zi + vi; (5)

where vi = ("3i + "2i) and �v = E (viv
0
i) = �"2 + �"3 :

The OLS estimator

�̂0 = (X
0X)

�1
(X 0y) (6)

may be inconsistent because

�̂0 � �
p! [E (xix

0
i)]
�1
(Exiui) = [E (xix

0
i)]
�1
[�E ("2i"02i) �]

= [E (xix
0
i)]
�1
[��"2�]

= [E (xix
0
i)]
�1 ���2"2�� : (7)

The last line uses the assumption that the measurement errors to all regressors have the

same degree (for simplicity), i.e.,

�"2 = diag(�
2
1; �

2
2; � � � ; �2q) = �2"2Iq:

When �2"2 = 0; the OLS estimator �̂0 is consistent and e¢ cient. When �
2
"2
6= 0, the OLS

estimator �̂0 is inconsistent and a consistent estimator �̂1 using the instrument z can be

obtained from

�̂1 =
�
X̂ 0X̂

��1 �
X̂ 0y

�
; (8)

where PZ = Z (Z 0Z)�1 Z 0 and X̂ = PZX:

The Hausman test for the null hypothesis that xi has no measurement error against the

alternative hypothesis that xi has measurement errors is to compare the two estimators �̂0

and �̂1: Then the Hausman statistic is

Hn = n
�
�̂1 � �̂0

�0 �
V̂1 � V̂0

��1 �
�̂1 � �̂0

�
; (9)
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where V̂0 and V̂1 are the consistent estimators for V0 = �2u [E (xix
0
i)]
�1 and

V1 = �2u
�
E (xiz

0
i) [E (ziz

0
i)]
�1E (zix

0
i)
��1

respectively. V0 and V1 are the asymptotic variances

of �̂0 and �̂1. If Hn is larger than a certain critical value, �̂1 is considered to be the preferred

estimator.

3 A Combined Estimator

When either �2"2 = 0 or �2"2 6= 0, it is easy to select one of �̂0 and �̂1 from the Hausman

statistic for measurement errors. But when �2"2 is local to zero, it may not be clear which

estimator to choose. In such a case a combined estimator of the following form is considered

�̂c = w�̂0 + (1� w) �̂1 (10)

where w = min
�

�
Hn
; 1
�
and � is a shrinkage parameter determined as suggested by James and

Stein (1961). The asymptotic behavior of the three estimators �̂0; �̂1; �̂c has been elegantly

derived in Hansen (2017) for the structural econometric model. As the same asymptotic the-

ory of Hansen (2017) applies to the present cases with measurement errors in the regressors,

as summarized below. The main goal of our paper is to examine the �nite sample behavior

to see how the asymptotic theory carries over to the �nite sample cases. Not surprisingly,

the �nite sample behavior of the three estimators are quite similar in Hansen (2017) and

in measurement error models. Interestingly though, we �nd that when q is large relative to

the sample size n; the �nite sample risks of �̂0; �̂1; �̂c are quite di¤erent than that when q is

reasonably small.

The variable xi is exogenous if there is no measurement error, i.e., �2"2 is zero. Consider

the case when �2"2 is local to zero

�2"2 =
1p
n
�1 (11)

where �1 is the 1�1 localizing parameter, which is the degree of measurement error. Suppose

the two error terms in (4) and (5) are linearly related and write the structural equation error
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ui as a linear function of the reduced form equation error vi and the orthogonal error �i

ui = �0vi + �i (12)

E (vi�i) = 0:

Hansen (2017) uses the local to zero exogeneity in the sense of

� =
1p
n
�2 (13)

where �2 is the q � 1 localizing parameter. To relate �1 and �2; recall ui = "1i � "02i� and

vi = "3i + "2i; and thus

� = [E (viv
0
i)]
�1
E (viui) = �

�1
v

�
��2"2�

�
: (14)

Therefore

�2 = �
�1
v (��1�) ; (15)

or

�v�2 = ��1�; (16)

and thus the local to zero measurement error �1 is a linear function of the local to zero

endogeneity �2:We state the following two theorems both in �1 (local degree of measurement

error) and �2 (local degree of correlation between the structural error ui and the reduced

form error vi).

Theorem 1 (Hansen 2017). Under the conditions that conventional central limit theory

applies and that the error is conditionally homoskedastic

p
n

�
�̂0 � �

�̂1 � �

�
d! h+ � (17)

where

h =

�
��2u V0�v�2

0

�
=

�
���2u V0��1

0

�
(18)
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� � N(0; V )

with

V =

�
V0 V0
V0 V1

�
V0 = �2u [E (xix

0
i)]
�1

V1 = �2u

h
E (xiz

0
i) [E (ziz

0
i)]
�1
E (zix

0
i)
i�1

:

Furthermore,

Hn
d! (h+ �)0 P (h+ �) (19)

and
p
n
�
�̂c � �

�
d! G01� �

�
�

(h+ �)0 P (h+ �)

�
1

G0 (h+ �) (20)

where P = G (V1 � V0)
�1G0; G =

�
�I I

�0
; G1 =

�
0 I

�0
; and (a)1 = min[1; a].

Remark 1. Theorem 1 presents the joint asymptotic distribution of the OLS and IV

estimators, the Hausman statistic, and the combined estimator under the local to zero meas-

urement error assumption. The joint asymptotic distribution of the OLS and IV estimators

is normal with a classic covariance matrix. The OLS estimator has an asymptotic bias when

�1 6= 0 (and thus �2 6= 0); but the IV estimator does not have any asymptotic bias and

is consistent. However, we emphasize that the theorem holds under some conditions that

conventional central limit theory applies. As is well known (Staiger and Stock 1997, Bekker

1994), our Monte Carlo results show that when there are many instruments (` is large) or

when there are weak instruments, the IV estimator is inconsistent. In that case we need

to regularize the IV estimator to reduce the number of instruments and to shrink the weak

instruments. Based on the regularized IV, we can then recover the theorem and construct a

regularized combined estimator. We leave this for our next research agenda.
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The asymptotic risk of an estimator �̂ of � is de�ned as

R
�
�̂; �;W

�
= lim

n!1
E

�
n
�
�̂ � �

�0
W
�
�̂ � �

��
(21)

so long as the estimator has an asymptotic distribution

p
n
�
�̂ � �

�
d!  (22)

for some random variable  ; the asymptotic risk can be calculated using

R
�
�̂; �;W

�
= E ( 0W ) = tr (WE (  0)) : (23)

De�ne the largest eigenvalue of the matrix W (V1 � V0)

�1 = �max (W (V1 � V0)) ; (24)

and the ratio

d =
tr (W (V1 � V0))

�1
: (25)

Note that 1 � d � q: In the case W = (V1 � V0)
�1, �1 = 1 and we have the simpli�cation

d = q: Hansen (2017) shows that the asymptotic risk of the combined estimator is smaller

than that of the IV estimator for all values of �.

Theorem 2 (Hansen 2017). Under some assumptions, if q > 2 and 0 < � � 2 (q � 2) ;

then

R
�
�̂1; �;W

�
= tr (WV1) ; (26)

R
�
�̂c; �;W

�
< R

�
�̂1; �;W

�
� � [2 (q � 2)� � ]

��4u �02�vV0 (V1 � V0)
�1 V0�v�2 + q

; (27)

where �v = E (viv
0
i) :

Remark 2. Theorem 2 can be stated in terms of �1 using the relationship �v�2 = ��1� in

(16);

R
�
�̂c; �;W

�
< R

�
�̂1; �;W

�
� � [2 (q � 2)� � ]

��4u �21�
0V0 (V1 � V0)

�1 V0� + q
: (28)
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The improvement in the asymptotic risk by the combined estimator �̂c over the IV estimator

�̂1 depends on the measurement error bias of the OLS estimator �̂0; as the OLS bias in (7)

depends on ��2"2� = ��1�=
p
n.

4 Monte Carlo

We thank Bruce Hansen for his R code, which we downloaded from his website. For our meas-

urement model we made a minor modi�cation of his code. The observations fyi; xi; zigni=1
are generated by the process

yi = x�0i � + "1i (29)

xi = x�i + "2i (30)

x�i = �zi + vi (31)

where "1i � N (0; 1) ; the measurement errors "2i are uncorrelated each other and follows

N (0;�"2) ; �"2 = diag
�
�21; �

2
2; :::; �

2
q

�
is a q � q diagonal matrix of measurement error vari-

ances, vi is a q�1 vector following N (0; Iq) ; zi is an `�1 vector of instruments with N (0; I`)

and ` � q: We report the results only for ` = q:

We set �1 = �2 = � � � = �q = �"2 so that �"2 = �2"2Iq: We have experimented with �"2 2

[0; 3] but report results with �"2 only on [0; 1]. Note that our experiment sets the dimension of

zi equal to that of xi, so the IV estimates are just-identi�ed (` = q). We set the q�q reduced

form matrix as � = Iqd and the scale d set as d =
p
R2= (1�R2) so that R2 is the reduced

form population R2 for each xji; j = 1; : : : ; q:We vary n 2 f100; 200g, q 2 f1; 2; 3; 5; 10; 20g,

R2 2 f0:10; 0:40g and �"2 on a 40-point grid on [0; 0:975]: The parameter R2 controls the

strength of the instruments (small R2 is for the case of weak instruments) and the parameter

�"2 controls the size of measurement errors and thus the degree of endogeneity (�"2 = 0 is for

the case of no measurement error and large �"2 is for the case of large measurement error).
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We generated 10,000 samples for each con�guration, and on each calculated �̂0, �̂1 and

�̂c: For �̂c; as in Hansen (2017), we set � =
1
4
for q = 1; � = 1 for q = 2, and � = q � 2

for q > 2: Our focus will be with a large q, such as q = 3; 5; 10; 20; for consideration of

using many instruments. The measurement error bias in the OLS estimator �̂0 depends on

�2"2 and �: We �x � = (1 ::: 1)
0 such that the bias is controlled only by �2"2 ; the size of the

measurement error.

To compare the estimators we calculated the weighted median squared error risk

median
��

�̂ � �
�0
W
�
�̂ � �

��
(32)

for each of the three estimators �̂0, �̂1 and �̂c: The weight is either W = I or W =�
V̂1 � V̂0

��1
: As in Hansen (2017), we report the median squared error rather than the

mean squared error because IV estimators for the just-identi�ed model (` = q) may not have

�nite moments.

We produced many �gures for various con�gurations. For space, we report only Figures

1, 2, 3, 4 in the paper. Figure 1 is for n = 100, W = I. Figure 2 is for n = 100, W =�
V̂1 � V̂0

��1
. Figure 3 is for n = 200, W = I. Figure 4 is for n = 200, W =

�
V̂1 � V̂0

��1
.

For all of Figures 1, 2, 3, 4, we set �1 = �2 = � � � = �q = �"2 so that �"2 = �2"2Iq:
1 There are

12 sub�gures in each �gure. Sub�gures 1 and 2 are with q = 1: Sub�gures 3 and 4 are for

q = 2: Sub�gures 5 and 6 are the with q = 3: Sub�gures 7 and 8 are with q = 5: Sub�gures 9

and 10 are using q = 10: Sub�gures 11 and 12 have q = 20: The sub�gures with odd numbers

are the case R2 = 0:1 (weaker instruments). The sub�gures with even numbers are the case

R2 = 0:4 (stronger instruments).

Some observations from these results are summarized here. Theorem 2 shows that the

asymptotic risk of the combined estimator is uniformly smaller than that of the IV estimator

1We have also considered cases where only one (the �rst) regressor has measurement error, i.e., �1 = �"2
and �2 = � � � = �q = 0 so that �"2 = diag

�
�2"2 ;0

�
: These are Figures 5, 6, 7, 8, in the supplemental appendix,

available in our website.
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when q > 2. Sub�gures for q > 2 show that the asymptotic uniform ranking holds in �nite

samples. When q is too large (q = 10; 20), sub�gures 1.9, 1.10, 1.11 and 1.12 show that both

OLS and IV are inconsistent, little or no improvements can be achieved by the combined

estimator as the combined estimator puts (almost) all weight on OLS and little weight on

IV as q gets larger relative to n. It is interesting that IV is worse than OLS when q is large,

for a quite large size of measurement errors over a wide range of �"2. It should be note that,

when IV loses consistency due to many instruments, the Hausman statistic may not be used

for the construction of the combined estimator.

Finally, in order to see if this would also happen with other form of endogeneity, we also

replicated Hansen�s (2017) monte carlo results for his setup of a structural model using large

q = 5; 10; 20.2 In Hansen (2017), it is reported only for small values of q 2 f1; 2; 3; 4g. As

expected, for larger values of q; the �ndings from the structural model are similar to what

we see from Figures 1, 2, 3, 4 for the measurement error model: namely, when q is large,

both OLS and IV are inconsistent, IV is worse than OLS, and little or no improvements can

be achieved by the combined estimator.

5 Conclusions

Given the �ndings from this paper, a next question is when we may use IV. When does IV do

better than OLS? We �nd that�s when R2 is not small (when instruments are not weak), �2"2

is not small (when measurement errors are large), and q is not large relative to n (when there

are not too many instruments). Otherwise, IV can be bad, possibly much worse than OLS.

When we do not know how small R2 or �2"2 is too small or how large q is too large, a safe

guard would be to use the combined estimator. Although these �ndings are shown for the

errors in variables model they may apply to other econometric models using IV estimators.

Recently, many papers have been written to deal with the endogeneity in high dimen-

2These are Figures 9 and 10 in the supplemental appendix, available in our website.
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sional models with large q. The basic idea is to reduce the dimension q by selecting some

of the instruments. The lasso type methods pioneered by Tibshirani (1996) reduce the

number of variables in the high dimensional models by shrinking some of the estimators

toward zero. With the rapid advance of statistical learning and machine learning in big

data environment, the regularization of the standard econometric methods such as OLS, IV

or GMM have been very actively studied in recent econometrics community, for example,

Friedman (2001), Bühlmann and Yu (2003), Chao and Swanson (2007), Hansen, Donald,

Imbens, and Newey (2008), Hausman, and Newey (2008), Hansen, Hausman and Newey

(2008), Ng and Bai (2008), Newey and Windmeijer (2009), Caner (2009), Donald, Imbens,

and Newey (2009), Carrasco (2012), Belloni, Chen, Chernozhukov, and Hansen (2012), Bel-

loni and Chernozhukov (2011, 2013), Liao (2013), Fan and Liao (2014), Chernozhukov and

Hansen (2004, 2005, 2006, 2013), Chernozhukov, Hansen, and Spindler (2015), Cheng and

Liao (2015), DiTraglia (2016), Harding, Hausman, and Palmer (2016), Chudik, Kapetanios

and Pesaran (2016), Caner, Han, and Lee (2017), Caner, Maasoumi, and Riquelme (2017),

and Lee and Xu (2017), among others. They show various methods such as lasso, adaptive

lasso, SCAD, elastic net, boosting, to mitigate the e¤ect of high dimension on consistent es-

timation of the econometric models such as the conditional mean and conditional quantiles.

Many of these papers have studied various regularization methods to select instruments to

improve IV. It would be interesting to see how these methods for high dimensional models

could also improve the combined estimator. As noted in Remark 1 above, we are currently

investigating this in relation to the current paper and Hansen (2017).
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