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Abstract

We approximate probabilistic forecasts for interval-valued time series by offering alternative ap-
proaches to construct bivariate prediction regions of the interval center and range (or lower/upper
bounds). We estimate a bivariate system of the center/log-range, which may not be normally dis-
tributed. Implementing analytical or bootstrap methods, we directly transform prediction regions
for center/log-range into those for center/range and upper/lower bounds systems. We propose new
metrics to evaluate the regions performance. Monte Carlo simulations show bootstrap methods
being preferred even in Gaussian systems. For daily SP500 low/high return intervals, we build
joint conditional prediction regions of the return level and return volatility.

Key Words: Bootstrap, Constraint Regression, Coverage Rates, Logarithmic Transformation,
QML estimation.
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1 Introduction

Data sets in interval format are common in many disciplines. See Blanco-Fernández and Winker

(2016) for different data generation mechanisms of interval data. In economics, we have many

examples. For instance, in stock markets, it is standard to provide the daily interval of low/high

asset prices. In bond markets, traders report bid/ask intervals. In energy markets, the US Energy

Information Administration provides min/max retail prices of electricity at the state level. The

US Department of Agriculture also provides daily low and high prices on agricultural commodities

and livestock. In earth sciences, temperatures are also recorded in the min/max format. It should

be noted that in many instances, the interval format is the only available format to the researcher.

There are several reasons to prefer interval records. For instance, in stock markets it is customary

to report the daily closing price, which is just one-point measurement, while we observe plenty of

price points over the trading day. Other records, like an average temperature or like those provided

by USDA as daily weighted average prices on commodities and livestock, are not very informative

to market participants. In other instances in which the data is sensitive to privacy concerns such

as income reporting, the records must be aggregated, e.g. income intervals.

Our interest is in interval-valued times series defined as a collection of interval realizations ordered

over time, i.e., {(yl,t, yu,t)} for t = 1, ...T , where yl,t is the lower bound and yu,t is the upper bound

of the interval at time t, such that yl,t ≤ yu,t for all t. An equivalent representation is given by

considering the center of the interval Ct = (yl,t + yu,t)/2 and the range Rt = yu,t − yl,t ≥ 0, i.e.,

{(Ct, Rt)} for t = 1, ...T . Most of the econometric analysis in this area has focused on model

estimation and inference, and though it is possible to construct point forecasts based on a given

model or algorithm, the question of constructing probabilistic forecasts for interval data has not

been addressed yet. This is the main question that we aim to analyze in this paper. There are

several routes to construct a probabilistic forecast for the lower/upper bounds system or for the

center/range system, which involve some trade-offs between estimation and prediction decisions.
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When dealing with lower/upper bounds systems, one needs to incorporate the constraint yl,t ≤ yu,t

into the estimation. González-Rivera and Lin (2013) propose a two-step estimator (Maximum

Likelihood (ML) and Least Squares (LS)) and a modified two-step estimator (ML and Minimum

Distance) based on assuming a truncated bivariate normal density of the errors of the lower/upper

bounds system. The estimation of the system is complex but it is possible to construct a direct bi-

variate density forecast for the upper/lower bounds, if the truncated bivariate normal density is the

right assumption. Alternatively, dealing with the center/range system, one needs to incorporate

the constraint Rt ≥ 0. Lima Neto and De Carvalho (2010) impose non-negative constraints on the

parameters of the range equation, which are unnecessarily too restrictive and complicate the esti-

mation of the system. Tu and Wang (2016) overcome the restriction Rt ≥ 0 by log-transforming the

range, and estimating the center/log-range system without imposing any distributional assump-

tions. However, forecasting the center/range or lower/upper bounds will be more complicated.

First, for point forecasts, one needs the inverse transformation, i.e. Rt = exp[logRt], which itself

introduces non-trivial econometric issues. Secondly, for a density forecast, a joint distributional

assumption for the center and range or for the upper and lower bounds is required.

In this paper, we contribute to the literature by approximating a probabilistic forecast for interval-

valued time series. We offer alternative approaches to construct bivariate forecast regions of the

center and the range (or lower and upper bounds) of the interval. We will start with a dynamic

model for the center/log-range system. We specify a VAR system to be estimated by quasi-

maximum likelihood (QML), maximizing a bivariate Gaussian density, that guarantees the con-

sistency of the estimators.1 We estimate only the center/log-range system, construct prediction

regions for this system, and based on these estimates, construct prediction regions for the cen-

ter/range system and for the upper/lower bounds system. We implement analytical and numerical

1Tu and Wang (2016) used the estimator of Yao and Zhao (2013) that relies on kernel estimates of the likelihood.
This estimator is computationally more demanding than QML and depends on the choice of tuning parameters.
Their empirical results suggest that both estimators are very similar and, consequently, we focus on the QML
estimator.
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approaches to move a prediction region for the center/log-range system to prediction regions for

the other systems. If the center/log-range system is bivariate normally distributed, we obtain

analytical forecast ellipsoids with a desired probability coverage. Furthermore, as proposed by

Lutkephol (1991), we could also construct forecast regions by using Bonferroni rectangles, which

are simpler and rather popular among practitioners. However, the center and/or the log-range are

often not normally distributed and the joint system will not be bivariate normal. In these cases, we

obtain forecasts of the center/log-range system using the bootstrap procedure proposed by Fresoli

et al. (2015) for VAR models, which does not require any specific assumption on the forecast error

distribution. After obtaining bootstrap replicates of future values of the center/log-range sys-

tem, we construct forecast regions as ellipsoids, Bonferroni rectangles, or using the Tukey peeling.

Implementing either analytical or bootstrap methods, the prediction regions constructed for the

center/log-range system can be directly transformed into prediction regions for the center/range

system. For instance, consider a normal ellipse with (1−α)% probability coverage. The boundary

of this ellipse is the (1 − α)% bivariate quantile. Its boundary points (center, log-range) can be

transformed into another boundary of points (center, exp(log-range)) of a prediction region for

the center/range system. The new region will not preserve the shape of an ellipse but it will have

the same coverage because the exponential function is a monotonic transformation. An important

advantage of our approach is that, by focusing on prediction regions rather than on point fore-

casts, we avoid the biases that are associated with the exp-transformation of the point forecasts of

log-transformed variables, for which a bias correction is necessary to obtain the conditional mean

of the variable of interest2; see, for example, Granger and Newbold (1976) and Guerrero (1993).

We compare the performance of the prediction regions considered in this paper according to sev-

2For point forecasts of Gaussian VAR models, Ariño and Franses (2000) and Bardsen and Lutkepohl (2011)
give explicit expressions for the optimal point forecasts of the levels when both variables are log-transformed.
Furthermore, Bardsen and Lutkepohl (2011) show that, despite its theoretical advantages, optimal point forecasts
are inferior to naive forecasts if specification and estimation uncertainty are taken into account. Hence, they conclude
that, in practice when the interest is a point forecast, using the exponential of the log-forecasts is preferable to using
the optimal forecasts; see also Mayr and Ulbricht (2015) for an empirical application to forecasting GDP. Finally,
it is important to point out that the optimal transformations are not designed to obtain density forecasts.
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eral metrics. The most basic required property is coverage so that regions are reliable when the

empirical coverage is close to the nominal coverage. Beyond coverage, the literature on evaluating

multivariate prediction regions is rather thin. To our knowledge, there is one additional metric

that brings the volume of the region to interact with its coverage (Golestaneh et al., 2017). In this

paper, we also contribute to this literature by introducing several new measures that account for (i)

the location of out-of-the-region points with respect to a central point of the region, (ii) the tight-

ness of the intervals that result from projecting the two-dimensional region into one-dimensional

intervals, and (iii) the distance of the also projected out-of-the-region points to the projected one-

dimensional interval. These new measures bring a notion of risk associated with the prediction

region. In addition, we also provide a description of the distribution of the out-of-the-region points

around the region to measure whether the region is probability-centered.

For the three systems (center/log-range, center/range, and upper/lower bounds), we perform

several Monte Carlo simulations to assess the out-of-sample performance of the prediction re-

gions constructed with analytical and bootstrap methods. We evaluate bivariate Gaussian and

non-Gaussian center/log-range systems and their implied distributions for the center/range and

upper/lower bounds systems. We note that even for Gaussian systems, bootstrap methods to

construct ellipsoids and Bonferroni rectangles deliver the best performance, mainly when the esti-

mation sample is small and estimation uncertainty is most relevant. For non-Gaussian systems, the

performance depends on whether the joint distribution of the center/log-range system is symmetric

or not. If symmetry is present, bootstrap ellipsoids and their transformations are recommended.

For asymmetric non-Gaussian systems, bootstrap Bonferroni rectangles are preferred.

Using the analytical and bootstrap procedures described above, we construct forecast regions for

a time series of daily low/high return intervals of the SP500 index. These intervals are more

informative than just a daily one-point measurement (end-of-day return) as they encompass all

returns during the day. There are commonalities between the analysis of return intervals and the

4



standard analysis of end-of-the-day returns and their volatility. The center of the return interval

has large kurtosis and does not have any autocorrelation. The log-range, which is close to be

normally distributed, is a proxy for volatility as proposed by Parkinson (1980) and Alizadeh et

al. (2002). It shows a strong autocorrelation as that of an autoregressive process, which is similar

to the patterns found in ARCH and stochastic volatility processes. We also find that there is

Granger-causality from the center of the interval to the log-range such that positive and large

changes in the center will predict narrower ranges, which is similar to the so-called leverage effect.

However, an important difference pertains to the construction of the forecasts. In standard ARCH

and stochastic volatility processes, the forecast of the return is mostly zero and together with a

forecast of the conditional volatility and some conditional distribution of the return, it is possible

to generate a density forecast of future returns. In the interval approach, we forecast jointly the

future low/high return interval and construct prediction regions of the center and range of the

interval at any desired horizon that do not require parametric distributional assumptions. Overall,

the main advantage of the interval approach is that allows for the modeling of the joint conditional

density of the return level and the return volatility, which in our sample are contemporaneous and

negatively correlated, and consequently allows for the construction of bivariate density forecasts.

The organization of the paper is as follows. In section 2, we establish notation by describing the

VAR model for the center/log-range system, its estimation and construction of point forecasts.

In section 3, we present analytical prediction regions for a Gaussian center/log-range system and

how they translate into those for the center/range and upper/lower bounds systems. In section

4, we introduce bootstrap procedures to deal with prediction regions for non-Gaussian center/log-

range systems and their implications for those regions in the center/range and upper/lower bounds

systems. In section 5, we propose several new metrics to evaluate the performance of the different

prediction regions. In section 6, we report Monte Carlo simulations to compare the performance of

the proposed procedures to construct forecast regions. In section 7, we model the SP500 low/high

return interval and construct several prediction regions for the interval. We conclude in section 8.
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2 The Center/Log-Range System

Even if the final goal is to obtain probabilistic forecasts of the center/range or lower/upper bounds

systems, we start by estimating a dynamic model for the center/log-range system that is not

subject to any restriction as we are log-transforming the range. We consider a linear bivariate

VAR(p) for the center/log-range system from which we will construct a probabilistic forecast for

(Ct, logRt). Let us call yc,t ≡ Ct and yr,t ≡ logRt. The bivariate VAR(p) is given by

yc,t = α1 +

p∑
i=1

β
(i)
11 yc,t−i +

p∑
i=1

β
(i)
12 yr,t−i + εc,t (2.1)

yr,t = α2 +

p∑
i=1

β
(i)
21 yc,t−i +

p∑
i=1

β
(i)
22 yr,t−i + εr,t (2.2)

where the components of the error vector (εc,t, εr,t)
′ are white noise processes, possibly contempo-

raneous correlated, with covariance matrix Ω. The estimation of the parameters of the VAR(p)

model proceeds by LS, which is consistent under mild assumptions. The LS estimator is a full

information ML estimator when the errors have a bivariate normal distribution. Otherwise, if

the errors are non-normal, a QML estimator based on maximizing the Gaussian likelihood will be

equivalent to a LS estimator. Let θ ≡ (α1, α2, β
(1)
11 , ..., β

(p)
11 , β

(1)
12 , ..., β

(p)
12 , β

(1)
21 , ..., β

(p)
21 , β

(1)
22 , ..., β

(p)
22 )

be the parameter vector to estimate. Following White (1982), the asymptotic distribution of the

Gaussian QML estimator is
√
T (θ̂ − θ)

d→ N(0, A−1BA−1) where matrix A is the (minus) ex-

pectation of the Hessian and matrix B is the expectation of the outer product of the score of a

Gaussian log-likelihood function. The QML environment will be the most common estimation ap-

proach given that bivariate normality of (εc,t, εr,t)
′ is difficult to entertain. To guarantee bivariate

normality of the system, the conditional densities as well as the marginal densities must also be

normal density functions. For financial data, there is evidence that the log-range yr,t (as a proxy

for volatility) is near-normal (Alizadeh et al., 2002). However, the center yc,t is less likely to be

normally distributed because the prevalence of fat tails, at least in financial data at a relative high
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frequency, e.g. daily financial returns. In the empirical section, we will test the assumption of

bivariate normality as a starting step to construct density forecasts of the full system.

Given an information set available at time T , if the loss function is quadratic, the optimal h-step-

ahead point forecasts of the system (yc,t, yr,t) are the conditional means denoted by yc,T+h|T and

yr,T+h|T . Since the VAR(p) model is always invertible, the conditional mean is a linear function of

the observations. Therefore, point forecasts of the center and log-range are given by

yc,T+h|T = α1 +

p∑
i=1

β
(i)
11 yc,T+h−i|T +

p∑
i=1

β
(i)
12 yr,T+h−i|T (2.3)

yr,T+h|T = α2 +

p∑
i=1

β
(i)
21 yc,T+h−i|T +

p∑
i=1

β
(i)
22 yr,T+h−i|T (2.4)

where yc,T+h−i|T = yc,T+h−i and yr,T+h−i|T = yr,T+h−i for i ≥ h. The corresponding forecast error

vector is (ec,T+h|T , er,T+h|T ) = (yc,T+h − yc,T+h|T , yr,T+h − yr,T+h|T ) with variance-covariance matrix

Wh = Ω +
∑h−1

i=1 ΨiΩΨ
′
i where matrices Ψi come from the MA(∞) representation of the VAR(p)

model. In practice, we plug in consistent estimates, i.e. θ̂, Ω̂, and Ψ̂i, in the VAR(p) to obtain the

estimated h-step-ahead point forecasts and their estimated variance-covariance matrices that are

denoted by ŷc,T+h|T , ŷr,T+h|T , and Ŵh respectively.

If the center/log-range system is bivariate normal, then pointwise bivariate density forecasts can

be obtained as follows,

yc,T+h
yr,T+h

→ N
(ŷc,T+h|T

ŷr,T+h|T

 ,
Ŵh,11 Ŵh,12

Ŵh,21 Ŵh,22

) (2.5)

Note that the variance-covariance matrices of the forecast densities in (2.5) do not incorporate

parameter uncertainty, which will be negligible when the sample size T is large relative to the

number of estimated parameters. When the center/log-range system is non-Gaussian, we can

obtain bootstrap pointwise forecast densities by implementing the bootstrap procedure proposed
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by Fresoli, Ruiz, and Pascual (2015), which will be described in the forthcoming section 4. The

bootstrap forecast densities incorporate parameter uncertainty without relying on any specific

forecast error distribution. Even in the Gaussian case, if the estimation sample is not very large,

the effect of parameter uncertainty on the forecast may not vanished, and so the use of bootstrap

forecast densities may be desired.

3 Gaussian Center/Log-Range System

3.1 Prediction regions for the center/log-range system

Using the forecast densities in (2.5), we can construct pointwise h-step-ahead forecast regions. The

100× (1− α)% h-step-ahead forecast ellipsoid for YT+h ≡ (yc,T+h, yr,T+h)
′ is given by

NET+h =
[
YT+h|(YT+h − ŶT+h|T )′Ŵ−1

h [YT+h − ŶT+h|T ]
]
≤ q1−α, (3.1)

where q1−α is the (1 − α) quantile of the chi-square distribution with 2 degrees of freedom. The

ellipse is a countour of the bivariate normal center/log-range system with 100× (1−α)% coverage.

A straightforward and easy to construct h-step-ahead forecast region is a Bonferroni rectangle with

(at least) 100× (1− α)% coverage. This rectangle will have the following sides

[
bc,α/4, bc,1−α/4

]
≡
[
ŷc,T+h|T − zα/4

√
Ŵh,11, ŷc,T+h|T + zα/4

√
Ŵh,11

]
(3.2)[

br,α/4, br,1−α/4
]
≡
[
ŷr,T+h|T − zα/4

√
Ŵh,22, ŷr,T+h|T + zα/4

√
Ŵh,22

]
, (3.3)

where zα/4 is the α/4-quantile of the standard normal distribution. Given the bivariate normality

of the system (2.5), the marginal probability density functions of yc,T+h and yr,T+h are also normal.

To include the contemporaneous linear correlation between the center and log-range, we modify
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the Bonferroni rectangles as in Fresoli et al. (2015). The corners of the modified rectangle are

[bc,α/4, br,α/4 + p21,hbc,α/4], [bc,α/4, br,1−α/4 + p21,hbc,α/4], (3.4)

[bc,1−α/4, br,α/4 + p21,hbc,1−α/4], [bc,1−α/4, br,1−α/4 + p21,hbc,1−α/4]

where p21,h = Ŵh,21/Ŵh,11. The area of the modified Bonferroni rectangle is the same as that of the

Bonferroni rectangle. However, the theoretical coverage rate may be slightly different depending

on the quantiles associated with the modified terms, e.g., br,α/4 + p21,hbc,α/4, which in turn depend

on the magnitude and sign of p21,h. Simulations results will provide some information on the

coverage rate of the modified Bonferroni rectangle. To illustrate the shapes of the three forecast

regions described above, in Figure 1 we plot the 1-step-ahead 95% ellipse, Bonferroni rectangle and

modified Bonferroni rectangle for the center/log-range system generated by a VAR(4) model with

parameter values as reported in Table 1 and Gaussian errors with contemporaneous correlations of

-0.24. The forecast regions have been obtained after estimating the parameters based on T=1000

observations so that the parameter estimation uncertainty is negligible. In Figure 1, we also

plot 1000 realizations of YT+1. We observe that both the ellipse and the modified Bonferroni

rectangle are able to capture the negative correlation between the center and the log-range while

the Bonferroni rectangle cannot inform about this correlation. Note that the Bonferroni rectangle

has large empty areas without any realization of YT+1.

3.2 Prediction regions for center/range and lower/upper systems

Moving from the center/log-range system to the center/range system or to the lower/upper bounds

system, we can implement either analytical or numerical methods to construct prediction regions

for the center/range system or for the lower/upper bounds system. Under bivariate normality of
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center/log-range, the bivariate density of the center/range system is

f(yc,T+h, RT+h) =
1

2π

√
|Ŵh|

1

RT+h

exp[−1

2
(YT+h − ŶT+h|T )′Ŵ−1

h (YT+h − ŶT+h|T )]. (3.5)

Since the center of the interval yc ≡ (yu+yl)/2 and the range R ≡ (yu−yl) are linear combinations

of the upper and lower bounds, it is easy to see that that the conditional bivariate density of the

upper/lower bounds is also given by (3.5).

We construct analytical contours for the center/range and lower/upper bounds system by horizon-

tally cutting the bivariate density (3.5) at a value determined by the nominal coverage 100×(1−α)%

that we wish to obtain. Such a value is obtained by numerical simulation. Based on the same

simulated system described above, in Figure 2 we illustrate the shape of the forecast regions for

the center/range system obtained using the analytical density in (3.5) by plotting the 95% forecast

region and 1000 realizations of (CT+1, RT+1). We observe that, as expected, the region is not an

ellipse. As an illustration of the shapes of the regions for the lower/upper bounds system, in Figure

3 we plot the 95% forecast regions based on (3.5) and a close-up detail of the central area of the

region. In Figure 4, we plot close-ups of the extreme areas of the regions.

For the center/range system, we also construct numerical contours based on the 100 × (1 − α)%

normal ellipse (3.1) of the center/log-range system by transforming the points (center, log-range)

sitting on the boundary of (3.1) to points (center, exp(log-range)). The new shapes will not be

ellipsoids but they will maintain the coverage, and have the advantage of delivering strictly positive

values for the range3.

3This approach cannot be implemented to find prediction regions for the lower/upper bounds system because
there is not a monotonic transformation from the boundary points of the center/log-range region to the boundary
points of the lower/upper bounds region.
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The 100× (1− α)% transformed normal ellipse (T-NE) is given by

T-NET+h =
{[

(yc,T+h, exp[logRT+h])
′] such that (YT+h − ŶT+h|T )′Ŵ−1

h (YT+h − ŶT+h|T
)

= q1−α
}

(3.6)

In Figure 2, we illustrate the shape of the transformed ellipse using the same simulated example

previously described. The transformed shape is similar to the analytical although are not identical.

Similarly, we transform the Bonferroni and modified Bonferroni rectangles by taking the exponen-

tial transformation of the log-range intervals (3.3) and the range terms in (3.4) respectively.

Transformed Bonferroni rectangle:

[
ŷc,T+h|T − zα/4

√
Ŵh,11, ŷc,T+h|T + zα/4

√
Ŵh,11

]
(3.7)[

exp(ŷr,T+h|T − zα/4
√
Ŵh,22), exp(ŷr,T+h|T + zα/4

√
Ŵh,22)

]

Transformed modified Bonferroni rectangle:

[bc,α/4, exp(br,α/4 + p21,hbc,α/4)], [bc,α/4, exp(br,1−α/4 + p21,hbc,α/4)], (3.8)

[bc,1−α/4, exp(br,α/4 + p21,hbc,1−α/4)], [bc,1−α/4, exp(br,1−α/4 + p21,hbc,1−α/4)]

In Figure 2, we illustrate the shapes of the transformed Bonferroni rectangles. Observe that while

the transformed modified Bonferroni rectangle also shows the correlation between center and range,

the transformed Bonferroni rectangle does not and some portions of the area are empty.
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4 Non-Gaussian Center/Log-Range System

4.1 Prediction regions for the center/log-range system

Following Fresoli et al. (2015), we implement the following bootstrap procedure to obtain bootstrap

forecasts of the center/log-range system:

Step 1. Estimate the parameters of the VAR(p) model in (2.1)-(2.2) by LS and obtain the residual

vector ε̂t = (ε̂c,t, ε̂r,t)
′. Center the residuals, i.e. ε̂t − ε̄t where ε̄t = 1

T−p
∑T

t=p+1 ε̂t. Rescale the

residuals using the factor [ T−p
T−p−d ]1/2, where d is the number of parameters to estimate. Denote the

empirical distribution of the centered and rescaled residuals as F̂ε̂.

Step 2. Using the parameter estimates obtained in Step 1, generate in sample bootstrap series

{y∗(b)c,1 , ..., y
∗(b)
c,T } and {y∗(b)r,1 , ..., y

∗(b)
r,T }, for t = 1, ..., T , as follows,

y
∗(b)
c,t = α̂1 +

p∑
i=1

β̂
(i)
11 y
∗(b)
c,t−i +

p∑
i=1

β̂
(i)
12 y
∗(b)
r,t−i + ε

∗(b)
c,t

y
∗(b)
r,t = α̂2 +

p∑
i=1

β̂
(i)
21 y
∗(b)
c,t−i +

p∑
i=1

β̂
(i)
22 y
∗(b)
r,t−i + ε

∗(b)
r,t ,

where (ε∗c,t, ε
∗
r,t)
′ are random pairwise extractions with replacement from F̂ε̂ and, for t = 1, ..., p,

y
∗(b)
c,t = yc,t and y

∗(b)
r,t = yr,t.

4

Using y
∗(b)
c,t , y

∗(b)
r,t , estimate the VAR(p) parameters α̂∗(b) =

α̂∗(b)1

α̂
∗(b)
2

 and β̂∗(b) =

β̂∗(i)(b)11 β̂
∗(i)(b)
12

β̂
∗(i)(b)
21 β̂

∗(i)(b)
22


i=1,...,,p

.

4Alternatively, we can use the permutation bootstrap initially proposed by LePage and Podgorski (1996), which
is expected to have a better performance in the presence of heavy-tailed errors; see Cavaliere et al. (in press) for
an application to non-causal time series.
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Step 3. Construct bootstrap h-step-head future values of the vector (yc,T+h, yr,T+h)
′ as follows,

ŷ
∗(b)
c,T+h|T = α̂

∗(b)
1 +

p∑
i=1

β̂
∗(i)(b)
11 ŷ

∗(b)
c,T+h−i|T +

p∑
i=1

β̂
∗(i)(b)
12 ŷ

∗(b)
r,T+h−i|T + ε

∗(b)
c,T+h

ŷ
∗(b)
r,T+h|T = α̂

∗(b)
2 +

p∑
i=1

β̂
∗(i)(b)
21 ŷ

∗(b)
c,T+h−i|T +

p∑
i=1

β̂
∗(i)(b)
22 ŷ

∗(b)
r,T+h−i|T + ε

∗(b)
r,T+h,

where ŷ
∗(b)
c,T+h−i|T = yc,T+h−i, and ŷ

∗(b)
r,T+h−i|T = yr,T+h−i for i ≥ h, and (ε

∗(b)
c,T+h, ε

∗(b)
r,T+h)

′ are pairwise

random draws with replacement from F̂ε̂. Notice that, in order to obtain forecasts conditional on

the available data set, the last p values of the original data are fixed in this step.

Step 4. Repeat steps 2 and 3 B times.

We obtain B bootstrap replicates of the vector Y
∗(b)
T+h|T = (ŷ

∗(b)
c,T+h|T , ŷ

∗(b)
r,T+h|T )′; see Fresoli, Ruiz, and

Pascual (2015) for the asymptotic validity of the bootstrap procedure.

The bootstrap replicates obtained through the procedure proposed by Fresoli et al.(2015) can be

used to obtain the following pointwise bootstrap ellipsoid with 100× (1− α)% coverage

BET+h =
[
YT+h|[YT+h − Ȳ ∗T+h|T ]′SY ∗(h)−1[YT+h − Ȳ ∗T+h|T ]

]
≤ q∗1−α, (4.1)

where Ȳ ∗T+h|T is the sample mean of the B bootstrap replicates Y
∗(b)
T+h|T , SY ∗(h) is the corresponding

sample covariance matrix and q∗1−α is the (1 − α) quantile of the empirical distribution of the

quadratic form [Y
∗(b)
T+h − Ȳ ∗T+h|T ]′SY ∗(h)−1[Y

∗(b)
T+h − Ȳ ∗T+h|T ].

Pointwise bootstrap prediction regions for the center/log-range system can also be constructed as

Bonferroni rectangles with at least 100× (1− α)% coverage with the following corners

[q∗c,α/4, q
∗
r,α/4], [q∗c,α/4, q

∗
r,1−α/4], [q∗c,1−α/4, q

∗
r,α/4], [q∗c,1−α/4, q

∗
r,1−α/4] (4.2)

where q∗c,α/4 and q∗r,α/4 are the α/4 quantiles from the respective marginal bootstrap distributions
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of the center and the log-range.

If we wish to correct for the contemporaneous correlation between the center and the log-range,

we construct a pointwise bootstrap modified Bonferroni rectangle with the following corners

[q∗c,α/4, q
∗
r,α/4 + pB21,hq

∗
c,α/4], [q∗c,α/4, q

∗
r,1−α/4 + pB21,hq

∗
c,α/4], (4.3)

[q∗c,1−α/4, q
∗
r,α/4 + pB21,hq

∗
c,1−α/4], [q∗c,1−α/4, q

∗
r,1−α/4 + pB21,hq

∗
c,1−α/4]

where pB21,h = SY ∗(h)21/SY ∗(h)11.

Note that neither the bootstrap ellipsoid nor the Bonferroni rectangles need to be probability-

centered when the joint distribution of the center/log-range system is not normal; see, for example

Beran (1993) for the desirable properties of multivariate forecast regions. In this case, these regions

will be only approximations to the true shape of the bootstrap forecasts. Alternatively, probability-

centered forecast regions can be constructed using the convex hull peeling method of Tukey (1975);

see Green (1985) for a description.5 The Tukey peeling method consists of constructing a series

of convex prediction polygons. Given a data cloud, the first layer of the Tukey convex hull is

the convex polygon formed by the boundary of the data. It continues by peeling the first layer

off and finding the second layer for the remaining data. This process is repeated until no convex

polygon can be constructed anymore. In our case, we have a two-dimensional bootstrap data

cloud Y
∗(b)
T+h|T = (ŷ

∗(b)
c,T+h|T , ŷ

∗(b)
r,T+h|T )′. We construct layers of convex polygons and we choose the

polygon that provides the closest coverage to the desired nominal coverage rate. This is the

Tukey nonparametric region. The bootstrap forecast regions for the center/log-range system can

obviously be also constructed even if the errors are normal. As an illustration, Figure 1 we plot

the 95% bootstrap ellipse and the Bonferroni and modified Bonferroni rectangles when the data

is generated by the same data generating process described in the previous section. These regions

5One can also construct prediction regions using the High Density Regions proposed by Hyndman (1996) based
on kernel estimates of the joint bootstrap empirical density or using the Monge-Kantorovich distance as proposed
by Chernozhukov et al. (2017).
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are based on B=4000 bootstrap replicates. Given the large sample size T = 1000 to estimate the

parameters, the uncertainty due to parameter estimation is negligible. Consequently, the normal

and bootstrap ellipses have identical shapes. The Tukey hull follows very closely the ellipses. The

bootstrap Bonferroni rectangles are also very similar to their normal counterparts.

4.2 Prediction regions for center/range and lower/upper systems

As in the previous section, we can construct prediction regions for the center/range system based

on the bootstrap 100 × (1 − α)% ellipsoid (4.1) of the center/log-range system. By transforming

the points (center, log-range) sitting on the boundary of (4.1) to points (center, exp(log-range)),

we obtain the 100× (1− α)% transformed bootstrap ellipse (T-BE)

T-BET+h =
{[

(yc,T+h, exp[logRT+h])
′] such that (YT+h−Ȳ ∗T+h|T )′SY ∗(h)−1(YT+h−Ȳ ∗T+h|T ) = q∗1−α

}
(4.4)

Similarly, we obtain the transformed bootstrap Bonferroni rectangle for the center/range system

with corners

[q∗c,α/4, exp(q∗r,α/4)], [q∗c,α/4, exp(q∗r,1−α/4)], [q∗c,1−α/4, exp(q∗r,α/4)], [q∗c,1−α/4, exp(q∗r,1−α/4)] (4.5)

and the transformed bootstrap modified Bonferroni rectangle with corners

[q∗c,α/4, exp(q∗r,α/4 + pB21,hq
∗
c,α/4)], [q∗c,α/4, exp(q∗r,1−α/4 + pB21,hq

∗
c,α/4)], (4.6)

[q∗c,1−α/4, exp(q∗r,α/4 + pB21,hq
∗
c,1−α/4)], [q∗c,1−α/4, exp(q∗r,1−α/4 + pB21,hq

∗
c,1−α/4)]

where pB21,h is defined as in (4.3).

We also construct the Tukey nonparametric region for the data cloud of bootstrap realizations of
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center and range (ŷ
∗(b)
c,T+h|T , exp(ŷ

∗(b)
r,T+h|T ))′. In Figure 2, we plot these regions for the same simulated

system considered above.

Finally, for the lower/upper bounds system, we calculate first the bootstrap upper and lower

bounds based on the bootstrap realizations of the center and range as follows

y
∗(b)
u,T+h = ŷ

∗(b)
c,T+h|T +

1

2
exp(ŷ

∗(b)
r,T+h|T ) (4.7)

y
∗(b)
l,T+h = ŷ

∗(b)
c,T+h|T −

1

2
exp(ŷ

∗(b)
r,T+h|T ) (4.8)

and construct a bootstrap ellipsoid for the upper and lower bounds as

BEUL
T+h =

[
Y UL
T+h| [Y UL

T+h − Ȳ UL∗
T+h|T ]′SULY ∗ (h)−1[Y UL

T+h − Ȳ UL∗
T+h|T ] ≤ qUL∗1−α

]
(4.9)

where Y UL
T+h = (yu,T+h, yl,T+h)

′ and Ȳ UL∗
T+h|T and SULY ∗ (h) represents the mean vector and variance

covariance matrix, respectively, of the bootstrap upper/lower bound realizations.

Finally, a Tukey nonparametric region can be constructed for the data cloud of bootstrap realiza-

tions of upper and lower bounds (y
∗(b)
u,T+h, y

∗(b)
l,T+h))

′. Note that for this system, we do not construct

Bonferroni rectangles because they may contain unfeasible subregions of points where the lower

bound is greater than the upper bound.

In Figures 1-4, we illustrate the shapes of the different prediction regions. We run a single sim-

ulation to construct the one-step-ahead 95%-probability forecast regions based on the estimation

of a VAR(4) model (T = 1000) for the center/log-range system whose errors follow a bivariate

normal distribution with contemporaneous correlation of -0.24. For the bootstrap procedures, we

use B = 4000. In Figure 1, we plot seven regions for the center/log-range system. As expected,

the Normal ellipse and the bootstrap ellipse have identical shapes. The Tukey convex hull follows

very closely the ellipses. The modified Bonferroni rectangles are able to capture the negative cor-

relation between center and log-range. In Figure 2, we plot the seven regions for the center/range
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system. As expected, the transformed Normal ellipse and the transformed bootstrap ellipse have

identical shapes. The Tukey convex hull and the analytical contour based on (3.5) follow very

closely the transformed ellipses. In Figures 3 and 4, we plot the 95% bootstrap forecast ellipsoid

and the Tukey region for the upper/lower bounds system. The analytical contour based on (3.5)

and the Tukey convex hull are very close to each other. However, for this particular realization,

the bootstrap ellipsoid is somehow different mainly in the center and upper right corner of the

distribution of the lower/upper bounds system.

5 Evaluation of the Prediction Regions

We present several criteria to evaluate the prediction regions. As in the case of loss functions, it

is only the objective of the forecaster that will define which criterium is the most appropriate.

At the most basic level, the forecaster will aim for reliability, that is, those prediction regions that

provide the closest coverage to the nominal coverage rate. In an out-of-sample environment, for a

regions with 100× (1− α)% nominal coverage, the average coverage rate is defined as

C(1−α) =
1

N

N∑
t=1

I
(1−α)
t (5.1)

where N is the number of out-of-sample forecasts and I
(1−α)
t is an indicator variable that is equal

to 1 if the observed outcome falls within the prediction region and 0 otherwise.

Following Golestaneh et al. (2017), we combine reliability with sharpness, a preference for regions

with smaller area or volume, and they propose the following average coverage-volume score

for regions with 100× (1− α)% nominal coverage

CV(1−α) =
∣∣ 1

N

N∑
t=1

[
I
(1−α)
t − (1− α)

]
×
[
V

(1−α)
t

] 1
p
∣∣ (5.2)
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where V
(1−α)
t is the volume of the prediction region with nominal coverage rate (1− α) at time t,

and p is the dimension of the outcome variable, which in our case is p = 2. The forecaster would

prefer a lower score as he is aiming for regions with high reliability and small area.

Another aspect to the evaluation of forecast regions is to consider the observations outside of the

100 × (1 − α)% region and to assess how far they are from a central point within the prediction

region. We propose the following average outlier distance

O(1−α) =
1

G

N∑
t=1

[
1− I(1−α)t

]
×D(yt,Mt) (5.3)

where G is the number of observations outside the region, D is a distance measure (e.g. Euclidean

distance) of each outside-the-region outcome yt from Mt, which is a central point in the region.

We choose Mt to be the median of the realizations generated at each time t according to the

methods explained in Section 4. However, defining the median for a multi-dimensional dataset

(2-dimensional in our case) is not as straighforward as it is for a one-dimensional dataset. To

obtain Mt, we implement the definition of median in a multi-dimensional setting introduced by

Zuo (2003), known as ‘projection depth median’, and programmed in the Matlab package (Liu and

Zuo, 2015). A brief description follows.

With a one-dimensional dataset, Z = {Zi}, i = 1, ...n, a robust measurement of the outlyingness

of a point z (a scalar) relative to Z is the outlying function

o1(z, Z) =
|z −Med(Z)|
MAD(Z)

where Med is the median of data set Z and MAD(Z) = Med{|Zi −Med(Z)|, i = 1, ..., n}. When

z and Z are p-dimensional (p > 1), the above outlying function is applied by projecting z and Z

into a one-dimensional space, i.e., o1(u
T z, uTZ), where u ∈ S and S = {v ∈ Rp : ‖v‖ = 1} is a

set of unit vectors in the p-dimensional space. The projection depth of point z with respect to Z
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is defined as PD(z, Z) = (1 + O(z, Z))−1, where O(z, Z) ≡ sup
u∈S

o1(u
T z, uTZ). Under some mild

conditions (Zuo, 2013), there exists a unique single point (z∗ ∈ Rp, not necessarily from Z) that

maximizes PD(z, Z) for a data set Z. This z∗ is defined as the ‘projection depth median’ of Z.

The 100 × α% outside-the-region observations can be considered ‘risk’ that the forecaster has to

bear and, in this sense, he would like to minimize O(1−α). For two regions with similar coverage,

the forecaster will choose that with a lower average outlier dispersion.

We also evaluate the prediction region by the sharpness or tightness of the intervals that result from

projecting the two-dimensional region into one-dimensional intervals. We draw a large number of

directions, which are given by the lines drawn from the zero origin of the unit circle to any point in

its boundary. For each direction, we find the two bounding tangent lines to the prediction region

that are perpendicular to that direction. We calculate the length of the projected interval bounded

by the tangent lines. See Figure 5 (top panel) for a graphical representation. Denote di ∈ Υ as

the ith direction in Υ, where Υ is the set of all directions, and let D be the number of directions.

At time t, the average projection length over all directions is

Pt =
1

D

D∑
i=1

(udi − ldi),

where udi is the upper bound and ldi the lower bound of the projected interval in the ith direction.

Then, over the prediction sample, the average length of the projected intervals associated

with the (1− α)% prediction region is

P(1−α) =
1

N

N∑
t=1

Pt (5.4)

The forecaster would prefer prediction regions that deliver tight projected intervals.

We now consider the realized data points over the prediction period in conjunction with the

projected intervals. For each direction, we also project each point into that direction and measure
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whether the point falls into or outside of the projected interval (see Figure 5, top panel) . An

indicator function I will assign the value 0 if the point falls inside and 1 if the point falls outside

of the projected interval. At time t, over all D directions, we calculate the average distance of the

projected outliers to the projected interval as

OPt =
1

D

D∑
i=1

[(ldi − xdi)I(xdi < ldi) + (xdi − udi)I(xdi > udi)]

where xdi is the coordinate of the data point projected on the ith direction. Then, over the

prediction sample, the average distance of the projected outliers associated with the 100×

(1− α)% prediction region is

OP(1−α) =
1

N

N∑
t=1

OPt (5.5)

The forecaster prefers prediction regions with projected outliers close to the projected intervals.

We expect that when the length of the projected interval is large, the distance of the projected

outliers to the interval will be smaller. To take into account this a trade-off, we propose a combined

criterium POPt = Pt × OPt so that, over the prediction sample, the average trade-off associated

with the 100× (1− α)% prediction region is

POP(1−α) =
1

N

N∑
t=1

POPt (5.6)

A smaller POP(1−α) would be preferred by the forecaster.

Finally, we assess whether the prediction region is probability-centered. We check whether the

points outside of the prediction region are evenly distributed around the region. At time t, we

consider a cloud of data points and calculate the median Mt as in Zuo (2003). We also consider a

number of directions D that pass through Mt. We define Hu(di,Mt) as the half-plane above the
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line generated by the direction di and Hl(di,Mt) as the half-plane below the same line. See Figure

5 (bottom panel) for a graphical representation. For a given direction di and the 100× (1− α)%

prediction region R, we consider the number of points outside of the region, i.e., x ∈ Rc, which

are either in Hu(di,Mt) or in Hl(di,Mt), that is

Cu(di,Mt)) = {#x|(x ∈ Rc) ∩ (x ∈ Hu(di,Mt))}

Cl(di,Mt) = {#x|(x ∈ Rc) ∩ (x ∈ Hl(di,Mt))}

where Cu(di) and Cl(di) are functions providing the number of of outlier points falling in the

upper half-plane or lower half-plane respectively. If the outliers are evenly distributed around the

100× (1− α)% prediction region, we expect the following statistic S(1−α)(Mt) to be close to zero

S(1−α)(Mt) =
1

D

D∑
i=1

|Cu(di,Mt))− Cl(di,Mt)| (5.7)

Though S(1−α)(Mt) will not be feasible with real data (we will have only one realized observation

at time t that could be in or out of the prediction region), in a simulated environment, we will be

able to assess the probability-centered property of each prediction region.

6 Monte Carlo Simulations

We perform extensive Monte Carlo simulations to assess the performance of the prediction regions

constructed with the analytical and semiparametric methods explained in sections 3 and 4. The

regions are evaluated according to the seven criteria described in section 5.

We generate a small sample of T = 200 observations and a large sample of T = 1000 observations

(estimation samples) from a VAR(4) for the center/log-range system (2.1)-(2.2) with parameter

values reported in Table 1. We consider four cases regarding distributional assumptions from which
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the errors are drawn: (1) center and log-range errors are both normally distributed; (2) center errors

are Student-t with 5 degrees of freedom and log-range errors are normally distributed; (3) center

errors are Student-t with 5 degrees of freedom and range errors are exponentially (λ) distributed;

and (4) center errors are normal and range errors exponentially (λ) distributed. Note that the

distributional assumptions are on the marginal densities of the errors of each equation. It is only

in case (1) that the bivariate density of the center and log-range is normal; in the rest of the cases,

we do not know the exact bivariate densities.6

We consider 1- and 3-step-ahead prediction regions with 95% nominal coverage.7 We calculate

the empirical coverage by simulating 1000 future values of the required vector at time T , i.e.

center/log-range, center/range, and upper/lower bounds, at the forecast horizon, and calculating

the proportion of these values that falls within the constructed prediction regions. The number of

Monte Carlo replications is 500, the number of bootstrap samples is B = 2000, and the number of

directions to calculate the average length of the projected intervals and outliers is D = 100.

6.1 Center and Log-Range are Normally distributed

The errors of the center equation of the VAR(4) are drawn from a normal density as well as the

errors of the log-range equation. In Tables 2-3, we report the evaluation of the prediction regions

for the three systems (center/log-range, center/range and upper/lower bounds) for forecast horizon

h = 1 with estimation samples T = 1000 and T = 200. Note that we only estimate the VAR(4)

once for the center/log-range, construct prediction regions for this system, and based on these

estimates, we proceed to construct prediction regions for the other two systems.

Given the bivariate normality of the center/log-range system, the prediction regions based on the

6For the system to have the desired marginal density functions and the stated correlation structure, we have
generated bivariate errors from a Gaussian copula and re-transform the PITs of the corresponding univariate normal
variates according to the desired density, e.g. Student-t, to obtain the new error variates, which need to be adjusted
to have the desired mean and variance.

7The results for h = 3 are provided in the Supplementary Material, Tables S1-S4.
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normal ellipse (3.1) and on the analytical methods (3.5) would be exact if parameter estimation

were not a concern. For a large estimation sample T = 1000 (Table 2), all regions, except for the

Tukey convex hull, are very reliable with empirical coverage C95 of mostly 95%. Bootstrap ellipse

and bootstrap Bonferroni rectangles, which account for parameter uncertainty, deliver the closest

value to 95% in the three systems. Bonferroni rectangles have the largest areas compared to the

normal ellipse and to the regions based on analytical methods, but because they provide good

coverage, they enjoy one of the lowest average coverage-volume scores CV95. The larger area of the

Bonferroni rectangles is somehow compensated by a lower average outlier distance O95, though this

metric is very similar for all prediction regions considered across the three systems. The tightest

regions i.e., those projecting tight one-dimensional intervals measured by POP95, correspond to

the normal ellipse, bootstrap ellipsoids, and those regions based on exact analytical expressions.

These are also the regions with outliers more evenly distributed around their boundaries.

For small estimation sample T = 200 (Table 3), the bootstrap regions provide a clear advantage

with respect to the other regions. In small samples, parameter uncertainty plays a more important

role than in large samples. Boostrap methods are designed to take into account estimation un-

certainty. Across systems, bootstrap ellipsoids and bootstrap Bonferroni rectangles are still very

reliable with empirical coverage close to 95%. They also enjoy the smallest score CV95. The tight-

est regions, i.e small POP95, are provided by the bootstrap ellipsoid and its transformed regions

followed by the Tukey region.

Considering the overall performance assessed by the metrics C, CV , and POP , for large estimation

samples, normal ellipses, bootstrap ellipsoids, and those regions based on analytical methods are

the best performers, and as expected, better than the Tukey convex hull. Bonferroni rectangles,

though providing good coverage, tend to be conservative in area, which in turn provides some

advantages regarding the lower dispersion of the outliers. For small samples, the bootstrap ellipsoid

is the best performer. These conclusions hold regardless of whether h = 1 or h = 3.
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6.2 Student-t(5) Center and Normal Log-Range

In Tables 4-5, we report the performance of the different predictions regions when the errors of the

center equation of the VAR(4) are leptokurtic and the errors of the log-range equation are normal.

Thus, the bivariate system center/log-range is not normally distributed but symmetric. Conse-

quently, the normal ellipse, Bonferroni rectangles, and their corresponding transformed regions

tend to undercover with empirical coverage rates of about 94% in large samples, and about 93% in

small samples because they do not consider the fat tails of the errors in the center equation. The

bootstrap regions, which are robust to distributional assumptions and capture estimation uncer-

tainty, are better performers with coverage rates close to 95% in large and small samples. They also

provide the smallest score CV95 and, according to S95, tend to have a more evenly distribution of

outliers around the regions. For small samples, the performance of bootstrap regions is even more

striking with the bootstrap ellipsoid being the best region in terms of C95, CV95, and S95.These

results hold for both horizons h = 1 or h = 3.

The Tukey regions, which do not require any distributional assumption, are in-between the boot-

strap regions and the regions based on normality. Note that the Tukey regions have a superior

advantage according to POP95. Sacrificing a bit of coverage, the Tukey region provides the tightest

one-dimensional projections across systems, estimation samples, and forecast horizons.

6.3 Student-t(5) Center and Exponential Range

In Tables 6-7, we report the performance of the different predicitons regions when the errors of

the center equation of the VAR(4) are drawn from a Student-t with 5 degrees of freedom and

the errors of the log-range equation are those resulting from assuming that the range itself is

exponentially distributed. The exponential errors introduce some asymmetry that is not fully

corrected when they are transformed into errors of the log-range equation. The resulting bivariate
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system center/log-range is not normally distributed as it exhibits leptokurtosis and asymmetry.

For small and large samples, the bootstrap regions (ellipsoids and Bonferroni rectangles) provide

the best coverage C95 with empirical rates very close to 95%, followed by the Tukey region that

covers around 94% of the events. The same regions have the smallest scores CV95 and the smallest

POP95. As in the previous case, the Tukey region has a clear advantage over the other regions when

we are interested in the smallest POP95. It is interesting to note that the boostrap Bonferroni

rectangles are able to distribute outliers more evenly around their perimeters than any other

prediction regions. These results hold for the two horizons considered h = 1 and h = 3.

6.4 Normal Center and Exponential Range

In Tables 8-9, we report the performance of the different predictions regions when the errors of the

center equation of the VAR(4) are drawn from a normal distribution and the errors of the log-range

equation are those resulting from assuming that the range itself is exponentially distributed. The

resulting bivariate system center/log-range is not normally distributed as asymmetry is introduced

through the log-range equation.

For large samples, all regions have an empirical coverage C95 between 94 and 95% with the boot-

strap ellipoid and the bootstrap Bonferroni rectangle being very close to 95%. It is interesting

to note that the normal ellipse in the center/log-range system and its analytically derived regions

for the center/range and upper/lower systems provide a very competitive coverage of almost 95%

and the smallest scores CV95. The bootstrap ellipsoid and its transformed regions come as the

next best performer with some advantage regarding the POP95 criterium. In small samples, the

boostrap methods provide the best coverage with an empirical rate of almost 95%. The bootstrap

ellipsoid delivers the best performance when considering CV95 and POP95. The normal ellipse and

its analytically derived formulas tend to undercover with rates around 93%. We obtain similar

results for h = 1 and h = 3.
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In summary, considering the three systems (center/log-range, center/range, and upper/lower) and

assessing the overall performance of the prediction regions by the summary metrics C95, CV95, and

POP95, we conclude the following:

1. If the center/log-range system is bivariate normal (case 6.1) or approximately normal (case 6.4)

and the estimation sample is large, the prediction regions based on the normal ellipse (3.1) and on

the analytical methods (3.5) are the best performers. However, with a small estimation sample, we

recommend implementing a bootstrap ellipsoid (4.1) and its transformed regions (4.4), and (4.9).

2. If the center/log-range system is not bivariate normal but the joint distribution is symmetric

(case 6.2) and the estimation sample is large, any of the bootstrap regions (ellipsoids and Bonferroni

rectangles) (4.1, (4.2), and (4.3), their transformed (4.4), (4.5), (4.6), as well as (4.9) are the best

performers. In small samples, a bootstrap ellipsoid (4.1) and its transformed regions (4.4), as well

as (4.9) are preferred.

3. If the center/log-range system is not bivariate normal and the joint distribution is leptokurtic

and asymmetric (case 6.3), for large and small samples, we recommend implementing the bootstrap

Bonferroni rectangles (4.2), and (4.3) and their transformed (4.5), (4.6), as well as (4.9).

7 Prediction Regions for SP500 Low/High Return Interval

We collect the daily intervals of low/high prices of the SP500 index from January 2, 2009 to April

20, 2018 for a total of 2341 observations. Since prices are non-stationary, we construct the daily

interval of low/high returns by calculating the daily minimum and maximum returns with respect

to the closing price of the previous day. In this way, we will model stationary intervals. In the

Supplementary Material Table S5, we provide the descriptive statistics of the center, range and

log-range of the low/high return intervals. The center average is zero with a standard deviation

of 0.64. The center exhibits fat tails with a coefficient of kurtosis of 7 and it is slightly skewed to

26



the left. The range has a mean of 1.15 and a larger standard deviation, 0.83, than the center, it is

positively skewed, and it is negatively correlated with the center with a coefficient of correlation of

-0.12. The log-transformation of the range corrects the asymmetry and large kurtosis of the range

so that log-range is only slightly skewed to the right and has a coefficient of kurtosis of about 3.

The coefficient of correlation of center and log-range is about -0.10. The Q-statistics for the center

indicate no autocorrelation while those for the range and log-range indicate high autocorrelation.

In Figure 6, we plot the time series of the center and the range as well as their unconditional

bivariate density function. The heavy tails in the center and the almost normality of the log-range

are similar distributional characteristics to those of the simulation case in section 6.2 (Student-t(5)

center and normal log-range).

We proceed with the modeling of the bivariate system of center/log-range. We split the total

sample into an estimation sample from January 2, 2009 to December 31, 2016 (2014 observations)

and a prediction/evaluation sample from January 1, 2017 to April 20, 2018 (327 observations). The

autocorrelograms of the center seem to indicate no autocorrelation in contrast to those of the log-

range that exhibit a profile of an AR(6) with strong memory (see Figure S1 in the Supplementary

Material). These features mimic the autocorrelation that we observe in the end-of-the day returns

and in their squared returns when modeling the conditional variance, which is not very surprising

because range or log-range are good proxies for volatility. The SIC also selects a VAR(6) and we

proceed with the VAR estimation. The results are presented in Table S6 of the Supplementary

Material. As expected, all the regressors (lagged center and lagged log-range) in the equation for

the center are not statistically significant and we re-estimate a restricted VAR where the center

equation has only a constant. On the contrary, the equation for the log-range present interesting

dynamics. The center Granger-causes the log-range such that the lagged centers are negatively

correlated with the current log-range, i.e. positive and large changes in the center return today will

predict a narrower range tomorrow. This is similar to a leverage effect in a conditional variance

equation. Another relevant aspect is the strong and statistically significant autoregressive nature of
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log-range in agreement with the ACF/PACF profiles. The goodness of fit for the log-range equation

is high with an adjusted R-squared of 52%. The residuals corresponding to this system are all

clear of any autocorrelation. The center residuals and log-range residuals are contemporaneous

negatively correlated with a correlation coefficient of -0.17. The residuals from the center equation

have the same characteristics as the center, that is, are leptukortic with a sample kurtosis of 7 and

slightly skewed to the left. The residuals from the log-range equation remain almost symmetric

around zero and they have a sample kurtosis of 3. With these characteristics, the conditional joint

density of the center and log-range cannot be bivariate normal.

Formally, we test for conditional bivariate normality by implementing the Generalized AutoCon-

touR (G-ACR) (in-sample) tests based on the Probability Integral Transformations (PIT) of the

joint density under the null hypothesis of bivariate normality (González-Rivera and Sun, 2015). In

Table S7 of the Supplementary Material, we report the results of the t-statistics (tk,α) that canvas

the density from the 1% to the 99% PIT autocontours for lags k = 1, 2, ...5. The null hypothesis

is strongly rejected at the 5% significance level for mostly all but the 10%, 90% and 95% auto-

contours. The portmanteau test Ck also reinforces the strong rejection of bivariate normality. In

Figure S2 of the Supplementary Material, we plot the autocontours of the contemporaneous PITs

(centert, log-ranget|centert). Under the correct null hypothesis, the distribution of the PITs should

be uniformly distributed within these autocontour squares. It is obvious that this is not the case.

We evaluate the out-of-sample performance of the one-step-ahead 95% prediction regions from

January 1, 2017 to April 20, 2018 (327 observations). The results are reported in Tables 10. For

the system center/log-range, the bootstrap Bonferroni rectangles (4.2) and (4.3) offer the best

coverage C95 with empirical rates of mostly 95% and they are the most reliable with the lowest

average coverage-volume scores CV95. Together with the Tukey convex hull, they also provide

the lowest average outlier distance O95. Both rectangles (4.2) and (4.3) also provide the tightest

projected one-dimensional regions measured by POP95. For the system center/range, we find that
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the transformed modified bootstrap Bonferroni rectangle (4.6) is the best performer according

to most metrics C95, CV95 and POP95. For the system upper/lower bounds, the Tukey convex

hull offers the best coverage and the lowest scores for O95 and POP95. As expected, the analytic

methods (3.5) are not reliable as they tend to undercover. On the contrary, the bootstrap ellipsoid

(4.1) and its transformed region (4.4), and (4.9) tend to overcover. All these results are very

consistent with the Monte Carlo findings of the previous section.

In Figures 7 and 8, we plot the one-step ahead 95% prediction regions for the center/log-range and

center/range systems respectively. We choose six random dates over the prediction sample (March

15, May 11, August 30, December 8, 2017 and February 22, April 6, 2018). In all six dates, the

one-step-ahead realized values of the (center, log-range) and (center, range) fall within the regions;

only the realized values on December 8, 2017 and April 6, 2018 are slightly more extreme and they

fall towards the boundaries of the prediction regions. For the center/log-range system, the normal

ellipse and the bootstrap ellipse are very similar but in the center/range system, the bootstrap

ellipse tends to be wider adapting to the kurtosis of the center and the asymmetry of the range.

The differences among the Bonferroni rectangles are more obvious in the center/range system. In

the center/log-range system, the Tukey convex hull has a cone shape over all the six dates though

the shape becomes more irregular in the center/range system.

8 Conclusion

The interest in interval data arises because interval measurements offer a more complete description

of a data set. In time series, each time realization has joint information on the level and the

dispersion of the process under study. However, statistical analysis of interval-valued data requires

that the natural order of the interval is preserved. Though there are several works that consider

the problem of estimation with constraints, we are not aware of any work that considers the
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construction of forecasts for interval-valued data satisfying the natural constraint in each period

of time, i.e. lower bound is not larger than the upper bound, or equivalently, the range of the

interval must be strictly positive. Our contribution lies on approximating a probabilistic forecast

of an interval-valued time series by offering alternative approaches to construct bivariate prediction

regions of the center and the range, or the lower and upper bounds, of the interval.

To overcome the positive constraint of the range, we have estimated a Gaussian bivariate system

for the center/log-range system, which also delivers QML properties for our estimators. However,

the interest of the researcher is not the prediction of the center/log-range but the center/range or

upper/lower bounds of the interval. By implementing either analytical or bootstrap methods we

have directly transformed the prediction regions for the center/log-range system into those for the

center/range and upper/lower bounds systems. It is important to remark that we do not focus

on point forecast purposely. By focusing on prediction regions rather than on point forecasts,

we avoid the biases that are associated with the exp-transformation of the point forecasts of log-

transformed variable. In this case, bias-correction techniques are necessary if one’s interest is the

conditional mean of the future variable. A prediction region for the center/log-range does not

need any bias correction when we transform it to a prediction region of the center/range system

because the quantile is preserved under a monotonic transformation like the exp-transformation.

However, these transformed prediction regions can have very irregular shapes even in the most

straightforward scenario of bivariate normality of the center/log-range system. If a central point

forecast is of interest, the researcher can always calculate the centroid of the region.

Beyond the standard coverage rate, we have proposed several new metrics to evaluate the perfor-

mance of different prediction regions. We have introduced a notion of risk to the evaluation of the

regions by considering the location of the out-of-the-region outcomes with respect to some central

point in the region. The researcher would like to minimize risk once the empirical coverage of the

region is close to the nominal coverage. We have considered Gaussian and non-Gaussian systems
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and our recommendation leans towards bootstrap methods, even for Gaussian systems. Bootstrap

ellipsoids and their transformed are best when the joint distribution of the center/log-range system

is symmetric. If it is not, then bootstrap Bonferroni rectangles will be preferred.

We have analyzed the time series of the daily low/high return interval of the SP500 index. We

modeled and predicted the joint conditional density of the return level and the return volatility.

We showed that the construction of several prediction regions of the center and range of the return

interval do not require strong parametric distributional assumptions.
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Tables: Monte Carlo Simulations.

Center equation log-Range equation

Constant -0.9344 0.0759
C(-1) 0.3404 -0.0112
C(-2) -0.1530 -0.0027
C(-3) 0.0314 -0.0030
C(-4) -0.0551 -0.0022
log-R(-1) -0.5030 0.0852
log-R(-2) 0.1281 0.1845
log-R(-3) -0.1556 0.1539
log-R(-4) 0.9157 0.0760

Variance-covariance matrix of the errors:

Ω =

[
σ2
1 σ12

σ12 σ2
2

]
=

[
111.24 −1.02
−1.02 0.16

]
Contemporaneous correlation between the center and log-range errors = -0.24.

Table 1: Monte Carlo simulations. VAR(4) parameter values for the center/log-range system

33



Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9469 8.7059 0.0645 18.8891 25.8596 0.0275 0.7090 0.0089
Bonferroni rectangle (3.2)-(3.3) 0.9484 9.1321 0.0646 18.3628 24.9220 0.0375 0.9309 0.0088
Modified Bonferroni rectangle (3.4) 0.9516 9.1321 0.0655 18.5670 24.9306 0.0372 0.9255 0.0095
BE: Bootstrap ellipsoid (4.1) 0.9493 8.7842 0.0801 19.0161 26.0994 0.0262 0.6773 0.0087
Bootstrap Bonferroni rectangle (4.2) 0.9493 9.2184 0.0819 18.4758 25.1222 0.0373 0.9293 0.0096
Modified Bootstrap Bonferroni rectangle (4.3) 0.9521 9.2184 0.0848 18.6347 25.1309 0.0371 0.9240 0.0104
Tukey convex hull 0.9414 8.6389 0.1028 18.5770 26.1263 0.0283 0.7265 0.0107

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9470 9.8933 0.0782 18.7056 26.2543 0.0263 0.6885 0.0161
T-NE: T-Normal ellipse (3.6) 0.9469 10.1606 0.0756 18.9612 25.9781 0.0280 0.7259 0.0089
T-Bonferroni rectangle (3.7) 0.9484 10.7382 0.0758 18.4471 25.4849 0.0349 0.8849 0.0088
T-Modified Bonferroni rectangle (3.8) 0.9513 10.9309 0.0788 18.5675 25.5757 0.0343 0.8742 0.0101
T-BE: T-Bootstrap ellipsoid (4.4) 0.9493 10.2637 0.0940 19.0892 28.8440 0.0267 0.7346 0.0087
T-Bootstrap Bonferroni rectangle (4.5) 0.9493 10.8482 0.0966 18.5638 25.6943 0.0347 0.8832 0.0096
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9519 11.0436 0.1036 18.6581 25.7867 0.0342 0.8722 0.0109
Tukey convex hull 0.9411 10.2071 0.1237 18.6050 26.2517 0.0287 0.7406 0.0119

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9470 9.8763 0.0781 26.3045 46.5574 0.0463 2.1514 0.0095
Bootstrap ellipsoid (4.9) 0.9488 10.4679 0.1010 24.3205 47.3650 0.0414 1.9393 0.0126
Tukey convex hull 0.9411 10.1884 0.1232 26.1956 46.5761 0.0506 2.3167 0.0114

Table 2: Evaluation of the h-step ahead 95% prediction regions from a GAUSSIAN center/log-range system (h = 1);
500 Monte Carlo simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) are the
corresponding equations in the text.
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Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9323 8.5326 0.1687 18.4343 25.4321 0.0369 0.9220 0.0208
Bonferroni rectangle (3.2)-(3.3) 0.9352 8.9625 0.1559 18.0943 24.5124 0.0490 1.1831 0.0198
Modified Bonferroni rectangle (3.4) 0.9378 8.9625 0.1421 18.1143 24.5209 0.0488 1.1768 0.0201
BE: Bootstrap ellipsoid (4.1) 0.9465 8.9272 0.1302 19.0901 26.6052 0.0276 0.7146 0.0172
Bootstrap Bonferroni rectangle (4.2) 0.9455 9.3834 0.1384 18.4711 25.6546 0.0408 1.0206 0.0181
Modified Bootstrap Bonferroni rectangle (4.3) 0.9480 9.3834 0.1320 18.4979 25.6636 0.0406 1.0152 0.0178
Tukey convex hull 0.9334 8.7457 0.1775 18.3070 26.8745 0.0310 0.8045 0.0222

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9327 9.7378 0.1927 18.4312 25.8139 0.0356 0.9029 0.0247
T-NE: T-Normal ellipse (3.6) 0.9323 9.9933 0.1971 18.5044 25.5514 0.0376 0.9434 0.0209
T-Bonferroni rectangle (3.7) 0.9352 10.5726 0.1836 18.1739 25.0743 0.0457 1.1273 0.0199
T-Modified Bonferroni rectangle (3.8) 0.9373 10.7899 0.1750 18.1043 25.1757 0.0450 1.1140 0.0208
T-BE: T-Bootstrap ellipsoid (4.4) 0.9465 10.4975 0.1528 19.1640 26.7346 0.0281 0.7324 0.0173
T-Bootstrap Bonferroni rectangle (4.5) 0.9455 11.1567 0.1645 18.5525 26.2772 0.0378 0.9673 0.0181
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9472 11.3987 0.1633 18.4061 26.3916 0.0371 0.9548 0.0187
Tukey convex hull 0.9338 10.4532 0.2114 18.3920 27.0735 0.0311 0.8151 0.0224

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9327 9.7528 0.1931 25.9290 45.7581 0.0629 2.8261 0.0198
Bootstrap ellipsoid (4.9) 0.9470 10.7473 0.1919 25.1246 48.4270 0.0429 2.0190 0.0180
Tukey convex hull 0.9338 10.4590 0.2118 25.8989 48.0060 0.0550 2.5477 0.0220

Table 3: Evaluation of the h-step ahead 95% prediction regions from a GAUSSIAN center/log-range system (h = 1);
500 Monte Carlo simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) are the
corresponding equations in the text.
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Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9412 8.6797 0.0890 22.6435 28.0054 0.1126 3.1971 0.0088
Bonferroni rectangle (3.2)-(3.3) 0.9398 9.1163 0.1026 21.9114 24.8483 0.1269 3.1407 0.0090
Modified Bonferroni rectangle (3.4) 0.9429 9.1163 0.0850 22.3330 24.8572 0.1266 3.1360 0.0100
BE: Bootstrap ellipsoid (4.1) 0.9488 8.9704 0.0760 23.7767 26.6225 0.1029 2.7149 0.0079
Bootstrap Bonferroni rectangle (4.2) 0.9492 9.6376 0.0850 21.5902 27.3796 0.0984 2.6631 0.0092
Modified Bootstrap Bonferroni rectangle (4.3) 0.9523 9.6376 0.0854 22.0367 27.3895 0.0982 2.6586 0.0100
Tukey convex hull 0.9413 8.8669 0.1045 21.0923 29.6214 0.0785 2.2802 0.0106

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9411 9.9212 0.1058 22.5047 26.1741 0.1090 2.8408 0.0143
T-NE: T-Normal ellipse (3.6) 0.9412 10.1810 0.1048 22.7112 28.3778 0.1129 3.1091 0.0087
T-Bonferroni rectangle (3.7) 0.9398 10.7807 0.1219 21.9890 25.4332 0.1215 3.0773 0.0090
T-Modified Bonferroni rectangle (3.8) 0.9426 10.9858 0.1053 22.3062 25.5306 0.1206 3.0676 0.0109
T-BE: T-Bootstrap ellipsoid (4.4) 0.9488 10.5704 0.0897 23.8431 34.9965 0.1027 3.1692 0.0079
T-Bootstrap Bonferroni rectangle (4.5) 0.9492 11.4053 0.1009 21.6829 27.9724 0.0944 2.6087 0.0091
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9518 11.6538 0.1043 21.9587 28.0838 0.0937 2.5993 0.0109
Tukey convex hull 0.9416 10.5931 0.1239 21.1648 29.8935 0.0776 2.2727 0.0123

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9411 9.8875 0.1053 31.6801 46.4097 0.1959 9.0588 0.0090
Bootstrap ellipsoid (4.9) 0.9486 10.9656 0.1034 30.8649 49.3236 0.1642 8.0201 0.0112
Tukey convex hull 0.9416 10.5863 0.1236 29.8004 53.1740 0.1386 7.2162 0.0106

Table 4: Evaluation of the h-step ahead 95% prediction regions from a system with center STUDENT-t(5) distributed
and NORMAL log-range (h = 1); 500 Monte Carlo simulations from a VAR(4). In the first column, the
numbers in parenthesis e.g., (x.x) are the corresponding equations in the text.
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Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9280 8.5034 0.1946 21.5578 25.3124 0.1243 3.0850 0.0198
Bonferroni rectangle (3.2)-(3.3) 0.9281 8.9418 0.2017 20.9695 24.4282 0.1400 3.3598 0.0200
Modified Bonferroni rectangle (3.4) 0.9309 8.9418 0.1841 21.1982 24.4369 0.1398 3.3548 0.0200
BE: Bootstrap ellipsoid (4.1) 0.9465 9.1088 0.1302 23.8342 27.0845 0.1018 2.6898 0.0151
Bootstrap Bonferroni rectangle (4.2) 0.9444 9.7872 0.1448 21.5150 27.8271 0.1044 2.8057 0.0176
Modified Bootstrap Bonferroni rectangle (4.3) 0.9471 9.7872 0.1376 21.7377 27.8371 0.1042 2.8013 0.0174
Tukey convex hull 0.9339 8.9892 0.1761 20.7920 30.3991 0.0836 2.4223 0.0213

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9280 9.6810 0.2227 21.5371 25.7212 0.1207 3.0448 0.0233
T-NE: T-Normal ellipse (3.6) 0.9280 9.9215 0.2269 21.6251 30.6254 0.1244 3.4822 0.0199
T-Bonferroni rectangle (3.7) 0.9281 10.5185 0.2370 21.0455 24.9815 0.1344 3.2963 0.0199
T-Modified Bonferroni rectangle (3.8) 0.9303 10.7436 0.2278 21.1401 25.0872 0.1333 3.2845 0.0209
T-BE: T-Bootstrap ellipsoid (4.4) 0.9465 10.6969 0.1525 23.9020 36.2004 0.1017 3.1213 0.0150
T-Bootstrap Bonferroni rectangle (4.5) 0.9444 11.6073 0.1712 21.5993 28.4407 0.0999 2.7454 0.0174
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9461 11.9048 0.1724 21.5778 28.5761 0.0991 2.7347 0.0181
Tukey convex hull 0.9343 10.7344 0.2128 20.8409 30.6042 0.0839 2.4434 0.0218

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9280 9.6699 0.2229 30.3216 45.5948 0.2173 9.7108 0.0178
Bootstrap ellipsoid (4.9) 0.9464 11.1371 0.1877 31.5378 50.2535 0.1626 7.9359 0.0153
Tukey convex hull 0.9343 10.7409 0.2131 29.3517 54.4157 0.1498 7.7539 0.0196

Table 5: Evaluation of the h-step ahead 95% prediction regions from a system with center STUDENT-t(5) distributed
and NORMAL log-range (h = 1); 500 Monte Carlo simulations from a VAR(4). In the first column, the
numbers in parenthesis e.g., (x.x) are the corresponding equations in the text.

37



Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9368 8.7108 0.1201 21.1329 27.9739 0.1133 3.2150 0.0280
Bonferroni rectangle (3.2)-(3.3) 0.9341 9.1404 0.1482 20.7347 24.8541 0.1273 3.1531 0.0298
Modified Bonferroni rectangle (3.4) 0.9357 9.1404 0.1375 20.8467 24.8628 0.1271 3.1475 0.0280
BE: Bootstrap ellipsoid (4.1) 0.9492 9.3037 0.0779 22.1716 32.8760 0.0937 2.9613 0.0233
Bootstrap Bonferroni rectangle (4.2) 0.9502 9.7724 0.0905 22.0051 27.3986 0.0988 2.6772 0.0099
Modified Bootstrap Bonferroni rectangle (4.3) 0.9524 9.7724 0.0920 22.4823 27.4082 0.0986 2.6727 0.0108
Tukey convex hull 0.9428 9.0187 0.1055 21.4827 29.6579 0.0790 2.3001 0.0122

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9433 9.9723 0.0914 22.5306 26.1769 0.1083 2.8242 0.0186
T-NE: T-Normal ellipse (3.6) 0.9368 10.2383 0.1419 21.0668 30.7229 0.1121 3.4644 0.0289
T-Bonferroni rectangle (3.7) 0.9341 10.8315 0.1767 20.6600 25.4505 0.1212 3.0713 0.0309
T-Modified Bonferroni rectangle (3.8) 0.9337 11.0282 0.1877 20.3441 25.5449 0.1205 3.0672 0.0312
T-BE: T-Bootstrap ellipsoid (4.4) 0.9492 11.0252 0.0923 22.0965 32.9957 0.0930 2.8497 0.0240
T-Bootstrap Bonferroni rectangle (4.5) 0.9502 10.1569 0.0941 21.9978 27.5380 0.0976 2.6566 0.0100
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9545 10.3666 0.0996 23.1236 27.6214 0.0970 2.6486 0.0109
Tukey convex hull 0.9425 9.4339 0.1060 21.2823 29.9939 0.0763 2.2415 0.0117

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9433 9.9574 0.0911 31.8056 46.4025 0.1954 9.0708 0.0105
Bootstrap ellipsoid (4.9) 0.9498 9.4454 0.0911 35.2534 46.7651 0.1925 8.9307 0.0074
Tukey convex hull 0.9425 9.4304 0.1056 30.0265 53.4562 0.1364 7.1413 0.0099

Table 6: Evaluation of the h-step ahead 95% prediction regions from a system with center STUDENT-t(5) distributed
and EXPONENTIAL range (h = 1); 500 Monte Carlo simulations from a VAR(4). In the first column, the
numbers in parenthesis e.g., (x.x) are the corresponding equations in the text.
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Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9261 8.5167 0.2056 20.6548 25.3141 0.1247 3.0939 0.0310
Bonferroni rectangle (3.2)-(3.3) 0.9251 8.9470 0.2239 20.4164 24.4319 0.1404 3.3677 0.0322
Modified Bonferroni rectangle (3.4) 0.9256 8.9470 0.2220 20.3442 24.4403 0.1401 3.3622 0.0321
BE: Bootstrap ellipsoid (4.1) 0.9465 9.3814 0.1325 22.2371 27.8365 0.0945 2.5540 0.0242
Bootstrap Bonferroni rectangle (4.2) 0.9462 9.9340 0.1571 22.2250 27.8960 0.1042 2.8043 0.0183
Modified Bootstrap Bonferroni rectangle (4.3) 0.9481 9.9340 0.1491 22.4270 27.9057 0.1040 2.7995 0.0178
Tukey convex hull 0.9354 9.0890 0.1825 21.4695 30.1396 0.0856 2.4598 0.0222

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9316 9.6907 0.1955 21.7117 25.7230 0.1197 3.0188 0.0232
T-NE: T-Normal ellipse (3.6) 0.9261 9.9385 0.2419 20.5949 28.0041 0.1237 3.2429 0.0318
T-Bonferroni rectangle (3.7) 0.9251 10.5207 0.2657 20.3489 24.9834 0.1339 3.2846 0.0332
T-Modified Bonferroni rectangle (3.8) 0.9236 10.7321 0.2891 19.9189 25.0827 0.1332 3.2787 0.0352
T-BE: T-Bootstrap ellipsoid (4.4) 0.9465 11.0513 0.1571 22.1626 34.6414 0.0937 2.7120 0.0247
T-Bootstrap Bonferroni rectangle (4.5) 0.9462 10.4326 0.1637 22.2054 28.0685 0.1026 2.7783 0.0184
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9493 10.6796 0.1551 22.6885 28.1671 0.1019 2.7678 0.0174
Tukey convex hull 0.9356 9.6360 0.1871 21.1415 30.5515 0.0826 2.4063 0.0227

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9316 9.6745 0.1953 30.6485 45.6115 0.2165 9.6754 0.0181
Bootstrap ellipsoid (4.9) 0.9488 9.7179 0.1664 36.3154 47.9860 0.1862 8.7110 0.0134
Tukey convex hull 0.9356 9.6336 0.1873 29.8330 54.4258 0.1477 7.6642 0.0194

Table 7: Evaluation of the h-step ahead 95% prediction regions from a system with center STUDENT-t(5) distributed
and EXPONENTIAL range (h = 1); 500 Monte Carlo simulations from a VAR(4). In the first column, the
numbers in parenthesis e.g., (x.x) in the first column are the corresponding equations in the text.

39



Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9435 8.7270 0.0781 17.5784 25.8654 0.0278 0.7161 0.0299
Bonferroni rectangle (3.2)-(3.3) 0.9426 9.1588 0.0872 17.4485 24.9354 0.0376 0.9352 0.0304
Modified Bonferroni rectangle (3.4) 0.9445 9.1588 0.0830 17.4346 24.9442 0.0373 0.9282 0.0283
BE: Bootstrap ellipsoid (4.1) 0.9489 8.9423 0.0747 17.5336 26.5065 0.0237 0.6226 0.0281
Bootstrap Bonferroni rectangle (4.2) 0.9506 9.3471 0.0837 18.7679 25.1703 0.0372 0.9274 0.0099
Modified Bootstrap Bonferroni rectangle (4.3) 0.9521 9.3471 0.0877 18.9354 25.1792 0.0369 0.9216 0.0114
Tukey convex hull 0.9427 8.7490 0.1003 18.7555 26.1170 0.0284 0.7289 0.0120

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9501 9.9939 0.0690 18.6000 26.2658 0.0252 0.6607 0.0186
T-NE: T-Normal ellipse (3.6) 0.9435 10.2792 0.0925 17.4961 28.6147 0.0271 0.7610 0.0304
T-Bonferroni rectangle (3.7) 0.9426 10.8600 0.1040 17.3532 25.5328 0.0341 0.8679 0.0311
T-Modified Bonferroni rectangle (3.8) 0.9426 11.0572 0.1134 17.0028 25.6268 0.0338 0.8619 0.0311
T-BE: T-Bootstrap ellipsoid (4.4) 0.9489 10.5592 0.0886 17.4463 29.2689 0.0231 0.6586 0.0285
T-Bootstrap Bonferroni rectangle (4.5) 0.9506 9.7196 0.0871 18.7588 25.3102 0.0362 0.9074 0.0100
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9541 9.8967 0.0932 19.3375 25.3842 0.0357 0.8981 0.0111
Tukey convex hull 0.9422 9.1509 0.1053 18.6275 26.3466 0.0270 0.6995 0.0118

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9501 9.9568 0.0687 26.2449 46.5699 0.0459 2.1299 0.0107
Bootstrap ellipsoid (4.9) 0.9498 9.2576 0.0893 28.2307 45.8963 0.0513 2.3358 0.0090
Tukey convex hull 0.9422 9.1278 0.1048 26.2808 46.8771 0.0480 2.2145 0.0107

Table 8: Evaluation of the h-step ahead 95% prediction regions from a system with center NORMALLY distributed
and EXPONENTIAL range (h = 1); 500 Monte Carlo simulations from a VAR(4). In the first column, the
numbers in parenthesis e.g., (x.x) are the corresponding equations in the text.
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Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9316 8.5318 0.1691 17.7070 25.4302 0.0373 0.9311 0.0327
Bonferroni rectangle (3.2)-(3.3) 0.9322 8.9649 0.1732 17.6845 24.5118 0.0494 1.1909 0.0332
Modified Bonferroni rectangle (3.4) 0.9329 8.9649 0.1708 17.5768 24.5204 0.0491 1.1835 0.0328
BE: Bootstrap ellipsoid (4.1) 0.9470 9.0687 0.1279 17.7878 27.0149 0.0253 0.6623 0.0280
Bootstrap Bonferroni rectangle (4.2) 0.9473 9.5201 0.1538 19.0599 25.7098 0.0409 1.0245 0.0190
Modified Bootstrap Bonferroni rectangle (4.3) 0.9490 9.5201 0.1457 19.0867 25.7188 0.0407 1.0184 0.0185
Tukey convex hull 0.9362 8.8415 0.1775 18.7765 26.8598 0.0311 0.8061 0.0231

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9368 9.7262 0.1603 18.4753 25.8099 0.0345 0.8731 0.0238
T-NE: T-Normal ellipse (3.6) 0.9316 9.9864 0.1991 17.6350 25.5484 0.0367 0.9196 0.0334
T-Bonferroni rectangle (3.7) 0.9322 10.5660 0.2060 17.6041 25.0697 0.0453 1.1154 0.0341
T-Modified Bonferroni rectangle (3.8) 0.9308 10.7842 0.2258 17.2095 25.1711 0.0448 1.1076 0.0360
T-BE: T-Bootstrap ellipsoid (4.4) 0.9470 10.6754 0.1508 17.7025 27.1477 0.0248 0.6518 0.0284
T-Bootstrap Bonferroni rectangle (4.5) 0.9473 10.0196 0.1607 19.0394 25.8880 0.0397 0.9992 0.0191
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9501 10.2369 0.1506 19.2279 25.9780 0.0391 0.9879 0.0182
Tukey convex hull 0.9353 9.3801 0.1893 18.5592 27.0879 0.0300 0.7844 0.0235

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9368 9.7297 0.1604 26.0705 45.7636 0.0625 2.8067 0.0200
Bootstrap ellipsoid (4.9) 0.9488 9.5331 0.1753 29.0966 47.0634 0.0520 2.3831 0.0168
Tukey convex hull 0.9353 9.3782 0.1894 26.1874 48.1843 0.0535 2.4796 0.0214

Table 9: Evaluation of the h-step ahead 95% prediction regions from a system with center NORMALLY distributed
and EXPONENTIAL range (h = 1); 500 Monte Carlo simulations from a VAR(4). The numbers in paren-
thesis e.g., (x.x) in the first column are the corresponding equations in the text.

41



Tables: SP500 Daily Low/High Return Interval

SP500 Low/High Returns EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95

NE: Normal ellipse (3.1) 0.9541 2.2238 0.0094 1.6077 2.4307 0.0038 0.0093
Bonferroni rectangle (3.2)-(3.3) 0.9450 2.3134 0.0114 1.4657 2.8953 0.0020 0.0058
Modified Bonferroni rectangle (3.4) 0.9480 2.3134 0.0043 1.4534 2.9125 0.0015 0.0045
BE: Bootstrap ellipsoid (4.1) 0.9602 2.3616 0.0252 1.6859 2.5819 0.0027 0.0070
Bootstrap Bonferroni rectangle (4.2) 0.9480 2.4732 0.0040 1.3783 3.1022 0.0009 0.0027
Modified Bootstrap Bonferroni (4.3) 0.9511 2.4732 0.0031 1.3631 3.1222 0.0005 0.0015
Tukey convex hull 0.9450 2.1422 0.0103 1.3317 2.5003 0.0020 0.0049

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95

Analytical method (3.5) 0.9358 1.8135 0.0319 1.5232 2.2083 0.0085 0.0188
T-NE: T-Normal ellipse (3.6) 0.9541 1.8879 0.0024 1.7135 2.2555 0.0055 0.0125
T-Bonferroni rectangle (3.7) 0.9450 1.9778 0.0180 1.4464 2.5824 0.0039 0.0100
T-Modified Bonferroni rectangle (3.8) 0.9480 1.9904 0.0131 1.4425 2.6327 0.0030 0.0078
T-BE: T-Bootstrap ellipsoid (4.4) 0.9602 2.0147 0.0080 1.8537 2.4211 0.0042 0.0103
T-Bootstrap Bonferroni rectangle (4.5) 0.9480 2.1867 0.0127 1.3101 2.8656 0.0026 0.0074
T-Modified Bootstrap Bonferroni (4.6) 0.9511 2.2146 0.0021 1.2391 2.9464 0.0012 0.0036
Tukey convex hull 0.9450 2.0480 0.0252 1.2361 2.4935 0.0035 0.0088

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95

Analytical method (3.5) 0.9358 1.8112 0.0321 1.6816 3.1735 0.0083 0.0265
Bootstrap ellipsoid (4.9) 0.9602 2.2105 0.0214 1.6737 3.5801 0.0047 0.0170
Tukey convex hull 0.9450 2.0481 0.0253 1.3109 3.6115 0.0027 0.0099

Table 10: SP500 Low/High Returns. Evaluation of the one-step ahead 95% prediction regions
(Jan.1, 2017-April 20, 2018). In the first column, the numbers in parenthesis e.g., (x.x)
are the corresponding equations in the text.
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Figure 1: 95% prediction regions for the center/log-range system obtained from a simulated
VAR(4) model with Gaussian errors and T = 1000.
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Figure 2: 95% prediction regions for the center/range system obtained by transforming the regions
obtained for the center/log-range system as well as the analytical contour based on (3.5).
Normal ellipse refers to the transformed normal ellipse T-NE and Bootstrap ellipse refers
to the transformed bootstrap ellipse T-BE, which are identical.
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Figure 3: 95% prediction regions for the upper/lower bounds system. The lower panel is a close-up
of the central area of the regions.
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Figure 4: 95% prediction regions for the upper/lower bounds system. Detail of the extreme areas
of the regions.
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Figure 6: Time series plots of center (top panel), range (middle panel) and unconditional bivariate
density (bottom panel) of SP500 low/high return interval from January 2, 2009 to April
20, 2018.

48



-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values
Normal ellipse
Bonferroni rectangle
Modified Bonferroni rectangle
Bootstrap ellipsoid
Bootstrap Bonferroni rectangle
Modified Bootstrap Bonferroni rectangle
Tukey Convex Hull

Forecast period: Mar 15, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values
Normal ellipse
Bonferroni rectangle
Modified Bonferroni rectangle
Bootstrap ellipsoid
Bootstrap Bonferroni rectangle
Modified Bootstrap Bonferroni rectangle
Tukey Convex Hull

Forecast period: May 11, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values
Normal ellipse
Bonferroni rectangle
Modified Bonferroni rectangle
Bootstrap ellipsoid
Bootstrap Bonferroni rectangle
Modified Bootstrap Bonferroni rectangle
Tukey Convex Hull

Forecast period: Aug 30, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values
Normal ellipse
Bonferroni rectangle
Modified Bonferroni rectangle
Bootstrap ellipsoid
Bootstrap Bonferroni rectangle
Modified Bootstrap Bonferroni rectangle
Tukey Convex Hull

Forecast period: Dec 8, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values
Normal ellipse
Bonferroni rectangle
Modified Bonferroni rectangle
Bootstrap ellipsoid
Bootstrap Bonferroni rectangle
Modified Bootstrap Bonferroni rectangle
Tukey Convex Hull

Forecast period: Feb 22, 2018

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values
Normal ellipse
Bonferroni rectangle
Modified Bonferroni rectangle
Bootstrap ellipsoid
Bootstrap Bonferroni rectangle
Modified Bootstrap Bonferroni rectangle
Tukey Convex Hull

Forecast period: Apr 6, 2018

Figure 7: One-step-ahead 95% prediction regions for the center/log-range system of the SP500 return intervals correspond-
ing to different dates of the out-of-sample period.
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Figure 8: One-step-ahead 95% prediction regions for the center/range system of the SP500 return intervals corresponding
to different dates of the out-of-sample period.
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