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Abstract

This paper considers multivariate local linear least squares estimation of panel data models when

fixed effects present. One step estimation of the local marginal effect is of the main interest. A

within-group type nonparametric estimator is developed, where the fixed effects are eliminated

by subtracting individual-specific locally weighted time average (i.e., using the local within

transformation). It is shown that the local-within-transformation-based estimator satisfies the

standard properties of the local linear estimator. In comparison, the nonparametric estimators

based on the conventional (i.e., global) within transformation or first difference result in biased

estimators, where the bias does not degenerate even with large samples. The new estimator is

used to examine the nonlinear relationship between income and nitrogen-oxide level (i.e., the

environmental Kuznets curve) based on the U.S. state-level panel data.
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1 Introduction

Much attention has been given to nonparametric fixed effect panel data models recently. The inter-

est is in identifying and estimating the nonparametric component when the unobserved individual

effects are potentially correlated with the observed covariates. Like the nonlinear parametric case,

e.g., [8, 13], the nonparametric estimator suffers incidental parameter problem particularly with

large cross section  but small time series  observations, unless fixed effects are not properly

treated. Even when both  and  are large, it is usually required that  is finite in the limit in

order to obtain asymptotic normality. A limited list of recent studies on nonparametric conditional

mean estimation of fixed effect regression models includes [10,12,21,24,27,28,30] and recent survey

articles [1,15,29].

When the fixed effect is separable from the nonparametric component, an easy recipe is to

eliminate it using first difference or within transformation. However, such transformations are

most likely to alter the structure of the nonparametric part, so some additional normalization

assumptions or iterative steps are required to obtain the desired estimate, e.g., [10, 24, 28], unless

estimation is conducted using sieve estimation, e.g., [12,27].

In this paper, we focus on one step kernel-based estimation using the local linear least squares,

but we assume a weaker normalization condition than that of [10,28]. We investigate whether or not

the standard (global) within-transformation or the first-difference approach can be used for panel

nonparametric estimation when kernel-based (local) estimation is considered. In particular, we

analytically compare the conventional within transformation approach with the local within trans-

formation (i.e., the fixed effects are eliminated by subtracting individual-specific locally weighted

time average). Showing some pitfalls of the conventional within transformation approach in this

context, we bring attention from empirical researchers using panel nonparametric estimation.

More precisely, we consider multivariate local linear least squares estimation [17, 26], where

the fixed effects are eliminated by the local within transformation, which can be also obtained

from local concentration of the fixed effects. The panel observations can have unknown serial

correlation as long as it satisfies some mixing conditions. The local marginal effect is of the main

interest, which corresponds to the first derivative of the nonparametric function. It is shown that

the local-within-transformation-based estimator satisfies the standard asymptotic properties of the

local linear estimator. On the other hand, the nonparametric estimators based on the conventional

within transformation or the first difference result in biased estimators, and the bias does not
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degenerate even with large samples. These results are obtained under (  )-asymptotics, but they

do not require that  converges to some nonzero and finite constant as in the standard large

panel studies. Hence,  can be quite large relative to  as in survey panels.

As an empirical illustration, we apply the new estimation method to examine the nonlinear

relationship between income and nitrogen-oxide level (i.e., the environmental Kuznets curve) using

the U.S. state-level panel data. The estimation results demonstrate inverted  -shaped relationship

between pollution and income in general, which affirms the environmental Kuznets curve hypothesis:

At some initial phases of economic growth, pollution level grows with income; but beyond some

threshold level of income, pollution level goes down with income. The turning point is estimated

as the real income per capita level of $12,160 (in 1987 US dollars).

Several studies are closely related to the kernel-based nonparametric estimation developed in this

paper. [28] considers local linear version least squares dummy variables (LSDV) estimator, which

treats the fixed effects using individual specific dummy variables. [10] considers first-difference ap-

proach to eliminate the fixed effects and applies iterative backfitting approach in the framework of

generalized estimating equations (GEE), though the initial consistent estimator for the iteration is

obtained using series estimation. [24] also considers first-difference approach but retrieves the orig-

inal nonparametric function through marginal integration. Comparing with these approaches, the

computation cost of the new estimation method developed in this paper is much lower especially

with a large sample size. In addition, we consider (  )-asymptotics whereas the aforementioned

works consider -asymptotics with fixed  . However, our estimation produces the marginal effect

(i.e., derivatives of the unknown function), and hence we need to conduct one more step if the non-

parametric function estimator itself is of interest, though it is still computationally straightforward.

The remainder of the paper is organized as follows. Section 2 introduces the locally weighted

within transformation and develops new local linear estimation. Section 3 derives the asymptotic

distribution of the new estimator as well as its approximate bias and variance; it also discusses about

bootstrap confidence intervals. Section 4 compares this new estimator with the local linear estimator

using the conventional (global) within transformation and shows the conventional approach results

in non-degenerating bias even in the limit. Section 5 estimates the environmental Kuznets curve

using the U.S. state-level panel data as an illustration. Section 6 concludes this paper with some

remarks. All the mathematical proofs are collected in the Appendix.
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2 Fixed-Effect Local Linear Estimation and Local Within Trans-

formation

We suppose that we observe a stationary process (11)     (  ) for each  satisfying

E (| ) =  () +  (1)

almost surely for  = 1      and  = 1      .  : X → R is an unknown Borel measurable

function normalized as (0) = 0, where X ⊂R for some  ≥ 1 is the support of , and  ∈ R
is unobserved heterogeneity that can be arbitrarily correlated with  (i.e., a fixed effect or a

correlated random effect). The effects from  to the conditional mean of , which is possibly

nonlinear, is described by (·) whereas some unobserved or potentially omitted individual specific
characteristics on the level of  is controlled by . In this partially linear specification, the

nonlinear function (·) is assumed to be common over  and , and the individual specific effects

 are additively separable from this unknown function similarly as [10,24,28].

The main interest is in the local marginal change of the conditional mean of  in (1) with

respect to an element of :

D() =

µ
 ()

1
    

 ()



¶>
(2)

for a given  = (1     )
> ∈ X and the thrust of the paper is on derivative estimation. In fact,

estimation of local behavior of the shape of a regression function or elasticity, without making a prior

(often linear) parametric functional form assumption in the regression, is one of the most important

parameters in economics and policy evaluations. Examples include studying marginal propensity to

consume and saving in consumer economics, elasticity of capital and labor in production economics,

price elasticity in demand economics analysis, and return to education (i.e., marginal change in

education on earning) in labor and education economics. Furthermore, when one is interested in

estimating turning points of an unknown function, like studies in the environmental Kuznets curve,

investigating the first derivatives of unknown functions is quite useful.

Assuming (·) is smooth enough, we Taylor-expand  (·) around  ∈ X to carry a local linear

regression by minimizing the following objective function:

 (0 1; 1     ) =

X
=1

X
=1

n
 − 0 − >1 ( − )− 

o2
 ( − ) , (3)

where  () = ||−1
¡
−1

¢
for  ∈ R, (·) is a non-negative -variate kernel function, and

 is a  ×  bandwidth matrix that is symmetric and positive definite; || is the determinant
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of . When the model includes individual-specific parameters  as (3), the incidental parameter

problem [22] prevails as  increases and the conventional approach is to eliminate fixed effects before

estimation. By concentrating out  in (3) with 0 and 1 being fixed, we obtain the concentrated

objective function given as


 (1) =

X
=1

X
=1

n
∗()− >1 

∗
()

o2
 ( − ) , (4)

where we define

∗() =  −
X
=1

() (5)

using the weight () =  ( − ) 
P

=1 ( − ), and similarly for ∗
(). Note that

() is non-negative for all  and
P

=1() = 1 for any . The local linear estimator b1() is
then obtained as

b1() =
(

X
=1

X
=1

∗
()

∗
()

> ( − )

)−1 X
=1

X
=1

∗
()

∗
() ( − ) , (6)

which estimates D() in (2).
1

The local linear estimator b1() in (6) can be understood as the within-group local linear
estimator of ∗() on ∗

(). The transformed variables 
∗
() and ∗

() are deviations from

the individual specific local means, or locally within-transformed variables, if we see
P

=1 ()

in (5) as the locally weighted average of  over . This local within transformation is different from

the conventional within transformation (i.e.,  − −1
P

=1 ), which subtracts the individual

global means. More precisely, if we let  =  − E(| ), we have a panel partially linear

regression model given by

 =  () +  + . (7)

In this case, if we linearize  (·) around  ∈ X , the regression model (7) becomes

 =  () + ( − )>D () +  +  () (8)

with  () =  + (), where the remainder term is given as

 () =
1

2
( − )>H () ( − ) (9)

1 In practice, we could consider the leave-one-out local-within-transformation (i.e., ∗() = −


 6= ()

with () =  ( − ) 


 6= ( − )) in order to have smaller finite sample bias. Fur-

thermore, in order to prevent the denominator from being close to zero, we could consider () =

 ( − ) {

=1 ( − )+−2} and

=1



=1
∗
()

∗
()

> ( − )+ ( )−2 for the denom-

inator in (6) as [6], but such modification does not change the main results.
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for some  ∈ X between  and , and H () is the Hessian matrix of  (). The local within

transformation on (8) then eliminates the fixed effects and yields

∗() = D ()
>∗

() + ∗ ()

for
P

=1() =  by construction, where we let 
∗
 () = ∗() +∗ () and

∗ () =
1

2

(
( − )>H () ( − )−

X
=1

( − )>H () ( − )()

)
.

Apparently, b1() in (6) corresponds to the local least squares estimator of D () in this trans-

formed regression model.

Though we focus on estimation of the marginal effect D () in this paper, one could be inter-

ested in the estimator of (). However, the local constant term 0 in the approximation (3) is

deleted from the concentration step (4); or equivalently, the term  () in (8) is deleted from local

within-transformation. Therefore, in this additively separable fixed-effect framework, estimates of

the original function (·) cannot be obtained directly from the local linear or local polynomial

estimation, which is distinct from the standard local linear least squares estimation. Under the

normalization condition (0) = 0, however, we can obtain an estimate for () as

b () = 1



X
=1

{b ()− b (0)} ,
where b () = X

=1

n
 − b1()> ( − )

o
()

since from the expression (8)

1



X
=1

X
=1

hn
 −D()

> ( − )
o
()−

n
 −D(0)

>

o
(0)

i
= () +

1



X
=1

X
=1

{ ()()−  (0)(0)}

and the second term can be verified as (1) from Lemma A.1 in the Appendix.2

3 Statistical Properties

In order to derive the asymptotic properties of b1() in (6), we first assume the following conditions
similarly as [17, 19]. For notational simplicity, we denote 1 as  in what follows. For each ,

2More precisely, as E(| ) = 0, (A.3) yields


=1  ()() = 




2

.
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we let the -algebra F2
1

= ({}2=1) with 1  2 for the stationary process {}. By
extending [25], we define the strong mixing coefficient of the panel process {} as

() = sup1≤≤ sup∈F0−∞∈F∞

|Pr ()− Pr () Pr ()| ,

which goes to zero as →∞. We let X ⊂ R be the support of .

Assumption A (i)  : X → R is Borel measurable and twice continuously differentiable at  in

the interior of X with bounded derivatives. (ii) The fixed effect  ∈ R is i.i.d. with mean zero
and finite variance. (iii) The process {} is independent across  but strong mixing over  with
mixing parameter () satisfying

P∞
=1  ()

1−2 for some   2. (iv) The density of  satisfies

0  ()  ∞ and twice continuously differentiable with bounded second order derivatives in a

neighborhood of  ∈ int (X ). In addition, the joint density of () is bounded for any  6= 

in a neighborhood of . (v)  is independent across  and serially uncorrelated over  conditional

on  and  = (1     )
0, satisfying E(| ) = 0 and E(||4+| )  ∞ for some

  0. In addition, E(2| =  ) = 2() ∈ (0∞) and 2(·) is continuous at  ∈ int (X ).
(vi) The kernel function  is compactly supported and bounded, which satisfies

R
 ()  = 1,R

 ()  = 0, and 0 
R


 ()  ∞ for  = 2 4 and  = 1 2, where  is the th element

of  = (1     )
>. Furthermore,

R
11    


  ()  = 0 for any nonnegative integers 1     

unless they are all even. (vii) The bandwidth matrix  is symmetric and positive definite, where

each element of  tends to zero and  || → ∞ as  → ∞. (viii) There exists a sequence of

positive integers satisfying  →∞ and  = (( ||)12) such that (||)12( )→ 0

as   →∞.

We assume the panel process to be a stationary mixing process so that we allow for moderate level

of serial correlation in the observations. On the other hand, they are cross sectionally independent

as in the standard panel literature. For , it is assumed to be serially uncorrelated, which can be

relaxed provided that its (conditional) serial correlations are uniformly bounded.

The conditions for the kernel function  in Assumption A-(iv) hold naturally for the second-

order elliptically symmetric kernels or product kernels of the second-order symmetric univariate

kernels. The bandwidth matrix  in Assumption A-(vii) can accommodate any dependence struc-

ture among the control variables . In practice, however, one frequently considers a diagonal

matrix  = diag(1     ), or simply  =  for some bandwidth parameter , where  is the
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identity matrix of rank . Assumption A-(viii) is required to obtain the CLT as [17, 19]. The rest

of the conditions are standard for the local polynomial estimator in the time series setup.

Assumption A-(vii) implies  || → ∞ and  ||2 → ∞, which resembles conditions for
the standard local linear estimator when we count  as the sample size. It is important to note

that, though we assume large panel so that both  and  go to infinity, we do not impose an

explicit condition on the limit ratio between  and  as in the standard large penal data literature,

particularly whether or not lim→∞  ∈ [0∞). In fact, we can allow for  to be quite small

relative to  and hence the large  condition here is much weaker than the standard large panel

data regression literature (e.g., [8, 11,13]).

The first result summarizes the approximate bias and variance expressions of the local linear

least squares estimator b() = bD() in (6) and shows that it follows asymptotic normal distri-

bution. Since the leading terms of the bias and the variance below are asymptotically negligible

and do not depend on {}, this result also yields pointwise weak consistency of b (). We let
X = { :  = 1     ;  = 1     } and  as the × 1 vector of ones. The proof of Theorem 1 is

given in the Appendix.

Theorem 1. Under Assumption A, for  in the interior of X , we have

E
hb ()−D()|X

i
=

1

2 ()
−1−121 4(;

2)D () + 
¡
2

¢
,

var
hb ()−D()|X

i
=

2()

 ||  ()
−1−121 22

−1
21 

−1 + 

µ
−2

 ||
¶
,

where 2 =
R
> ()  for  = 1 2 and 4(;

2) =
R
>H()> ()  that are

positive definite and finite. Furthermore, if
p
 ||3 =  (1),

p
 ||(b()−D()−())→ N (0  ()) as   →∞

for  in the interior of X , where

() =
1

2 ()
−1−121 4(;

2)D () and  () =
2()

 ()
−121 22

−1
21 .

When  = , the approximate bias and variance expressions in Theorem 1 can be simplified to

E
hb ()−D()|X

i
=

2

2 ()
−121 4()D () + 

¡
2

¢
, (10)

var
hb ()−D()|X

i
=

2()

+2 ()
−121 22

−1
21 + 

µ
1

+2


¶
(11)

7



where 4() =
R
>H()

> () . Hence, even after the local within transformation, the

asymptotic orders of the bias and the variance are the same as those of the first derivative estimator

from the standard local polynomial estimation (e.g., [5, 6,17, 19, 26]). This is because, as shown in

the proof, the additional terms from the local within-transformation are of the smaller order than

the leading terms, and the leading terms are the same as the terms of the standard local linear

estimator. For this reason, we can naturally conjecture that the new estimator also shares the other

statistical properties with the standard local polynomial estimator such as the boundary properties

(i.e., the order of the bias remains the same even at the boundary points as [26]) and the uniform

rate of convergence (i.e., sup∈X |b() − D()| = {2 + (ln+2)12} as [18], whereb() and D() are the th elements of b() and D(), respectively, for  = 1     ).

In this case, using (10) and (11), the optimal bandwidth parameter can be obtained as

 = ( )
−1(+6)

⎡⎣ (+ 2)
R ¡

2() ()
¢
 ()  ·  ¡−121 22−121 ¢


nR ³

4()D ()D ()>4 ()  ()
2
´
 ()  · −221

o
⎤⎦1(+6) (12)

by minimizing the approximated conditional integrated mean squared error


nb () |Xo =

4

4


½Z
4()D ()D ()

>4()
 ()2

 ()  · −221
¾

+
1

+2

Z
2()

 ()
 ()  ·  ¡−121 22−121 ¢ ,

where  () is some positive weight function chosen to ensure that the integrals exist. This leads

to the optimal rate of convergence {( )−2(+6)}, which also explains the conventional issue of
the curse of dimensionality.

Remark 1 (Bootstrap Confidence Interval) It can be challenging to estimate () and  ()

in Theorem 1, and so can be the confidence bounds of b () in practice. We can use bootstrap
to construct the pointwise confidence intervals instead, where we undersmooth the bootstrap es-

timates to reduce the bias. One caveat is that, though we assume cross sectional independence,

we still allows for serial correlations of the observations. In order to preserve the (unknown) se-

rial dependence structure, we bootstrap the  × 1 vectors of the fitted errors over , instead of
bootrapping for each  and . More precisely, we can summarize the bootstrap procedure as fol-

lows: Using the local linear estimate b (), we obtain b∗() = ∗() − b ()>∗
() for each 

and let b∗ () = (b∗1()     b∗ ())0. We recenter them by subtracting (1)
P

=1 b∗ () for each .

For the case of residual-based bootstrap, we resample from {b∗ ()}=1 with replacement to obtain
8



the bootstrap residuals, say {b∗ ()}=1, where  stands for the size of the bootstrapped samples.
We then let ∗ () = b ()>∗

 ()+ b∗ () and using the bootstrapped sample {∗ ()∗
 ()} we

redo local linear estimation in (6) for each  with undersmoothing to obtain b (). We repeat this
procedure over  = 1      and construct the pointwise confidence interval of the th element of

() = (1()     ())
> as [2b ()− b(1−2) ()  2b ()− b(2) ()], where b(1−2) ()

denotes the (1− 2)-percentile of the bootstrapped b ()’s.
Remark 2 (Time Specific Fixed Effects) In general, a panel regression model (7) could

include both the time fixed effects and the individual fixed effects as  =  () +  +   +

, where   is useful to capture a common fluctuation across  (e.g., a common macroeconomic

fluctuation in the economy) and some degree of cross sectional dependence. Note that   can be

correlated with  and , but it is assumed to be independent of . In this case, D() can be

estimated as(
X
=1

X
=1

∗∗
 ()

∗∗
 ()

> ( − )

)−1 X
=1

X
=1

∗∗
 () 

∗∗
 () ( − ) , (13)

where the local within transformation for ∗∗
 () is now defined as

∗∗
 () =  −

X
=1

 () −
X

=1

 () +

X
=1

X
=1

 () (14)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
 () =  ( − )/

P
=1 ( − )

 () =  ( − )/
P

=1 ( − )

 () =  ( − )/
P

=1

P
=1 ( − )

and similarly for ∗∗ (). It can be understood as a local version of the transformation proposed

by [31]. The transformation (14) successfully eliminates the fixed effects  and   in the linearized

equation  =  () +D()
> ( − ) +  +   +  () of (13) asymptotically, provided 

is identically distributed over  and stationary over . Using a similar argument as Theorem 1, we

can readily conjecture that the approximate bias and the variance of (13) remain the same as those

in Theorem 1, provided   is i.i.d. with zero mean and finite variance, and Assumption A-(v) holds

with conditioning on both  and  .
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4 Discussions

In practice, one could simply consider running local linear estimation using the conventional within

transformed observations, which is based on

0 = D()
>0

 + 0() (15)

from (8), where 0() = () − (1 )
P

=1 () and similarly for 
0
 and 0. In this case,

0() = 0 + 0() with 0() = () − (1 )
P

=1() and () given in (9). Since

each elements of | − | becomes negligible as  → 0 for given  and , the remainder term

() before within transformation becomes negligible as  → 0. On the other hand, for a given

, the averaged remainder (1 )
P

=1() is not necessarily small even with large  because

we cannot assume |−| is small for every  6= . Note that we need enough amount of variation

in {} for the regression analysis to be valid; hence small | − | for a given  and  does not

imply that | − | are small for all . As a consequence, the local least squares estimator based
on the standard within-transformed regression (15),

e() =

(
X
=1

X
=1

0


0>
  ( − )

)−1 X
=1

X
=1

0


0
 ( − ) , (16)

has non-degenerating bias from this large approximation error after the standard within-transformation,

even under very strong assumptions such as  is large and all the variables are i.i.d.

As an illustration, we consider the univariate case  = 1 with serially uncorrelated {} with
the bounded second moment and compare the local within transformation with the standard within

transformation by investigating approximate biases of b () in (6) and e () in (16). In this

case, their approximate biases can be summarized as

E
hb ()−(1)()|X

i
=

2

2

(
(2) ()  (1)()

 ()

)½R
4 () R
2 () 

¾
+ 

¡
2
¢
, (17)

E
he ()−(1)()|X

i
=

1

2

(
(2) ()2 ()

1 ()

)
+

µ
2 +

1



¶
, (18)

where  () = E{( − )} ∞ for  = 1 2 and  in the interior of X\{E()}. The derivation
of (18) is given in the Appendix. We denote () () = () and  () () = () for

 = 1 2. Since 2 () = var()+{E()−}2 is nonzero in general, the approximate bias (18) ofe () is (1) and it does not vanish even when → 0 unlike b (). Moreover, the approximate
bias can be very large when  is near E() since 1 () = 0 when  = E(). Analytically,
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the additional terms from the global within-transformation in e () is the source of this (1)

bias. The local within transformation, on the other hand, makes these additional terms to be of

the smaller order than the main terms so that the estimator b () behaves like the conventional
local linear estimator asymptotically.

As we discussed above, the conventional within transformation equally weighs the entire history

of each individual, which thus accumulates all the approximation biases in | − | for  6= ,

where  is chosen local to  for given  and . In other words, while the regression equation (8)

is a local approximation, the subtracting equations (i.e., the standard within transformation) are

not locally weighted.3 In comparison, the proposed local within transformation subtracts locally

weighted average
P

=1()() and hence it automatically diminishes the approximation

biases in | − | for  6=  using the kernel weight, which controls for the within-transformed

approximation error ∗() being small enough to be asymptotically ignored. One remark is that,

if we use series estimation instead of kernel estimation, we can eliminate the fixed effects by the

standard within transformation like [12] because both transformations are global in such a case.

Table I compares the relative biases between b () and e (). We consider the panel regres-

sion model (7) with the sigmoid function () = (1 + exp(−))−1.  and  are randomly

drawn from N (0 1) and N (2 42), respectively;  = 05 + , where  = (1 )
P

=1

and  is randomly drawn from U(−05 05). The Epanechnikov kernel is used and the band-
width parameter is chosen as4 {cvar()}12 ( )−17 to satisfy  = {( )−17}, where we
consider (  ) = (100 20) and four different values of  = 05, 10, 15, and 20. The entire

estimation procedure is repeated 500 times. Bias Difference is obtained by averaging pointwise

absolute bias differences |{e ()} − {b ()}| over ; Bias Ratio is similarly obtained
using pointwise absolute bias ratio |{e ()}{b ()}|. The results show that the bias
gap becomes larger as the bandwidth decreases, which is from the fact that {b ()} = (2)

3Another interesting point is that the bias of  () has an  (1 ) term, which can be seen as a similar vein

as the  (1 ) bias in the nonlinear fixed-effects models (e.g., [8]).
4Alternatively, data-driven bandwidth selection could be done by considering a least squares cross-validation:

 = argmin


1




=1


=1



∗[]
 ()− [] ()

>

∗[]
 ()

2
,

where [] (·) is the leave-one-out local linear estimator, and

∗[]
 () =  −


 6= ( −) 
 6= ( −)

and 
∗[]
 () =  −


6= ( −)

6= ( −)

are the leave-one-out local within-transformed variables.
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but {e ()} = (1) in (17) and (18).

Table I: Bias Comparison


05 10 15 20

  00742 00284 00114 00043

  122445 55762 23798 14005

Bias Difference is the integrated mean of |Bias{e ()}−Bias{b ()}|; Bias Ratio is the integrated
mean of |Bias{e ()}Bias{b ()}|, where b is the new estimator proposed in (6) based on the

local-within-transformation and e is based on the standard (global) within-transformation in (16).

(  ) = (100 20).

Table II: RIMSE and IMAE comparison

 

  b e
e b e

e
= 10

50 10 00660 00766 02108 00546 00680 01721

50 20 00576 00737 02135 00476 00662 01709

100 10 00589 00748 02131 00484 00668 01707

100 20 00522 00735 02150 00430 00662 01696

= 15

50 10 00783 00806 01998 00676 00712 01714

50 20 00735 00776 02019 00631 00691 01708

100 10 00740 00783 02015 00636 00695 01706

100 20 00694 00761 02037 00591 00679 01700

IMSE is the integrated mean squared errors and IMAE is the integrated mean absolute errors of the esti-

mators of  = (1). b is the new estimator proposed in (6) based on the local-within-transformation;e is based on the standard (global) within-transformation in (16); e is based on [28].

Table II shows how the curve fitting improves using the local within transformation comparing

with other approaches. We consider the same data generating process as Table I. We compare

12



three estimators: b is the new estimator proposed in (6) based on the local-within-transformation;e is based on the standard (global) within-transformation in (16);
e is based on [28].5 Four

sets of samples of  = 50 100 and  = 10 20 are generated; we consider  = 10 and 15. The

entire estimation procedure is repeated 500 times. The integrated mean squared errors (IMSE) and

the integrated mean absolute errors (IMAE) are obtained by averaging pointwise MSE and MAE

over ; RIMSE reports the root of IMSE. Note that the overall curve fit of the new estimator b
dominates that of e even with such small sample sizes of  and  , and the fit notably improves as

 increases. We see more improvement with increasing  than that with increasing . In addition,

the IMSE and the IMAE of b remain quite similar between the cases of (  ) = (50 20) and

(100 10), which implies that the fitting mostly depends on the entire number of observations 

rather than the individual or relative sizes of  and  .

Remark 3 (First-difference) The discussion above extends to the first-difference-based ap-

proach. More precisely, for (8), the standard local linear estimator based on the first-differenced

equation is given by

e () =
(

X
=1

X
=1

∆∆
>
 ( − )

)−1 X
=1

X
=1

∆∆ ( − ) , (19)

where ∆ =  −−1 and ∆ =  − −1. However, this estimator is also well expected

to have non-degenerating bias similarly as e () for the same reason. An alternative estimator,

which preserves the standard properties of the local linear estimator like b() in (6), can be defined
as(

X
=1

X
=1

∆∆
>
 ( − −1 − )

)−1 X
=1

X
=1

∆∆ ( − −1 − ) ,

where  ( − −1 − ) is a 2-variate kernel and hence it uses the local information of

−1 as well as . See [10,24] for a similar approach.

5 Empirical Illustration: Environmental Kuznets Curve

As an empirical illustration, we investigate income-pollution relationship (i.e., the environmental

Kuznets curve hypothesis; EKC hypothesis hereafter) using the U.S. state-level panel data. The

5Note that the main interest of [28] is in estimating (), not its derivative. For this reason, its performance is

not comparable with other two estimators in this simulation.
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basic hypothesis states that as income per capita rises, the level of pollution rises at the initial phase

of economic growth but it falls beyond some level of income. So it suggests an inverted  -shape for

the relationship between income and emission levels. However, the empirical literature finds mixed

results yielding different policy implications, e.g., [7, 16]: It is found to be inverted  -shaped (i.e.,

containing one turning point and thus supporting the EKC hypothesis),  -shaped (i.e., containing

two turning points instead of one) or simply linear (i.e., no turning point).6

Instead of imposing ex ante parametric restrictions, such as a quadratic or a cubic parametric

form, we employ nonparametric approach to investigate the nature of the nonlinear relationship

between income and pollution, such as [2,4,20]. Since the main issue of the EKC can be summarized

as to identify the number of turning points, we focus on nonparametric estimation of the marginal

effect. We note that local linear (or polynomial) estimator is more suitable for the EKC analysis

than the Nadaraya-Watson local constant estimator: The local linear estimator is more robust to

the boundary effect, where the inverted  -shape versus  -shape discussion is mostly focused on

the right tail of the EKC.

Like [16,20], we consider the U.S. state-level panel data, especially on the emission of Nitrogen

Oxides (NOx). It is obtained from U.S. Environmental Protection Agency’s (EPA) National Air

Pollutant Emission Trend, 1900-1994, which includes state-wise yearly observations from 1929 to

1994. We consider two balanced panel data subsets: one from 1929 to 1984 ( = 48; = 56) that

reflects a large  case; and one from 1985 to 1994 ( = 48; = 10) that reflects a small  case.7

Following most of the EKC studies, we examine the standard EKC regression model given by

 =  () +  +   + ,

where  is the real per capita income (in 1987 UD dollars) and  is the per

capita emissions of pollutant emission level (NOx in this example; in thousands of short tons) of

state  at year .  (·) is an unknown function,  is the state-specific fixed effect, and   is the

time-specific fixed effect. The state-specific effects  can capture institutional particulars such

as differences in state-level administrative rigidities in emission regulation. The time effect   can

capture common trends in the pollution abatement technologies and control for some degree of cross

6-shaped EKC poses the concerning question of whether the decrease is only in local pollutants and pollution

is simply exported to poorer developing countries that increases the global level of pollution.
7Note that the original data set is available for the period of 1929-1994 but the emission measurement method-

ologies differ between the period 1929-1984 and the period 1985-1994. So they can not be pulled together. A detailed

description of the data can be found in [16, 20].
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Figure 1: EKC Estimation of NOx (Year 1929-1984)

section dependence from common time factors. We also considered a regression model without time

effects, but we found that the main conclusions remains the same qualitatively. Note that the major

economic characteristics of the observations are mostly homogeneous in this U.S. state-level data

set and hence it is common to consider state-specific and time-specific fixed effects in the EKC

regression model instead of including other additional observed covariates, e.g., [2, 16,20].

Although pollution potentially affects income with a sufficient time lag through health hazards

and other channels, income affects pollution more directly since it is highly correlated with economic

growth and industrialization. The regression model, in addition, includes fixed effects, which can

control for possible endogeneity to some degree. Following the standard EKC studies on the U.S.

data, therefore, we consider income as an exogenous regressor. One might be concerned about

possible spatial correlation in the pollution data. But it is normally believed that NOx pollution is

more soil-based than airborne (more specifically, it is known that more than 70% of NOx pollution

is soil-based) and thus it is less likely to impose significant level of spatial correlation. Since

spatial correlation tests under fixed-effect nonparametric regression is not available, we conduct a

parametric panel spatial correlation test of [3] to get some rough idea though. It fails to reject the

null of no spatial correlation under the quadratic parametrization.8

The estimation results are depicted in Figures 1 and 2. The main interest is in the number of

turning points that the income-pollution relationship (·) has, which can be readily told by the

8We consider quadratic parametrization based on the fact that our nonparametric estimation results in the

inverted -shaped function. Testing for spatial dependence in nonparametric fixed-effect regression is beyond the

scope of this paper.
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Figure 2: EKC Estimation of NOx (year 1985-1994)

estimate of (1) (·). Note that the exact number and the location of the turning points can be
visualized by the levels of income ’s at which b(1) () is close to zero. Figure 1 shows b(1) ()

and b () for the period of 1929-1984 (for relatively large  ), where the X-axis shows the real

income per capita in 1987 US dollars; Figure 2 shows the same estimation results for the period

of 1985-1994 (for relatively small  ). The dashed lines with b(1) () depict the 95% pointwise

confidence intervals that are obtained based on the bootstrap procedure described in Remark 1.b () are recovered from b(1) () as described in Section 2.

For the period of 1929-1984 in Figure 1, we can roughly find inverted  -shaped relationship,

where b(1) () crosses zero around the income level of $12,160. Though some fluctuations are

observed at the right tail of the graph, but it is not statistically significant. For the period of

1985-1994 in Figure 2, which is relatively more recent periods, we find almost a monotonically

downward-sloping relation, indicating that the level of pollutant decreases steadily with an increase

in income. Combining these results, we can conclude that pollution level rises with income at

the first stage of development (with relatively lower level of income) but once a threshold level of

income is reached, pollution level decreases with income. The current analysis supports for inverted

 -shaped EKC, similarly as [20].

6 Concluding Remarks

This paper questions the common practice in kernel estimation of fixed-effects panel data regres-

sion models, where the fixed effects are eliminated using the standard within transformation. We
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demonstrate that such an approach yields biased and inconsistent estimators of the marginal ef-

fects. We show that the bias is because the conventional within transformation generates sum of

non-negligible distances between each observation  (for  6= ) and a fixed location , which in

turn introduces a non-degenerating approximation error. To overcome such problem, we propose

local within transformation, which use locally weighted averages over time around the particu-

lar point . The local linear kernel estimation based on the local within transformation controls

for the approximation error properly and it has the same first-order asymptotic properties as the

conventional local polynomial estimator.

Though we only consider the simplest form of the nonparametric fixed-effects model in this

paper, it can be generalized in several different ways. For instance, the main idea in this paper can

be generalized to the partially linear framework by considering additional exogenous covariates in

an additive linear index form like [10,28]. Next, unlike that this paper considers the local behavior

by looking at the pointwise derivatives, one can consider the average derivatives, which provide

the typical (or global) behavior of the regression function. However, the latter may not have any

direct economic interpretation, unless the regression function has an index form:  () = 
¡
>

¢
for some unknown parameter  (e.g., [14]).
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A Appendix

Throughout the proofs, we denote D (·) and H (·) as the  × 1 gradient vector and the  × 

Hessian matrix of a twice continuously differentiable function  : R → R. The first two lemmas
give the basic building blocks in proving the main theorems. We let () = −1( − ) and

() = 
¡
−1( − )

¢
. For some ×  positive definite and symmetric matrix  ∞, we

also let

2 =

Z
> ()  and 4 () =

Z
>> () 

for  = 1 2.

Lemma A.1. Under Assumption A, we have

1

 ||
X
=1

() =  () +

©

¡
2
¢ª

(A.1)

1

 ||
X
=1

X
=1

()() = 21D () + 
¡
2

¢
(A.2)

1

 ||
X
=1

X
=1

()()
>() =  ()21 +

¡
2
¢

(A.3)

1

 ||
X
=1

X
=1

()()
>()() = 41 ()D () + 

¡
2

¢
(A.4)

1

 2 ||
X
=1

X
=1

X
=1

()()
>()() (A.5)

=
1


 ()22 + 

µ
1

 || + ||
2

¶
1

 2 ||
X
=1

X
=1

X
=1

()()
>()()() (A.6)

=
1


42 ()D () + 

½µ
1

 || + ||
2

¶


¾
for large  and  , where  is the ×  identity matrix and  is the × 1 vector of ones.

Proof Results (A.1)—(A.4) are standard since (·) is even and  is stationary, e.g., [26]. For

(A.5), with letting 
() = ()(), we note that

1

 2 ||E
(

X
=1

X
=1


()


()

>
)

(A.7)

=
1

 ||E
n

1()


1()

>
o

+
1

 ||
−1X
=1

µ
1− 



¶h
E
n

1()


1+()

>
o
+E

n

 ()


−()

>
oi
.
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First, similarly as (A.3), we have

1

||E
n

1()


1()

>
o
=

Z
>2 ()  (+)  =  ()22 +

©

¡
2
¢ª

(A.8)

since 2 (·) is even. It follows that the first term in (A.7) is (1 ) ()22 + (
¡
2
¢
 ). For

the covariance terms in (A.7), we let () = >
() for some non-zero × 1 vector  such that

> = 1. Then, similarly as [19], we decompose

1

 ||
−1X
=1

µ
1− 



¶
>E

n

1()


1+()

>
o
 =

1

 ||
−1X
=1

µ
1− 



¶
E
©
1()


1+()

ª
+

1

 ||
−1X
=

µ
1− 



¶
cov

¡
1() 


1+()

¢
+

1

 ||
−1X
=

µ
1− 



¶
E
©
1()

ª
E
©
1+()

ª
≡ 1() + 2() + 3()

for some  →∞ satisfying || → 0 as  →∞. For 1(), by Cauchy-Schwarz, we have¯̄
E
©
1()


1+()

ª¯̄ ≤ h
E
n¯̄
1()

¯̄2o
E
n¯̄
1+()

¯̄2oi12
=

h
>E

n

1()


1()

>
o
>E

n

1+()


1+()

>
o

i12

= (||)

from (A.8). Therefore, for some positive constant 1 ∞, we have

|1()| ≤ 1



−1X
=1

µ
1− 



¶
≤ 1


= 

µ
1

 ||
¶

since ||  → 0. For 2(), using the mixing inequality (e.g., Theorem A.5 in [9]), for some   2,

we similarly have¯̄
cov

¡
1() 


1+()

¢¯̄ ≤ 8 ()1−2 nEn|1()|oEn|1()|oo1 ≤ 2 ()
1−2 ||2

for some positive constant 2 ∞. It follows that for some   1− 2,

|2()| ≤ 2
||2−1



∞X
=

 ()1−2 ≤ 2
||2−1 −



∞X
=

 ()1−2 = 

Ã
||2−1 −



!

since
P∞

=1 
 ()1−2 

P∞
=1  ()

1−2  ∞ from Assumption A and  → ∞. By taking
 = ||2−1, which satisfies the condition  → ∞ and ||  → 0, we have 2() = (1 ).

Finally, for some positive constant 3 ∞, we have

|3()| ≤ 3

 ||
−1X

=−1

µ
1− 



¶
{||  ()}2 = 

h
|| { ()}2

i
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from (A.2), where (1 )
P−1

=−1 (1− ( )) → 0 as  → ∞ since (1 )
P∞

=1 (1− ( )) →
12 ∞ and  →∞ as  →∞. By combining these results, as they all holds for any arbitrary
non-zero vector  with > = 1, we conclude that

1

 ||
−1X
=1

µ
1− 



¶
E
©

1()


1+()

ª
= 

µ
1

 || + ||
2

¶
and (A.5) follows as (

¡
2
¢
 ) =  (1 ||). The proof of (A.6) is similar and omitted. ¤

Lemma A.2. Under Assumption A, we have

1p
 ||

X
=1

X
=1

 ()()→ N
¡
0 2 ()  ()22

¢
as   →∞.

Proof First note that Assumption A satisfies the Lindeberge-Feller conditions in Theorem 3

of [19], where it is generalized to the panel case as [12,23]. The CLT hence follows by the Cramér—

Wold device. Moreover, we have E{ ()()} = E{ ()()E(| )} = 0 since
E(| ) = 0 by construction. Therefore, we only need to verify the variance term. Note that

var

(
1p

 ||
X
=1

X
=1

 ()()

)

=
1

 ||var
(

X
=1

 ()()

)

=
1

||var { ()}+ 1

||
−1X
=1

µ
1− 



¶
cov (1 () 1+ ()) ,

where  () =  ()(). Since E { ()} = 0, Lemma A.1 gives
1

||var { ()} =
1

||E
n
 () ()

>
o

=
1

||E
n
E
¡
2| =  

¢
 () ()

>2
()

o
= 2 ()  ()22 +

¡
2
¢
.

For the covariance term, we note that

|cov (1 () 1+ ())|
=

¯̄̄
E
n
E(11+| )1 ()1+ ()

>1()1+()
o¯̄̄
= 0

since  is serially uncorrelated conditional on ( ). The desired result immediately follows.

¤
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Proof of Theorem 1 We only derive asymptotic distribution; the approximate bias and variance

expressions can be readily obtained using the expressions below. We write

b()− () = 1()
−1 {2() +3()} ,

where

1() =
1

 ||
X
=1

X
=1

∗
()

∗
()

> () ,

2() =
1

 ||
X
=1

X
=1

∗
()

∗
() () ,
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1

 ||
X
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X
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∗
()

∗
() () .

We claim that

1() = ()21 + 
¡
2
¢
,

3() =
1

2
41 (H())D () + 

¡
4

¢
and p

 ||2()→ N
¡
0 2 ()  ()22

¢
for each  ∈ X as   →∞, where 41 (H()) = 4(;

2). The desired result then follows

immediately by Slutsky fromp
 ||(b()− ()−1()

−13()) =
©
1()

−1ª−1p ||2().

First note that

X
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· 1

 ||
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 () () + (1)

since ( ||)−1P
=1 () = () +{(2)} as  →∞ and ()  0. Then, we can write
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1

 ||
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>()
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 2 ||2
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X
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>()().

However, from (A.3) and (A.5) in Lemma A.1, the first term is ()21 +(
4) whereas the

second term is simply (
2 ||). The expression of 3() can be obtained similarly since, for
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some  between  and ,
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where the first term is (12)41 (H())D () + 
¡
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¢
whereas the second term is

(
4 ||) = 

¡
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¢
from (A.4) and (A.6) in Lemma A.1. The continuity of H(·) gives

the desired result. For 2(), note that its plim is simply zero for E(| ) = 0. However,
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where the first term
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similarly as 1 (), which completes the proof. ¤

22



Proof of (18) We let  () =
R
(− )  ()  for  = 1 2, which are assumed to be bounded.

Since we consider the case of  = 1, we denote the regressor as  instead of  here. We first

write e ()−(1) () =
2 ()

1 ()
+

3 ()

1 ()
,

where
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whereas the plim of 2 () is simply zero for E [| ] = 0. The desired result then follows

immediately.

To find the expression of 1 (), first note that
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where () = (−). From Lemma A.1, we obtain11 ()→ 
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. Moreover,

from the stationarity, we have
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where the first term is (2 ) as 11 (). However, when there is no serial correlation in {},
the second term in (A.9) is (2) because
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as  →∞ with 1() ∞ since (1 )
P−1

=1 (1− ( ))→ 12. Using a similar argument, it can

be also verified that
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The first term is straightforward from 11() above. When there is no serial correlation in {},
the rest terms are approximated as
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with 1()  ∞. By combining these results, we can conclude that 1 () = 21()() + (1)

when there is no serial correlation in {}. The expression of 3() can be obtained similarly by
the continuity of (2)(·) since, for some  between  and ,
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where 31 () = (
4), 32 () = 33 () = (

2) and 34 () = 1()2()() + {2 +
(1 )}. ¤
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